glsl: Replace most default cases in switches on GLSL type
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 /* I assume a comparison of a struct containing a sampler just
861 * ignores the sampler present in the type.
862 */
863 break;
864 }
865
866 if (cmp == NULL)
867 cmp = new(mem_ctx) ir_constant(true);
868
869 return cmp;
870 }
871
872 /* For logical operations, we want to ensure that the operands are
873 * scalar booleans. If it isn't, emit an error and return a constant
874 * boolean to avoid triggering cascading error messages.
875 */
876 ir_rvalue *
877 get_scalar_boolean_operand(exec_list *instructions,
878 struct _mesa_glsl_parse_state *state,
879 ast_expression *parent_expr,
880 int operand,
881 const char *operand_name,
882 bool *error_emitted)
883 {
884 ast_expression *expr = parent_expr->subexpressions[operand];
885 void *ctx = state;
886 ir_rvalue *val = expr->hir(instructions, state);
887
888 if (val->type->is_boolean() && val->type->is_scalar())
889 return val;
890
891 if (!*error_emitted) {
892 YYLTYPE loc = expr->get_location();
893 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
894 operand_name,
895 parent_expr->operator_string(parent_expr->oper));
896 *error_emitted = true;
897 }
898
899 return new(ctx) ir_constant(true);
900 }
901
902 /**
903 * If name refers to a builtin array whose maximum allowed size is less than
904 * size, report an error and return true. Otherwise return false.
905 */
906 static bool
907 check_builtin_array_max_size(const char *name, unsigned size,
908 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
909 {
910 if ((strcmp("gl_TexCoord", name) == 0)
911 && (size > state->Const.MaxTextureCoords)) {
912 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
913 *
914 * "The size [of gl_TexCoord] can be at most
915 * gl_MaxTextureCoords."
916 */
917 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
918 "be larger than gl_MaxTextureCoords (%u)\n",
919 state->Const.MaxTextureCoords);
920 return true;
921 } else if (strcmp("gl_ClipDistance", name) == 0
922 && size > state->Const.MaxClipPlanes) {
923 /* From section 7.1 (Vertex Shader Special Variables) of the
924 * GLSL 1.30 spec:
925 *
926 * "The gl_ClipDistance array is predeclared as unsized and
927 * must be sized by the shader either redeclaring it with a
928 * size or indexing it only with integral constant
929 * expressions. ... The size can be at most
930 * gl_MaxClipDistances."
931 */
932 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
933 "be larger than gl_MaxClipDistances (%u)\n",
934 state->Const.MaxClipPlanes);
935 return true;
936 }
937 return false;
938 }
939
940 /**
941 * Create the constant 1, of a which is appropriate for incrementing and
942 * decrementing values of the given GLSL type. For example, if type is vec4,
943 * this creates a constant value of 1.0 having type float.
944 *
945 * If the given type is invalid for increment and decrement operators, return
946 * a floating point 1--the error will be detected later.
947 */
948 static ir_rvalue *
949 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
950 {
951 switch (type->base_type) {
952 case GLSL_TYPE_UINT:
953 return new(ctx) ir_constant((unsigned) 1);
954 case GLSL_TYPE_INT:
955 return new(ctx) ir_constant(1);
956 default:
957 case GLSL_TYPE_FLOAT:
958 return new(ctx) ir_constant(1.0f);
959 }
960 }
961
962 ir_rvalue *
963 ast_expression::hir(exec_list *instructions,
964 struct _mesa_glsl_parse_state *state)
965 {
966 void *ctx = state;
967 static const int operations[AST_NUM_OPERATORS] = {
968 -1, /* ast_assign doesn't convert to ir_expression. */
969 -1, /* ast_plus doesn't convert to ir_expression. */
970 ir_unop_neg,
971 ir_binop_add,
972 ir_binop_sub,
973 ir_binop_mul,
974 ir_binop_div,
975 ir_binop_mod,
976 ir_binop_lshift,
977 ir_binop_rshift,
978 ir_binop_less,
979 ir_binop_greater,
980 ir_binop_lequal,
981 ir_binop_gequal,
982 ir_binop_all_equal,
983 ir_binop_any_nequal,
984 ir_binop_bit_and,
985 ir_binop_bit_xor,
986 ir_binop_bit_or,
987 ir_unop_bit_not,
988 ir_binop_logic_and,
989 ir_binop_logic_xor,
990 ir_binop_logic_or,
991 ir_unop_logic_not,
992
993 /* Note: The following block of expression types actually convert
994 * to multiple IR instructions.
995 */
996 ir_binop_mul, /* ast_mul_assign */
997 ir_binop_div, /* ast_div_assign */
998 ir_binop_mod, /* ast_mod_assign */
999 ir_binop_add, /* ast_add_assign */
1000 ir_binop_sub, /* ast_sub_assign */
1001 ir_binop_lshift, /* ast_ls_assign */
1002 ir_binop_rshift, /* ast_rs_assign */
1003 ir_binop_bit_and, /* ast_and_assign */
1004 ir_binop_bit_xor, /* ast_xor_assign */
1005 ir_binop_bit_or, /* ast_or_assign */
1006
1007 -1, /* ast_conditional doesn't convert to ir_expression. */
1008 ir_binop_add, /* ast_pre_inc. */
1009 ir_binop_sub, /* ast_pre_dec. */
1010 ir_binop_add, /* ast_post_inc. */
1011 ir_binop_sub, /* ast_post_dec. */
1012 -1, /* ast_field_selection doesn't conv to ir_expression. */
1013 -1, /* ast_array_index doesn't convert to ir_expression. */
1014 -1, /* ast_function_call doesn't conv to ir_expression. */
1015 -1, /* ast_identifier doesn't convert to ir_expression. */
1016 -1, /* ast_int_constant doesn't convert to ir_expression. */
1017 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1018 -1, /* ast_float_constant doesn't conv to ir_expression. */
1019 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1020 -1, /* ast_sequence doesn't convert to ir_expression. */
1021 };
1022 ir_rvalue *result = NULL;
1023 ir_rvalue *op[3];
1024 const struct glsl_type *type; /* a temporary variable for switch cases */
1025 bool error_emitted = false;
1026 YYLTYPE loc;
1027
1028 loc = this->get_location();
1029
1030 switch (this->oper) {
1031 case ast_assign: {
1032 op[0] = this->subexpressions[0]->hir(instructions, state);
1033 op[1] = this->subexpressions[1]->hir(instructions, state);
1034
1035 result = do_assignment(instructions, state,
1036 this->subexpressions[0]->non_lvalue_description,
1037 op[0], op[1], false,
1038 this->subexpressions[0]->get_location());
1039 error_emitted = result->type->is_error();
1040 break;
1041 }
1042
1043 case ast_plus:
1044 op[0] = this->subexpressions[0]->hir(instructions, state);
1045
1046 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1047
1048 error_emitted = type->is_error();
1049
1050 result = op[0];
1051 break;
1052
1053 case ast_neg:
1054 op[0] = this->subexpressions[0]->hir(instructions, state);
1055
1056 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1057
1058 error_emitted = type->is_error();
1059
1060 result = new(ctx) ir_expression(operations[this->oper], type,
1061 op[0], NULL);
1062 break;
1063
1064 case ast_add:
1065 case ast_sub:
1066 case ast_mul:
1067 case ast_div:
1068 op[0] = this->subexpressions[0]->hir(instructions, state);
1069 op[1] = this->subexpressions[1]->hir(instructions, state);
1070
1071 type = arithmetic_result_type(op[0], op[1],
1072 (this->oper == ast_mul),
1073 state, & loc);
1074 error_emitted = type->is_error();
1075
1076 result = new(ctx) ir_expression(operations[this->oper], type,
1077 op[0], op[1]);
1078 break;
1079
1080 case ast_mod:
1081 op[0] = this->subexpressions[0]->hir(instructions, state);
1082 op[1] = this->subexpressions[1]->hir(instructions, state);
1083
1084 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1085
1086 assert(operations[this->oper] == ir_binop_mod);
1087
1088 result = new(ctx) ir_expression(operations[this->oper], type,
1089 op[0], op[1]);
1090 error_emitted = type->is_error();
1091 break;
1092
1093 case ast_lshift:
1094 case ast_rshift:
1095 if (!state->check_bitwise_operations_allowed(&loc)) {
1096 error_emitted = true;
1097 }
1098
1099 op[0] = this->subexpressions[0]->hir(instructions, state);
1100 op[1] = this->subexpressions[1]->hir(instructions, state);
1101 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1102 &loc);
1103 result = new(ctx) ir_expression(operations[this->oper], type,
1104 op[0], op[1]);
1105 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1106 break;
1107
1108 case ast_less:
1109 case ast_greater:
1110 case ast_lequal:
1111 case ast_gequal:
1112 op[0] = this->subexpressions[0]->hir(instructions, state);
1113 op[1] = this->subexpressions[1]->hir(instructions, state);
1114
1115 type = relational_result_type(op[0], op[1], state, & loc);
1116
1117 /* The relational operators must either generate an error or result
1118 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1119 */
1120 assert(type->is_error()
1121 || ((type->base_type == GLSL_TYPE_BOOL)
1122 && type->is_scalar()));
1123
1124 result = new(ctx) ir_expression(operations[this->oper], type,
1125 op[0], op[1]);
1126 error_emitted = type->is_error();
1127 break;
1128
1129 case ast_nequal:
1130 case ast_equal:
1131 op[0] = this->subexpressions[0]->hir(instructions, state);
1132 op[1] = this->subexpressions[1]->hir(instructions, state);
1133
1134 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1135 *
1136 * "The equality operators equal (==), and not equal (!=)
1137 * operate on all types. They result in a scalar Boolean. If
1138 * the operand types do not match, then there must be a
1139 * conversion from Section 4.1.10 "Implicit Conversions"
1140 * applied to one operand that can make them match, in which
1141 * case this conversion is done."
1142 */
1143 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1144 && !apply_implicit_conversion(op[1]->type, op[0], state))
1145 || (op[0]->type != op[1]->type)) {
1146 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1147 "type", (this->oper == ast_equal) ? "==" : "!=");
1148 error_emitted = true;
1149 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1150 !state->check_version(120, 300, &loc,
1151 "array comparisons forbidden")) {
1152 error_emitted = true;
1153 }
1154
1155 if (error_emitted) {
1156 result = new(ctx) ir_constant(false);
1157 } else {
1158 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1159 assert(result->type == glsl_type::bool_type);
1160 }
1161 break;
1162
1163 case ast_bit_and:
1164 case ast_bit_xor:
1165 case ast_bit_or:
1166 op[0] = this->subexpressions[0]->hir(instructions, state);
1167 op[1] = this->subexpressions[1]->hir(instructions, state);
1168 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1169 state, &loc);
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1173 break;
1174
1175 case ast_bit_not:
1176 op[0] = this->subexpressions[0]->hir(instructions, state);
1177
1178 if (!state->check_bitwise_operations_allowed(&loc)) {
1179 error_emitted = true;
1180 }
1181
1182 if (!op[0]->type->is_integer()) {
1183 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1184 error_emitted = true;
1185 }
1186
1187 type = error_emitted ? glsl_type::error_type : op[0]->type;
1188 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1189 break;
1190
1191 case ast_logic_and: {
1192 exec_list rhs_instructions;
1193 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1194 "LHS", &error_emitted);
1195 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1196 "RHS", &error_emitted);
1197
1198 if (rhs_instructions.is_empty()) {
1199 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1200 type = result->type;
1201 } else {
1202 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1203 "and_tmp",
1204 ir_var_temporary);
1205 instructions->push_tail(tmp);
1206
1207 ir_if *const stmt = new(ctx) ir_if(op[0]);
1208 instructions->push_tail(stmt);
1209
1210 stmt->then_instructions.append_list(&rhs_instructions);
1211 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1212 ir_assignment *const then_assign =
1213 new(ctx) ir_assignment(then_deref, op[1]);
1214 stmt->then_instructions.push_tail(then_assign);
1215
1216 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1217 ir_assignment *const else_assign =
1218 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1219 stmt->else_instructions.push_tail(else_assign);
1220
1221 result = new(ctx) ir_dereference_variable(tmp);
1222 type = tmp->type;
1223 }
1224 break;
1225 }
1226
1227 case ast_logic_or: {
1228 exec_list rhs_instructions;
1229 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1230 "LHS", &error_emitted);
1231 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1232 "RHS", &error_emitted);
1233
1234 if (rhs_instructions.is_empty()) {
1235 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1236 type = result->type;
1237 } else {
1238 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1239 "or_tmp",
1240 ir_var_temporary);
1241 instructions->push_tail(tmp);
1242
1243 ir_if *const stmt = new(ctx) ir_if(op[0]);
1244 instructions->push_tail(stmt);
1245
1246 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1247 ir_assignment *const then_assign =
1248 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1249 stmt->then_instructions.push_tail(then_assign);
1250
1251 stmt->else_instructions.append_list(&rhs_instructions);
1252 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1253 ir_assignment *const else_assign =
1254 new(ctx) ir_assignment(else_deref, op[1]);
1255 stmt->else_instructions.push_tail(else_assign);
1256
1257 result = new(ctx) ir_dereference_variable(tmp);
1258 type = tmp->type;
1259 }
1260 break;
1261 }
1262
1263 case ast_logic_xor:
1264 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1265 *
1266 * "The logical binary operators and (&&), or ( | | ), and
1267 * exclusive or (^^). They operate only on two Boolean
1268 * expressions and result in a Boolean expression."
1269 */
1270 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1271 &error_emitted);
1272 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1273 &error_emitted);
1274
1275 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1276 op[0], op[1]);
1277 break;
1278
1279 case ast_logic_not:
1280 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1281 "operand", &error_emitted);
1282
1283 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1284 op[0], NULL);
1285 break;
1286
1287 case ast_mul_assign:
1288 case ast_div_assign:
1289 case ast_add_assign:
1290 case ast_sub_assign: {
1291 op[0] = this->subexpressions[0]->hir(instructions, state);
1292 op[1] = this->subexpressions[1]->hir(instructions, state);
1293
1294 type = arithmetic_result_type(op[0], op[1],
1295 (this->oper == ast_mul_assign),
1296 state, & loc);
1297
1298 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1299 op[0], op[1]);
1300
1301 result = do_assignment(instructions, state,
1302 this->subexpressions[0]->non_lvalue_description,
1303 op[0]->clone(ctx, NULL), temp_rhs, false,
1304 this->subexpressions[0]->get_location());
1305 error_emitted = (op[0]->type->is_error());
1306
1307 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1308 * explicitly test for this because none of the binary expression
1309 * operators allow array operands either.
1310 */
1311
1312 break;
1313 }
1314
1315 case ast_mod_assign: {
1316 op[0] = this->subexpressions[0]->hir(instructions, state);
1317 op[1] = this->subexpressions[1]->hir(instructions, state);
1318
1319 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1320
1321 assert(operations[this->oper] == ir_binop_mod);
1322
1323 ir_rvalue *temp_rhs;
1324 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1325 op[0], op[1]);
1326
1327 result = do_assignment(instructions, state,
1328 this->subexpressions[0]->non_lvalue_description,
1329 op[0]->clone(ctx, NULL), temp_rhs, false,
1330 this->subexpressions[0]->get_location());
1331 error_emitted = type->is_error();
1332 break;
1333 }
1334
1335 case ast_ls_assign:
1336 case ast_rs_assign: {
1337 op[0] = this->subexpressions[0]->hir(instructions, state);
1338 op[1] = this->subexpressions[1]->hir(instructions, state);
1339 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1340 &loc);
1341 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1342 type, op[0], op[1]);
1343 result = do_assignment(instructions, state,
1344 this->subexpressions[0]->non_lvalue_description,
1345 op[0]->clone(ctx, NULL), temp_rhs, false,
1346 this->subexpressions[0]->get_location());
1347 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1348 break;
1349 }
1350
1351 case ast_and_assign:
1352 case ast_xor_assign:
1353 case ast_or_assign: {
1354 op[0] = this->subexpressions[0]->hir(instructions, state);
1355 op[1] = this->subexpressions[1]->hir(instructions, state);
1356 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1357 state, &loc);
1358 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1359 type, op[0], op[1]);
1360 result = do_assignment(instructions, state,
1361 this->subexpressions[0]->non_lvalue_description,
1362 op[0]->clone(ctx, NULL), temp_rhs, false,
1363 this->subexpressions[0]->get_location());
1364 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1365 break;
1366 }
1367
1368 case ast_conditional: {
1369 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1370 *
1371 * "The ternary selection operator (?:). It operates on three
1372 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1373 * first expression, which must result in a scalar Boolean."
1374 */
1375 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1376 "condition", &error_emitted);
1377
1378 /* The :? operator is implemented by generating an anonymous temporary
1379 * followed by an if-statement. The last instruction in each branch of
1380 * the if-statement assigns a value to the anonymous temporary. This
1381 * temporary is the r-value of the expression.
1382 */
1383 exec_list then_instructions;
1384 exec_list else_instructions;
1385
1386 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1387 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1388
1389 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1390 *
1391 * "The second and third expressions can be any type, as
1392 * long their types match, or there is a conversion in
1393 * Section 4.1.10 "Implicit Conversions" that can be applied
1394 * to one of the expressions to make their types match. This
1395 * resulting matching type is the type of the entire
1396 * expression."
1397 */
1398 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1399 && !apply_implicit_conversion(op[2]->type, op[1], state))
1400 || (op[1]->type != op[2]->type)) {
1401 YYLTYPE loc = this->subexpressions[1]->get_location();
1402
1403 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1404 "operator must have matching types.");
1405 error_emitted = true;
1406 type = glsl_type::error_type;
1407 } else {
1408 type = op[1]->type;
1409 }
1410
1411 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1412 *
1413 * "The second and third expressions must be the same type, but can
1414 * be of any type other than an array."
1415 */
1416 if (type->is_array() &&
1417 !state->check_version(120, 300, &loc,
1418 "Second and third operands of ?: operator "
1419 "cannot be arrays")) {
1420 error_emitted = true;
1421 }
1422
1423 ir_constant *cond_val = op[0]->constant_expression_value();
1424 ir_constant *then_val = op[1]->constant_expression_value();
1425 ir_constant *else_val = op[2]->constant_expression_value();
1426
1427 if (then_instructions.is_empty()
1428 && else_instructions.is_empty()
1429 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1430 result = (cond_val->value.b[0]) ? then_val : else_val;
1431 } else {
1432 ir_variable *const tmp =
1433 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1434 instructions->push_tail(tmp);
1435
1436 ir_if *const stmt = new(ctx) ir_if(op[0]);
1437 instructions->push_tail(stmt);
1438
1439 then_instructions.move_nodes_to(& stmt->then_instructions);
1440 ir_dereference *const then_deref =
1441 new(ctx) ir_dereference_variable(tmp);
1442 ir_assignment *const then_assign =
1443 new(ctx) ir_assignment(then_deref, op[1]);
1444 stmt->then_instructions.push_tail(then_assign);
1445
1446 else_instructions.move_nodes_to(& stmt->else_instructions);
1447 ir_dereference *const else_deref =
1448 new(ctx) ir_dereference_variable(tmp);
1449 ir_assignment *const else_assign =
1450 new(ctx) ir_assignment(else_deref, op[2]);
1451 stmt->else_instructions.push_tail(else_assign);
1452
1453 result = new(ctx) ir_dereference_variable(tmp);
1454 }
1455 break;
1456 }
1457
1458 case ast_pre_inc:
1459 case ast_pre_dec: {
1460 this->non_lvalue_description = (this->oper == ast_pre_inc)
1461 ? "pre-increment operation" : "pre-decrement operation";
1462
1463 op[0] = this->subexpressions[0]->hir(instructions, state);
1464 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1465
1466 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1467
1468 ir_rvalue *temp_rhs;
1469 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1470 op[0], op[1]);
1471
1472 result = do_assignment(instructions, state,
1473 this->subexpressions[0]->non_lvalue_description,
1474 op[0]->clone(ctx, NULL), temp_rhs, false,
1475 this->subexpressions[0]->get_location());
1476 error_emitted = op[0]->type->is_error();
1477 break;
1478 }
1479
1480 case ast_post_inc:
1481 case ast_post_dec: {
1482 this->non_lvalue_description = (this->oper == ast_post_inc)
1483 ? "post-increment operation" : "post-decrement operation";
1484 op[0] = this->subexpressions[0]->hir(instructions, state);
1485 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1486
1487 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1488
1489 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1490
1491 ir_rvalue *temp_rhs;
1492 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1493 op[0], op[1]);
1494
1495 /* Get a temporary of a copy of the lvalue before it's modified.
1496 * This may get thrown away later.
1497 */
1498 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1499
1500 (void)do_assignment(instructions, state,
1501 this->subexpressions[0]->non_lvalue_description,
1502 op[0]->clone(ctx, NULL), temp_rhs, false,
1503 this->subexpressions[0]->get_location());
1504
1505 error_emitted = op[0]->type->is_error();
1506 break;
1507 }
1508
1509 case ast_field_selection:
1510 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1511 break;
1512
1513 case ast_array_index: {
1514 YYLTYPE index_loc = subexpressions[1]->get_location();
1515
1516 op[0] = subexpressions[0]->hir(instructions, state);
1517 op[1] = subexpressions[1]->hir(instructions, state);
1518
1519 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1520
1521 ir_rvalue *const array = op[0];
1522
1523 result = new(ctx) ir_dereference_array(op[0], op[1]);
1524
1525 /* Do not use op[0] after this point. Use array.
1526 */
1527 op[0] = NULL;
1528
1529
1530 if (error_emitted)
1531 break;
1532
1533 if (!array->type->is_array()
1534 && !array->type->is_matrix()
1535 && !array->type->is_vector()) {
1536 _mesa_glsl_error(& index_loc, state,
1537 "cannot dereference non-array / non-matrix / "
1538 "non-vector");
1539 error_emitted = true;
1540 }
1541
1542 if (!op[1]->type->is_integer()) {
1543 _mesa_glsl_error(& index_loc, state,
1544 "array index must be integer type");
1545 error_emitted = true;
1546 } else if (!op[1]->type->is_scalar()) {
1547 _mesa_glsl_error(& index_loc, state,
1548 "array index must be scalar");
1549 error_emitted = true;
1550 }
1551
1552 /* If the array index is a constant expression and the array has a
1553 * declared size, ensure that the access is in-bounds. If the array
1554 * index is not a constant expression, ensure that the array has a
1555 * declared size.
1556 */
1557 ir_constant *const const_index = op[1]->constant_expression_value();
1558 if (const_index != NULL) {
1559 const int idx = const_index->value.i[0];
1560 const char *type_name;
1561 unsigned bound = 0;
1562
1563 if (array->type->is_matrix()) {
1564 type_name = "matrix";
1565 } else if (array->type->is_vector()) {
1566 type_name = "vector";
1567 } else {
1568 type_name = "array";
1569 }
1570
1571 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1572 *
1573 * "It is illegal to declare an array with a size, and then
1574 * later (in the same shader) index the same array with an
1575 * integral constant expression greater than or equal to the
1576 * declared size. It is also illegal to index an array with a
1577 * negative constant expression."
1578 */
1579 if (array->type->is_matrix()) {
1580 if (array->type->row_type()->vector_elements <= idx) {
1581 bound = array->type->row_type()->vector_elements;
1582 }
1583 } else if (array->type->is_vector()) {
1584 if (array->type->vector_elements <= idx) {
1585 bound = array->type->vector_elements;
1586 }
1587 } else {
1588 if ((array->type->array_size() > 0)
1589 && (array->type->array_size() <= idx)) {
1590 bound = array->type->array_size();
1591 }
1592 }
1593
1594 if (bound > 0) {
1595 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1596 type_name, bound);
1597 error_emitted = true;
1598 } else if (idx < 0) {
1599 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1600 type_name);
1601 error_emitted = true;
1602 }
1603
1604 if (array->type->is_array()) {
1605 /* If the array is a variable dereference, it dereferences the
1606 * whole array, by definition. Use this to get the variable.
1607 *
1608 * FINISHME: Should some methods for getting / setting / testing
1609 * FINISHME: array access limits be added to ir_dereference?
1610 */
1611 ir_variable *const v = array->whole_variable_referenced();
1612 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1613 v->max_array_access = idx;
1614
1615 /* Check whether this access will, as a side effect, implicitly
1616 * cause the size of a built-in array to be too large.
1617 */
1618 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1619 error_emitted = true;
1620 }
1621 }
1622 } else if (array->type->array_size() == 0) {
1623 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1624 } else {
1625 if (array->type->is_array()) {
1626 /* whole_variable_referenced can return NULL if the array is a
1627 * member of a structure. In this case it is safe to not update
1628 * the max_array_access field because it is never used for fields
1629 * of structures.
1630 */
1631 ir_variable *v = array->whole_variable_referenced();
1632 if (v != NULL)
1633 v->max_array_access = array->type->array_size() - 1;
1634 }
1635 }
1636
1637 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1638 *
1639 * "Samplers aggregated into arrays within a shader (using square
1640 * brackets [ ]) can only be indexed with integral constant
1641 * expressions [...]."
1642 *
1643 * This restriction was added in GLSL 1.30. Shaders using earlier version
1644 * of the language should not be rejected by the compiler front-end for
1645 * using this construct. This allows useful things such as using a loop
1646 * counter as the index to an array of samplers. If the loop in unrolled,
1647 * the code should compile correctly. Instead, emit a warning.
1648 */
1649 if (array->type->is_array() &&
1650 array->type->element_type()->is_sampler() &&
1651 const_index == NULL) {
1652
1653 if (!state->is_version(130, 100)) {
1654 if (state->es_shader) {
1655 _mesa_glsl_warning(&loc, state,
1656 "sampler arrays indexed with non-constant "
1657 "expressions is optional in %s",
1658 state->get_version_string());
1659 } else {
1660 _mesa_glsl_warning(&loc, state,
1661 "sampler arrays indexed with non-constant "
1662 "expressions will be forbidden in GLSL 1.30 and "
1663 "later");
1664 }
1665 } else {
1666 _mesa_glsl_error(&loc, state,
1667 "sampler arrays indexed with non-constant "
1668 "expressions is forbidden in GLSL 1.30 and "
1669 "later");
1670 error_emitted = true;
1671 }
1672 }
1673
1674 if (error_emitted)
1675 result->type = glsl_type::error_type;
1676
1677 break;
1678 }
1679
1680 case ast_function_call:
1681 /* Should *NEVER* get here. ast_function_call should always be handled
1682 * by ast_function_expression::hir.
1683 */
1684 assert(0);
1685 break;
1686
1687 case ast_identifier: {
1688 /* ast_identifier can appear several places in a full abstract syntax
1689 * tree. This particular use must be at location specified in the grammar
1690 * as 'variable_identifier'.
1691 */
1692 ir_variable *var =
1693 state->symbols->get_variable(this->primary_expression.identifier);
1694
1695 if (var != NULL) {
1696 var->used = true;
1697 result = new(ctx) ir_dereference_variable(var);
1698 } else {
1699 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1700 this->primary_expression.identifier);
1701
1702 result = ir_rvalue::error_value(ctx);
1703 error_emitted = true;
1704 }
1705 break;
1706 }
1707
1708 case ast_int_constant:
1709 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1710 break;
1711
1712 case ast_uint_constant:
1713 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1714 break;
1715
1716 case ast_float_constant:
1717 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1718 break;
1719
1720 case ast_bool_constant:
1721 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1722 break;
1723
1724 case ast_sequence: {
1725 /* It should not be possible to generate a sequence in the AST without
1726 * any expressions in it.
1727 */
1728 assert(!this->expressions.is_empty());
1729
1730 /* The r-value of a sequence is the last expression in the sequence. If
1731 * the other expressions in the sequence do not have side-effects (and
1732 * therefore add instructions to the instruction list), they get dropped
1733 * on the floor.
1734 */
1735 exec_node *previous_tail_pred = NULL;
1736 YYLTYPE previous_operand_loc = loc;
1737
1738 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1739 /* If one of the operands of comma operator does not generate any
1740 * code, we want to emit a warning. At each pass through the loop
1741 * previous_tail_pred will point to the last instruction in the
1742 * stream *before* processing the previous operand. Naturally,
1743 * instructions->tail_pred will point to the last instruction in the
1744 * stream *after* processing the previous operand. If the two
1745 * pointers match, then the previous operand had no effect.
1746 *
1747 * The warning behavior here differs slightly from GCC. GCC will
1748 * only emit a warning if none of the left-hand operands have an
1749 * effect. However, it will emit a warning for each. I believe that
1750 * there are some cases in C (especially with GCC extensions) where
1751 * it is useful to have an intermediate step in a sequence have no
1752 * effect, but I don't think these cases exist in GLSL. Either way,
1753 * it would be a giant hassle to replicate that behavior.
1754 */
1755 if (previous_tail_pred == instructions->tail_pred) {
1756 _mesa_glsl_warning(&previous_operand_loc, state,
1757 "left-hand operand of comma expression has "
1758 "no effect");
1759 }
1760
1761 /* tail_pred is directly accessed instead of using the get_tail()
1762 * method for performance reasons. get_tail() has extra code to
1763 * return NULL when the list is empty. We don't care about that
1764 * here, so using tail_pred directly is fine.
1765 */
1766 previous_tail_pred = instructions->tail_pred;
1767 previous_operand_loc = ast->get_location();
1768
1769 result = ast->hir(instructions, state);
1770 }
1771
1772 /* Any errors should have already been emitted in the loop above.
1773 */
1774 error_emitted = true;
1775 break;
1776 }
1777 }
1778 type = NULL; /* use result->type, not type. */
1779 assert(result != NULL);
1780
1781 if (result->type->is_error() && !error_emitted)
1782 _mesa_glsl_error(& loc, state, "type mismatch");
1783
1784 return result;
1785 }
1786
1787
1788 ir_rvalue *
1789 ast_expression_statement::hir(exec_list *instructions,
1790 struct _mesa_glsl_parse_state *state)
1791 {
1792 /* It is possible to have expression statements that don't have an
1793 * expression. This is the solitary semicolon:
1794 *
1795 * for (i = 0; i < 5; i++)
1796 * ;
1797 *
1798 * In this case the expression will be NULL. Test for NULL and don't do
1799 * anything in that case.
1800 */
1801 if (expression != NULL)
1802 expression->hir(instructions, state);
1803
1804 /* Statements do not have r-values.
1805 */
1806 return NULL;
1807 }
1808
1809
1810 ir_rvalue *
1811 ast_compound_statement::hir(exec_list *instructions,
1812 struct _mesa_glsl_parse_state *state)
1813 {
1814 if (new_scope)
1815 state->symbols->push_scope();
1816
1817 foreach_list_typed (ast_node, ast, link, &this->statements)
1818 ast->hir(instructions, state);
1819
1820 if (new_scope)
1821 state->symbols->pop_scope();
1822
1823 /* Compound statements do not have r-values.
1824 */
1825 return NULL;
1826 }
1827
1828
1829 static const glsl_type *
1830 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1831 struct _mesa_glsl_parse_state *state)
1832 {
1833 unsigned length = 0;
1834
1835 /* From page 19 (page 25) of the GLSL 1.20 spec:
1836 *
1837 * "Only one-dimensional arrays may be declared."
1838 */
1839 if (base->is_array()) {
1840 _mesa_glsl_error(loc, state,
1841 "invalid array of `%s' (only one-dimensional arrays "
1842 "may be declared)",
1843 base->name);
1844 return glsl_type::error_type;
1845 }
1846
1847 if (array_size != NULL) {
1848 exec_list dummy_instructions;
1849 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1850 YYLTYPE loc = array_size->get_location();
1851
1852 if (ir != NULL) {
1853 if (!ir->type->is_integer()) {
1854 _mesa_glsl_error(& loc, state, "array size must be integer type");
1855 } else if (!ir->type->is_scalar()) {
1856 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1857 } else {
1858 ir_constant *const size = ir->constant_expression_value();
1859
1860 if (size == NULL) {
1861 _mesa_glsl_error(& loc, state, "array size must be a "
1862 "constant valued expression");
1863 } else if (size->value.i[0] <= 0) {
1864 _mesa_glsl_error(& loc, state, "array size must be > 0");
1865 } else {
1866 assert(size->type == ir->type);
1867 length = size->value.u[0];
1868
1869 /* If the array size is const (and we've verified that
1870 * it is) then no instructions should have been emitted
1871 * when we converted it to HIR. If they were emitted,
1872 * then either the array size isn't const after all, or
1873 * we are emitting unnecessary instructions.
1874 */
1875 assert(dummy_instructions.is_empty());
1876 }
1877 }
1878 }
1879 } else if (state->es_shader) {
1880 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1881 * array declarations have been removed from the language.
1882 */
1883 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1884 "allowed in GLSL ES 1.00.");
1885 }
1886
1887 return glsl_type::get_array_instance(base, length);
1888 }
1889
1890
1891 const glsl_type *
1892 ast_type_specifier::glsl_type(const char **name,
1893 struct _mesa_glsl_parse_state *state) const
1894 {
1895 const struct glsl_type *type;
1896
1897 type = state->symbols->get_type(this->type_name);
1898 *name = this->type_name;
1899
1900 if (this->is_array) {
1901 YYLTYPE loc = this->get_location();
1902 type = process_array_type(&loc, type, this->array_size, state);
1903 }
1904
1905 return type;
1906 }
1907
1908
1909 /**
1910 * Determine whether a toplevel variable declaration declares a varying. This
1911 * function operates by examining the variable's mode and the shader target,
1912 * so it correctly identifies linkage variables regardless of whether they are
1913 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1914 *
1915 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1916 * this function will produce undefined results.
1917 */
1918 static bool
1919 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1920 {
1921 switch (target) {
1922 case vertex_shader:
1923 return var->mode == ir_var_shader_out;
1924 case fragment_shader:
1925 return var->mode == ir_var_shader_in;
1926 default:
1927 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1928 }
1929 }
1930
1931
1932 /**
1933 * Matrix layout qualifiers are only allowed on certain types
1934 */
1935 static void
1936 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1937 YYLTYPE *loc,
1938 const glsl_type *type)
1939 {
1940 if (!type->is_matrix() && !type->is_record()) {
1941 _mesa_glsl_error(loc, state,
1942 "uniform block layout qualifiers row_major and "
1943 "column_major can only be applied to matrix and "
1944 "structure types");
1945 } else if (type->is_record()) {
1946 /* We allow 'layout(row_major)' on structure types because it's the only
1947 * way to get row-major layouts on matrices contained in structures.
1948 */
1949 _mesa_glsl_warning(loc, state,
1950 "uniform block layout qualifiers row_major and "
1951 "column_major applied to structure types is not "
1952 "strictly conformant and my be rejected by other "
1953 "compilers");
1954 }
1955 }
1956
1957 static void
1958 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1959 ir_variable *var,
1960 struct _mesa_glsl_parse_state *state,
1961 YYLTYPE *loc,
1962 bool ubo_qualifiers_valid,
1963 bool is_parameter)
1964 {
1965 if (qual->flags.q.invariant) {
1966 if (var->used) {
1967 _mesa_glsl_error(loc, state,
1968 "variable `%s' may not be redeclared "
1969 "`invariant' after being used",
1970 var->name);
1971 } else {
1972 var->invariant = 1;
1973 }
1974 }
1975
1976 if (qual->flags.q.constant || qual->flags.q.attribute
1977 || qual->flags.q.uniform
1978 || (qual->flags.q.varying && (state->target == fragment_shader)))
1979 var->read_only = 1;
1980
1981 if (qual->flags.q.centroid)
1982 var->centroid = 1;
1983
1984 if (qual->flags.q.attribute && state->target != vertex_shader) {
1985 var->type = glsl_type::error_type;
1986 _mesa_glsl_error(loc, state,
1987 "`attribute' variables may not be declared in the "
1988 "%s shader",
1989 _mesa_glsl_shader_target_name(state->target));
1990 }
1991
1992 /* If there is no qualifier that changes the mode of the variable, leave
1993 * the setting alone.
1994 */
1995 if (qual->flags.q.in && qual->flags.q.out)
1996 var->mode = ir_var_function_inout;
1997 else if (qual->flags.q.in)
1998 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1999 else if (qual->flags.q.attribute
2000 || (qual->flags.q.varying && (state->target == fragment_shader)))
2001 var->mode = ir_var_shader_in;
2002 else if (qual->flags.q.out)
2003 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2004 else if (qual->flags.q.varying && (state->target == vertex_shader))
2005 var->mode = ir_var_shader_out;
2006 else if (qual->flags.q.uniform)
2007 var->mode = ir_var_uniform;
2008
2009 if (!is_parameter && is_varying_var(var, state->target)) {
2010 /* This variable is being used to link data between shader stages (in
2011 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2012 * that is allowed for such purposes.
2013 *
2014 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2015 *
2016 * "The varying qualifier can be used only with the data types
2017 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2018 * these."
2019 *
2020 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2021 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2022 *
2023 * "Fragment inputs can only be signed and unsigned integers and
2024 * integer vectors, float, floating-point vectors, matrices, or
2025 * arrays of these. Structures cannot be input.
2026 *
2027 * Similar text exists in the section on vertex shader outputs.
2028 *
2029 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2030 * 3.00 spec allows structs as well. Varying structs are also allowed
2031 * in GLSL 1.50.
2032 */
2033 switch (var->type->get_scalar_type()->base_type) {
2034 case GLSL_TYPE_FLOAT:
2035 /* Ok in all GLSL versions */
2036 break;
2037 case GLSL_TYPE_UINT:
2038 case GLSL_TYPE_INT:
2039 if (state->is_version(130, 300))
2040 break;
2041 _mesa_glsl_error(loc, state,
2042 "varying variables must be of base type float in %s",
2043 state->get_version_string());
2044 break;
2045 case GLSL_TYPE_STRUCT:
2046 if (state->is_version(150, 300))
2047 break;
2048 _mesa_glsl_error(loc, state,
2049 "varying variables may not be of type struct");
2050 break;
2051 default:
2052 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2053 break;
2054 }
2055 }
2056
2057 if (state->all_invariant && (state->current_function == NULL)) {
2058 switch (state->target) {
2059 case vertex_shader:
2060 if (var->mode == ir_var_shader_out)
2061 var->invariant = true;
2062 break;
2063 case geometry_shader:
2064 if ((var->mode == ir_var_shader_in)
2065 || (var->mode == ir_var_shader_out))
2066 var->invariant = true;
2067 break;
2068 case fragment_shader:
2069 if (var->mode == ir_var_shader_in)
2070 var->invariant = true;
2071 break;
2072 }
2073 }
2074
2075 if (qual->flags.q.flat)
2076 var->interpolation = INTERP_QUALIFIER_FLAT;
2077 else if (qual->flags.q.noperspective)
2078 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2079 else if (qual->flags.q.smooth)
2080 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2081 else
2082 var->interpolation = INTERP_QUALIFIER_NONE;
2083
2084 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2085 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
2086 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
2087 _mesa_glsl_error(loc, state,
2088 "interpolation qualifier `%s' can only be applied to "
2089 "vertex shader outputs and fragment shader inputs.",
2090 var->interpolation_string());
2091 }
2092
2093 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2094 var->origin_upper_left = qual->flags.q.origin_upper_left;
2095 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2096 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2097 const char *const qual_string = (qual->flags.q.origin_upper_left)
2098 ? "origin_upper_left" : "pixel_center_integer";
2099
2100 _mesa_glsl_error(loc, state,
2101 "layout qualifier `%s' can only be applied to "
2102 "fragment shader input `gl_FragCoord'",
2103 qual_string);
2104 }
2105
2106 if (qual->flags.q.explicit_location) {
2107 const bool global_scope = (state->current_function == NULL);
2108 bool fail = false;
2109 const char *string = "";
2110
2111 /* In the vertex shader only shader inputs can be given explicit
2112 * locations.
2113 *
2114 * In the fragment shader only shader outputs can be given explicit
2115 * locations.
2116 */
2117 switch (state->target) {
2118 case vertex_shader:
2119 if (!global_scope || (var->mode != ir_var_shader_in)) {
2120 fail = true;
2121 string = "input";
2122 }
2123 break;
2124
2125 case geometry_shader:
2126 _mesa_glsl_error(loc, state,
2127 "geometry shader variables cannot be given "
2128 "explicit locations\n");
2129 break;
2130
2131 case fragment_shader:
2132 if (!global_scope || (var->mode != ir_var_shader_out)) {
2133 fail = true;
2134 string = "output";
2135 }
2136 break;
2137 };
2138
2139 if (fail) {
2140 _mesa_glsl_error(loc, state,
2141 "only %s shader %s variables can be given an "
2142 "explicit location\n",
2143 _mesa_glsl_shader_target_name(state->target),
2144 string);
2145 } else {
2146 var->explicit_location = true;
2147
2148 /* This bit of silliness is needed because invalid explicit locations
2149 * are supposed to be flagged during linking. Small negative values
2150 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2151 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2152 * The linker needs to be able to differentiate these cases. This
2153 * ensures that negative values stay negative.
2154 */
2155 if (qual->location >= 0) {
2156 var->location = (state->target == vertex_shader)
2157 ? (qual->location + VERT_ATTRIB_GENERIC0)
2158 : (qual->location + FRAG_RESULT_DATA0);
2159 } else {
2160 var->location = qual->location;
2161 }
2162
2163 if (qual->flags.q.explicit_index) {
2164 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2165 * Layout Qualifiers):
2166 *
2167 * "It is also a compile-time error if a fragment shader
2168 * sets a layout index to less than 0 or greater than 1."
2169 *
2170 * Older specifications don't mandate a behavior; we take
2171 * this as a clarification and always generate the error.
2172 */
2173 if (qual->index < 0 || qual->index > 1) {
2174 _mesa_glsl_error(loc, state,
2175 "explicit index may only be 0 or 1\n");
2176 } else {
2177 var->explicit_index = true;
2178 var->index = qual->index;
2179 }
2180 }
2181 }
2182 } else if (qual->flags.q.explicit_index) {
2183 _mesa_glsl_error(loc, state,
2184 "explicit index requires explicit location\n");
2185 }
2186
2187 /* Does the declaration use the 'layout' keyword?
2188 */
2189 const bool uses_layout = qual->flags.q.pixel_center_integer
2190 || qual->flags.q.origin_upper_left
2191 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2192
2193 /* Does the declaration use the deprecated 'attribute' or 'varying'
2194 * keywords?
2195 */
2196 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2197 || qual->flags.q.varying;
2198
2199 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2200 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2201 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2202 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2203 * These extensions and all following extensions that add the 'layout'
2204 * keyword have been modified to require the use of 'in' or 'out'.
2205 *
2206 * The following extension do not allow the deprecated keywords:
2207 *
2208 * GL_AMD_conservative_depth
2209 * GL_ARB_conservative_depth
2210 * GL_ARB_gpu_shader5
2211 * GL_ARB_separate_shader_objects
2212 * GL_ARB_tesselation_shader
2213 * GL_ARB_transform_feedback3
2214 * GL_ARB_uniform_buffer_object
2215 *
2216 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2217 * allow layout with the deprecated keywords.
2218 */
2219 const bool relaxed_layout_qualifier_checking =
2220 state->ARB_fragment_coord_conventions_enable;
2221
2222 if (uses_layout && uses_deprecated_qualifier) {
2223 if (relaxed_layout_qualifier_checking) {
2224 _mesa_glsl_warning(loc, state,
2225 "`layout' qualifier may not be used with "
2226 "`attribute' or `varying'");
2227 } else {
2228 _mesa_glsl_error(loc, state,
2229 "`layout' qualifier may not be used with "
2230 "`attribute' or `varying'");
2231 }
2232 }
2233
2234 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2235 * AMD_conservative_depth.
2236 */
2237 int depth_layout_count = qual->flags.q.depth_any
2238 + qual->flags.q.depth_greater
2239 + qual->flags.q.depth_less
2240 + qual->flags.q.depth_unchanged;
2241 if (depth_layout_count > 0
2242 && !state->AMD_conservative_depth_enable
2243 && !state->ARB_conservative_depth_enable) {
2244 _mesa_glsl_error(loc, state,
2245 "extension GL_AMD_conservative_depth or "
2246 "GL_ARB_conservative_depth must be enabled "
2247 "to use depth layout qualifiers");
2248 } else if (depth_layout_count > 0
2249 && strcmp(var->name, "gl_FragDepth") != 0) {
2250 _mesa_glsl_error(loc, state,
2251 "depth layout qualifiers can be applied only to "
2252 "gl_FragDepth");
2253 } else if (depth_layout_count > 1
2254 && strcmp(var->name, "gl_FragDepth") == 0) {
2255 _mesa_glsl_error(loc, state,
2256 "at most one depth layout qualifier can be applied to "
2257 "gl_FragDepth");
2258 }
2259 if (qual->flags.q.depth_any)
2260 var->depth_layout = ir_depth_layout_any;
2261 else if (qual->flags.q.depth_greater)
2262 var->depth_layout = ir_depth_layout_greater;
2263 else if (qual->flags.q.depth_less)
2264 var->depth_layout = ir_depth_layout_less;
2265 else if (qual->flags.q.depth_unchanged)
2266 var->depth_layout = ir_depth_layout_unchanged;
2267 else
2268 var->depth_layout = ir_depth_layout_none;
2269
2270 if (qual->flags.q.std140 ||
2271 qual->flags.q.packed ||
2272 qual->flags.q.shared) {
2273 _mesa_glsl_error(loc, state,
2274 "uniform block layout qualifiers std140, packed, and "
2275 "shared can only be applied to uniform blocks, not "
2276 "members");
2277 }
2278
2279 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2280 if (!ubo_qualifiers_valid) {
2281 _mesa_glsl_error(loc, state,
2282 "uniform block layout qualifiers row_major and "
2283 "column_major can only be applied to uniform block "
2284 "members");
2285 } else
2286 validate_matrix_layout_for_type(state, loc, var->type);
2287 }
2288 }
2289
2290 /**
2291 * Get the variable that is being redeclared by this declaration
2292 *
2293 * Semantic checks to verify the validity of the redeclaration are also
2294 * performed. If semantic checks fail, compilation error will be emitted via
2295 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2296 *
2297 * \returns
2298 * A pointer to an existing variable in the current scope if the declaration
2299 * is a redeclaration, \c NULL otherwise.
2300 */
2301 ir_variable *
2302 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2303 struct _mesa_glsl_parse_state *state)
2304 {
2305 /* Check if this declaration is actually a re-declaration, either to
2306 * resize an array or add qualifiers to an existing variable.
2307 *
2308 * This is allowed for variables in the current scope, or when at
2309 * global scope (for built-ins in the implicit outer scope).
2310 */
2311 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2312 if (earlier == NULL ||
2313 (state->current_function != NULL &&
2314 !state->symbols->name_declared_this_scope(decl->identifier))) {
2315 return NULL;
2316 }
2317
2318
2319 YYLTYPE loc = decl->get_location();
2320
2321 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2322 *
2323 * "It is legal to declare an array without a size and then
2324 * later re-declare the same name as an array of the same
2325 * type and specify a size."
2326 */
2327 if ((earlier->type->array_size() == 0)
2328 && var->type->is_array()
2329 && (var->type->element_type() == earlier->type->element_type())) {
2330 /* FINISHME: This doesn't match the qualifiers on the two
2331 * FINISHME: declarations. It's not 100% clear whether this is
2332 * FINISHME: required or not.
2333 */
2334
2335 const unsigned size = unsigned(var->type->array_size());
2336 check_builtin_array_max_size(var->name, size, loc, state);
2337 if ((size > 0) && (size <= earlier->max_array_access)) {
2338 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2339 "previous access",
2340 earlier->max_array_access);
2341 }
2342
2343 earlier->type = var->type;
2344 delete var;
2345 var = NULL;
2346 } else if (state->ARB_fragment_coord_conventions_enable
2347 && strcmp(var->name, "gl_FragCoord") == 0
2348 && earlier->type == var->type
2349 && earlier->mode == var->mode) {
2350 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2351 * qualifiers.
2352 */
2353 earlier->origin_upper_left = var->origin_upper_left;
2354 earlier->pixel_center_integer = var->pixel_center_integer;
2355
2356 /* According to section 4.3.7 of the GLSL 1.30 spec,
2357 * the following built-in varaibles can be redeclared with an
2358 * interpolation qualifier:
2359 * * gl_FrontColor
2360 * * gl_BackColor
2361 * * gl_FrontSecondaryColor
2362 * * gl_BackSecondaryColor
2363 * * gl_Color
2364 * * gl_SecondaryColor
2365 */
2366 } else if (state->is_version(130, 0)
2367 && (strcmp(var->name, "gl_FrontColor") == 0
2368 || strcmp(var->name, "gl_BackColor") == 0
2369 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2370 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2371 || strcmp(var->name, "gl_Color") == 0
2372 || strcmp(var->name, "gl_SecondaryColor") == 0)
2373 && earlier->type == var->type
2374 && earlier->mode == var->mode) {
2375 earlier->interpolation = var->interpolation;
2376
2377 /* Layout qualifiers for gl_FragDepth. */
2378 } else if ((state->AMD_conservative_depth_enable ||
2379 state->ARB_conservative_depth_enable)
2380 && strcmp(var->name, "gl_FragDepth") == 0
2381 && earlier->type == var->type
2382 && earlier->mode == var->mode) {
2383
2384 /** From the AMD_conservative_depth spec:
2385 * Within any shader, the first redeclarations of gl_FragDepth
2386 * must appear before any use of gl_FragDepth.
2387 */
2388 if (earlier->used) {
2389 _mesa_glsl_error(&loc, state,
2390 "the first redeclaration of gl_FragDepth "
2391 "must appear before any use of gl_FragDepth");
2392 }
2393
2394 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2395 if (earlier->depth_layout != ir_depth_layout_none
2396 && earlier->depth_layout != var->depth_layout) {
2397 _mesa_glsl_error(&loc, state,
2398 "gl_FragDepth: depth layout is declared here "
2399 "as '%s, but it was previously declared as "
2400 "'%s'",
2401 depth_layout_string(var->depth_layout),
2402 depth_layout_string(earlier->depth_layout));
2403 }
2404
2405 earlier->depth_layout = var->depth_layout;
2406
2407 } else {
2408 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2409 }
2410
2411 return earlier;
2412 }
2413
2414 /**
2415 * Generate the IR for an initializer in a variable declaration
2416 */
2417 ir_rvalue *
2418 process_initializer(ir_variable *var, ast_declaration *decl,
2419 ast_fully_specified_type *type,
2420 exec_list *initializer_instructions,
2421 struct _mesa_glsl_parse_state *state)
2422 {
2423 ir_rvalue *result = NULL;
2424
2425 YYLTYPE initializer_loc = decl->initializer->get_location();
2426
2427 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2428 *
2429 * "All uniform variables are read-only and are initialized either
2430 * directly by an application via API commands, or indirectly by
2431 * OpenGL."
2432 */
2433 if (var->mode == ir_var_uniform) {
2434 state->check_version(120, 0, &initializer_loc,
2435 "cannot initialize uniforms");
2436 }
2437
2438 if (var->type->is_sampler()) {
2439 _mesa_glsl_error(& initializer_loc, state,
2440 "cannot initialize samplers");
2441 }
2442
2443 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2444 _mesa_glsl_error(& initializer_loc, state,
2445 "cannot initialize %s shader input / %s",
2446 _mesa_glsl_shader_target_name(state->target),
2447 (state->target == vertex_shader)
2448 ? "attribute" : "varying");
2449 }
2450
2451 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2452 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2453 state);
2454
2455 /* Calculate the constant value if this is a const or uniform
2456 * declaration.
2457 */
2458 if (type->qualifier.flags.q.constant
2459 || type->qualifier.flags.q.uniform) {
2460 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2461 if (new_rhs != NULL) {
2462 rhs = new_rhs;
2463
2464 ir_constant *constant_value = rhs->constant_expression_value();
2465 if (!constant_value) {
2466 _mesa_glsl_error(& initializer_loc, state,
2467 "initializer of %s variable `%s' must be a "
2468 "constant expression",
2469 (type->qualifier.flags.q.constant)
2470 ? "const" : "uniform",
2471 decl->identifier);
2472 if (var->type->is_numeric()) {
2473 /* Reduce cascading errors. */
2474 var->constant_value = ir_constant::zero(state, var->type);
2475 }
2476 } else {
2477 rhs = constant_value;
2478 var->constant_value = constant_value;
2479 }
2480 } else {
2481 _mesa_glsl_error(&initializer_loc, state,
2482 "initializer of type %s cannot be assigned to "
2483 "variable of type %s",
2484 rhs->type->name, var->type->name);
2485 if (var->type->is_numeric()) {
2486 /* Reduce cascading errors. */
2487 var->constant_value = ir_constant::zero(state, var->type);
2488 }
2489 }
2490 }
2491
2492 if (rhs && !rhs->type->is_error()) {
2493 bool temp = var->read_only;
2494 if (type->qualifier.flags.q.constant)
2495 var->read_only = false;
2496
2497 /* Never emit code to initialize a uniform.
2498 */
2499 const glsl_type *initializer_type;
2500 if (!type->qualifier.flags.q.uniform) {
2501 result = do_assignment(initializer_instructions, state,
2502 NULL,
2503 lhs, rhs, true,
2504 type->get_location());
2505 initializer_type = result->type;
2506 } else
2507 initializer_type = rhs->type;
2508
2509 var->constant_initializer = rhs->constant_expression_value();
2510 var->has_initializer = true;
2511
2512 /* If the declared variable is an unsized array, it must inherrit
2513 * its full type from the initializer. A declaration such as
2514 *
2515 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2516 *
2517 * becomes
2518 *
2519 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2520 *
2521 * The assignment generated in the if-statement (below) will also
2522 * automatically handle this case for non-uniforms.
2523 *
2524 * If the declared variable is not an array, the types must
2525 * already match exactly. As a result, the type assignment
2526 * here can be done unconditionally. For non-uniforms the call
2527 * to do_assignment can change the type of the initializer (via
2528 * the implicit conversion rules). For uniforms the initializer
2529 * must be a constant expression, and the type of that expression
2530 * was validated above.
2531 */
2532 var->type = initializer_type;
2533
2534 var->read_only = temp;
2535 }
2536
2537 return result;
2538 }
2539
2540 ir_rvalue *
2541 ast_declarator_list::hir(exec_list *instructions,
2542 struct _mesa_glsl_parse_state *state)
2543 {
2544 void *ctx = state;
2545 const struct glsl_type *decl_type;
2546 const char *type_name = NULL;
2547 ir_rvalue *result = NULL;
2548 YYLTYPE loc = this->get_location();
2549
2550 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2551 *
2552 * "To ensure that a particular output variable is invariant, it is
2553 * necessary to use the invariant qualifier. It can either be used to
2554 * qualify a previously declared variable as being invariant
2555 *
2556 * invariant gl_Position; // make existing gl_Position be invariant"
2557 *
2558 * In these cases the parser will set the 'invariant' flag in the declarator
2559 * list, and the type will be NULL.
2560 */
2561 if (this->invariant) {
2562 assert(this->type == NULL);
2563
2564 if (state->current_function != NULL) {
2565 _mesa_glsl_error(& loc, state,
2566 "All uses of `invariant' keyword must be at global "
2567 "scope\n");
2568 }
2569
2570 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2571 assert(!decl->is_array);
2572 assert(decl->array_size == NULL);
2573 assert(decl->initializer == NULL);
2574
2575 ir_variable *const earlier =
2576 state->symbols->get_variable(decl->identifier);
2577 if (earlier == NULL) {
2578 _mesa_glsl_error(& loc, state,
2579 "Undeclared variable `%s' cannot be marked "
2580 "invariant\n", decl->identifier);
2581 } else if ((state->target == vertex_shader)
2582 && (earlier->mode != ir_var_shader_out)) {
2583 _mesa_glsl_error(& loc, state,
2584 "`%s' cannot be marked invariant, vertex shader "
2585 "outputs only\n", decl->identifier);
2586 } else if ((state->target == fragment_shader)
2587 && (earlier->mode != ir_var_shader_in)) {
2588 _mesa_glsl_error(& loc, state,
2589 "`%s' cannot be marked invariant, fragment shader "
2590 "inputs only\n", decl->identifier);
2591 } else if (earlier->used) {
2592 _mesa_glsl_error(& loc, state,
2593 "variable `%s' may not be redeclared "
2594 "`invariant' after being used",
2595 earlier->name);
2596 } else {
2597 earlier->invariant = true;
2598 }
2599 }
2600
2601 /* Invariant redeclarations do not have r-values.
2602 */
2603 return NULL;
2604 }
2605
2606 assert(this->type != NULL);
2607 assert(!this->invariant);
2608
2609 /* The type specifier may contain a structure definition. Process that
2610 * before any of the variable declarations.
2611 */
2612 (void) this->type->specifier->hir(instructions, state);
2613
2614 decl_type = this->type->specifier->glsl_type(& type_name, state);
2615 if (this->declarations.is_empty()) {
2616 /* If there is no structure involved in the program text, there are two
2617 * possible scenarios:
2618 *
2619 * - The program text contained something like 'vec4;'. This is an
2620 * empty declaration. It is valid but weird. Emit a warning.
2621 *
2622 * - The program text contained something like 'S;' and 'S' is not the
2623 * name of a known structure type. This is both invalid and weird.
2624 * Emit an error.
2625 *
2626 * Note that if decl_type is NULL and there is a structure involved,
2627 * there must have been some sort of error with the structure. In this
2628 * case we assume that an error was already generated on this line of
2629 * code for the structure. There is no need to generate an additional,
2630 * confusing error.
2631 */
2632 assert(this->type->specifier->structure == NULL || decl_type != NULL
2633 || state->error);
2634 if (this->type->specifier->structure == NULL) {
2635 if (decl_type != NULL) {
2636 _mesa_glsl_warning(&loc, state, "empty declaration");
2637 } else {
2638 _mesa_glsl_error(&loc, state,
2639 "invalid type `%s' in empty declaration",
2640 type_name);
2641 }
2642 }
2643 }
2644
2645 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2646 const struct glsl_type *var_type;
2647 ir_variable *var;
2648
2649 /* FINISHME: Emit a warning if a variable declaration shadows a
2650 * FINISHME: declaration at a higher scope.
2651 */
2652
2653 if ((decl_type == NULL) || decl_type->is_void()) {
2654 if (type_name != NULL) {
2655 _mesa_glsl_error(& loc, state,
2656 "invalid type `%s' in declaration of `%s'",
2657 type_name, decl->identifier);
2658 } else {
2659 _mesa_glsl_error(& loc, state,
2660 "invalid type in declaration of `%s'",
2661 decl->identifier);
2662 }
2663 continue;
2664 }
2665
2666 if (decl->is_array) {
2667 var_type = process_array_type(&loc, decl_type, decl->array_size,
2668 state);
2669 if (var_type->is_error())
2670 continue;
2671 } else {
2672 var_type = decl_type;
2673 }
2674
2675 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2676
2677 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2678 *
2679 * "Global variables can only use the qualifiers const,
2680 * attribute, uni form, or varying. Only one may be
2681 * specified.
2682 *
2683 * Local variables can only use the qualifier const."
2684 *
2685 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2686 * any extension that adds the 'layout' keyword.
2687 */
2688 if (!state->is_version(130, 300)
2689 && !state->ARB_explicit_attrib_location_enable
2690 && !state->ARB_fragment_coord_conventions_enable) {
2691 if (this->type->qualifier.flags.q.out) {
2692 _mesa_glsl_error(& loc, state,
2693 "`out' qualifier in declaration of `%s' "
2694 "only valid for function parameters in %s.",
2695 decl->identifier, state->get_version_string());
2696 }
2697 if (this->type->qualifier.flags.q.in) {
2698 _mesa_glsl_error(& loc, state,
2699 "`in' qualifier in declaration of `%s' "
2700 "only valid for function parameters in %s.",
2701 decl->identifier, state->get_version_string());
2702 }
2703 /* FINISHME: Test for other invalid qualifiers. */
2704 }
2705
2706 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2707 & loc, this->ubo_qualifiers_valid, false);
2708
2709 if (this->type->qualifier.flags.q.invariant) {
2710 if ((state->target == vertex_shader) &&
2711 var->mode != ir_var_shader_out) {
2712 _mesa_glsl_error(& loc, state,
2713 "`%s' cannot be marked invariant, vertex shader "
2714 "outputs only\n", var->name);
2715 } else if ((state->target == fragment_shader) &&
2716 var->mode != ir_var_shader_in) {
2717 /* FINISHME: Note that this doesn't work for invariant on
2718 * a function signature inval
2719 */
2720 _mesa_glsl_error(& loc, state,
2721 "`%s' cannot be marked invariant, fragment shader "
2722 "inputs only\n", var->name);
2723 }
2724 }
2725
2726 if (state->current_function != NULL) {
2727 const char *mode = NULL;
2728 const char *extra = "";
2729
2730 /* There is no need to check for 'inout' here because the parser will
2731 * only allow that in function parameter lists.
2732 */
2733 if (this->type->qualifier.flags.q.attribute) {
2734 mode = "attribute";
2735 } else if (this->type->qualifier.flags.q.uniform) {
2736 mode = "uniform";
2737 } else if (this->type->qualifier.flags.q.varying) {
2738 mode = "varying";
2739 } else if (this->type->qualifier.flags.q.in) {
2740 mode = "in";
2741 extra = " or in function parameter list";
2742 } else if (this->type->qualifier.flags.q.out) {
2743 mode = "out";
2744 extra = " or in function parameter list";
2745 }
2746
2747 if (mode) {
2748 _mesa_glsl_error(& loc, state,
2749 "%s variable `%s' must be declared at "
2750 "global scope%s",
2751 mode, var->name, extra);
2752 }
2753 } else if (var->mode == ir_var_shader_in) {
2754 var->read_only = true;
2755
2756 if (state->target == vertex_shader) {
2757 bool error_emitted = false;
2758
2759 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2760 *
2761 * "Vertex shader inputs can only be float, floating-point
2762 * vectors, matrices, signed and unsigned integers and integer
2763 * vectors. Vertex shader inputs can also form arrays of these
2764 * types, but not structures."
2765 *
2766 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2767 *
2768 * "Vertex shader inputs can only be float, floating-point
2769 * vectors, matrices, signed and unsigned integers and integer
2770 * vectors. They cannot be arrays or structures."
2771 *
2772 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2773 *
2774 * "The attribute qualifier can be used only with float,
2775 * floating-point vectors, and matrices. Attribute variables
2776 * cannot be declared as arrays or structures."
2777 *
2778 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2779 *
2780 * "Vertex shader inputs can only be float, floating-point
2781 * vectors, matrices, signed and unsigned integers and integer
2782 * vectors. Vertex shader inputs cannot be arrays or
2783 * structures."
2784 */
2785 const glsl_type *check_type = var->type->is_array()
2786 ? var->type->fields.array : var->type;
2787
2788 switch (check_type->base_type) {
2789 case GLSL_TYPE_FLOAT:
2790 break;
2791 case GLSL_TYPE_UINT:
2792 case GLSL_TYPE_INT:
2793 if (state->is_version(120, 300))
2794 break;
2795 /* FALLTHROUGH */
2796 default:
2797 _mesa_glsl_error(& loc, state,
2798 "vertex shader input / attribute cannot have "
2799 "type %s`%s'",
2800 var->type->is_array() ? "array of " : "",
2801 check_type->name);
2802 error_emitted = true;
2803 }
2804
2805 if (!error_emitted && var->type->is_array() &&
2806 !state->check_version(140, 0, &loc,
2807 "vertex shader input / attribute "
2808 "cannot have array type")) {
2809 error_emitted = true;
2810 }
2811 }
2812 }
2813
2814 /* Integer vertex outputs must be qualified with 'flat'.
2815 *
2816 * From section 4.3.6 of the GLSL 1.30 spec:
2817 * "If a vertex output is a signed or unsigned integer or integer
2818 * vector, then it must be qualified with the interpolation qualifier
2819 * flat."
2820 *
2821 * From section 4.3.4 of the GLSL 3.00 ES spec:
2822 * "Fragment shader inputs that are signed or unsigned integers or
2823 * integer vectors must be qualified with the interpolation qualifier
2824 * flat."
2825 *
2826 * Since vertex outputs and fragment inputs must have matching
2827 * qualifiers, these two requirements are equivalent.
2828 */
2829 if (state->is_version(130, 300)
2830 && state->target == vertex_shader
2831 && state->current_function == NULL
2832 && var->type->is_integer()
2833 && var->mode == ir_var_shader_out
2834 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2835
2836 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2837 "then it must be qualified with 'flat'");
2838 }
2839
2840
2841 /* Interpolation qualifiers cannot be applied to 'centroid' and
2842 * 'centroid varying'.
2843 *
2844 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2845 * "interpolation qualifiers may only precede the qualifiers in,
2846 * centroid in, out, or centroid out in a declaration. They do not apply
2847 * to the deprecated storage qualifiers varying or centroid varying."
2848 *
2849 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2850 */
2851 if (state->is_version(130, 0)
2852 && this->type->qualifier.has_interpolation()
2853 && this->type->qualifier.flags.q.varying) {
2854
2855 const char *i = this->type->qualifier.interpolation_string();
2856 assert(i != NULL);
2857 const char *s;
2858 if (this->type->qualifier.flags.q.centroid)
2859 s = "centroid varying";
2860 else
2861 s = "varying";
2862
2863 _mesa_glsl_error(&loc, state,
2864 "qualifier '%s' cannot be applied to the "
2865 "deprecated storage qualifier '%s'", i, s);
2866 }
2867
2868
2869 /* Interpolation qualifiers can only apply to vertex shader outputs and
2870 * fragment shader inputs.
2871 *
2872 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2873 * "Outputs from a vertex shader (out) and inputs to a fragment
2874 * shader (in) can be further qualified with one or more of these
2875 * interpolation qualifiers"
2876 *
2877 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2878 * "These interpolation qualifiers may only precede the qualifiers
2879 * in, centroid in, out, or centroid out in a declaration. They do
2880 * not apply to inputs into a vertex shader or outputs from a
2881 * fragment shader."
2882 */
2883 if (state->is_version(130, 300)
2884 && this->type->qualifier.has_interpolation()) {
2885
2886 const char *i = this->type->qualifier.interpolation_string();
2887 assert(i != NULL);
2888
2889 switch (state->target) {
2890 case vertex_shader:
2891 if (this->type->qualifier.flags.q.in) {
2892 _mesa_glsl_error(&loc, state,
2893 "qualifier '%s' cannot be applied to vertex "
2894 "shader inputs", i);
2895 }
2896 break;
2897 case fragment_shader:
2898 if (this->type->qualifier.flags.q.out) {
2899 _mesa_glsl_error(&loc, state,
2900 "qualifier '%s' cannot be applied to fragment "
2901 "shader outputs", i);
2902 }
2903 break;
2904 default:
2905 assert(0);
2906 }
2907 }
2908
2909
2910 /* From section 4.3.4 of the GLSL 1.30 spec:
2911 * "It is an error to use centroid in in a vertex shader."
2912 *
2913 * From section 4.3.4 of the GLSL ES 3.00 spec:
2914 * "It is an error to use centroid in or interpolation qualifiers in
2915 * a vertex shader input."
2916 */
2917 if (state->is_version(130, 300)
2918 && this->type->qualifier.flags.q.centroid
2919 && this->type->qualifier.flags.q.in
2920 && state->target == vertex_shader) {
2921
2922 _mesa_glsl_error(&loc, state,
2923 "'centroid in' cannot be used in a vertex shader");
2924 }
2925
2926
2927 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2928 */
2929 if (this->type->specifier->precision != ast_precision_none) {
2930 state->check_precision_qualifiers_allowed(&loc);
2931 }
2932
2933
2934 /* Precision qualifiers only apply to floating point and integer types.
2935 *
2936 * From section 4.5.2 of the GLSL 1.30 spec:
2937 * "Any floating point or any integer declaration can have the type
2938 * preceded by one of these precision qualifiers [...] Literal
2939 * constants do not have precision qualifiers. Neither do Boolean
2940 * variables.
2941 *
2942 * In GLSL ES, sampler types are also allowed.
2943 *
2944 * From page 87 of the GLSL ES spec:
2945 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2946 */
2947 if (this->type->specifier->precision != ast_precision_none
2948 && !var->type->is_float()
2949 && !var->type->is_integer()
2950 && !(var->type->is_sampler() && state->es_shader)
2951 && !(var->type->is_array()
2952 && (var->type->fields.array->is_float()
2953 || var->type->fields.array->is_integer()))) {
2954
2955 _mesa_glsl_error(&loc, state,
2956 "precision qualifiers apply only to floating point"
2957 "%s types", state->es_shader ? ", integer, and sampler"
2958 : "and integer");
2959 }
2960
2961 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2962 *
2963 * "[Sampler types] can only be declared as function
2964 * parameters or uniform variables (see Section 4.3.5
2965 * "Uniform")".
2966 */
2967 if (var_type->contains_sampler() &&
2968 !this->type->qualifier.flags.q.uniform) {
2969 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2970 }
2971
2972 /* Process the initializer and add its instructions to a temporary
2973 * list. This list will be added to the instruction stream (below) after
2974 * the declaration is added. This is done because in some cases (such as
2975 * redeclarations) the declaration may not actually be added to the
2976 * instruction stream.
2977 */
2978 exec_list initializer_instructions;
2979 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2980
2981 if (decl->initializer != NULL) {
2982 result = process_initializer((earlier == NULL) ? var : earlier,
2983 decl, this->type,
2984 &initializer_instructions, state);
2985 }
2986
2987 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2988 *
2989 * "It is an error to write to a const variable outside of
2990 * its declaration, so they must be initialized when
2991 * declared."
2992 */
2993 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2994 _mesa_glsl_error(& loc, state,
2995 "const declaration of `%s' must be initialized",
2996 decl->identifier);
2997 }
2998
2999 /* If the declaration is not a redeclaration, there are a few additional
3000 * semantic checks that must be applied. In addition, variable that was
3001 * created for the declaration should be added to the IR stream.
3002 */
3003 if (earlier == NULL) {
3004 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3005 *
3006 * "Identifiers starting with "gl_" are reserved for use by
3007 * OpenGL, and may not be declared in a shader as either a
3008 * variable or a function."
3009 */
3010 if (strncmp(decl->identifier, "gl_", 3) == 0)
3011 _mesa_glsl_error(& loc, state,
3012 "identifier `%s' uses reserved `gl_' prefix",
3013 decl->identifier);
3014 else if (strstr(decl->identifier, "__")) {
3015 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3016 * spec:
3017 *
3018 * "In addition, all identifiers containing two
3019 * consecutive underscores (__) are reserved as
3020 * possible future keywords."
3021 */
3022 _mesa_glsl_error(& loc, state,
3023 "identifier `%s' uses reserved `__' string",
3024 decl->identifier);
3025 }
3026
3027 /* Add the variable to the symbol table. Note that the initializer's
3028 * IR was already processed earlier (though it hasn't been emitted
3029 * yet), without the variable in scope.
3030 *
3031 * This differs from most C-like languages, but it follows the GLSL
3032 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3033 * spec:
3034 *
3035 * "Within a declaration, the scope of a name starts immediately
3036 * after the initializer if present or immediately after the name
3037 * being declared if not."
3038 */
3039 if (!state->symbols->add_variable(var)) {
3040 YYLTYPE loc = this->get_location();
3041 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3042 "current scope", decl->identifier);
3043 continue;
3044 }
3045
3046 /* Push the variable declaration to the top. It means that all the
3047 * variable declarations will appear in a funny last-to-first order,
3048 * but otherwise we run into trouble if a function is prototyped, a
3049 * global var is decled, then the function is defined with usage of
3050 * the global var. See glslparsertest's CorrectModule.frag.
3051 */
3052 instructions->push_head(var);
3053 }
3054
3055 instructions->append_list(&initializer_instructions);
3056 }
3057
3058
3059 /* Generally, variable declarations do not have r-values. However,
3060 * one is used for the declaration in
3061 *
3062 * while (bool b = some_condition()) {
3063 * ...
3064 * }
3065 *
3066 * so we return the rvalue from the last seen declaration here.
3067 */
3068 return result;
3069 }
3070
3071
3072 ir_rvalue *
3073 ast_parameter_declarator::hir(exec_list *instructions,
3074 struct _mesa_glsl_parse_state *state)
3075 {
3076 void *ctx = state;
3077 const struct glsl_type *type;
3078 const char *name = NULL;
3079 YYLTYPE loc = this->get_location();
3080
3081 type = this->type->specifier->glsl_type(& name, state);
3082
3083 if (type == NULL) {
3084 if (name != NULL) {
3085 _mesa_glsl_error(& loc, state,
3086 "invalid type `%s' in declaration of `%s'",
3087 name, this->identifier);
3088 } else {
3089 _mesa_glsl_error(& loc, state,
3090 "invalid type in declaration of `%s'",
3091 this->identifier);
3092 }
3093
3094 type = glsl_type::error_type;
3095 }
3096
3097 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3098 *
3099 * "Functions that accept no input arguments need not use void in the
3100 * argument list because prototypes (or definitions) are required and
3101 * therefore there is no ambiguity when an empty argument list "( )" is
3102 * declared. The idiom "(void)" as a parameter list is provided for
3103 * convenience."
3104 *
3105 * Placing this check here prevents a void parameter being set up
3106 * for a function, which avoids tripping up checks for main taking
3107 * parameters and lookups of an unnamed symbol.
3108 */
3109 if (type->is_void()) {
3110 if (this->identifier != NULL)
3111 _mesa_glsl_error(& loc, state,
3112 "named parameter cannot have type `void'");
3113
3114 is_void = true;
3115 return NULL;
3116 }
3117
3118 if (formal_parameter && (this->identifier == NULL)) {
3119 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3120 return NULL;
3121 }
3122
3123 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3124 * call already handled the "vec4[..] foo" case.
3125 */
3126 if (this->is_array) {
3127 type = process_array_type(&loc, type, this->array_size, state);
3128 }
3129
3130 if (!type->is_error() && type->array_size() == 0) {
3131 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3132 "a declared size.");
3133 type = glsl_type::error_type;
3134 }
3135
3136 is_void = false;
3137 ir_variable *var = new(ctx)
3138 ir_variable(type, this->identifier, ir_var_function_in);
3139
3140 /* Apply any specified qualifiers to the parameter declaration. Note that
3141 * for function parameters the default mode is 'in'.
3142 */
3143 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3144 false, true);
3145
3146 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3147 *
3148 * "Samplers cannot be treated as l-values; hence cannot be used
3149 * as out or inout function parameters, nor can they be assigned
3150 * into."
3151 */
3152 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3153 && type->contains_sampler()) {
3154 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3155 type = glsl_type::error_type;
3156 }
3157
3158 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3159 *
3160 * "When calling a function, expressions that do not evaluate to
3161 * l-values cannot be passed to parameters declared as out or inout."
3162 *
3163 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3164 *
3165 * "Other binary or unary expressions, non-dereferenced arrays,
3166 * function names, swizzles with repeated fields, and constants
3167 * cannot be l-values."
3168 *
3169 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3170 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3171 */
3172 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3173 && type->is_array()
3174 && !state->check_version(120, 100, &loc,
3175 "Arrays cannot be out or inout parameters")) {
3176 type = glsl_type::error_type;
3177 }
3178
3179 instructions->push_tail(var);
3180
3181 /* Parameter declarations do not have r-values.
3182 */
3183 return NULL;
3184 }
3185
3186
3187 void
3188 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3189 bool formal,
3190 exec_list *ir_parameters,
3191 _mesa_glsl_parse_state *state)
3192 {
3193 ast_parameter_declarator *void_param = NULL;
3194 unsigned count = 0;
3195
3196 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3197 param->formal_parameter = formal;
3198 param->hir(ir_parameters, state);
3199
3200 if (param->is_void)
3201 void_param = param;
3202
3203 count++;
3204 }
3205
3206 if ((void_param != NULL) && (count > 1)) {
3207 YYLTYPE loc = void_param->get_location();
3208
3209 _mesa_glsl_error(& loc, state,
3210 "`void' parameter must be only parameter");
3211 }
3212 }
3213
3214
3215 void
3216 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3217 {
3218 /* IR invariants disallow function declarations or definitions
3219 * nested within other function definitions. But there is no
3220 * requirement about the relative order of function declarations
3221 * and definitions with respect to one another. So simply insert
3222 * the new ir_function block at the end of the toplevel instruction
3223 * list.
3224 */
3225 state->toplevel_ir->push_tail(f);
3226 }
3227
3228
3229 ir_rvalue *
3230 ast_function::hir(exec_list *instructions,
3231 struct _mesa_glsl_parse_state *state)
3232 {
3233 void *ctx = state;
3234 ir_function *f = NULL;
3235 ir_function_signature *sig = NULL;
3236 exec_list hir_parameters;
3237
3238 const char *const name = identifier;
3239
3240 /* New functions are always added to the top-level IR instruction stream,
3241 * so this instruction list pointer is ignored. See also emit_function
3242 * (called below).
3243 */
3244 (void) instructions;
3245
3246 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3247 *
3248 * "Function declarations (prototypes) cannot occur inside of functions;
3249 * they must be at global scope, or for the built-in functions, outside
3250 * the global scope."
3251 *
3252 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3253 *
3254 * "User defined functions may only be defined within the global scope."
3255 *
3256 * Note that this language does not appear in GLSL 1.10.
3257 */
3258 if ((state->current_function != NULL) &&
3259 state->is_version(120, 100)) {
3260 YYLTYPE loc = this->get_location();
3261 _mesa_glsl_error(&loc, state,
3262 "declaration of function `%s' not allowed within "
3263 "function body", name);
3264 }
3265
3266 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3267 *
3268 * "Identifiers starting with "gl_" are reserved for use by
3269 * OpenGL, and may not be declared in a shader as either a
3270 * variable or a function."
3271 */
3272 if (strncmp(name, "gl_", 3) == 0) {
3273 YYLTYPE loc = this->get_location();
3274 _mesa_glsl_error(&loc, state,
3275 "identifier `%s' uses reserved `gl_' prefix", name);
3276 }
3277
3278 /* Convert the list of function parameters to HIR now so that they can be
3279 * used below to compare this function's signature with previously seen
3280 * signatures for functions with the same name.
3281 */
3282 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3283 is_definition,
3284 & hir_parameters, state);
3285
3286 const char *return_type_name;
3287 const glsl_type *return_type =
3288 this->return_type->specifier->glsl_type(& return_type_name, state);
3289
3290 if (!return_type) {
3291 YYLTYPE loc = this->get_location();
3292 _mesa_glsl_error(&loc, state,
3293 "function `%s' has undeclared return type `%s'",
3294 name, return_type_name);
3295 return_type = glsl_type::error_type;
3296 }
3297
3298 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3299 * "No qualifier is allowed on the return type of a function."
3300 */
3301 if (this->return_type->has_qualifiers()) {
3302 YYLTYPE loc = this->get_location();
3303 _mesa_glsl_error(& loc, state,
3304 "function `%s' return type has qualifiers", name);
3305 }
3306
3307 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3308 *
3309 * "[Sampler types] can only be declared as function parameters
3310 * or uniform variables (see Section 4.3.5 "Uniform")".
3311 */
3312 if (return_type->contains_sampler()) {
3313 YYLTYPE loc = this->get_location();
3314 _mesa_glsl_error(&loc, state,
3315 "function `%s' return type can't contain a sampler",
3316 name);
3317 }
3318
3319 /* Verify that this function's signature either doesn't match a previously
3320 * seen signature for a function with the same name, or, if a match is found,
3321 * that the previously seen signature does not have an associated definition.
3322 */
3323 f = state->symbols->get_function(name);
3324 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3325 sig = f->exact_matching_signature(&hir_parameters);
3326 if (sig != NULL) {
3327 const char *badvar = sig->qualifiers_match(&hir_parameters);
3328 if (badvar != NULL) {
3329 YYLTYPE loc = this->get_location();
3330
3331 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3332 "qualifiers don't match prototype", name, badvar);
3333 }
3334
3335 if (sig->return_type != return_type) {
3336 YYLTYPE loc = this->get_location();
3337
3338 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3339 "match prototype", name);
3340 }
3341
3342 if (is_definition && sig->is_defined) {
3343 YYLTYPE loc = this->get_location();
3344
3345 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3346 }
3347 }
3348 } else {
3349 f = new(ctx) ir_function(name);
3350 if (!state->symbols->add_function(f)) {
3351 /* This function name shadows a non-function use of the same name. */
3352 YYLTYPE loc = this->get_location();
3353
3354 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3355 "non-function", name);
3356 return NULL;
3357 }
3358
3359 emit_function(state, f);
3360 }
3361
3362 /* Verify the return type of main() */
3363 if (strcmp(name, "main") == 0) {
3364 if (! return_type->is_void()) {
3365 YYLTYPE loc = this->get_location();
3366
3367 _mesa_glsl_error(& loc, state, "main() must return void");
3368 }
3369
3370 if (!hir_parameters.is_empty()) {
3371 YYLTYPE loc = this->get_location();
3372
3373 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3374 }
3375 }
3376
3377 /* Finish storing the information about this new function in its signature.
3378 */
3379 if (sig == NULL) {
3380 sig = new(ctx) ir_function_signature(return_type);
3381 f->add_signature(sig);
3382 }
3383
3384 sig->replace_parameters(&hir_parameters);
3385 signature = sig;
3386
3387 /* Function declarations (prototypes) do not have r-values.
3388 */
3389 return NULL;
3390 }
3391
3392
3393 ir_rvalue *
3394 ast_function_definition::hir(exec_list *instructions,
3395 struct _mesa_glsl_parse_state *state)
3396 {
3397 prototype->is_definition = true;
3398 prototype->hir(instructions, state);
3399
3400 ir_function_signature *signature = prototype->signature;
3401 if (signature == NULL)
3402 return NULL;
3403
3404 assert(state->current_function == NULL);
3405 state->current_function = signature;
3406 state->found_return = false;
3407
3408 /* Duplicate parameters declared in the prototype as concrete variables.
3409 * Add these to the symbol table.
3410 */
3411 state->symbols->push_scope();
3412 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3413 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3414
3415 assert(var != NULL);
3416
3417 /* The only way a parameter would "exist" is if two parameters have
3418 * the same name.
3419 */
3420 if (state->symbols->name_declared_this_scope(var->name)) {
3421 YYLTYPE loc = this->get_location();
3422
3423 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3424 } else {
3425 state->symbols->add_variable(var);
3426 }
3427 }
3428
3429 /* Convert the body of the function to HIR. */
3430 this->body->hir(&signature->body, state);
3431 signature->is_defined = true;
3432
3433 state->symbols->pop_scope();
3434
3435 assert(state->current_function == signature);
3436 state->current_function = NULL;
3437
3438 if (!signature->return_type->is_void() && !state->found_return) {
3439 YYLTYPE loc = this->get_location();
3440 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3441 "%s, but no return statement",
3442 signature->function_name(),
3443 signature->return_type->name);
3444 }
3445
3446 /* Function definitions do not have r-values.
3447 */
3448 return NULL;
3449 }
3450
3451
3452 ir_rvalue *
3453 ast_jump_statement::hir(exec_list *instructions,
3454 struct _mesa_glsl_parse_state *state)
3455 {
3456 void *ctx = state;
3457
3458 switch (mode) {
3459 case ast_return: {
3460 ir_return *inst;
3461 assert(state->current_function);
3462
3463 if (opt_return_value) {
3464 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3465
3466 /* The value of the return type can be NULL if the shader says
3467 * 'return foo();' and foo() is a function that returns void.
3468 *
3469 * NOTE: The GLSL spec doesn't say that this is an error. The type
3470 * of the return value is void. If the return type of the function is
3471 * also void, then this should compile without error. Seriously.
3472 */
3473 const glsl_type *const ret_type =
3474 (ret == NULL) ? glsl_type::void_type : ret->type;
3475
3476 /* Implicit conversions are not allowed for return values. */
3477 if (state->current_function->return_type != ret_type) {
3478 YYLTYPE loc = this->get_location();
3479
3480 _mesa_glsl_error(& loc, state,
3481 "`return' with wrong type %s, in function `%s' "
3482 "returning %s",
3483 ret_type->name,
3484 state->current_function->function_name(),
3485 state->current_function->return_type->name);
3486 }
3487
3488 inst = new(ctx) ir_return(ret);
3489 } else {
3490 if (state->current_function->return_type->base_type !=
3491 GLSL_TYPE_VOID) {
3492 YYLTYPE loc = this->get_location();
3493
3494 _mesa_glsl_error(& loc, state,
3495 "`return' with no value, in function %s returning "
3496 "non-void",
3497 state->current_function->function_name());
3498 }
3499 inst = new(ctx) ir_return;
3500 }
3501
3502 state->found_return = true;
3503 instructions->push_tail(inst);
3504 break;
3505 }
3506
3507 case ast_discard:
3508 if (state->target != fragment_shader) {
3509 YYLTYPE loc = this->get_location();
3510
3511 _mesa_glsl_error(& loc, state,
3512 "`discard' may only appear in a fragment shader");
3513 }
3514 instructions->push_tail(new(ctx) ir_discard);
3515 break;
3516
3517 case ast_break:
3518 case ast_continue:
3519 if (mode == ast_continue &&
3520 state->loop_nesting_ast == NULL) {
3521 YYLTYPE loc = this->get_location();
3522
3523 _mesa_glsl_error(& loc, state,
3524 "continue may only appear in a loop");
3525 } else if (mode == ast_break &&
3526 state->loop_nesting_ast == NULL &&
3527 state->switch_state.switch_nesting_ast == NULL) {
3528 YYLTYPE loc = this->get_location();
3529
3530 _mesa_glsl_error(& loc, state,
3531 "break may only appear in a loop or a switch");
3532 } else {
3533 /* For a loop, inline the for loop expression again,
3534 * since we don't know where near the end of
3535 * the loop body the normal copy of it
3536 * is going to be placed.
3537 */
3538 if (state->loop_nesting_ast != NULL &&
3539 mode == ast_continue &&
3540 state->loop_nesting_ast->rest_expression) {
3541 state->loop_nesting_ast->rest_expression->hir(instructions,
3542 state);
3543 }
3544
3545 if (state->switch_state.is_switch_innermost &&
3546 mode == ast_break) {
3547 /* Force break out of switch by setting is_break switch state.
3548 */
3549 ir_variable *const is_break_var = state->switch_state.is_break_var;
3550 ir_dereference_variable *const deref_is_break_var =
3551 new(ctx) ir_dereference_variable(is_break_var);
3552 ir_constant *const true_val = new(ctx) ir_constant(true);
3553 ir_assignment *const set_break_var =
3554 new(ctx) ir_assignment(deref_is_break_var, true_val);
3555
3556 instructions->push_tail(set_break_var);
3557 }
3558 else {
3559 ir_loop_jump *const jump =
3560 new(ctx) ir_loop_jump((mode == ast_break)
3561 ? ir_loop_jump::jump_break
3562 : ir_loop_jump::jump_continue);
3563 instructions->push_tail(jump);
3564 }
3565 }
3566
3567 break;
3568 }
3569
3570 /* Jump instructions do not have r-values.
3571 */
3572 return NULL;
3573 }
3574
3575
3576 ir_rvalue *
3577 ast_selection_statement::hir(exec_list *instructions,
3578 struct _mesa_glsl_parse_state *state)
3579 {
3580 void *ctx = state;
3581
3582 ir_rvalue *const condition = this->condition->hir(instructions, state);
3583
3584 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3585 *
3586 * "Any expression whose type evaluates to a Boolean can be used as the
3587 * conditional expression bool-expression. Vector types are not accepted
3588 * as the expression to if."
3589 *
3590 * The checks are separated so that higher quality diagnostics can be
3591 * generated for cases where both rules are violated.
3592 */
3593 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3594 YYLTYPE loc = this->condition->get_location();
3595
3596 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3597 "boolean");
3598 }
3599
3600 ir_if *const stmt = new(ctx) ir_if(condition);
3601
3602 if (then_statement != NULL) {
3603 state->symbols->push_scope();
3604 then_statement->hir(& stmt->then_instructions, state);
3605 state->symbols->pop_scope();
3606 }
3607
3608 if (else_statement != NULL) {
3609 state->symbols->push_scope();
3610 else_statement->hir(& stmt->else_instructions, state);
3611 state->symbols->pop_scope();
3612 }
3613
3614 instructions->push_tail(stmt);
3615
3616 /* if-statements do not have r-values.
3617 */
3618 return NULL;
3619 }
3620
3621
3622 ir_rvalue *
3623 ast_switch_statement::hir(exec_list *instructions,
3624 struct _mesa_glsl_parse_state *state)
3625 {
3626 void *ctx = state;
3627
3628 ir_rvalue *const test_expression =
3629 this->test_expression->hir(instructions, state);
3630
3631 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3632 *
3633 * "The type of init-expression in a switch statement must be a
3634 * scalar integer."
3635 */
3636 if (!test_expression->type->is_scalar() ||
3637 !test_expression->type->is_integer()) {
3638 YYLTYPE loc = this->test_expression->get_location();
3639
3640 _mesa_glsl_error(& loc,
3641 state,
3642 "switch-statement expression must be scalar "
3643 "integer");
3644 }
3645
3646 /* Track the switch-statement nesting in a stack-like manner.
3647 */
3648 struct glsl_switch_state saved = state->switch_state;
3649
3650 state->switch_state.is_switch_innermost = true;
3651 state->switch_state.switch_nesting_ast = this;
3652 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3653 hash_table_pointer_compare);
3654 state->switch_state.previous_default = NULL;
3655
3656 /* Initalize is_fallthru state to false.
3657 */
3658 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3659 state->switch_state.is_fallthru_var =
3660 new(ctx) ir_variable(glsl_type::bool_type,
3661 "switch_is_fallthru_tmp",
3662 ir_var_temporary);
3663 instructions->push_tail(state->switch_state.is_fallthru_var);
3664
3665 ir_dereference_variable *deref_is_fallthru_var =
3666 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3667 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3668 is_fallthru_val));
3669
3670 /* Initalize is_break state to false.
3671 */
3672 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3673 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3674 "switch_is_break_tmp",
3675 ir_var_temporary);
3676 instructions->push_tail(state->switch_state.is_break_var);
3677
3678 ir_dereference_variable *deref_is_break_var =
3679 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3680 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3681 is_break_val));
3682
3683 /* Cache test expression.
3684 */
3685 test_to_hir(instructions, state);
3686
3687 /* Emit code for body of switch stmt.
3688 */
3689 body->hir(instructions, state);
3690
3691 hash_table_dtor(state->switch_state.labels_ht);
3692
3693 state->switch_state = saved;
3694
3695 /* Switch statements do not have r-values. */
3696 return NULL;
3697 }
3698
3699
3700 void
3701 ast_switch_statement::test_to_hir(exec_list *instructions,
3702 struct _mesa_glsl_parse_state *state)
3703 {
3704 void *ctx = state;
3705
3706 /* Cache value of test expression. */
3707 ir_rvalue *const test_val =
3708 test_expression->hir(instructions,
3709 state);
3710
3711 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3712 "switch_test_tmp",
3713 ir_var_temporary);
3714 ir_dereference_variable *deref_test_var =
3715 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3716
3717 instructions->push_tail(state->switch_state.test_var);
3718 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3719 }
3720
3721
3722 ir_rvalue *
3723 ast_switch_body::hir(exec_list *instructions,
3724 struct _mesa_glsl_parse_state *state)
3725 {
3726 if (stmts != NULL)
3727 stmts->hir(instructions, state);
3728
3729 /* Switch bodies do not have r-values. */
3730 return NULL;
3731 }
3732
3733 ir_rvalue *
3734 ast_case_statement_list::hir(exec_list *instructions,
3735 struct _mesa_glsl_parse_state *state)
3736 {
3737 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3738 case_stmt->hir(instructions, state);
3739
3740 /* Case statements do not have r-values. */
3741 return NULL;
3742 }
3743
3744 ir_rvalue *
3745 ast_case_statement::hir(exec_list *instructions,
3746 struct _mesa_glsl_parse_state *state)
3747 {
3748 labels->hir(instructions, state);
3749
3750 /* Conditionally set fallthru state based on break state. */
3751 ir_constant *const false_val = new(state) ir_constant(false);
3752 ir_dereference_variable *const deref_is_fallthru_var =
3753 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3754 ir_dereference_variable *const deref_is_break_var =
3755 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3756 ir_assignment *const reset_fallthru_on_break =
3757 new(state) ir_assignment(deref_is_fallthru_var,
3758 false_val,
3759 deref_is_break_var);
3760 instructions->push_tail(reset_fallthru_on_break);
3761
3762 /* Guard case statements depending on fallthru state. */
3763 ir_dereference_variable *const deref_fallthru_guard =
3764 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3765 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3766
3767 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3768 stmt->hir(& test_fallthru->then_instructions, state);
3769
3770 instructions->push_tail(test_fallthru);
3771
3772 /* Case statements do not have r-values. */
3773 return NULL;
3774 }
3775
3776
3777 ir_rvalue *
3778 ast_case_label_list::hir(exec_list *instructions,
3779 struct _mesa_glsl_parse_state *state)
3780 {
3781 foreach_list_typed (ast_case_label, label, link, & this->labels)
3782 label->hir(instructions, state);
3783
3784 /* Case labels do not have r-values. */
3785 return NULL;
3786 }
3787
3788 ir_rvalue *
3789 ast_case_label::hir(exec_list *instructions,
3790 struct _mesa_glsl_parse_state *state)
3791 {
3792 void *ctx = state;
3793
3794 ir_dereference_variable *deref_fallthru_var =
3795 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3796
3797 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3798
3799 /* If not default case, ... */
3800 if (this->test_value != NULL) {
3801 /* Conditionally set fallthru state based on
3802 * comparison of cached test expression value to case label.
3803 */
3804 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3805 ir_constant *label_const = label_rval->constant_expression_value();
3806
3807 if (!label_const) {
3808 YYLTYPE loc = this->test_value->get_location();
3809
3810 _mesa_glsl_error(& loc, state,
3811 "switch statement case label must be a "
3812 "constant expression");
3813
3814 /* Stuff a dummy value in to allow processing to continue. */
3815 label_const = new(ctx) ir_constant(0);
3816 } else {
3817 ast_expression *previous_label = (ast_expression *)
3818 hash_table_find(state->switch_state.labels_ht,
3819 (void *)(uintptr_t)label_const->value.u[0]);
3820
3821 if (previous_label) {
3822 YYLTYPE loc = this->test_value->get_location();
3823 _mesa_glsl_error(& loc, state,
3824 "duplicate case value");
3825
3826 loc = previous_label->get_location();
3827 _mesa_glsl_error(& loc, state,
3828 "this is the previous case label");
3829 } else {
3830 hash_table_insert(state->switch_state.labels_ht,
3831 this->test_value,
3832 (void *)(uintptr_t)label_const->value.u[0]);
3833 }
3834 }
3835
3836 ir_dereference_variable *deref_test_var =
3837 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3838
3839 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3840 label_const,
3841 deref_test_var);
3842
3843 ir_assignment *set_fallthru_on_test =
3844 new(ctx) ir_assignment(deref_fallthru_var,
3845 true_val,
3846 test_cond);
3847
3848 instructions->push_tail(set_fallthru_on_test);
3849 } else { /* default case */
3850 if (state->switch_state.previous_default) {
3851 YYLTYPE loc = this->get_location();
3852 _mesa_glsl_error(& loc, state,
3853 "multiple default labels in one switch");
3854
3855 loc = state->switch_state.previous_default->get_location();
3856 _mesa_glsl_error(& loc, state,
3857 "this is the first default label");
3858 }
3859 state->switch_state.previous_default = this;
3860
3861 /* Set falltrhu state. */
3862 ir_assignment *set_fallthru =
3863 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3864
3865 instructions->push_tail(set_fallthru);
3866 }
3867
3868 /* Case statements do not have r-values. */
3869 return NULL;
3870 }
3871
3872 void
3873 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3874 struct _mesa_glsl_parse_state *state)
3875 {
3876 void *ctx = state;
3877
3878 if (condition != NULL) {
3879 ir_rvalue *const cond =
3880 condition->hir(& stmt->body_instructions, state);
3881
3882 if ((cond == NULL)
3883 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3884 YYLTYPE loc = condition->get_location();
3885
3886 _mesa_glsl_error(& loc, state,
3887 "loop condition must be scalar boolean");
3888 } else {
3889 /* As the first code in the loop body, generate a block that looks
3890 * like 'if (!condition) break;' as the loop termination condition.
3891 */
3892 ir_rvalue *const not_cond =
3893 new(ctx) ir_expression(ir_unop_logic_not, cond);
3894
3895 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3896
3897 ir_jump *const break_stmt =
3898 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3899
3900 if_stmt->then_instructions.push_tail(break_stmt);
3901 stmt->body_instructions.push_tail(if_stmt);
3902 }
3903 }
3904 }
3905
3906
3907 ir_rvalue *
3908 ast_iteration_statement::hir(exec_list *instructions,
3909 struct _mesa_glsl_parse_state *state)
3910 {
3911 void *ctx = state;
3912
3913 /* For-loops and while-loops start a new scope, but do-while loops do not.
3914 */
3915 if (mode != ast_do_while)
3916 state->symbols->push_scope();
3917
3918 if (init_statement != NULL)
3919 init_statement->hir(instructions, state);
3920
3921 ir_loop *const stmt = new(ctx) ir_loop();
3922 instructions->push_tail(stmt);
3923
3924 /* Track the current loop nesting. */
3925 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3926
3927 state->loop_nesting_ast = this;
3928
3929 /* Likewise, indicate that following code is closest to a loop,
3930 * NOT closest to a switch.
3931 */
3932 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3933 state->switch_state.is_switch_innermost = false;
3934
3935 if (mode != ast_do_while)
3936 condition_to_hir(stmt, state);
3937
3938 if (body != NULL)
3939 body->hir(& stmt->body_instructions, state);
3940
3941 if (rest_expression != NULL)
3942 rest_expression->hir(& stmt->body_instructions, state);
3943
3944 if (mode == ast_do_while)
3945 condition_to_hir(stmt, state);
3946
3947 if (mode != ast_do_while)
3948 state->symbols->pop_scope();
3949
3950 /* Restore previous nesting before returning. */
3951 state->loop_nesting_ast = nesting_ast;
3952 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3953
3954 /* Loops do not have r-values.
3955 */
3956 return NULL;
3957 }
3958
3959
3960 ir_rvalue *
3961 ast_type_specifier::hir(exec_list *instructions,
3962 struct _mesa_glsl_parse_state *state)
3963 {
3964 if (!this->is_precision_statement && this->structure == NULL)
3965 return NULL;
3966
3967 YYLTYPE loc = this->get_location();
3968
3969 if (this->precision != ast_precision_none
3970 && !state->check_precision_qualifiers_allowed(&loc)) {
3971 return NULL;
3972 }
3973 if (this->precision != ast_precision_none
3974 && this->structure != NULL) {
3975 _mesa_glsl_error(&loc, state,
3976 "precision qualifiers do not apply to structures");
3977 return NULL;
3978 }
3979
3980 /* If this is a precision statement, check that the type to which it is
3981 * applied is either float or int.
3982 *
3983 * From section 4.5.3 of the GLSL 1.30 spec:
3984 * "The precision statement
3985 * precision precision-qualifier type;
3986 * can be used to establish a default precision qualifier. The type
3987 * field can be either int or float [...]. Any other types or
3988 * qualifiers will result in an error.
3989 */
3990 if (this->is_precision_statement) {
3991 assert(this->precision != ast_precision_none);
3992 assert(this->structure == NULL); /* The check for structures was
3993 * performed above. */
3994 if (this->is_array) {
3995 _mesa_glsl_error(&loc, state,
3996 "default precision statements do not apply to "
3997 "arrays");
3998 return NULL;
3999 }
4000 if (strcmp(this->type_name, "float") != 0 &&
4001 strcmp(this->type_name, "int") != 0) {
4002 _mesa_glsl_error(&loc, state,
4003 "default precision statements apply only to types "
4004 "float and int");
4005 return NULL;
4006 }
4007
4008 /* FINISHME: Translate precision statements into IR. */
4009 return NULL;
4010 }
4011
4012 if (this->structure != NULL)
4013 return this->structure->hir(instructions, state);
4014
4015 return NULL;
4016 }
4017
4018
4019 ir_rvalue *
4020 ast_struct_specifier::hir(exec_list *instructions,
4021 struct _mesa_glsl_parse_state *state)
4022 {
4023 unsigned decl_count = 0;
4024
4025 /* Make an initial pass over the list of structure fields to determine how
4026 * many there are. Each element in this list is an ast_declarator_list.
4027 * This means that we actually need to count the number of elements in the
4028 * 'declarations' list in each of the elements.
4029 */
4030 foreach_list_typed (ast_declarator_list, decl_list, link,
4031 &this->declarations) {
4032 foreach_list_const (decl_ptr, & decl_list->declarations) {
4033 decl_count++;
4034 }
4035 }
4036
4037 /* Allocate storage for the structure fields and process the field
4038 * declarations. As the declarations are processed, try to also convert
4039 * the types to HIR. This ensures that structure definitions embedded in
4040 * other structure definitions are processed.
4041 */
4042 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4043 decl_count);
4044
4045 unsigned i = 0;
4046 foreach_list_typed (ast_declarator_list, decl_list, link,
4047 &this->declarations) {
4048 const char *type_name;
4049
4050 decl_list->type->specifier->hir(instructions, state);
4051
4052 /* Section 10.9 of the GLSL ES 1.00 specification states that
4053 * embedded structure definitions have been removed from the language.
4054 */
4055 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4056 YYLTYPE loc = this->get_location();
4057 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
4058 "not allowed in GLSL ES 1.00.");
4059 }
4060
4061 const glsl_type *decl_type =
4062 decl_list->type->specifier->glsl_type(& type_name, state);
4063
4064 foreach_list_typed (ast_declaration, decl, link,
4065 &decl_list->declarations) {
4066 const struct glsl_type *field_type = decl_type;
4067 if (decl->is_array) {
4068 YYLTYPE loc = decl->get_location();
4069 field_type = process_array_type(&loc, decl_type, decl->array_size,
4070 state);
4071 }
4072 fields[i].type = (field_type != NULL)
4073 ? field_type : glsl_type::error_type;
4074 fields[i].name = decl->identifier;
4075 i++;
4076 }
4077 }
4078
4079 assert(i == decl_count);
4080
4081 const glsl_type *t =
4082 glsl_type::get_record_instance(fields, decl_count, this->name);
4083
4084 YYLTYPE loc = this->get_location();
4085 if (!state->symbols->add_type(name, t)) {
4086 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4087 } else {
4088 const glsl_type **s = reralloc(state, state->user_structures,
4089 const glsl_type *,
4090 state->num_user_structures + 1);
4091 if (s != NULL) {
4092 s[state->num_user_structures] = t;
4093 state->user_structures = s;
4094 state->num_user_structures++;
4095 }
4096 }
4097
4098 /* Structure type definitions do not have r-values.
4099 */
4100 return NULL;
4101 }
4102
4103 static struct gl_uniform_block *
4104 get_next_uniform_block(struct _mesa_glsl_parse_state *state)
4105 {
4106 if (state->num_uniform_blocks >= state->uniform_block_array_size) {
4107 state->uniform_block_array_size *= 2;
4108 if (state->uniform_block_array_size <= 4)
4109 state->uniform_block_array_size = 4;
4110
4111 state->uniform_blocks = reralloc(state,
4112 state->uniform_blocks,
4113 struct gl_uniform_block,
4114 state->uniform_block_array_size);
4115 }
4116
4117 memset(&state->uniform_blocks[state->num_uniform_blocks],
4118 0, sizeof(*state->uniform_blocks));
4119 return &state->uniform_blocks[state->num_uniform_blocks++];
4120 }
4121
4122 ir_rvalue *
4123 ast_uniform_block::hir(exec_list *instructions,
4124 struct _mesa_glsl_parse_state *state)
4125 {
4126 /* The ast_uniform_block has a list of ast_declarator_lists. We
4127 * need to turn those into ir_variables with an association
4128 * with this uniform block.
4129 */
4130 struct gl_uniform_block *ubo = get_next_uniform_block(state);
4131 ubo->Name = ralloc_strdup(state->uniform_blocks, this->block_name);
4132
4133 if (!state->symbols->add_uniform_block(ubo)) {
4134 YYLTYPE loc = this->get_location();
4135 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4136 "the current scope.\n", ubo->Name);
4137 }
4138
4139 unsigned int num_variables = 0;
4140 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4141 foreach_list_const(node, &decl_list->declarations) {
4142 num_variables++;
4143 }
4144 }
4145
4146 bool block_row_major = this->layout.flags.q.row_major;
4147
4148 ubo->Uniforms = rzalloc_array(state->uniform_blocks,
4149 struct gl_uniform_buffer_variable,
4150 num_variables);
4151
4152 foreach_list_typed(ast_declarator_list, decl_list, link, &declarations) {
4153 exec_list declared_variables;
4154
4155 decl_list->hir(&declared_variables, state);
4156
4157 foreach_list_const(node, &declared_variables) {
4158 ir_variable *var = (ir_variable *)node;
4159
4160 struct gl_uniform_buffer_variable *ubo_var =
4161 &ubo->Uniforms[ubo->NumUniforms++];
4162
4163 var->uniform_block = ubo - state->uniform_blocks;
4164
4165 ubo_var->Name = ralloc_strdup(state->uniform_blocks, var->name);
4166 ubo_var->Type = var->type;
4167 ubo_var->Offset = 0; /* Assigned at link time. */
4168
4169 if (var->type->is_matrix() ||
4170 (var->type->is_array() && var->type->fields.array->is_matrix())) {
4171 ubo_var->RowMajor = block_row_major;
4172 if (decl_list->type->qualifier.flags.q.row_major)
4173 ubo_var->RowMajor = true;
4174 else if (decl_list->type->qualifier.flags.q.column_major)
4175 ubo_var->RowMajor = false;
4176 }
4177
4178 /* From the GL_ARB_uniform_buffer_object spec:
4179 *
4180 * "Sampler types are not allowed inside of uniform
4181 * blocks. All other types, arrays, and structures
4182 * allowed for uniforms are allowed within a uniform
4183 * block."
4184 */
4185 if (var->type->contains_sampler()) {
4186 YYLTYPE loc = decl_list->get_location();
4187 _mesa_glsl_error(&loc, state,
4188 "Uniform in non-default uniform block contains sampler\n");
4189 }
4190 }
4191
4192 instructions->append_list(&declared_variables);
4193 }
4194
4195 return NULL;
4196 }
4197
4198 static void
4199 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4200 exec_list *instructions)
4201 {
4202 bool gl_FragColor_assigned = false;
4203 bool gl_FragData_assigned = false;
4204 bool user_defined_fs_output_assigned = false;
4205 ir_variable *user_defined_fs_output = NULL;
4206
4207 /* It would be nice to have proper location information. */
4208 YYLTYPE loc;
4209 memset(&loc, 0, sizeof(loc));
4210
4211 foreach_list(node, instructions) {
4212 ir_variable *var = ((ir_instruction *)node)->as_variable();
4213
4214 if (!var || !var->assigned)
4215 continue;
4216
4217 if (strcmp(var->name, "gl_FragColor") == 0)
4218 gl_FragColor_assigned = true;
4219 else if (strcmp(var->name, "gl_FragData") == 0)
4220 gl_FragData_assigned = true;
4221 else if (strncmp(var->name, "gl_", 3) != 0) {
4222 if (state->target == fragment_shader &&
4223 var->mode == ir_var_shader_out) {
4224 user_defined_fs_output_assigned = true;
4225 user_defined_fs_output = var;
4226 }
4227 }
4228 }
4229
4230 /* From the GLSL 1.30 spec:
4231 *
4232 * "If a shader statically assigns a value to gl_FragColor, it
4233 * may not assign a value to any element of gl_FragData. If a
4234 * shader statically writes a value to any element of
4235 * gl_FragData, it may not assign a value to
4236 * gl_FragColor. That is, a shader may assign values to either
4237 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4238 * linked together must also consistently write just one of
4239 * these variables. Similarly, if user declared output
4240 * variables are in use (statically assigned to), then the
4241 * built-in variables gl_FragColor and gl_FragData may not be
4242 * assigned to. These incorrect usages all generate compile
4243 * time errors."
4244 */
4245 if (gl_FragColor_assigned && gl_FragData_assigned) {
4246 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4247 "`gl_FragColor' and `gl_FragData'\n");
4248 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4249 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4250 "`gl_FragColor' and `%s'\n",
4251 user_defined_fs_output->name);
4252 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4253 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4254 "`gl_FragData' and `%s'\n",
4255 user_defined_fs_output->name);
4256 }
4257 }