glsl: Fix hypothetical NULL dereference related to process_array_type
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 /* Section 4.2 of the GLSL 1.20 specification states:
76 * "The built-in functions are scoped in a scope outside the global scope
77 * users declare global variables in. That is, a shader's global scope,
78 * available for user-defined functions and global variables, is nested
79 * inside the scope containing the built-in functions."
80 *
81 * Since built-in functions like ftransform() access built-in variables,
82 * it follows that those must be in the outer scope as well.
83 *
84 * We push scope here to create this nesting effect...but don't pop.
85 * This way, a shader's globals are still in the symbol table for use
86 * by the linker.
87 */
88 state->symbols->push_scope();
89
90 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
91 ast->hir(instructions, state);
92
93 detect_recursion_unlinked(state, instructions);
94 detect_conflicting_assignments(state, instructions);
95
96 state->toplevel_ir = NULL;
97 }
98
99
100 /**
101 * If a conversion is available, convert one operand to a different type
102 *
103 * The \c from \c ir_rvalue is converted "in place".
104 *
105 * \param to Type that the operand it to be converted to
106 * \param from Operand that is being converted
107 * \param state GLSL compiler state
108 *
109 * \return
110 * If a conversion is possible (or unnecessary), \c true is returned.
111 * Otherwise \c false is returned.
112 */
113 bool
114 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
115 struct _mesa_glsl_parse_state *state)
116 {
117 void *ctx = state;
118 if (to->base_type == from->type->base_type)
119 return true;
120
121 /* This conversion was added in GLSL 1.20. If the compilation mode is
122 * GLSL 1.10, the conversion is skipped.
123 */
124 if (!state->is_version(120, 0))
125 return false;
126
127 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
128 *
129 * "There are no implicit array or structure conversions. For
130 * example, an array of int cannot be implicitly converted to an
131 * array of float. There are no implicit conversions between
132 * signed and unsigned integers."
133 */
134 /* FINISHME: The above comment is partially a lie. There is int/uint
135 * FINISHME: conversion for immediate constants.
136 */
137 if (!to->is_float() || !from->type->is_numeric())
138 return false;
139
140 /* Convert to a floating point type with the same number of components
141 * as the original type - i.e. int to float, not int to vec4.
142 */
143 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
144 from->type->matrix_columns);
145
146 switch (from->type->base_type) {
147 case GLSL_TYPE_INT:
148 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
149 break;
150 case GLSL_TYPE_UINT:
151 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
152 break;
153 case GLSL_TYPE_BOOL:
154 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
155 break;
156 default:
157 assert(0);
158 }
159
160 return true;
161 }
162
163
164 static const struct glsl_type *
165 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
166 bool multiply,
167 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
168 {
169 const glsl_type *type_a = value_a->type;
170 const glsl_type *type_b = value_b->type;
171
172 /* From GLSL 1.50 spec, page 56:
173 *
174 * "The arithmetic binary operators add (+), subtract (-),
175 * multiply (*), and divide (/) operate on integer and
176 * floating-point scalars, vectors, and matrices."
177 */
178 if (!type_a->is_numeric() || !type_b->is_numeric()) {
179 _mesa_glsl_error(loc, state,
180 "Operands to arithmetic operators must be numeric");
181 return glsl_type::error_type;
182 }
183
184
185 /* "If one operand is floating-point based and the other is
186 * not, then the conversions from Section 4.1.10 "Implicit
187 * Conversions" are applied to the non-floating-point-based operand."
188 */
189 if (!apply_implicit_conversion(type_a, value_b, state)
190 && !apply_implicit_conversion(type_b, value_a, state)) {
191 _mesa_glsl_error(loc, state,
192 "Could not implicitly convert operands to "
193 "arithmetic operator");
194 return glsl_type::error_type;
195 }
196 type_a = value_a->type;
197 type_b = value_b->type;
198
199 /* "If the operands are integer types, they must both be signed or
200 * both be unsigned."
201 *
202 * From this rule and the preceeding conversion it can be inferred that
203 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
204 * The is_numeric check above already filtered out the case where either
205 * type is not one of these, so now the base types need only be tested for
206 * equality.
207 */
208 if (type_a->base_type != type_b->base_type) {
209 _mesa_glsl_error(loc, state,
210 "base type mismatch for arithmetic operator");
211 return glsl_type::error_type;
212 }
213
214 /* "All arithmetic binary operators result in the same fundamental type
215 * (signed integer, unsigned integer, or floating-point) as the
216 * operands they operate on, after operand type conversion. After
217 * conversion, the following cases are valid
218 *
219 * * The two operands are scalars. In this case the operation is
220 * applied, resulting in a scalar."
221 */
222 if (type_a->is_scalar() && type_b->is_scalar())
223 return type_a;
224
225 /* "* One operand is a scalar, and the other is a vector or matrix.
226 * In this case, the scalar operation is applied independently to each
227 * component of the vector or matrix, resulting in the same size
228 * vector or matrix."
229 */
230 if (type_a->is_scalar()) {
231 if (!type_b->is_scalar())
232 return type_b;
233 } else if (type_b->is_scalar()) {
234 return type_a;
235 }
236
237 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
238 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
239 * handled.
240 */
241 assert(!type_a->is_scalar());
242 assert(!type_b->is_scalar());
243
244 /* "* The two operands are vectors of the same size. In this case, the
245 * operation is done component-wise resulting in the same size
246 * vector."
247 */
248 if (type_a->is_vector() && type_b->is_vector()) {
249 if (type_a == type_b) {
250 return type_a;
251 } else {
252 _mesa_glsl_error(loc, state,
253 "vector size mismatch for arithmetic operator");
254 return glsl_type::error_type;
255 }
256 }
257
258 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
259 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
260 * <vector, vector> have been handled. At least one of the operands must
261 * be matrix. Further, since there are no integer matrix types, the base
262 * type of both operands must be float.
263 */
264 assert(type_a->is_matrix() || type_b->is_matrix());
265 assert(type_a->base_type == GLSL_TYPE_FLOAT);
266 assert(type_b->base_type == GLSL_TYPE_FLOAT);
267
268 /* "* The operator is add (+), subtract (-), or divide (/), and the
269 * operands are matrices with the same number of rows and the same
270 * number of columns. In this case, the operation is done component-
271 * wise resulting in the same size matrix."
272 * * The operator is multiply (*), where both operands are matrices or
273 * one operand is a vector and the other a matrix. A right vector
274 * operand is treated as a column vector and a left vector operand as a
275 * row vector. In all these cases, it is required that the number of
276 * columns of the left operand is equal to the number of rows of the
277 * right operand. Then, the multiply (*) operation does a linear
278 * algebraic multiply, yielding an object that has the same number of
279 * rows as the left operand and the same number of columns as the right
280 * operand. Section 5.10 "Vector and Matrix Operations" explains in
281 * more detail how vectors and matrices are operated on."
282 */
283 if (! multiply) {
284 if (type_a == type_b)
285 return type_a;
286 } else {
287 if (type_a->is_matrix() && type_b->is_matrix()) {
288 /* Matrix multiply. The columns of A must match the rows of B. Given
289 * the other previously tested constraints, this means the vector type
290 * of a row from A must be the same as the vector type of a column from
291 * B.
292 */
293 if (type_a->row_type() == type_b->column_type()) {
294 /* The resulting matrix has the number of columns of matrix B and
295 * the number of rows of matrix A. We get the row count of A by
296 * looking at the size of a vector that makes up a column. The
297 * transpose (size of a row) is done for B.
298 */
299 const glsl_type *const type =
300 glsl_type::get_instance(type_a->base_type,
301 type_a->column_type()->vector_elements,
302 type_b->row_type()->vector_elements);
303 assert(type != glsl_type::error_type);
304
305 return type;
306 }
307 } else if (type_a->is_matrix()) {
308 /* A is a matrix and B is a column vector. Columns of A must match
309 * rows of B. Given the other previously tested constraints, this
310 * means the vector type of a row from A must be the same as the
311 * vector the type of B.
312 */
313 if (type_a->row_type() == type_b) {
314 /* The resulting vector has a number of elements equal to
315 * the number of rows of matrix A. */
316 const glsl_type *const type =
317 glsl_type::get_instance(type_a->base_type,
318 type_a->column_type()->vector_elements,
319 1);
320 assert(type != glsl_type::error_type);
321
322 return type;
323 }
324 } else {
325 assert(type_b->is_matrix());
326
327 /* A is a row vector and B is a matrix. Columns of A must match rows
328 * of B. Given the other previously tested constraints, this means
329 * the type of A must be the same as the vector type of a column from
330 * B.
331 */
332 if (type_a == type_b->column_type()) {
333 /* The resulting vector has a number of elements equal to
334 * the number of columns of matrix B. */
335 const glsl_type *const type =
336 glsl_type::get_instance(type_a->base_type,
337 type_b->row_type()->vector_elements,
338 1);
339 assert(type != glsl_type::error_type);
340
341 return type;
342 }
343 }
344
345 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
346 return glsl_type::error_type;
347 }
348
349
350 /* "All other cases are illegal."
351 */
352 _mesa_glsl_error(loc, state, "type mismatch");
353 return glsl_type::error_type;
354 }
355
356
357 static const struct glsl_type *
358 unary_arithmetic_result_type(const struct glsl_type *type,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 /* From GLSL 1.50 spec, page 57:
362 *
363 * "The arithmetic unary operators negate (-), post- and pre-increment
364 * and decrement (-- and ++) operate on integer or floating-point
365 * values (including vectors and matrices). All unary operators work
366 * component-wise on their operands. These result with the same type
367 * they operated on."
368 */
369 if (!type->is_numeric()) {
370 _mesa_glsl_error(loc, state,
371 "Operands to arithmetic operators must be numeric");
372 return glsl_type::error_type;
373 }
374
375 return type;
376 }
377
378 /**
379 * \brief Return the result type of a bit-logic operation.
380 *
381 * If the given types to the bit-logic operator are invalid, return
382 * glsl_type::error_type.
383 *
384 * \param type_a Type of LHS of bit-logic op
385 * \param type_b Type of RHS of bit-logic op
386 */
387 static const struct glsl_type *
388 bit_logic_result_type(const struct glsl_type *type_a,
389 const struct glsl_type *type_b,
390 ast_operators op,
391 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
392 {
393 if (!state->check_bitwise_operations_allowed(loc)) {
394 return glsl_type::error_type;
395 }
396
397 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
398 *
399 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
400 * (|). The operands must be of type signed or unsigned integers or
401 * integer vectors."
402 */
403 if (!type_a->is_integer()) {
404 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408 if (!type_b->is_integer()) {
409 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
410 ast_expression::operator_string(op));
411 return glsl_type::error_type;
412 }
413
414 /* "The fundamental types of the operands (signed or unsigned) must
415 * match,"
416 */
417 if (type_a->base_type != type_b->base_type) {
418 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
419 "base type", ast_expression::operator_string(op));
420 return glsl_type::error_type;
421 }
422
423 /* "The operands cannot be vectors of differing size." */
424 if (type_a->is_vector() &&
425 type_b->is_vector() &&
426 type_a->vector_elements != type_b->vector_elements) {
427 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
428 "different sizes", ast_expression::operator_string(op));
429 return glsl_type::error_type;
430 }
431
432 /* "If one operand is a scalar and the other a vector, the scalar is
433 * applied component-wise to the vector, resulting in the same type as
434 * the vector. The fundamental types of the operands [...] will be the
435 * resulting fundamental type."
436 */
437 if (type_a->is_scalar())
438 return type_b;
439 else
440 return type_a;
441 }
442
443 static const struct glsl_type *
444 modulus_result_type(const struct glsl_type *type_a,
445 const struct glsl_type *type_b,
446 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
447 {
448 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
449 return glsl_type::error_type;
450 }
451
452 /* From GLSL 1.50 spec, page 56:
453 * "The operator modulus (%) operates on signed or unsigned integers or
454 * integer vectors. The operand types must both be signed or both be
455 * unsigned."
456 */
457 if (!type_a->is_integer()) {
458 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
459 return glsl_type::error_type;
460 }
461 if (!type_b->is_integer()) {
462 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
463 return glsl_type::error_type;
464 }
465 if (type_a->base_type != type_b->base_type) {
466 _mesa_glsl_error(loc, state,
467 "operands of %% must have the same base type");
468 return glsl_type::error_type;
469 }
470
471 /* "The operands cannot be vectors of differing size. If one operand is
472 * a scalar and the other vector, then the scalar is applied component-
473 * wise to the vector, resulting in the same type as the vector. If both
474 * are vectors of the same size, the result is computed component-wise."
475 */
476 if (type_a->is_vector()) {
477 if (!type_b->is_vector()
478 || (type_a->vector_elements == type_b->vector_elements))
479 return type_a;
480 } else
481 return type_b;
482
483 /* "The operator modulus (%) is not defined for any other data types
484 * (non-integer types)."
485 */
486 _mesa_glsl_error(loc, state, "type mismatch");
487 return glsl_type::error_type;
488 }
489
490
491 static const struct glsl_type *
492 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
493 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
494 {
495 const glsl_type *type_a = value_a->type;
496 const glsl_type *type_b = value_b->type;
497
498 /* From GLSL 1.50 spec, page 56:
499 * "The relational operators greater than (>), less than (<), greater
500 * than or equal (>=), and less than or equal (<=) operate only on
501 * scalar integer and scalar floating-point expressions."
502 */
503 if (!type_a->is_numeric()
504 || !type_b->is_numeric()
505 || !type_a->is_scalar()
506 || !type_b->is_scalar()) {
507 _mesa_glsl_error(loc, state,
508 "Operands to relational operators must be scalar and "
509 "numeric");
510 return glsl_type::error_type;
511 }
512
513 /* "Either the operands' types must match, or the conversions from
514 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
515 * operand, after which the types must match."
516 */
517 if (!apply_implicit_conversion(type_a, value_b, state)
518 && !apply_implicit_conversion(type_b, value_a, state)) {
519 _mesa_glsl_error(loc, state,
520 "Could not implicitly convert operands to "
521 "relational operator");
522 return glsl_type::error_type;
523 }
524 type_a = value_a->type;
525 type_b = value_b->type;
526
527 if (type_a->base_type != type_b->base_type) {
528 _mesa_glsl_error(loc, state, "base type mismatch");
529 return glsl_type::error_type;
530 }
531
532 /* "The result is scalar Boolean."
533 */
534 return glsl_type::bool_type;
535 }
536
537 /**
538 * \brief Return the result type of a bit-shift operation.
539 *
540 * If the given types to the bit-shift operator are invalid, return
541 * glsl_type::error_type.
542 *
543 * \param type_a Type of LHS of bit-shift op
544 * \param type_b Type of RHS of bit-shift op
545 */
546 static const struct glsl_type *
547 shift_result_type(const struct glsl_type *type_a,
548 const struct glsl_type *type_b,
549 ast_operators op,
550 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
551 {
552 if (!state->check_bitwise_operations_allowed(loc)) {
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 const char *non_lvalue_description,
669 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
670 YYLTYPE lhs_loc)
671 {
672 void *ctx = state;
673 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
674
675 ir_variable *lhs_var = lhs->variable_referenced();
676 if (lhs_var)
677 lhs_var->assigned = true;
678
679 if (!error_emitted) {
680 if (non_lvalue_description != NULL) {
681 _mesa_glsl_error(&lhs_loc, state,
682 "assignment to %s",
683 non_lvalue_description);
684 error_emitted = true;
685 } else if (lhs->variable_referenced() != NULL
686 && lhs->variable_referenced()->read_only) {
687 _mesa_glsl_error(&lhs_loc, state,
688 "assignment to read-only variable '%s'",
689 lhs->variable_referenced()->name);
690 error_emitted = true;
691
692 } else if (lhs->type->is_array() &&
693 !state->check_version(120, 300, &lhs_loc,
694 "whole array assignment forbidden")) {
695 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
696 *
697 * "Other binary or unary expressions, non-dereferenced
698 * arrays, function names, swizzles with repeated fields,
699 * and constants cannot be l-values."
700 *
701 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
702 */
703 error_emitted = true;
704 } else if (!lhs->is_lvalue()) {
705 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
706 error_emitted = true;
707 }
708 }
709
710 ir_rvalue *new_rhs =
711 validate_assignment(state, lhs->type, rhs, is_initializer);
712 if (new_rhs == NULL) {
713 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
714 } else {
715 rhs = new_rhs;
716
717 /* If the LHS array was not declared with a size, it takes it size from
718 * the RHS. If the LHS is an l-value and a whole array, it must be a
719 * dereference of a variable. Any other case would require that the LHS
720 * is either not an l-value or not a whole array.
721 */
722 if (lhs->type->array_size() == 0) {
723 ir_dereference *const d = lhs->as_dereference();
724
725 assert(d != NULL);
726
727 ir_variable *const var = d->variable_referenced();
728
729 assert(var != NULL);
730
731 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
732 /* FINISHME: This should actually log the location of the RHS. */
733 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
734 "previous access",
735 var->max_array_access);
736 }
737
738 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
739 rhs->type->array_size());
740 d->type = var->type;
741 }
742 mark_whole_array_access(rhs);
743 mark_whole_array_access(lhs);
744 }
745
746 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
747 * but not post_inc) need the converted assigned value as an rvalue
748 * to handle things like:
749 *
750 * i = j += 1;
751 *
752 * So we always just store the computed value being assigned to a
753 * temporary and return a deref of that temporary. If the rvalue
754 * ends up not being used, the temp will get copy-propagated out.
755 */
756 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
757 ir_var_temporary);
758 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
759 instructions->push_tail(var);
760 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
761 deref_var = new(ctx) ir_dereference_variable(var);
762
763 if (!error_emitted)
764 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
765
766 return new(ctx) ir_dereference_variable(var);
767 }
768
769 static ir_rvalue *
770 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
771 {
772 void *ctx = ralloc_parent(lvalue);
773 ir_variable *var;
774
775 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
776 ir_var_temporary);
777 instructions->push_tail(var);
778 var->mode = ir_var_auto;
779
780 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
781 lvalue));
782
783 return new(ctx) ir_dereference_variable(var);
784 }
785
786
787 ir_rvalue *
788 ast_node::hir(exec_list *instructions,
789 struct _mesa_glsl_parse_state *state)
790 {
791 (void) instructions;
792 (void) state;
793
794 return NULL;
795 }
796
797 static ir_rvalue *
798 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
799 {
800 int join_op;
801 ir_rvalue *cmp = NULL;
802
803 if (operation == ir_binop_all_equal)
804 join_op = ir_binop_logic_and;
805 else
806 join_op = ir_binop_logic_or;
807
808 switch (op0->type->base_type) {
809 case GLSL_TYPE_FLOAT:
810 case GLSL_TYPE_UINT:
811 case GLSL_TYPE_INT:
812 case GLSL_TYPE_BOOL:
813 return new(mem_ctx) ir_expression(operation, op0, op1);
814
815 case GLSL_TYPE_ARRAY: {
816 for (unsigned int i = 0; i < op0->type->length; i++) {
817 ir_rvalue *e0, *e1, *result;
818
819 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
820 new(mem_ctx) ir_constant(i));
821 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
822 new(mem_ctx) ir_constant(i));
823 result = do_comparison(mem_ctx, operation, e0, e1);
824
825 if (cmp) {
826 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
827 } else {
828 cmp = result;
829 }
830 }
831
832 mark_whole_array_access(op0);
833 mark_whole_array_access(op1);
834 break;
835 }
836
837 case GLSL_TYPE_STRUCT: {
838 for (unsigned int i = 0; i < op0->type->length; i++) {
839 ir_rvalue *e0, *e1, *result;
840 const char *field_name = op0->type->fields.structure[i].name;
841
842 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
843 field_name);
844 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
845 field_name);
846 result = do_comparison(mem_ctx, operation, e0, e1);
847
848 if (cmp) {
849 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
850 } else {
851 cmp = result;
852 }
853 }
854 break;
855 }
856
857 case GLSL_TYPE_ERROR:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SAMPLER:
860 case GLSL_TYPE_INTERFACE:
861 /* I assume a comparison of a struct containing a sampler just
862 * ignores the sampler present in the type.
863 */
864 break;
865 }
866
867 if (cmp == NULL)
868 cmp = new(mem_ctx) ir_constant(true);
869
870 return cmp;
871 }
872
873 /* For logical operations, we want to ensure that the operands are
874 * scalar booleans. If it isn't, emit an error and return a constant
875 * boolean to avoid triggering cascading error messages.
876 */
877 ir_rvalue *
878 get_scalar_boolean_operand(exec_list *instructions,
879 struct _mesa_glsl_parse_state *state,
880 ast_expression *parent_expr,
881 int operand,
882 const char *operand_name,
883 bool *error_emitted)
884 {
885 ast_expression *expr = parent_expr->subexpressions[operand];
886 void *ctx = state;
887 ir_rvalue *val = expr->hir(instructions, state);
888
889 if (val->type->is_boolean() && val->type->is_scalar())
890 return val;
891
892 if (!*error_emitted) {
893 YYLTYPE loc = expr->get_location();
894 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
895 operand_name,
896 parent_expr->operator_string(parent_expr->oper));
897 *error_emitted = true;
898 }
899
900 return new(ctx) ir_constant(true);
901 }
902
903 /**
904 * If name refers to a builtin array whose maximum allowed size is less than
905 * size, report an error and return true. Otherwise return false.
906 */
907 void
908 check_builtin_array_max_size(const char *name, unsigned size,
909 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
910 {
911 if ((strcmp("gl_TexCoord", name) == 0)
912 && (size > state->Const.MaxTextureCoords)) {
913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
914 *
915 * "The size [of gl_TexCoord] can be at most
916 * gl_MaxTextureCoords."
917 */
918 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
919 "be larger than gl_MaxTextureCoords (%u)\n",
920 state->Const.MaxTextureCoords);
921 } else if (strcmp("gl_ClipDistance", name) == 0
922 && size > state->Const.MaxClipPlanes) {
923 /* From section 7.1 (Vertex Shader Special Variables) of the
924 * GLSL 1.30 spec:
925 *
926 * "The gl_ClipDistance array is predeclared as unsized and
927 * must be sized by the shader either redeclaring it with a
928 * size or indexing it only with integral constant
929 * expressions. ... The size can be at most
930 * gl_MaxClipDistances."
931 */
932 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
933 "be larger than gl_MaxClipDistances (%u)\n",
934 state->Const.MaxClipPlanes);
935 }
936 }
937
938 /**
939 * Create the constant 1, of a which is appropriate for incrementing and
940 * decrementing values of the given GLSL type. For example, if type is vec4,
941 * this creates a constant value of 1.0 having type float.
942 *
943 * If the given type is invalid for increment and decrement operators, return
944 * a floating point 1--the error will be detected later.
945 */
946 static ir_rvalue *
947 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
948 {
949 switch (type->base_type) {
950 case GLSL_TYPE_UINT:
951 return new(ctx) ir_constant((unsigned) 1);
952 case GLSL_TYPE_INT:
953 return new(ctx) ir_constant(1);
954 default:
955 case GLSL_TYPE_FLOAT:
956 return new(ctx) ir_constant(1.0f);
957 }
958 }
959
960 ir_rvalue *
961 ast_expression::hir(exec_list *instructions,
962 struct _mesa_glsl_parse_state *state)
963 {
964 void *ctx = state;
965 static const int operations[AST_NUM_OPERATORS] = {
966 -1, /* ast_assign doesn't convert to ir_expression. */
967 -1, /* ast_plus doesn't convert to ir_expression. */
968 ir_unop_neg,
969 ir_binop_add,
970 ir_binop_sub,
971 ir_binop_mul,
972 ir_binop_div,
973 ir_binop_mod,
974 ir_binop_lshift,
975 ir_binop_rshift,
976 ir_binop_less,
977 ir_binop_greater,
978 ir_binop_lequal,
979 ir_binop_gequal,
980 ir_binop_all_equal,
981 ir_binop_any_nequal,
982 ir_binop_bit_and,
983 ir_binop_bit_xor,
984 ir_binop_bit_or,
985 ir_unop_bit_not,
986 ir_binop_logic_and,
987 ir_binop_logic_xor,
988 ir_binop_logic_or,
989 ir_unop_logic_not,
990
991 /* Note: The following block of expression types actually convert
992 * to multiple IR instructions.
993 */
994 ir_binop_mul, /* ast_mul_assign */
995 ir_binop_div, /* ast_div_assign */
996 ir_binop_mod, /* ast_mod_assign */
997 ir_binop_add, /* ast_add_assign */
998 ir_binop_sub, /* ast_sub_assign */
999 ir_binop_lshift, /* ast_ls_assign */
1000 ir_binop_rshift, /* ast_rs_assign */
1001 ir_binop_bit_and, /* ast_and_assign */
1002 ir_binop_bit_xor, /* ast_xor_assign */
1003 ir_binop_bit_or, /* ast_or_assign */
1004
1005 -1, /* ast_conditional doesn't convert to ir_expression. */
1006 ir_binop_add, /* ast_pre_inc. */
1007 ir_binop_sub, /* ast_pre_dec. */
1008 ir_binop_add, /* ast_post_inc. */
1009 ir_binop_sub, /* ast_post_dec. */
1010 -1, /* ast_field_selection doesn't conv to ir_expression. */
1011 -1, /* ast_array_index doesn't convert to ir_expression. */
1012 -1, /* ast_function_call doesn't conv to ir_expression. */
1013 -1, /* ast_identifier doesn't convert to ir_expression. */
1014 -1, /* ast_int_constant doesn't convert to ir_expression. */
1015 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1016 -1, /* ast_float_constant doesn't conv to ir_expression. */
1017 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1018 -1, /* ast_sequence doesn't convert to ir_expression. */
1019 };
1020 ir_rvalue *result = NULL;
1021 ir_rvalue *op[3];
1022 const struct glsl_type *type; /* a temporary variable for switch cases */
1023 bool error_emitted = false;
1024 YYLTYPE loc;
1025
1026 loc = this->get_location();
1027
1028 switch (this->oper) {
1029 case ast_assign: {
1030 op[0] = this->subexpressions[0]->hir(instructions, state);
1031 op[1] = this->subexpressions[1]->hir(instructions, state);
1032
1033 result = do_assignment(instructions, state,
1034 this->subexpressions[0]->non_lvalue_description,
1035 op[0], op[1], false,
1036 this->subexpressions[0]->get_location());
1037 error_emitted = result->type->is_error();
1038 break;
1039 }
1040
1041 case ast_plus:
1042 op[0] = this->subexpressions[0]->hir(instructions, state);
1043
1044 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1045
1046 error_emitted = type->is_error();
1047
1048 result = op[0];
1049 break;
1050
1051 case ast_neg:
1052 op[0] = this->subexpressions[0]->hir(instructions, state);
1053
1054 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1055
1056 error_emitted = type->is_error();
1057
1058 result = new(ctx) ir_expression(operations[this->oper], type,
1059 op[0], NULL);
1060 break;
1061
1062 case ast_add:
1063 case ast_sub:
1064 case ast_mul:
1065 case ast_div:
1066 op[0] = this->subexpressions[0]->hir(instructions, state);
1067 op[1] = this->subexpressions[1]->hir(instructions, state);
1068
1069 type = arithmetic_result_type(op[0], op[1],
1070 (this->oper == ast_mul),
1071 state, & loc);
1072 error_emitted = type->is_error();
1073
1074 result = new(ctx) ir_expression(operations[this->oper], type,
1075 op[0], op[1]);
1076 break;
1077
1078 case ast_mod:
1079 op[0] = this->subexpressions[0]->hir(instructions, state);
1080 op[1] = this->subexpressions[1]->hir(instructions, state);
1081
1082 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1083
1084 assert(operations[this->oper] == ir_binop_mod);
1085
1086 result = new(ctx) ir_expression(operations[this->oper], type,
1087 op[0], op[1]);
1088 error_emitted = type->is_error();
1089 break;
1090
1091 case ast_lshift:
1092 case ast_rshift:
1093 if (!state->check_bitwise_operations_allowed(&loc)) {
1094 error_emitted = true;
1095 }
1096
1097 op[0] = this->subexpressions[0]->hir(instructions, state);
1098 op[1] = this->subexpressions[1]->hir(instructions, state);
1099 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1100 &loc);
1101 result = new(ctx) ir_expression(operations[this->oper], type,
1102 op[0], op[1]);
1103 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1104 break;
1105
1106 case ast_less:
1107 case ast_greater:
1108 case ast_lequal:
1109 case ast_gequal:
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111 op[1] = this->subexpressions[1]->hir(instructions, state);
1112
1113 type = relational_result_type(op[0], op[1], state, & loc);
1114
1115 /* The relational operators must either generate an error or result
1116 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1117 */
1118 assert(type->is_error()
1119 || ((type->base_type == GLSL_TYPE_BOOL)
1120 && type->is_scalar()));
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 error_emitted = type->is_error();
1125 break;
1126
1127 case ast_nequal:
1128 case ast_equal:
1129 op[0] = this->subexpressions[0]->hir(instructions, state);
1130 op[1] = this->subexpressions[1]->hir(instructions, state);
1131
1132 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1133 *
1134 * "The equality operators equal (==), and not equal (!=)
1135 * operate on all types. They result in a scalar Boolean. If
1136 * the operand types do not match, then there must be a
1137 * conversion from Section 4.1.10 "Implicit Conversions"
1138 * applied to one operand that can make them match, in which
1139 * case this conversion is done."
1140 */
1141 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1142 && !apply_implicit_conversion(op[1]->type, op[0], state))
1143 || (op[0]->type != op[1]->type)) {
1144 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1145 "type", (this->oper == ast_equal) ? "==" : "!=");
1146 error_emitted = true;
1147 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1148 !state->check_version(120, 300, &loc,
1149 "array comparisons forbidden")) {
1150 error_emitted = true;
1151 }
1152
1153 if (error_emitted) {
1154 result = new(ctx) ir_constant(false);
1155 } else {
1156 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1157 assert(result->type == glsl_type::bool_type);
1158 }
1159 break;
1160
1161 case ast_bit_and:
1162 case ast_bit_xor:
1163 case ast_bit_or:
1164 op[0] = this->subexpressions[0]->hir(instructions, state);
1165 op[1] = this->subexpressions[1]->hir(instructions, state);
1166 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1167 state, &loc);
1168 result = new(ctx) ir_expression(operations[this->oper], type,
1169 op[0], op[1]);
1170 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1171 break;
1172
1173 case ast_bit_not:
1174 op[0] = this->subexpressions[0]->hir(instructions, state);
1175
1176 if (!state->check_bitwise_operations_allowed(&loc)) {
1177 error_emitted = true;
1178 }
1179
1180 if (!op[0]->type->is_integer()) {
1181 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1182 error_emitted = true;
1183 }
1184
1185 type = error_emitted ? glsl_type::error_type : op[0]->type;
1186 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1187 break;
1188
1189 case ast_logic_and: {
1190 exec_list rhs_instructions;
1191 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1192 "LHS", &error_emitted);
1193 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1194 "RHS", &error_emitted);
1195
1196 if (rhs_instructions.is_empty()) {
1197 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1198 type = result->type;
1199 } else {
1200 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1201 "and_tmp",
1202 ir_var_temporary);
1203 instructions->push_tail(tmp);
1204
1205 ir_if *const stmt = new(ctx) ir_if(op[0]);
1206 instructions->push_tail(stmt);
1207
1208 stmt->then_instructions.append_list(&rhs_instructions);
1209 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1210 ir_assignment *const then_assign =
1211 new(ctx) ir_assignment(then_deref, op[1]);
1212 stmt->then_instructions.push_tail(then_assign);
1213
1214 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1215 ir_assignment *const else_assign =
1216 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1217 stmt->else_instructions.push_tail(else_assign);
1218
1219 result = new(ctx) ir_dereference_variable(tmp);
1220 type = tmp->type;
1221 }
1222 break;
1223 }
1224
1225 case ast_logic_or: {
1226 exec_list rhs_instructions;
1227 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1228 "LHS", &error_emitted);
1229 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1230 "RHS", &error_emitted);
1231
1232 if (rhs_instructions.is_empty()) {
1233 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1234 type = result->type;
1235 } else {
1236 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1237 "or_tmp",
1238 ir_var_temporary);
1239 instructions->push_tail(tmp);
1240
1241 ir_if *const stmt = new(ctx) ir_if(op[0]);
1242 instructions->push_tail(stmt);
1243
1244 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1245 ir_assignment *const then_assign =
1246 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1247 stmt->then_instructions.push_tail(then_assign);
1248
1249 stmt->else_instructions.append_list(&rhs_instructions);
1250 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1251 ir_assignment *const else_assign =
1252 new(ctx) ir_assignment(else_deref, op[1]);
1253 stmt->else_instructions.push_tail(else_assign);
1254
1255 result = new(ctx) ir_dereference_variable(tmp);
1256 type = tmp->type;
1257 }
1258 break;
1259 }
1260
1261 case ast_logic_xor:
1262 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1263 *
1264 * "The logical binary operators and (&&), or ( | | ), and
1265 * exclusive or (^^). They operate only on two Boolean
1266 * expressions and result in a Boolean expression."
1267 */
1268 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1269 &error_emitted);
1270 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1271 &error_emitted);
1272
1273 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1274 op[0], op[1]);
1275 break;
1276
1277 case ast_logic_not:
1278 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1279 "operand", &error_emitted);
1280
1281 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1282 op[0], NULL);
1283 break;
1284
1285 case ast_mul_assign:
1286 case ast_div_assign:
1287 case ast_add_assign:
1288 case ast_sub_assign: {
1289 op[0] = this->subexpressions[0]->hir(instructions, state);
1290 op[1] = this->subexpressions[1]->hir(instructions, state);
1291
1292 type = arithmetic_result_type(op[0], op[1],
1293 (this->oper == ast_mul_assign),
1294 state, & loc);
1295
1296 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1297 op[0], op[1]);
1298
1299 result = do_assignment(instructions, state,
1300 this->subexpressions[0]->non_lvalue_description,
1301 op[0]->clone(ctx, NULL), temp_rhs, false,
1302 this->subexpressions[0]->get_location());
1303 error_emitted = (op[0]->type->is_error());
1304
1305 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1306 * explicitly test for this because none of the binary expression
1307 * operators allow array operands either.
1308 */
1309
1310 break;
1311 }
1312
1313 case ast_mod_assign: {
1314 op[0] = this->subexpressions[0]->hir(instructions, state);
1315 op[1] = this->subexpressions[1]->hir(instructions, state);
1316
1317 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1318
1319 assert(operations[this->oper] == ir_binop_mod);
1320
1321 ir_rvalue *temp_rhs;
1322 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1323 op[0], op[1]);
1324
1325 result = do_assignment(instructions, state,
1326 this->subexpressions[0]->non_lvalue_description,
1327 op[0]->clone(ctx, NULL), temp_rhs, false,
1328 this->subexpressions[0]->get_location());
1329 error_emitted = type->is_error();
1330 break;
1331 }
1332
1333 case ast_ls_assign:
1334 case ast_rs_assign: {
1335 op[0] = this->subexpressions[0]->hir(instructions, state);
1336 op[1] = this->subexpressions[1]->hir(instructions, state);
1337 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1338 &loc);
1339 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1340 type, op[0], op[1]);
1341 result = do_assignment(instructions, state,
1342 this->subexpressions[0]->non_lvalue_description,
1343 op[0]->clone(ctx, NULL), temp_rhs, false,
1344 this->subexpressions[0]->get_location());
1345 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1346 break;
1347 }
1348
1349 case ast_and_assign:
1350 case ast_xor_assign:
1351 case ast_or_assign: {
1352 op[0] = this->subexpressions[0]->hir(instructions, state);
1353 op[1] = this->subexpressions[1]->hir(instructions, state);
1354 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1355 state, &loc);
1356 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1357 type, op[0], op[1]);
1358 result = do_assignment(instructions, state,
1359 this->subexpressions[0]->non_lvalue_description,
1360 op[0]->clone(ctx, NULL), temp_rhs, false,
1361 this->subexpressions[0]->get_location());
1362 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1363 break;
1364 }
1365
1366 case ast_conditional: {
1367 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1368 *
1369 * "The ternary selection operator (?:). It operates on three
1370 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1371 * first expression, which must result in a scalar Boolean."
1372 */
1373 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1374 "condition", &error_emitted);
1375
1376 /* The :? operator is implemented by generating an anonymous temporary
1377 * followed by an if-statement. The last instruction in each branch of
1378 * the if-statement assigns a value to the anonymous temporary. This
1379 * temporary is the r-value of the expression.
1380 */
1381 exec_list then_instructions;
1382 exec_list else_instructions;
1383
1384 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1385 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1386
1387 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1388 *
1389 * "The second and third expressions can be any type, as
1390 * long their types match, or there is a conversion in
1391 * Section 4.1.10 "Implicit Conversions" that can be applied
1392 * to one of the expressions to make their types match. This
1393 * resulting matching type is the type of the entire
1394 * expression."
1395 */
1396 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1397 && !apply_implicit_conversion(op[2]->type, op[1], state))
1398 || (op[1]->type != op[2]->type)) {
1399 YYLTYPE loc = this->subexpressions[1]->get_location();
1400
1401 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1402 "operator must have matching types.");
1403 error_emitted = true;
1404 type = glsl_type::error_type;
1405 } else {
1406 type = op[1]->type;
1407 }
1408
1409 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1410 *
1411 * "The second and third expressions must be the same type, but can
1412 * be of any type other than an array."
1413 */
1414 if (type->is_array() &&
1415 !state->check_version(120, 300, &loc,
1416 "Second and third operands of ?: operator "
1417 "cannot be arrays")) {
1418 error_emitted = true;
1419 }
1420
1421 ir_constant *cond_val = op[0]->constant_expression_value();
1422 ir_constant *then_val = op[1]->constant_expression_value();
1423 ir_constant *else_val = op[2]->constant_expression_value();
1424
1425 if (then_instructions.is_empty()
1426 && else_instructions.is_empty()
1427 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1428 result = (cond_val->value.b[0]) ? then_val : else_val;
1429 } else {
1430 ir_variable *const tmp =
1431 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1432 instructions->push_tail(tmp);
1433
1434 ir_if *const stmt = new(ctx) ir_if(op[0]);
1435 instructions->push_tail(stmt);
1436
1437 then_instructions.move_nodes_to(& stmt->then_instructions);
1438 ir_dereference *const then_deref =
1439 new(ctx) ir_dereference_variable(tmp);
1440 ir_assignment *const then_assign =
1441 new(ctx) ir_assignment(then_deref, op[1]);
1442 stmt->then_instructions.push_tail(then_assign);
1443
1444 else_instructions.move_nodes_to(& stmt->else_instructions);
1445 ir_dereference *const else_deref =
1446 new(ctx) ir_dereference_variable(tmp);
1447 ir_assignment *const else_assign =
1448 new(ctx) ir_assignment(else_deref, op[2]);
1449 stmt->else_instructions.push_tail(else_assign);
1450
1451 result = new(ctx) ir_dereference_variable(tmp);
1452 }
1453 break;
1454 }
1455
1456 case ast_pre_inc:
1457 case ast_pre_dec: {
1458 this->non_lvalue_description = (this->oper == ast_pre_inc)
1459 ? "pre-increment operation" : "pre-decrement operation";
1460
1461 op[0] = this->subexpressions[0]->hir(instructions, state);
1462 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1463
1464 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1465
1466 ir_rvalue *temp_rhs;
1467 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1468 op[0], op[1]);
1469
1470 result = do_assignment(instructions, state,
1471 this->subexpressions[0]->non_lvalue_description,
1472 op[0]->clone(ctx, NULL), temp_rhs, false,
1473 this->subexpressions[0]->get_location());
1474 error_emitted = op[0]->type->is_error();
1475 break;
1476 }
1477
1478 case ast_post_inc:
1479 case ast_post_dec: {
1480 this->non_lvalue_description = (this->oper == ast_post_inc)
1481 ? "post-increment operation" : "post-decrement operation";
1482 op[0] = this->subexpressions[0]->hir(instructions, state);
1483 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1484
1485 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1486
1487 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1488
1489 ir_rvalue *temp_rhs;
1490 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1491 op[0], op[1]);
1492
1493 /* Get a temporary of a copy of the lvalue before it's modified.
1494 * This may get thrown away later.
1495 */
1496 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1497
1498 (void)do_assignment(instructions, state,
1499 this->subexpressions[0]->non_lvalue_description,
1500 op[0]->clone(ctx, NULL), temp_rhs, false,
1501 this->subexpressions[0]->get_location());
1502
1503 error_emitted = op[0]->type->is_error();
1504 break;
1505 }
1506
1507 case ast_field_selection:
1508 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1509 break;
1510
1511 case ast_array_index: {
1512 YYLTYPE index_loc = subexpressions[1]->get_location();
1513
1514 op[0] = subexpressions[0]->hir(instructions, state);
1515 op[1] = subexpressions[1]->hir(instructions, state);
1516
1517 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1518 loc, index_loc);
1519
1520 if (result->type->is_error())
1521 error_emitted = true;
1522
1523 break;
1524 }
1525
1526 case ast_function_call:
1527 /* Should *NEVER* get here. ast_function_call should always be handled
1528 * by ast_function_expression::hir.
1529 */
1530 assert(0);
1531 break;
1532
1533 case ast_identifier: {
1534 /* ast_identifier can appear several places in a full abstract syntax
1535 * tree. This particular use must be at location specified in the grammar
1536 * as 'variable_identifier'.
1537 */
1538 ir_variable *var =
1539 state->symbols->get_variable(this->primary_expression.identifier);
1540
1541 if (var != NULL) {
1542 var->used = true;
1543 result = new(ctx) ir_dereference_variable(var);
1544 } else {
1545 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1546 this->primary_expression.identifier);
1547
1548 result = ir_rvalue::error_value(ctx);
1549 error_emitted = true;
1550 }
1551 break;
1552 }
1553
1554 case ast_int_constant:
1555 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1556 break;
1557
1558 case ast_uint_constant:
1559 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1560 break;
1561
1562 case ast_float_constant:
1563 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1564 break;
1565
1566 case ast_bool_constant:
1567 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1568 break;
1569
1570 case ast_sequence: {
1571 /* It should not be possible to generate a sequence in the AST without
1572 * any expressions in it.
1573 */
1574 assert(!this->expressions.is_empty());
1575
1576 /* The r-value of a sequence is the last expression in the sequence. If
1577 * the other expressions in the sequence do not have side-effects (and
1578 * therefore add instructions to the instruction list), they get dropped
1579 * on the floor.
1580 */
1581 exec_node *previous_tail_pred = NULL;
1582 YYLTYPE previous_operand_loc = loc;
1583
1584 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1585 /* If one of the operands of comma operator does not generate any
1586 * code, we want to emit a warning. At each pass through the loop
1587 * previous_tail_pred will point to the last instruction in the
1588 * stream *before* processing the previous operand. Naturally,
1589 * instructions->tail_pred will point to the last instruction in the
1590 * stream *after* processing the previous operand. If the two
1591 * pointers match, then the previous operand had no effect.
1592 *
1593 * The warning behavior here differs slightly from GCC. GCC will
1594 * only emit a warning if none of the left-hand operands have an
1595 * effect. However, it will emit a warning for each. I believe that
1596 * there are some cases in C (especially with GCC extensions) where
1597 * it is useful to have an intermediate step in a sequence have no
1598 * effect, but I don't think these cases exist in GLSL. Either way,
1599 * it would be a giant hassle to replicate that behavior.
1600 */
1601 if (previous_tail_pred == instructions->tail_pred) {
1602 _mesa_glsl_warning(&previous_operand_loc, state,
1603 "left-hand operand of comma expression has "
1604 "no effect");
1605 }
1606
1607 /* tail_pred is directly accessed instead of using the get_tail()
1608 * method for performance reasons. get_tail() has extra code to
1609 * return NULL when the list is empty. We don't care about that
1610 * here, so using tail_pred directly is fine.
1611 */
1612 previous_tail_pred = instructions->tail_pred;
1613 previous_operand_loc = ast->get_location();
1614
1615 result = ast->hir(instructions, state);
1616 }
1617
1618 /* Any errors should have already been emitted in the loop above.
1619 */
1620 error_emitted = true;
1621 break;
1622 }
1623 }
1624 type = NULL; /* use result->type, not type. */
1625 assert(result != NULL);
1626
1627 if (result->type->is_error() && !error_emitted)
1628 _mesa_glsl_error(& loc, state, "type mismatch");
1629
1630 return result;
1631 }
1632
1633
1634 ir_rvalue *
1635 ast_expression_statement::hir(exec_list *instructions,
1636 struct _mesa_glsl_parse_state *state)
1637 {
1638 /* It is possible to have expression statements that don't have an
1639 * expression. This is the solitary semicolon:
1640 *
1641 * for (i = 0; i < 5; i++)
1642 * ;
1643 *
1644 * In this case the expression will be NULL. Test for NULL and don't do
1645 * anything in that case.
1646 */
1647 if (expression != NULL)
1648 expression->hir(instructions, state);
1649
1650 /* Statements do not have r-values.
1651 */
1652 return NULL;
1653 }
1654
1655
1656 ir_rvalue *
1657 ast_compound_statement::hir(exec_list *instructions,
1658 struct _mesa_glsl_parse_state *state)
1659 {
1660 if (new_scope)
1661 state->symbols->push_scope();
1662
1663 foreach_list_typed (ast_node, ast, link, &this->statements)
1664 ast->hir(instructions, state);
1665
1666 if (new_scope)
1667 state->symbols->pop_scope();
1668
1669 /* Compound statements do not have r-values.
1670 */
1671 return NULL;
1672 }
1673
1674
1675 static const glsl_type *
1676 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1677 struct _mesa_glsl_parse_state *state)
1678 {
1679 unsigned length = 0;
1680
1681 if (base == NULL)
1682 return glsl_type::error_type;
1683
1684 /* From page 19 (page 25) of the GLSL 1.20 spec:
1685 *
1686 * "Only one-dimensional arrays may be declared."
1687 */
1688 if (base->is_array()) {
1689 _mesa_glsl_error(loc, state,
1690 "invalid array of `%s' (only one-dimensional arrays "
1691 "may be declared)",
1692 base->name);
1693 return glsl_type::error_type;
1694 }
1695
1696 if (array_size != NULL) {
1697 exec_list dummy_instructions;
1698 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1699 YYLTYPE loc = array_size->get_location();
1700
1701 if (ir != NULL) {
1702 if (!ir->type->is_integer()) {
1703 _mesa_glsl_error(& loc, state, "array size must be integer type");
1704 } else if (!ir->type->is_scalar()) {
1705 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1706 } else {
1707 ir_constant *const size = ir->constant_expression_value();
1708
1709 if (size == NULL) {
1710 _mesa_glsl_error(& loc, state, "array size must be a "
1711 "constant valued expression");
1712 } else if (size->value.i[0] <= 0) {
1713 _mesa_glsl_error(& loc, state, "array size must be > 0");
1714 } else {
1715 assert(size->type == ir->type);
1716 length = size->value.u[0];
1717
1718 /* If the array size is const (and we've verified that
1719 * it is) then no instructions should have been emitted
1720 * when we converted it to HIR. If they were emitted,
1721 * then either the array size isn't const after all, or
1722 * we are emitting unnecessary instructions.
1723 */
1724 assert(dummy_instructions.is_empty());
1725 }
1726 }
1727 }
1728 } else if (state->es_shader) {
1729 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1730 * array declarations have been removed from the language.
1731 */
1732 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1733 "allowed in GLSL ES 1.00.");
1734 }
1735
1736 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1737 return array_type != NULL ? array_type : glsl_type::error_type;
1738 }
1739
1740
1741 const glsl_type *
1742 ast_type_specifier::glsl_type(const char **name,
1743 struct _mesa_glsl_parse_state *state) const
1744 {
1745 const struct glsl_type *type;
1746
1747 type = state->symbols->get_type(this->type_name);
1748 *name = this->type_name;
1749
1750 if (this->is_array) {
1751 YYLTYPE loc = this->get_location();
1752 type = process_array_type(&loc, type, this->array_size, state);
1753 }
1754
1755 return type;
1756 }
1757
1758
1759 /**
1760 * Determine whether a toplevel variable declaration declares a varying. This
1761 * function operates by examining the variable's mode and the shader target,
1762 * so it correctly identifies linkage variables regardless of whether they are
1763 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1764 *
1765 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1766 * this function will produce undefined results.
1767 */
1768 static bool
1769 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1770 {
1771 switch (target) {
1772 case vertex_shader:
1773 return var->mode == ir_var_shader_out;
1774 case fragment_shader:
1775 return var->mode == ir_var_shader_in;
1776 default:
1777 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1778 }
1779 }
1780
1781
1782 /**
1783 * Matrix layout qualifiers are only allowed on certain types
1784 */
1785 static void
1786 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1787 YYLTYPE *loc,
1788 const glsl_type *type)
1789 {
1790 if (!type->is_matrix() && !type->is_record()) {
1791 _mesa_glsl_error(loc, state,
1792 "uniform block layout qualifiers row_major and "
1793 "column_major can only be applied to matrix and "
1794 "structure types");
1795 } else if (type->is_record()) {
1796 /* We allow 'layout(row_major)' on structure types because it's the only
1797 * way to get row-major layouts on matrices contained in structures.
1798 */
1799 _mesa_glsl_warning(loc, state,
1800 "uniform block layout qualifiers row_major and "
1801 "column_major applied to structure types is not "
1802 "strictly conformant and my be rejected by other "
1803 "compilers");
1804 }
1805 }
1806
1807 static void
1808 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1809 ir_variable *var,
1810 struct _mesa_glsl_parse_state *state,
1811 YYLTYPE *loc,
1812 bool ubo_qualifiers_valid,
1813 bool is_parameter)
1814 {
1815 if (qual->flags.q.invariant) {
1816 if (var->used) {
1817 _mesa_glsl_error(loc, state,
1818 "variable `%s' may not be redeclared "
1819 "`invariant' after being used",
1820 var->name);
1821 } else {
1822 var->invariant = 1;
1823 }
1824 }
1825
1826 if (qual->flags.q.constant || qual->flags.q.attribute
1827 || qual->flags.q.uniform
1828 || (qual->flags.q.varying && (state->target == fragment_shader)))
1829 var->read_only = 1;
1830
1831 if (qual->flags.q.centroid)
1832 var->centroid = 1;
1833
1834 if (qual->flags.q.attribute && state->target != vertex_shader) {
1835 var->type = glsl_type::error_type;
1836 _mesa_glsl_error(loc, state,
1837 "`attribute' variables may not be declared in the "
1838 "%s shader",
1839 _mesa_glsl_shader_target_name(state->target));
1840 }
1841
1842 /* If there is no qualifier that changes the mode of the variable, leave
1843 * the setting alone.
1844 */
1845 if (qual->flags.q.in && qual->flags.q.out)
1846 var->mode = ir_var_function_inout;
1847 else if (qual->flags.q.in)
1848 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
1849 else if (qual->flags.q.attribute
1850 || (qual->flags.q.varying && (state->target == fragment_shader)))
1851 var->mode = ir_var_shader_in;
1852 else if (qual->flags.q.out)
1853 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
1854 else if (qual->flags.q.varying && (state->target == vertex_shader))
1855 var->mode = ir_var_shader_out;
1856 else if (qual->flags.q.uniform)
1857 var->mode = ir_var_uniform;
1858
1859 if (!is_parameter && is_varying_var(var, state->target)) {
1860 /* This variable is being used to link data between shader stages (in
1861 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
1862 * that is allowed for such purposes.
1863 *
1864 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1865 *
1866 * "The varying qualifier can be used only with the data types
1867 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1868 * these."
1869 *
1870 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
1871 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
1872 *
1873 * "Fragment inputs can only be signed and unsigned integers and
1874 * integer vectors, float, floating-point vectors, matrices, or
1875 * arrays of these. Structures cannot be input.
1876 *
1877 * Similar text exists in the section on vertex shader outputs.
1878 *
1879 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
1880 * 3.00 spec allows structs as well. Varying structs are also allowed
1881 * in GLSL 1.50.
1882 */
1883 switch (var->type->get_scalar_type()->base_type) {
1884 case GLSL_TYPE_FLOAT:
1885 /* Ok in all GLSL versions */
1886 break;
1887 case GLSL_TYPE_UINT:
1888 case GLSL_TYPE_INT:
1889 if (state->is_version(130, 300))
1890 break;
1891 _mesa_glsl_error(loc, state,
1892 "varying variables must be of base type float in %s",
1893 state->get_version_string());
1894 break;
1895 case GLSL_TYPE_STRUCT:
1896 if (state->is_version(150, 300))
1897 break;
1898 _mesa_glsl_error(loc, state,
1899 "varying variables may not be of type struct");
1900 break;
1901 default:
1902 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
1903 break;
1904 }
1905 }
1906
1907 if (state->all_invariant && (state->current_function == NULL)) {
1908 switch (state->target) {
1909 case vertex_shader:
1910 if (var->mode == ir_var_shader_out)
1911 var->invariant = true;
1912 break;
1913 case geometry_shader:
1914 if ((var->mode == ir_var_shader_in)
1915 || (var->mode == ir_var_shader_out))
1916 var->invariant = true;
1917 break;
1918 case fragment_shader:
1919 if (var->mode == ir_var_shader_in)
1920 var->invariant = true;
1921 break;
1922 }
1923 }
1924
1925 if (qual->flags.q.flat)
1926 var->interpolation = INTERP_QUALIFIER_FLAT;
1927 else if (qual->flags.q.noperspective)
1928 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
1929 else if (qual->flags.q.smooth)
1930 var->interpolation = INTERP_QUALIFIER_SMOOTH;
1931 else
1932 var->interpolation = INTERP_QUALIFIER_NONE;
1933
1934 if (var->interpolation != INTERP_QUALIFIER_NONE &&
1935 !(state->target == vertex_shader && var->mode == ir_var_shader_out) &&
1936 !(state->target == fragment_shader && var->mode == ir_var_shader_in)) {
1937 _mesa_glsl_error(loc, state,
1938 "interpolation qualifier `%s' can only be applied to "
1939 "vertex shader outputs and fragment shader inputs.",
1940 var->interpolation_string());
1941 }
1942
1943 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1944 var->origin_upper_left = qual->flags.q.origin_upper_left;
1945 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1946 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1947 const char *const qual_string = (qual->flags.q.origin_upper_left)
1948 ? "origin_upper_left" : "pixel_center_integer";
1949
1950 _mesa_glsl_error(loc, state,
1951 "layout qualifier `%s' can only be applied to "
1952 "fragment shader input `gl_FragCoord'",
1953 qual_string);
1954 }
1955
1956 if (qual->flags.q.explicit_location) {
1957 const bool global_scope = (state->current_function == NULL);
1958 bool fail = false;
1959 const char *string = "";
1960
1961 /* In the vertex shader only shader inputs can be given explicit
1962 * locations.
1963 *
1964 * In the fragment shader only shader outputs can be given explicit
1965 * locations.
1966 */
1967 switch (state->target) {
1968 case vertex_shader:
1969 if (!global_scope || (var->mode != ir_var_shader_in)) {
1970 fail = true;
1971 string = "input";
1972 }
1973 break;
1974
1975 case geometry_shader:
1976 _mesa_glsl_error(loc, state,
1977 "geometry shader variables cannot be given "
1978 "explicit locations\n");
1979 break;
1980
1981 case fragment_shader:
1982 if (!global_scope || (var->mode != ir_var_shader_out)) {
1983 fail = true;
1984 string = "output";
1985 }
1986 break;
1987 };
1988
1989 if (fail) {
1990 _mesa_glsl_error(loc, state,
1991 "only %s shader %s variables can be given an "
1992 "explicit location\n",
1993 _mesa_glsl_shader_target_name(state->target),
1994 string);
1995 } else {
1996 var->explicit_location = true;
1997
1998 /* This bit of silliness is needed because invalid explicit locations
1999 * are supposed to be flagged during linking. Small negative values
2000 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2001 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2002 * The linker needs to be able to differentiate these cases. This
2003 * ensures that negative values stay negative.
2004 */
2005 if (qual->location >= 0) {
2006 var->location = (state->target == vertex_shader)
2007 ? (qual->location + VERT_ATTRIB_GENERIC0)
2008 : (qual->location + FRAG_RESULT_DATA0);
2009 } else {
2010 var->location = qual->location;
2011 }
2012
2013 if (qual->flags.q.explicit_index) {
2014 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2015 * Layout Qualifiers):
2016 *
2017 * "It is also a compile-time error if a fragment shader
2018 * sets a layout index to less than 0 or greater than 1."
2019 *
2020 * Older specifications don't mandate a behavior; we take
2021 * this as a clarification and always generate the error.
2022 */
2023 if (qual->index < 0 || qual->index > 1) {
2024 _mesa_glsl_error(loc, state,
2025 "explicit index may only be 0 or 1\n");
2026 } else {
2027 var->explicit_index = true;
2028 var->index = qual->index;
2029 }
2030 }
2031 }
2032 } else if (qual->flags.q.explicit_index) {
2033 _mesa_glsl_error(loc, state,
2034 "explicit index requires explicit location\n");
2035 }
2036
2037 /* Does the declaration use the 'layout' keyword?
2038 */
2039 const bool uses_layout = qual->flags.q.pixel_center_integer
2040 || qual->flags.q.origin_upper_left
2041 || qual->flags.q.explicit_location; /* no need for index since it relies on location */
2042
2043 /* Does the declaration use the deprecated 'attribute' or 'varying'
2044 * keywords?
2045 */
2046 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2047 || qual->flags.q.varying;
2048
2049 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2050 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2051 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2052 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2053 * These extensions and all following extensions that add the 'layout'
2054 * keyword have been modified to require the use of 'in' or 'out'.
2055 *
2056 * The following extension do not allow the deprecated keywords:
2057 *
2058 * GL_AMD_conservative_depth
2059 * GL_ARB_conservative_depth
2060 * GL_ARB_gpu_shader5
2061 * GL_ARB_separate_shader_objects
2062 * GL_ARB_tesselation_shader
2063 * GL_ARB_transform_feedback3
2064 * GL_ARB_uniform_buffer_object
2065 *
2066 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2067 * allow layout with the deprecated keywords.
2068 */
2069 const bool relaxed_layout_qualifier_checking =
2070 state->ARB_fragment_coord_conventions_enable;
2071
2072 if (uses_layout && uses_deprecated_qualifier) {
2073 if (relaxed_layout_qualifier_checking) {
2074 _mesa_glsl_warning(loc, state,
2075 "`layout' qualifier may not be used with "
2076 "`attribute' or `varying'");
2077 } else {
2078 _mesa_glsl_error(loc, state,
2079 "`layout' qualifier may not be used with "
2080 "`attribute' or `varying'");
2081 }
2082 }
2083
2084 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2085 * AMD_conservative_depth.
2086 */
2087 int depth_layout_count = qual->flags.q.depth_any
2088 + qual->flags.q.depth_greater
2089 + qual->flags.q.depth_less
2090 + qual->flags.q.depth_unchanged;
2091 if (depth_layout_count > 0
2092 && !state->AMD_conservative_depth_enable
2093 && !state->ARB_conservative_depth_enable) {
2094 _mesa_glsl_error(loc, state,
2095 "extension GL_AMD_conservative_depth or "
2096 "GL_ARB_conservative_depth must be enabled "
2097 "to use depth layout qualifiers");
2098 } else if (depth_layout_count > 0
2099 && strcmp(var->name, "gl_FragDepth") != 0) {
2100 _mesa_glsl_error(loc, state,
2101 "depth layout qualifiers can be applied only to "
2102 "gl_FragDepth");
2103 } else if (depth_layout_count > 1
2104 && strcmp(var->name, "gl_FragDepth") == 0) {
2105 _mesa_glsl_error(loc, state,
2106 "at most one depth layout qualifier can be applied to "
2107 "gl_FragDepth");
2108 }
2109 if (qual->flags.q.depth_any)
2110 var->depth_layout = ir_depth_layout_any;
2111 else if (qual->flags.q.depth_greater)
2112 var->depth_layout = ir_depth_layout_greater;
2113 else if (qual->flags.q.depth_less)
2114 var->depth_layout = ir_depth_layout_less;
2115 else if (qual->flags.q.depth_unchanged)
2116 var->depth_layout = ir_depth_layout_unchanged;
2117 else
2118 var->depth_layout = ir_depth_layout_none;
2119
2120 if (qual->flags.q.std140 ||
2121 qual->flags.q.packed ||
2122 qual->flags.q.shared) {
2123 _mesa_glsl_error(loc, state,
2124 "uniform block layout qualifiers std140, packed, and "
2125 "shared can only be applied to uniform blocks, not "
2126 "members");
2127 }
2128
2129 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2130 if (!ubo_qualifiers_valid) {
2131 _mesa_glsl_error(loc, state,
2132 "uniform block layout qualifiers row_major and "
2133 "column_major can only be applied to uniform block "
2134 "members");
2135 } else
2136 validate_matrix_layout_for_type(state, loc, var->type);
2137 }
2138 }
2139
2140 /**
2141 * Get the variable that is being redeclared by this declaration
2142 *
2143 * Semantic checks to verify the validity of the redeclaration are also
2144 * performed. If semantic checks fail, compilation error will be emitted via
2145 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2146 *
2147 * \returns
2148 * A pointer to an existing variable in the current scope if the declaration
2149 * is a redeclaration, \c NULL otherwise.
2150 */
2151 ir_variable *
2152 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2153 struct _mesa_glsl_parse_state *state)
2154 {
2155 /* Check if this declaration is actually a re-declaration, either to
2156 * resize an array or add qualifiers to an existing variable.
2157 *
2158 * This is allowed for variables in the current scope, or when at
2159 * global scope (for built-ins in the implicit outer scope).
2160 */
2161 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2162 if (earlier == NULL ||
2163 (state->current_function != NULL &&
2164 !state->symbols->name_declared_this_scope(decl->identifier))) {
2165 return NULL;
2166 }
2167
2168
2169 YYLTYPE loc = decl->get_location();
2170
2171 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2172 *
2173 * "It is legal to declare an array without a size and then
2174 * later re-declare the same name as an array of the same
2175 * type and specify a size."
2176 */
2177 if ((earlier->type->array_size() == 0)
2178 && var->type->is_array()
2179 && (var->type->element_type() == earlier->type->element_type())) {
2180 /* FINISHME: This doesn't match the qualifiers on the two
2181 * FINISHME: declarations. It's not 100% clear whether this is
2182 * FINISHME: required or not.
2183 */
2184
2185 const unsigned size = unsigned(var->type->array_size());
2186 check_builtin_array_max_size(var->name, size, loc, state);
2187 if ((size > 0) && (size <= earlier->max_array_access)) {
2188 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2189 "previous access",
2190 earlier->max_array_access);
2191 }
2192
2193 earlier->type = var->type;
2194 delete var;
2195 var = NULL;
2196 } else if (state->ARB_fragment_coord_conventions_enable
2197 && strcmp(var->name, "gl_FragCoord") == 0
2198 && earlier->type == var->type
2199 && earlier->mode == var->mode) {
2200 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2201 * qualifiers.
2202 */
2203 earlier->origin_upper_left = var->origin_upper_left;
2204 earlier->pixel_center_integer = var->pixel_center_integer;
2205
2206 /* According to section 4.3.7 of the GLSL 1.30 spec,
2207 * the following built-in varaibles can be redeclared with an
2208 * interpolation qualifier:
2209 * * gl_FrontColor
2210 * * gl_BackColor
2211 * * gl_FrontSecondaryColor
2212 * * gl_BackSecondaryColor
2213 * * gl_Color
2214 * * gl_SecondaryColor
2215 */
2216 } else if (state->is_version(130, 0)
2217 && (strcmp(var->name, "gl_FrontColor") == 0
2218 || strcmp(var->name, "gl_BackColor") == 0
2219 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2220 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2221 || strcmp(var->name, "gl_Color") == 0
2222 || strcmp(var->name, "gl_SecondaryColor") == 0)
2223 && earlier->type == var->type
2224 && earlier->mode == var->mode) {
2225 earlier->interpolation = var->interpolation;
2226
2227 /* Layout qualifiers for gl_FragDepth. */
2228 } else if ((state->AMD_conservative_depth_enable ||
2229 state->ARB_conservative_depth_enable)
2230 && strcmp(var->name, "gl_FragDepth") == 0
2231 && earlier->type == var->type
2232 && earlier->mode == var->mode) {
2233
2234 /** From the AMD_conservative_depth spec:
2235 * Within any shader, the first redeclarations of gl_FragDepth
2236 * must appear before any use of gl_FragDepth.
2237 */
2238 if (earlier->used) {
2239 _mesa_glsl_error(&loc, state,
2240 "the first redeclaration of gl_FragDepth "
2241 "must appear before any use of gl_FragDepth");
2242 }
2243
2244 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2245 if (earlier->depth_layout != ir_depth_layout_none
2246 && earlier->depth_layout != var->depth_layout) {
2247 _mesa_glsl_error(&loc, state,
2248 "gl_FragDepth: depth layout is declared here "
2249 "as '%s, but it was previously declared as "
2250 "'%s'",
2251 depth_layout_string(var->depth_layout),
2252 depth_layout_string(earlier->depth_layout));
2253 }
2254
2255 earlier->depth_layout = var->depth_layout;
2256
2257 } else {
2258 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2259 }
2260
2261 return earlier;
2262 }
2263
2264 /**
2265 * Generate the IR for an initializer in a variable declaration
2266 */
2267 ir_rvalue *
2268 process_initializer(ir_variable *var, ast_declaration *decl,
2269 ast_fully_specified_type *type,
2270 exec_list *initializer_instructions,
2271 struct _mesa_glsl_parse_state *state)
2272 {
2273 ir_rvalue *result = NULL;
2274
2275 YYLTYPE initializer_loc = decl->initializer->get_location();
2276
2277 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2278 *
2279 * "All uniform variables are read-only and are initialized either
2280 * directly by an application via API commands, or indirectly by
2281 * OpenGL."
2282 */
2283 if (var->mode == ir_var_uniform) {
2284 state->check_version(120, 0, &initializer_loc,
2285 "cannot initialize uniforms");
2286 }
2287
2288 if (var->type->is_sampler()) {
2289 _mesa_glsl_error(& initializer_loc, state,
2290 "cannot initialize samplers");
2291 }
2292
2293 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2294 _mesa_glsl_error(& initializer_loc, state,
2295 "cannot initialize %s shader input / %s",
2296 _mesa_glsl_shader_target_name(state->target),
2297 (state->target == vertex_shader)
2298 ? "attribute" : "varying");
2299 }
2300
2301 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2302 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2303 state);
2304
2305 /* Calculate the constant value if this is a const or uniform
2306 * declaration.
2307 */
2308 if (type->qualifier.flags.q.constant
2309 || type->qualifier.flags.q.uniform) {
2310 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2311 if (new_rhs != NULL) {
2312 rhs = new_rhs;
2313
2314 ir_constant *constant_value = rhs->constant_expression_value();
2315 if (!constant_value) {
2316 _mesa_glsl_error(& initializer_loc, state,
2317 "initializer of %s variable `%s' must be a "
2318 "constant expression",
2319 (type->qualifier.flags.q.constant)
2320 ? "const" : "uniform",
2321 decl->identifier);
2322 if (var->type->is_numeric()) {
2323 /* Reduce cascading errors. */
2324 var->constant_value = ir_constant::zero(state, var->type);
2325 }
2326 } else {
2327 rhs = constant_value;
2328 var->constant_value = constant_value;
2329 }
2330 } else {
2331 _mesa_glsl_error(&initializer_loc, state,
2332 "initializer of type %s cannot be assigned to "
2333 "variable of type %s",
2334 rhs->type->name, var->type->name);
2335 if (var->type->is_numeric()) {
2336 /* Reduce cascading errors. */
2337 var->constant_value = ir_constant::zero(state, var->type);
2338 }
2339 }
2340 }
2341
2342 if (rhs && !rhs->type->is_error()) {
2343 bool temp = var->read_only;
2344 if (type->qualifier.flags.q.constant)
2345 var->read_only = false;
2346
2347 /* Never emit code to initialize a uniform.
2348 */
2349 const glsl_type *initializer_type;
2350 if (!type->qualifier.flags.q.uniform) {
2351 result = do_assignment(initializer_instructions, state,
2352 NULL,
2353 lhs, rhs, true,
2354 type->get_location());
2355 initializer_type = result->type;
2356 } else
2357 initializer_type = rhs->type;
2358
2359 var->constant_initializer = rhs->constant_expression_value();
2360 var->has_initializer = true;
2361
2362 /* If the declared variable is an unsized array, it must inherrit
2363 * its full type from the initializer. A declaration such as
2364 *
2365 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2366 *
2367 * becomes
2368 *
2369 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2370 *
2371 * The assignment generated in the if-statement (below) will also
2372 * automatically handle this case for non-uniforms.
2373 *
2374 * If the declared variable is not an array, the types must
2375 * already match exactly. As a result, the type assignment
2376 * here can be done unconditionally. For non-uniforms the call
2377 * to do_assignment can change the type of the initializer (via
2378 * the implicit conversion rules). For uniforms the initializer
2379 * must be a constant expression, and the type of that expression
2380 * was validated above.
2381 */
2382 var->type = initializer_type;
2383
2384 var->read_only = temp;
2385 }
2386
2387 return result;
2388 }
2389
2390 ir_rvalue *
2391 ast_declarator_list::hir(exec_list *instructions,
2392 struct _mesa_glsl_parse_state *state)
2393 {
2394 void *ctx = state;
2395 const struct glsl_type *decl_type;
2396 const char *type_name = NULL;
2397 ir_rvalue *result = NULL;
2398 YYLTYPE loc = this->get_location();
2399
2400 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2401 *
2402 * "To ensure that a particular output variable is invariant, it is
2403 * necessary to use the invariant qualifier. It can either be used to
2404 * qualify a previously declared variable as being invariant
2405 *
2406 * invariant gl_Position; // make existing gl_Position be invariant"
2407 *
2408 * In these cases the parser will set the 'invariant' flag in the declarator
2409 * list, and the type will be NULL.
2410 */
2411 if (this->invariant) {
2412 assert(this->type == NULL);
2413
2414 if (state->current_function != NULL) {
2415 _mesa_glsl_error(& loc, state,
2416 "All uses of `invariant' keyword must be at global "
2417 "scope\n");
2418 }
2419
2420 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2421 assert(!decl->is_array);
2422 assert(decl->array_size == NULL);
2423 assert(decl->initializer == NULL);
2424
2425 ir_variable *const earlier =
2426 state->symbols->get_variable(decl->identifier);
2427 if (earlier == NULL) {
2428 _mesa_glsl_error(& loc, state,
2429 "Undeclared variable `%s' cannot be marked "
2430 "invariant\n", decl->identifier);
2431 } else if ((state->target == vertex_shader)
2432 && (earlier->mode != ir_var_shader_out)) {
2433 _mesa_glsl_error(& loc, state,
2434 "`%s' cannot be marked invariant, vertex shader "
2435 "outputs only\n", decl->identifier);
2436 } else if ((state->target == fragment_shader)
2437 && (earlier->mode != ir_var_shader_in)) {
2438 _mesa_glsl_error(& loc, state,
2439 "`%s' cannot be marked invariant, fragment shader "
2440 "inputs only\n", decl->identifier);
2441 } else if (earlier->used) {
2442 _mesa_glsl_error(& loc, state,
2443 "variable `%s' may not be redeclared "
2444 "`invariant' after being used",
2445 earlier->name);
2446 } else {
2447 earlier->invariant = true;
2448 }
2449 }
2450
2451 /* Invariant redeclarations do not have r-values.
2452 */
2453 return NULL;
2454 }
2455
2456 assert(this->type != NULL);
2457 assert(!this->invariant);
2458
2459 /* The type specifier may contain a structure definition. Process that
2460 * before any of the variable declarations.
2461 */
2462 (void) this->type->specifier->hir(instructions, state);
2463
2464 decl_type = this->type->specifier->glsl_type(& type_name, state);
2465 if (this->declarations.is_empty()) {
2466 /* If there is no structure involved in the program text, there are two
2467 * possible scenarios:
2468 *
2469 * - The program text contained something like 'vec4;'. This is an
2470 * empty declaration. It is valid but weird. Emit a warning.
2471 *
2472 * - The program text contained something like 'S;' and 'S' is not the
2473 * name of a known structure type. This is both invalid and weird.
2474 * Emit an error.
2475 *
2476 * Note that if decl_type is NULL and there is a structure involved,
2477 * there must have been some sort of error with the structure. In this
2478 * case we assume that an error was already generated on this line of
2479 * code for the structure. There is no need to generate an additional,
2480 * confusing error.
2481 */
2482 assert(this->type->specifier->structure == NULL || decl_type != NULL
2483 || state->error);
2484 if (this->type->specifier->structure == NULL) {
2485 if (decl_type != NULL) {
2486 _mesa_glsl_warning(&loc, state, "empty declaration");
2487 } else {
2488 _mesa_glsl_error(&loc, state,
2489 "invalid type `%s' in empty declaration",
2490 type_name);
2491 }
2492 }
2493 }
2494
2495 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2496 const struct glsl_type *var_type;
2497 ir_variable *var;
2498
2499 /* FINISHME: Emit a warning if a variable declaration shadows a
2500 * FINISHME: declaration at a higher scope.
2501 */
2502
2503 if ((decl_type == NULL) || decl_type->is_void()) {
2504 if (type_name != NULL) {
2505 _mesa_glsl_error(& loc, state,
2506 "invalid type `%s' in declaration of `%s'",
2507 type_name, decl->identifier);
2508 } else {
2509 _mesa_glsl_error(& loc, state,
2510 "invalid type in declaration of `%s'",
2511 decl->identifier);
2512 }
2513 continue;
2514 }
2515
2516 if (decl->is_array) {
2517 var_type = process_array_type(&loc, decl_type, decl->array_size,
2518 state);
2519 if (var_type->is_error())
2520 continue;
2521 } else {
2522 var_type = decl_type;
2523 }
2524
2525 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2526
2527 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2528 *
2529 * "Global variables can only use the qualifiers const,
2530 * attribute, uni form, or varying. Only one may be
2531 * specified.
2532 *
2533 * Local variables can only use the qualifier const."
2534 *
2535 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2536 * any extension that adds the 'layout' keyword.
2537 */
2538 if (!state->is_version(130, 300)
2539 && !state->ARB_explicit_attrib_location_enable
2540 && !state->ARB_fragment_coord_conventions_enable) {
2541 if (this->type->qualifier.flags.q.out) {
2542 _mesa_glsl_error(& loc, state,
2543 "`out' qualifier in declaration of `%s' "
2544 "only valid for function parameters in %s.",
2545 decl->identifier, state->get_version_string());
2546 }
2547 if (this->type->qualifier.flags.q.in) {
2548 _mesa_glsl_error(& loc, state,
2549 "`in' qualifier in declaration of `%s' "
2550 "only valid for function parameters in %s.",
2551 decl->identifier, state->get_version_string());
2552 }
2553 /* FINISHME: Test for other invalid qualifiers. */
2554 }
2555
2556 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2557 & loc, this->ubo_qualifiers_valid, false);
2558
2559 if (this->type->qualifier.flags.q.invariant) {
2560 if ((state->target == vertex_shader) &&
2561 var->mode != ir_var_shader_out) {
2562 _mesa_glsl_error(& loc, state,
2563 "`%s' cannot be marked invariant, vertex shader "
2564 "outputs only\n", var->name);
2565 } else if ((state->target == fragment_shader) &&
2566 var->mode != ir_var_shader_in) {
2567 /* FINISHME: Note that this doesn't work for invariant on
2568 * a function signature inval
2569 */
2570 _mesa_glsl_error(& loc, state,
2571 "`%s' cannot be marked invariant, fragment shader "
2572 "inputs only\n", var->name);
2573 }
2574 }
2575
2576 if (state->current_function != NULL) {
2577 const char *mode = NULL;
2578 const char *extra = "";
2579
2580 /* There is no need to check for 'inout' here because the parser will
2581 * only allow that in function parameter lists.
2582 */
2583 if (this->type->qualifier.flags.q.attribute) {
2584 mode = "attribute";
2585 } else if (this->type->qualifier.flags.q.uniform) {
2586 mode = "uniform";
2587 } else if (this->type->qualifier.flags.q.varying) {
2588 mode = "varying";
2589 } else if (this->type->qualifier.flags.q.in) {
2590 mode = "in";
2591 extra = " or in function parameter list";
2592 } else if (this->type->qualifier.flags.q.out) {
2593 mode = "out";
2594 extra = " or in function parameter list";
2595 }
2596
2597 if (mode) {
2598 _mesa_glsl_error(& loc, state,
2599 "%s variable `%s' must be declared at "
2600 "global scope%s",
2601 mode, var->name, extra);
2602 }
2603 } else if (var->mode == ir_var_shader_in) {
2604 var->read_only = true;
2605
2606 if (state->target == vertex_shader) {
2607 bool error_emitted = false;
2608
2609 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2610 *
2611 * "Vertex shader inputs can only be float, floating-point
2612 * vectors, matrices, signed and unsigned integers and integer
2613 * vectors. Vertex shader inputs can also form arrays of these
2614 * types, but not structures."
2615 *
2616 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2617 *
2618 * "Vertex shader inputs can only be float, floating-point
2619 * vectors, matrices, signed and unsigned integers and integer
2620 * vectors. They cannot be arrays or structures."
2621 *
2622 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2623 *
2624 * "The attribute qualifier can be used only with float,
2625 * floating-point vectors, and matrices. Attribute variables
2626 * cannot be declared as arrays or structures."
2627 *
2628 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2629 *
2630 * "Vertex shader inputs can only be float, floating-point
2631 * vectors, matrices, signed and unsigned integers and integer
2632 * vectors. Vertex shader inputs cannot be arrays or
2633 * structures."
2634 */
2635 const glsl_type *check_type = var->type->is_array()
2636 ? var->type->fields.array : var->type;
2637
2638 switch (check_type->base_type) {
2639 case GLSL_TYPE_FLOAT:
2640 break;
2641 case GLSL_TYPE_UINT:
2642 case GLSL_TYPE_INT:
2643 if (state->is_version(120, 300))
2644 break;
2645 /* FALLTHROUGH */
2646 default:
2647 _mesa_glsl_error(& loc, state,
2648 "vertex shader input / attribute cannot have "
2649 "type %s`%s'",
2650 var->type->is_array() ? "array of " : "",
2651 check_type->name);
2652 error_emitted = true;
2653 }
2654
2655 if (!error_emitted && var->type->is_array() &&
2656 !state->check_version(140, 0, &loc,
2657 "vertex shader input / attribute "
2658 "cannot have array type")) {
2659 error_emitted = true;
2660 }
2661 }
2662 }
2663
2664 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
2665 * so must integer vertex outputs.
2666 *
2667 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
2668 * "Fragment shader inputs that are signed or unsigned integers or
2669 * integer vectors must be qualified with the interpolation qualifier
2670 * flat."
2671 *
2672 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
2673 * "Fragment shader inputs that are, or contain, signed or unsigned
2674 * integers or integer vectors must be qualified with the
2675 * interpolation qualifier flat."
2676 *
2677 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
2678 * "Vertex shader outputs that are, or contain, signed or unsigned
2679 * integers or integer vectors must be qualified with the
2680 * interpolation qualifier flat."
2681 *
2682 * Note that prior to GLSL 1.50, this requirement applied to vertex
2683 * outputs rather than fragment inputs. That creates problems in the
2684 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
2685 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
2686 * apply the restriction to both vertex outputs and fragment inputs.
2687 *
2688 * Note also that the desktop GLSL specs are missing the text "or
2689 * contain"; this is presumably an oversight, since there is no
2690 * reasonable way to interpolate a fragment shader input that contains
2691 * an integer.
2692 */
2693 if (state->is_version(130, 300) &&
2694 var->type->contains_integer() &&
2695 var->interpolation != INTERP_QUALIFIER_FLAT &&
2696 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
2697 || (state->target == vertex_shader && var->mode == ir_var_shader_out
2698 && state->es_shader))) {
2699 const char *var_type = (state->target == vertex_shader) ?
2700 "vertex output" : "fragment input";
2701 _mesa_glsl_error(&loc, state, "If a %s is (or contains) "
2702 "an integer, then it must be qualified with 'flat'",
2703 var_type);
2704 }
2705
2706
2707 /* Interpolation qualifiers cannot be applied to 'centroid' and
2708 * 'centroid varying'.
2709 *
2710 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2711 * "interpolation qualifiers may only precede the qualifiers in,
2712 * centroid in, out, or centroid out in a declaration. They do not apply
2713 * to the deprecated storage qualifiers varying or centroid varying."
2714 *
2715 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
2716 */
2717 if (state->is_version(130, 0)
2718 && this->type->qualifier.has_interpolation()
2719 && this->type->qualifier.flags.q.varying) {
2720
2721 const char *i = this->type->qualifier.interpolation_string();
2722 assert(i != NULL);
2723 const char *s;
2724 if (this->type->qualifier.flags.q.centroid)
2725 s = "centroid varying";
2726 else
2727 s = "varying";
2728
2729 _mesa_glsl_error(&loc, state,
2730 "qualifier '%s' cannot be applied to the "
2731 "deprecated storage qualifier '%s'", i, s);
2732 }
2733
2734
2735 /* Interpolation qualifiers can only apply to vertex shader outputs and
2736 * fragment shader inputs.
2737 *
2738 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2739 * "Outputs from a vertex shader (out) and inputs to a fragment
2740 * shader (in) can be further qualified with one or more of these
2741 * interpolation qualifiers"
2742 *
2743 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
2744 * "These interpolation qualifiers may only precede the qualifiers
2745 * in, centroid in, out, or centroid out in a declaration. They do
2746 * not apply to inputs into a vertex shader or outputs from a
2747 * fragment shader."
2748 */
2749 if (state->is_version(130, 300)
2750 && this->type->qualifier.has_interpolation()) {
2751
2752 const char *i = this->type->qualifier.interpolation_string();
2753 assert(i != NULL);
2754
2755 switch (state->target) {
2756 case vertex_shader:
2757 if (this->type->qualifier.flags.q.in) {
2758 _mesa_glsl_error(&loc, state,
2759 "qualifier '%s' cannot be applied to vertex "
2760 "shader inputs", i);
2761 }
2762 break;
2763 case fragment_shader:
2764 if (this->type->qualifier.flags.q.out) {
2765 _mesa_glsl_error(&loc, state,
2766 "qualifier '%s' cannot be applied to fragment "
2767 "shader outputs", i);
2768 }
2769 break;
2770 default:
2771 assert(0);
2772 }
2773 }
2774
2775
2776 /* From section 4.3.4 of the GLSL 1.30 spec:
2777 * "It is an error to use centroid in in a vertex shader."
2778 *
2779 * From section 4.3.4 of the GLSL ES 3.00 spec:
2780 * "It is an error to use centroid in or interpolation qualifiers in
2781 * a vertex shader input."
2782 */
2783 if (state->is_version(130, 300)
2784 && this->type->qualifier.flags.q.centroid
2785 && this->type->qualifier.flags.q.in
2786 && state->target == vertex_shader) {
2787
2788 _mesa_glsl_error(&loc, state,
2789 "'centroid in' cannot be used in a vertex shader");
2790 }
2791
2792
2793 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2794 */
2795 if (this->type->specifier->precision != ast_precision_none) {
2796 state->check_precision_qualifiers_allowed(&loc);
2797 }
2798
2799
2800 /* Precision qualifiers only apply to floating point and integer types.
2801 *
2802 * From section 4.5.2 of the GLSL 1.30 spec:
2803 * "Any floating point or any integer declaration can have the type
2804 * preceded by one of these precision qualifiers [...] Literal
2805 * constants do not have precision qualifiers. Neither do Boolean
2806 * variables.
2807 *
2808 * In GLSL ES, sampler types are also allowed.
2809 *
2810 * From page 87 of the GLSL ES spec:
2811 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2812 */
2813 if (this->type->specifier->precision != ast_precision_none
2814 && !var->type->is_float()
2815 && !var->type->is_integer()
2816 && !(var->type->is_sampler() && state->es_shader)
2817 && !(var->type->is_array()
2818 && (var->type->fields.array->is_float()
2819 || var->type->fields.array->is_integer()))) {
2820
2821 _mesa_glsl_error(&loc, state,
2822 "precision qualifiers apply only to floating point"
2823 "%s types", state->es_shader ? ", integer, and sampler"
2824 : "and integer");
2825 }
2826
2827 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2828 *
2829 * "[Sampler types] can only be declared as function
2830 * parameters or uniform variables (see Section 4.3.5
2831 * "Uniform")".
2832 */
2833 if (var_type->contains_sampler() &&
2834 !this->type->qualifier.flags.q.uniform) {
2835 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2836 }
2837
2838 /* Process the initializer and add its instructions to a temporary
2839 * list. This list will be added to the instruction stream (below) after
2840 * the declaration is added. This is done because in some cases (such as
2841 * redeclarations) the declaration may not actually be added to the
2842 * instruction stream.
2843 */
2844 exec_list initializer_instructions;
2845 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2846
2847 if (decl->initializer != NULL) {
2848 result = process_initializer((earlier == NULL) ? var : earlier,
2849 decl, this->type,
2850 &initializer_instructions, state);
2851 }
2852
2853 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2854 *
2855 * "It is an error to write to a const variable outside of
2856 * its declaration, so they must be initialized when
2857 * declared."
2858 */
2859 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2860 _mesa_glsl_error(& loc, state,
2861 "const declaration of `%s' must be initialized",
2862 decl->identifier);
2863 }
2864
2865 /* If the declaration is not a redeclaration, there are a few additional
2866 * semantic checks that must be applied. In addition, variable that was
2867 * created for the declaration should be added to the IR stream.
2868 */
2869 if (earlier == NULL) {
2870 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2871 *
2872 * "Identifiers starting with "gl_" are reserved for use by
2873 * OpenGL, and may not be declared in a shader as either a
2874 * variable or a function."
2875 */
2876 if (strncmp(decl->identifier, "gl_", 3) == 0)
2877 _mesa_glsl_error(& loc, state,
2878 "identifier `%s' uses reserved `gl_' prefix",
2879 decl->identifier);
2880 else if (strstr(decl->identifier, "__")) {
2881 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2882 * spec:
2883 *
2884 * "In addition, all identifiers containing two
2885 * consecutive underscores (__) are reserved as
2886 * possible future keywords."
2887 */
2888 _mesa_glsl_error(& loc, state,
2889 "identifier `%s' uses reserved `__' string",
2890 decl->identifier);
2891 }
2892
2893 /* Add the variable to the symbol table. Note that the initializer's
2894 * IR was already processed earlier (though it hasn't been emitted
2895 * yet), without the variable in scope.
2896 *
2897 * This differs from most C-like languages, but it follows the GLSL
2898 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2899 * spec:
2900 *
2901 * "Within a declaration, the scope of a name starts immediately
2902 * after the initializer if present or immediately after the name
2903 * being declared if not."
2904 */
2905 if (!state->symbols->add_variable(var)) {
2906 YYLTYPE loc = this->get_location();
2907 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2908 "current scope", decl->identifier);
2909 continue;
2910 }
2911
2912 /* Push the variable declaration to the top. It means that all the
2913 * variable declarations will appear in a funny last-to-first order,
2914 * but otherwise we run into trouble if a function is prototyped, a
2915 * global var is decled, then the function is defined with usage of
2916 * the global var. See glslparsertest's CorrectModule.frag.
2917 */
2918 instructions->push_head(var);
2919 }
2920
2921 instructions->append_list(&initializer_instructions);
2922 }
2923
2924
2925 /* Generally, variable declarations do not have r-values. However,
2926 * one is used for the declaration in
2927 *
2928 * while (bool b = some_condition()) {
2929 * ...
2930 * }
2931 *
2932 * so we return the rvalue from the last seen declaration here.
2933 */
2934 return result;
2935 }
2936
2937
2938 ir_rvalue *
2939 ast_parameter_declarator::hir(exec_list *instructions,
2940 struct _mesa_glsl_parse_state *state)
2941 {
2942 void *ctx = state;
2943 const struct glsl_type *type;
2944 const char *name = NULL;
2945 YYLTYPE loc = this->get_location();
2946
2947 type = this->type->specifier->glsl_type(& name, state);
2948
2949 if (type == NULL) {
2950 if (name != NULL) {
2951 _mesa_glsl_error(& loc, state,
2952 "invalid type `%s' in declaration of `%s'",
2953 name, this->identifier);
2954 } else {
2955 _mesa_glsl_error(& loc, state,
2956 "invalid type in declaration of `%s'",
2957 this->identifier);
2958 }
2959
2960 type = glsl_type::error_type;
2961 }
2962
2963 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2964 *
2965 * "Functions that accept no input arguments need not use void in the
2966 * argument list because prototypes (or definitions) are required and
2967 * therefore there is no ambiguity when an empty argument list "( )" is
2968 * declared. The idiom "(void)" as a parameter list is provided for
2969 * convenience."
2970 *
2971 * Placing this check here prevents a void parameter being set up
2972 * for a function, which avoids tripping up checks for main taking
2973 * parameters and lookups of an unnamed symbol.
2974 */
2975 if (type->is_void()) {
2976 if (this->identifier != NULL)
2977 _mesa_glsl_error(& loc, state,
2978 "named parameter cannot have type `void'");
2979
2980 is_void = true;
2981 return NULL;
2982 }
2983
2984 if (formal_parameter && (this->identifier == NULL)) {
2985 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2986 return NULL;
2987 }
2988
2989 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2990 * call already handled the "vec4[..] foo" case.
2991 */
2992 if (this->is_array) {
2993 type = process_array_type(&loc, type, this->array_size, state);
2994 }
2995
2996 if (!type->is_error() && type->array_size() == 0) {
2997 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2998 "a declared size.");
2999 type = glsl_type::error_type;
3000 }
3001
3002 is_void = false;
3003 ir_variable *var = new(ctx)
3004 ir_variable(type, this->identifier, ir_var_function_in);
3005
3006 /* Apply any specified qualifiers to the parameter declaration. Note that
3007 * for function parameters the default mode is 'in'.
3008 */
3009 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3010 false, true);
3011
3012 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3013 *
3014 * "Samplers cannot be treated as l-values; hence cannot be used
3015 * as out or inout function parameters, nor can they be assigned
3016 * into."
3017 */
3018 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3019 && type->contains_sampler()) {
3020 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3021 type = glsl_type::error_type;
3022 }
3023
3024 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3025 *
3026 * "When calling a function, expressions that do not evaluate to
3027 * l-values cannot be passed to parameters declared as out or inout."
3028 *
3029 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3030 *
3031 * "Other binary or unary expressions, non-dereferenced arrays,
3032 * function names, swizzles with repeated fields, and constants
3033 * cannot be l-values."
3034 *
3035 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3036 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3037 */
3038 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3039 && type->is_array()
3040 && !state->check_version(120, 100, &loc,
3041 "Arrays cannot be out or inout parameters")) {
3042 type = glsl_type::error_type;
3043 }
3044
3045 instructions->push_tail(var);
3046
3047 /* Parameter declarations do not have r-values.
3048 */
3049 return NULL;
3050 }
3051
3052
3053 void
3054 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3055 bool formal,
3056 exec_list *ir_parameters,
3057 _mesa_glsl_parse_state *state)
3058 {
3059 ast_parameter_declarator *void_param = NULL;
3060 unsigned count = 0;
3061
3062 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3063 param->formal_parameter = formal;
3064 param->hir(ir_parameters, state);
3065
3066 if (param->is_void)
3067 void_param = param;
3068
3069 count++;
3070 }
3071
3072 if ((void_param != NULL) && (count > 1)) {
3073 YYLTYPE loc = void_param->get_location();
3074
3075 _mesa_glsl_error(& loc, state,
3076 "`void' parameter must be only parameter");
3077 }
3078 }
3079
3080
3081 void
3082 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3083 {
3084 /* IR invariants disallow function declarations or definitions
3085 * nested within other function definitions. But there is no
3086 * requirement about the relative order of function declarations
3087 * and definitions with respect to one another. So simply insert
3088 * the new ir_function block at the end of the toplevel instruction
3089 * list.
3090 */
3091 state->toplevel_ir->push_tail(f);
3092 }
3093
3094
3095 ir_rvalue *
3096 ast_function::hir(exec_list *instructions,
3097 struct _mesa_glsl_parse_state *state)
3098 {
3099 void *ctx = state;
3100 ir_function *f = NULL;
3101 ir_function_signature *sig = NULL;
3102 exec_list hir_parameters;
3103
3104 const char *const name = identifier;
3105
3106 /* New functions are always added to the top-level IR instruction stream,
3107 * so this instruction list pointer is ignored. See also emit_function
3108 * (called below).
3109 */
3110 (void) instructions;
3111
3112 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3113 *
3114 * "Function declarations (prototypes) cannot occur inside of functions;
3115 * they must be at global scope, or for the built-in functions, outside
3116 * the global scope."
3117 *
3118 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3119 *
3120 * "User defined functions may only be defined within the global scope."
3121 *
3122 * Note that this language does not appear in GLSL 1.10.
3123 */
3124 if ((state->current_function != NULL) &&
3125 state->is_version(120, 100)) {
3126 YYLTYPE loc = this->get_location();
3127 _mesa_glsl_error(&loc, state,
3128 "declaration of function `%s' not allowed within "
3129 "function body", name);
3130 }
3131
3132 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3133 *
3134 * "Identifiers starting with "gl_" are reserved for use by
3135 * OpenGL, and may not be declared in a shader as either a
3136 * variable or a function."
3137 */
3138 if (strncmp(name, "gl_", 3) == 0) {
3139 YYLTYPE loc = this->get_location();
3140 _mesa_glsl_error(&loc, state,
3141 "identifier `%s' uses reserved `gl_' prefix", name);
3142 }
3143
3144 /* Convert the list of function parameters to HIR now so that they can be
3145 * used below to compare this function's signature with previously seen
3146 * signatures for functions with the same name.
3147 */
3148 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3149 is_definition,
3150 & hir_parameters, state);
3151
3152 const char *return_type_name;
3153 const glsl_type *return_type =
3154 this->return_type->specifier->glsl_type(& return_type_name, state);
3155
3156 if (!return_type) {
3157 YYLTYPE loc = this->get_location();
3158 _mesa_glsl_error(&loc, state,
3159 "function `%s' has undeclared return type `%s'",
3160 name, return_type_name);
3161 return_type = glsl_type::error_type;
3162 }
3163
3164 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3165 * "No qualifier is allowed on the return type of a function."
3166 */
3167 if (this->return_type->has_qualifiers()) {
3168 YYLTYPE loc = this->get_location();
3169 _mesa_glsl_error(& loc, state,
3170 "function `%s' return type has qualifiers", name);
3171 }
3172
3173 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3174 *
3175 * "[Sampler types] can only be declared as function parameters
3176 * or uniform variables (see Section 4.3.5 "Uniform")".
3177 */
3178 if (return_type->contains_sampler()) {
3179 YYLTYPE loc = this->get_location();
3180 _mesa_glsl_error(&loc, state,
3181 "function `%s' return type can't contain a sampler",
3182 name);
3183 }
3184
3185 /* Verify that this function's signature either doesn't match a previously
3186 * seen signature for a function with the same name, or, if a match is found,
3187 * that the previously seen signature does not have an associated definition.
3188 */
3189 f = state->symbols->get_function(name);
3190 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3191 sig = f->exact_matching_signature(&hir_parameters);
3192 if (sig != NULL) {
3193 const char *badvar = sig->qualifiers_match(&hir_parameters);
3194 if (badvar != NULL) {
3195 YYLTYPE loc = this->get_location();
3196
3197 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3198 "qualifiers don't match prototype", name, badvar);
3199 }
3200
3201 if (sig->return_type != return_type) {
3202 YYLTYPE loc = this->get_location();
3203
3204 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3205 "match prototype", name);
3206 }
3207
3208 if (is_definition && sig->is_defined) {
3209 YYLTYPE loc = this->get_location();
3210
3211 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3212 }
3213 }
3214 } else {
3215 f = new(ctx) ir_function(name);
3216 if (!state->symbols->add_function(f)) {
3217 /* This function name shadows a non-function use of the same name. */
3218 YYLTYPE loc = this->get_location();
3219
3220 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3221 "non-function", name);
3222 return NULL;
3223 }
3224
3225 emit_function(state, f);
3226 }
3227
3228 /* Verify the return type of main() */
3229 if (strcmp(name, "main") == 0) {
3230 if (! return_type->is_void()) {
3231 YYLTYPE loc = this->get_location();
3232
3233 _mesa_glsl_error(& loc, state, "main() must return void");
3234 }
3235
3236 if (!hir_parameters.is_empty()) {
3237 YYLTYPE loc = this->get_location();
3238
3239 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3240 }
3241 }
3242
3243 /* Finish storing the information about this new function in its signature.
3244 */
3245 if (sig == NULL) {
3246 sig = new(ctx) ir_function_signature(return_type);
3247 f->add_signature(sig);
3248 }
3249
3250 sig->replace_parameters(&hir_parameters);
3251 signature = sig;
3252
3253 /* Function declarations (prototypes) do not have r-values.
3254 */
3255 return NULL;
3256 }
3257
3258
3259 ir_rvalue *
3260 ast_function_definition::hir(exec_list *instructions,
3261 struct _mesa_glsl_parse_state *state)
3262 {
3263 prototype->is_definition = true;
3264 prototype->hir(instructions, state);
3265
3266 ir_function_signature *signature = prototype->signature;
3267 if (signature == NULL)
3268 return NULL;
3269
3270 assert(state->current_function == NULL);
3271 state->current_function = signature;
3272 state->found_return = false;
3273
3274 /* Duplicate parameters declared in the prototype as concrete variables.
3275 * Add these to the symbol table.
3276 */
3277 state->symbols->push_scope();
3278 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3279 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3280
3281 assert(var != NULL);
3282
3283 /* The only way a parameter would "exist" is if two parameters have
3284 * the same name.
3285 */
3286 if (state->symbols->name_declared_this_scope(var->name)) {
3287 YYLTYPE loc = this->get_location();
3288
3289 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3290 } else {
3291 state->symbols->add_variable(var);
3292 }
3293 }
3294
3295 /* Convert the body of the function to HIR. */
3296 this->body->hir(&signature->body, state);
3297 signature->is_defined = true;
3298
3299 state->symbols->pop_scope();
3300
3301 assert(state->current_function == signature);
3302 state->current_function = NULL;
3303
3304 if (!signature->return_type->is_void() && !state->found_return) {
3305 YYLTYPE loc = this->get_location();
3306 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3307 "%s, but no return statement",
3308 signature->function_name(),
3309 signature->return_type->name);
3310 }
3311
3312 /* Function definitions do not have r-values.
3313 */
3314 return NULL;
3315 }
3316
3317
3318 ir_rvalue *
3319 ast_jump_statement::hir(exec_list *instructions,
3320 struct _mesa_glsl_parse_state *state)
3321 {
3322 void *ctx = state;
3323
3324 switch (mode) {
3325 case ast_return: {
3326 ir_return *inst;
3327 assert(state->current_function);
3328
3329 if (opt_return_value) {
3330 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3331
3332 /* The value of the return type can be NULL if the shader says
3333 * 'return foo();' and foo() is a function that returns void.
3334 *
3335 * NOTE: The GLSL spec doesn't say that this is an error. The type
3336 * of the return value is void. If the return type of the function is
3337 * also void, then this should compile without error. Seriously.
3338 */
3339 const glsl_type *const ret_type =
3340 (ret == NULL) ? glsl_type::void_type : ret->type;
3341
3342 /* Implicit conversions are not allowed for return values. */
3343 if (state->current_function->return_type != ret_type) {
3344 YYLTYPE loc = this->get_location();
3345
3346 _mesa_glsl_error(& loc, state,
3347 "`return' with wrong type %s, in function `%s' "
3348 "returning %s",
3349 ret_type->name,
3350 state->current_function->function_name(),
3351 state->current_function->return_type->name);
3352 }
3353
3354 inst = new(ctx) ir_return(ret);
3355 } else {
3356 if (state->current_function->return_type->base_type !=
3357 GLSL_TYPE_VOID) {
3358 YYLTYPE loc = this->get_location();
3359
3360 _mesa_glsl_error(& loc, state,
3361 "`return' with no value, in function %s returning "
3362 "non-void",
3363 state->current_function->function_name());
3364 }
3365 inst = new(ctx) ir_return;
3366 }
3367
3368 state->found_return = true;
3369 instructions->push_tail(inst);
3370 break;
3371 }
3372
3373 case ast_discard:
3374 if (state->target != fragment_shader) {
3375 YYLTYPE loc = this->get_location();
3376
3377 _mesa_glsl_error(& loc, state,
3378 "`discard' may only appear in a fragment shader");
3379 }
3380 instructions->push_tail(new(ctx) ir_discard);
3381 break;
3382
3383 case ast_break:
3384 case ast_continue:
3385 if (mode == ast_continue &&
3386 state->loop_nesting_ast == NULL) {
3387 YYLTYPE loc = this->get_location();
3388
3389 _mesa_glsl_error(& loc, state,
3390 "continue may only appear in a loop");
3391 } else if (mode == ast_break &&
3392 state->loop_nesting_ast == NULL &&
3393 state->switch_state.switch_nesting_ast == NULL) {
3394 YYLTYPE loc = this->get_location();
3395
3396 _mesa_glsl_error(& loc, state,
3397 "break may only appear in a loop or a switch");
3398 } else {
3399 /* For a loop, inline the for loop expression again,
3400 * since we don't know where near the end of
3401 * the loop body the normal copy of it
3402 * is going to be placed.
3403 */
3404 if (state->loop_nesting_ast != NULL &&
3405 mode == ast_continue &&
3406 state->loop_nesting_ast->rest_expression) {
3407 state->loop_nesting_ast->rest_expression->hir(instructions,
3408 state);
3409 }
3410
3411 if (state->switch_state.is_switch_innermost &&
3412 mode == ast_break) {
3413 /* Force break out of switch by setting is_break switch state.
3414 */
3415 ir_variable *const is_break_var = state->switch_state.is_break_var;
3416 ir_dereference_variable *const deref_is_break_var =
3417 new(ctx) ir_dereference_variable(is_break_var);
3418 ir_constant *const true_val = new(ctx) ir_constant(true);
3419 ir_assignment *const set_break_var =
3420 new(ctx) ir_assignment(deref_is_break_var, true_val);
3421
3422 instructions->push_tail(set_break_var);
3423 }
3424 else {
3425 ir_loop_jump *const jump =
3426 new(ctx) ir_loop_jump((mode == ast_break)
3427 ? ir_loop_jump::jump_break
3428 : ir_loop_jump::jump_continue);
3429 instructions->push_tail(jump);
3430 }
3431 }
3432
3433 break;
3434 }
3435
3436 /* Jump instructions do not have r-values.
3437 */
3438 return NULL;
3439 }
3440
3441
3442 ir_rvalue *
3443 ast_selection_statement::hir(exec_list *instructions,
3444 struct _mesa_glsl_parse_state *state)
3445 {
3446 void *ctx = state;
3447
3448 ir_rvalue *const condition = this->condition->hir(instructions, state);
3449
3450 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3451 *
3452 * "Any expression whose type evaluates to a Boolean can be used as the
3453 * conditional expression bool-expression. Vector types are not accepted
3454 * as the expression to if."
3455 *
3456 * The checks are separated so that higher quality diagnostics can be
3457 * generated for cases where both rules are violated.
3458 */
3459 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3460 YYLTYPE loc = this->condition->get_location();
3461
3462 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3463 "boolean");
3464 }
3465
3466 ir_if *const stmt = new(ctx) ir_if(condition);
3467
3468 if (then_statement != NULL) {
3469 state->symbols->push_scope();
3470 then_statement->hir(& stmt->then_instructions, state);
3471 state->symbols->pop_scope();
3472 }
3473
3474 if (else_statement != NULL) {
3475 state->symbols->push_scope();
3476 else_statement->hir(& stmt->else_instructions, state);
3477 state->symbols->pop_scope();
3478 }
3479
3480 instructions->push_tail(stmt);
3481
3482 /* if-statements do not have r-values.
3483 */
3484 return NULL;
3485 }
3486
3487
3488 ir_rvalue *
3489 ast_switch_statement::hir(exec_list *instructions,
3490 struct _mesa_glsl_parse_state *state)
3491 {
3492 void *ctx = state;
3493
3494 ir_rvalue *const test_expression =
3495 this->test_expression->hir(instructions, state);
3496
3497 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3498 *
3499 * "The type of init-expression in a switch statement must be a
3500 * scalar integer."
3501 */
3502 if (!test_expression->type->is_scalar() ||
3503 !test_expression->type->is_integer()) {
3504 YYLTYPE loc = this->test_expression->get_location();
3505
3506 _mesa_glsl_error(& loc,
3507 state,
3508 "switch-statement expression must be scalar "
3509 "integer");
3510 }
3511
3512 /* Track the switch-statement nesting in a stack-like manner.
3513 */
3514 struct glsl_switch_state saved = state->switch_state;
3515
3516 state->switch_state.is_switch_innermost = true;
3517 state->switch_state.switch_nesting_ast = this;
3518 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3519 hash_table_pointer_compare);
3520 state->switch_state.previous_default = NULL;
3521
3522 /* Initalize is_fallthru state to false.
3523 */
3524 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3525 state->switch_state.is_fallthru_var =
3526 new(ctx) ir_variable(glsl_type::bool_type,
3527 "switch_is_fallthru_tmp",
3528 ir_var_temporary);
3529 instructions->push_tail(state->switch_state.is_fallthru_var);
3530
3531 ir_dereference_variable *deref_is_fallthru_var =
3532 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3533 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3534 is_fallthru_val));
3535
3536 /* Initalize is_break state to false.
3537 */
3538 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3539 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3540 "switch_is_break_tmp",
3541 ir_var_temporary);
3542 instructions->push_tail(state->switch_state.is_break_var);
3543
3544 ir_dereference_variable *deref_is_break_var =
3545 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3546 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3547 is_break_val));
3548
3549 /* Cache test expression.
3550 */
3551 test_to_hir(instructions, state);
3552
3553 /* Emit code for body of switch stmt.
3554 */
3555 body->hir(instructions, state);
3556
3557 hash_table_dtor(state->switch_state.labels_ht);
3558
3559 state->switch_state = saved;
3560
3561 /* Switch statements do not have r-values. */
3562 return NULL;
3563 }
3564
3565
3566 void
3567 ast_switch_statement::test_to_hir(exec_list *instructions,
3568 struct _mesa_glsl_parse_state *state)
3569 {
3570 void *ctx = state;
3571
3572 /* Cache value of test expression. */
3573 ir_rvalue *const test_val =
3574 test_expression->hir(instructions,
3575 state);
3576
3577 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
3578 "switch_test_tmp",
3579 ir_var_temporary);
3580 ir_dereference_variable *deref_test_var =
3581 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3582
3583 instructions->push_tail(state->switch_state.test_var);
3584 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
3585 }
3586
3587
3588 ir_rvalue *
3589 ast_switch_body::hir(exec_list *instructions,
3590 struct _mesa_glsl_parse_state *state)
3591 {
3592 if (stmts != NULL)
3593 stmts->hir(instructions, state);
3594
3595 /* Switch bodies do not have r-values. */
3596 return NULL;
3597 }
3598
3599 ir_rvalue *
3600 ast_case_statement_list::hir(exec_list *instructions,
3601 struct _mesa_glsl_parse_state *state)
3602 {
3603 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3604 case_stmt->hir(instructions, state);
3605
3606 /* Case statements do not have r-values. */
3607 return NULL;
3608 }
3609
3610 ir_rvalue *
3611 ast_case_statement::hir(exec_list *instructions,
3612 struct _mesa_glsl_parse_state *state)
3613 {
3614 labels->hir(instructions, state);
3615
3616 /* Conditionally set fallthru state based on break state. */
3617 ir_constant *const false_val = new(state) ir_constant(false);
3618 ir_dereference_variable *const deref_is_fallthru_var =
3619 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3620 ir_dereference_variable *const deref_is_break_var =
3621 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3622 ir_assignment *const reset_fallthru_on_break =
3623 new(state) ir_assignment(deref_is_fallthru_var,
3624 false_val,
3625 deref_is_break_var);
3626 instructions->push_tail(reset_fallthru_on_break);
3627
3628 /* Guard case statements depending on fallthru state. */
3629 ir_dereference_variable *const deref_fallthru_guard =
3630 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3631 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3632
3633 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3634 stmt->hir(& test_fallthru->then_instructions, state);
3635
3636 instructions->push_tail(test_fallthru);
3637
3638 /* Case statements do not have r-values. */
3639 return NULL;
3640 }
3641
3642
3643 ir_rvalue *
3644 ast_case_label_list::hir(exec_list *instructions,
3645 struct _mesa_glsl_parse_state *state)
3646 {
3647 foreach_list_typed (ast_case_label, label, link, & this->labels)
3648 label->hir(instructions, state);
3649
3650 /* Case labels do not have r-values. */
3651 return NULL;
3652 }
3653
3654 ir_rvalue *
3655 ast_case_label::hir(exec_list *instructions,
3656 struct _mesa_glsl_parse_state *state)
3657 {
3658 void *ctx = state;
3659
3660 ir_dereference_variable *deref_fallthru_var =
3661 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3662
3663 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3664
3665 /* If not default case, ... */
3666 if (this->test_value != NULL) {
3667 /* Conditionally set fallthru state based on
3668 * comparison of cached test expression value to case label.
3669 */
3670 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
3671 ir_constant *label_const = label_rval->constant_expression_value();
3672
3673 if (!label_const) {
3674 YYLTYPE loc = this->test_value->get_location();
3675
3676 _mesa_glsl_error(& loc, state,
3677 "switch statement case label must be a "
3678 "constant expression");
3679
3680 /* Stuff a dummy value in to allow processing to continue. */
3681 label_const = new(ctx) ir_constant(0);
3682 } else {
3683 ast_expression *previous_label = (ast_expression *)
3684 hash_table_find(state->switch_state.labels_ht,
3685 (void *)(uintptr_t)label_const->value.u[0]);
3686
3687 if (previous_label) {
3688 YYLTYPE loc = this->test_value->get_location();
3689 _mesa_glsl_error(& loc, state,
3690 "duplicate case value");
3691
3692 loc = previous_label->get_location();
3693 _mesa_glsl_error(& loc, state,
3694 "this is the previous case label");
3695 } else {
3696 hash_table_insert(state->switch_state.labels_ht,
3697 this->test_value,
3698 (void *)(uintptr_t)label_const->value.u[0]);
3699 }
3700 }
3701
3702 ir_dereference_variable *deref_test_var =
3703 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3704
3705 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3706 label_const,
3707 deref_test_var);
3708
3709 ir_assignment *set_fallthru_on_test =
3710 new(ctx) ir_assignment(deref_fallthru_var,
3711 true_val,
3712 test_cond);
3713
3714 instructions->push_tail(set_fallthru_on_test);
3715 } else { /* default case */
3716 if (state->switch_state.previous_default) {
3717 YYLTYPE loc = this->get_location();
3718 _mesa_glsl_error(& loc, state,
3719 "multiple default labels in one switch");
3720
3721 loc = state->switch_state.previous_default->get_location();
3722 _mesa_glsl_error(& loc, state,
3723 "this is the first default label");
3724 }
3725 state->switch_state.previous_default = this;
3726
3727 /* Set falltrhu state. */
3728 ir_assignment *set_fallthru =
3729 new(ctx) ir_assignment(deref_fallthru_var, true_val);
3730
3731 instructions->push_tail(set_fallthru);
3732 }
3733
3734 /* Case statements do not have r-values. */
3735 return NULL;
3736 }
3737
3738 void
3739 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3740 struct _mesa_glsl_parse_state *state)
3741 {
3742 void *ctx = state;
3743
3744 if (condition != NULL) {
3745 ir_rvalue *const cond =
3746 condition->hir(& stmt->body_instructions, state);
3747
3748 if ((cond == NULL)
3749 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3750 YYLTYPE loc = condition->get_location();
3751
3752 _mesa_glsl_error(& loc, state,
3753 "loop condition must be scalar boolean");
3754 } else {
3755 /* As the first code in the loop body, generate a block that looks
3756 * like 'if (!condition) break;' as the loop termination condition.
3757 */
3758 ir_rvalue *const not_cond =
3759 new(ctx) ir_expression(ir_unop_logic_not, cond);
3760
3761 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3762
3763 ir_jump *const break_stmt =
3764 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3765
3766 if_stmt->then_instructions.push_tail(break_stmt);
3767 stmt->body_instructions.push_tail(if_stmt);
3768 }
3769 }
3770 }
3771
3772
3773 ir_rvalue *
3774 ast_iteration_statement::hir(exec_list *instructions,
3775 struct _mesa_glsl_parse_state *state)
3776 {
3777 void *ctx = state;
3778
3779 /* For-loops and while-loops start a new scope, but do-while loops do not.
3780 */
3781 if (mode != ast_do_while)
3782 state->symbols->push_scope();
3783
3784 if (init_statement != NULL)
3785 init_statement->hir(instructions, state);
3786
3787 ir_loop *const stmt = new(ctx) ir_loop();
3788 instructions->push_tail(stmt);
3789
3790 /* Track the current loop nesting. */
3791 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3792
3793 state->loop_nesting_ast = this;
3794
3795 /* Likewise, indicate that following code is closest to a loop,
3796 * NOT closest to a switch.
3797 */
3798 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3799 state->switch_state.is_switch_innermost = false;
3800
3801 if (mode != ast_do_while)
3802 condition_to_hir(stmt, state);
3803
3804 if (body != NULL)
3805 body->hir(& stmt->body_instructions, state);
3806
3807 if (rest_expression != NULL)
3808 rest_expression->hir(& stmt->body_instructions, state);
3809
3810 if (mode == ast_do_while)
3811 condition_to_hir(stmt, state);
3812
3813 if (mode != ast_do_while)
3814 state->symbols->pop_scope();
3815
3816 /* Restore previous nesting before returning. */
3817 state->loop_nesting_ast = nesting_ast;
3818 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3819
3820 /* Loops do not have r-values.
3821 */
3822 return NULL;
3823 }
3824
3825
3826 /**
3827 * Determine if the given type is valid for establishing a default precision
3828 * qualifier.
3829 *
3830 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
3831 *
3832 * "The precision statement
3833 *
3834 * precision precision-qualifier type;
3835 *
3836 * can be used to establish a default precision qualifier. The type field
3837 * can be either int or float or any of the sampler types, and the
3838 * precision-qualifier can be lowp, mediump, or highp."
3839 *
3840 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
3841 * qualifiers on sampler types, but this seems like an oversight (since the
3842 * intention of including these in GLSL 1.30 is to allow compatibility with ES
3843 * shaders). So we allow int, float, and all sampler types regardless of GLSL
3844 * version.
3845 */
3846 static bool
3847 is_valid_default_precision_type(const struct _mesa_glsl_parse_state *state,
3848 const char *type_name)
3849 {
3850 const struct glsl_type *type = state->symbols->get_type(type_name);
3851 if (type == NULL)
3852 return false;
3853
3854 switch (type->base_type) {
3855 case GLSL_TYPE_INT:
3856 case GLSL_TYPE_FLOAT:
3857 /* "int" and "float" are valid, but vectors and matrices are not. */
3858 return type->vector_elements == 1 && type->matrix_columns == 1;
3859 case GLSL_TYPE_SAMPLER:
3860 return true;
3861 default:
3862 return false;
3863 }
3864 }
3865
3866
3867 ir_rvalue *
3868 ast_type_specifier::hir(exec_list *instructions,
3869 struct _mesa_glsl_parse_state *state)
3870 {
3871 if (!this->is_precision_statement && this->structure == NULL)
3872 return NULL;
3873
3874 YYLTYPE loc = this->get_location();
3875
3876 if (this->precision != ast_precision_none
3877 && !state->check_precision_qualifiers_allowed(&loc)) {
3878 return NULL;
3879 }
3880 if (this->precision != ast_precision_none
3881 && this->structure != NULL) {
3882 _mesa_glsl_error(&loc, state,
3883 "precision qualifiers do not apply to structures");
3884 return NULL;
3885 }
3886
3887 /* If this is a precision statement, check that the type to which it is
3888 * applied is either float or int.
3889 *
3890 * From section 4.5.3 of the GLSL 1.30 spec:
3891 * "The precision statement
3892 * precision precision-qualifier type;
3893 * can be used to establish a default precision qualifier. The type
3894 * field can be either int or float [...]. Any other types or
3895 * qualifiers will result in an error.
3896 */
3897 if (this->is_precision_statement) {
3898 assert(this->precision != ast_precision_none);
3899 assert(this->structure == NULL); /* The check for structures was
3900 * performed above. */
3901 if (this->is_array) {
3902 _mesa_glsl_error(&loc, state,
3903 "default precision statements do not apply to "
3904 "arrays");
3905 return NULL;
3906 }
3907 if (!is_valid_default_precision_type(state, this->type_name)) {
3908 _mesa_glsl_error(&loc, state,
3909 "default precision statements apply only to types "
3910 "float, int, and sampler types");
3911 return NULL;
3912 }
3913
3914 /* FINISHME: Translate precision statements into IR. */
3915 return NULL;
3916 }
3917
3918 if (this->structure != NULL)
3919 return this->structure->hir(instructions, state);
3920
3921 return NULL;
3922 }
3923
3924
3925 /**
3926 * Process a structure or interface block tree into an array of structure fields
3927 *
3928 * After parsing, where there are some syntax differnces, structures and
3929 * interface blocks are almost identical. They are similar enough that the
3930 * AST for each can be processed the same way into a set of
3931 * \c glsl_struct_field to describe the members.
3932 *
3933 * \return
3934 * The number of fields processed. A pointer to the array structure fields is
3935 * stored in \c *fields_ret.
3936 */
3937 unsigned
3938 ast_process_structure_or_interface_block(exec_list *instructions,
3939 struct _mesa_glsl_parse_state *state,
3940 exec_list *declarations,
3941 YYLTYPE &loc,
3942 glsl_struct_field **fields_ret,
3943 bool is_interface,
3944 bool block_row_major)
3945 {
3946 unsigned decl_count = 0;
3947
3948 /* Make an initial pass over the list of fields to determine how
3949 * many there are. Each element in this list is an ast_declarator_list.
3950 * This means that we actually need to count the number of elements in the
3951 * 'declarations' list in each of the elements.
3952 */
3953 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3954 foreach_list_const (decl_ptr, & decl_list->declarations) {
3955 decl_count++;
3956 }
3957 }
3958
3959 /* Allocate storage for the fields and process the field
3960 * declarations. As the declarations are processed, try to also convert
3961 * the types to HIR. This ensures that structure definitions embedded in
3962 * other structure definitions or in interface blocks are processed.
3963 */
3964 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3965 decl_count);
3966
3967 unsigned i = 0;
3968 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
3969 const char *type_name;
3970
3971 decl_list->type->specifier->hir(instructions, state);
3972
3973 /* Section 10.9 of the GLSL ES 1.00 specification states that
3974 * embedded structure definitions have been removed from the language.
3975 */
3976 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3977 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3978 "not allowed in GLSL ES 1.00.");
3979 }
3980
3981 const glsl_type *decl_type =
3982 decl_list->type->specifier->glsl_type(& type_name, state);
3983
3984 foreach_list_typed (ast_declaration, decl, link,
3985 &decl_list->declarations) {
3986 /* From the GL_ARB_uniform_buffer_object spec:
3987 *
3988 * "Sampler types are not allowed inside of uniform
3989 * blocks. All other types, arrays, and structures
3990 * allowed for uniforms are allowed within a uniform
3991 * block."
3992 *
3993 * It should be impossible for decl_type to be NULL here. Cases that
3994 * might naturally lead to decl_type being NULL, especially for the
3995 * is_interface case, will have resulted in compilation having
3996 * already halted due to a syntax error.
3997 */
3998 const struct glsl_type *field_type =
3999 decl_type != NULL ? decl_type : glsl_type::error_type;
4000
4001 if (is_interface && field_type->contains_sampler()) {
4002 YYLTYPE loc = decl_list->get_location();
4003 _mesa_glsl_error(&loc, state,
4004 "Uniform in non-default uniform block contains sampler\n");
4005 }
4006
4007 const struct ast_type_qualifier *const qual =
4008 & decl_list->type->qualifier;
4009 if (qual->flags.q.std140 ||
4010 qual->flags.q.packed ||
4011 qual->flags.q.shared) {
4012 _mesa_glsl_error(&loc, state,
4013 "uniform block layout qualifiers std140, packed, and "
4014 "shared can only be applied to uniform blocks, not "
4015 "members");
4016 }
4017
4018 if (decl->is_array) {
4019 field_type = process_array_type(&loc, decl_type, decl->array_size,
4020 state);
4021 }
4022 fields[i].type = field_type;
4023 fields[i].name = decl->identifier;
4024
4025 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4026 if (!field_type->is_matrix() && !field_type->is_record()) {
4027 _mesa_glsl_error(&loc, state,
4028 "uniform block layout qualifiers row_major and "
4029 "column_major can only be applied to matrix and "
4030 "structure types");
4031 } else
4032 validate_matrix_layout_for_type(state, &loc, field_type);
4033 }
4034
4035 if (field_type->is_matrix() ||
4036 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4037 fields[i].row_major = block_row_major;
4038 if (qual->flags.q.row_major)
4039 fields[i].row_major = true;
4040 else if (qual->flags.q.column_major)
4041 fields[i].row_major = false;
4042 }
4043
4044 i++;
4045 }
4046 }
4047
4048 assert(i == decl_count);
4049
4050 *fields_ret = fields;
4051 return decl_count;
4052 }
4053
4054
4055 ir_rvalue *
4056 ast_struct_specifier::hir(exec_list *instructions,
4057 struct _mesa_glsl_parse_state *state)
4058 {
4059 YYLTYPE loc = this->get_location();
4060 glsl_struct_field *fields;
4061 unsigned decl_count =
4062 ast_process_structure_or_interface_block(instructions,
4063 state,
4064 &this->declarations,
4065 loc,
4066 &fields,
4067 false,
4068 false);
4069
4070 const glsl_type *t =
4071 glsl_type::get_record_instance(fields, decl_count, this->name);
4072
4073 if (!state->symbols->add_type(name, t)) {
4074 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4075 } else {
4076 const glsl_type **s = reralloc(state, state->user_structures,
4077 const glsl_type *,
4078 state->num_user_structures + 1);
4079 if (s != NULL) {
4080 s[state->num_user_structures] = t;
4081 state->user_structures = s;
4082 state->num_user_structures++;
4083 }
4084 }
4085
4086 /* Structure type definitions do not have r-values.
4087 */
4088 return NULL;
4089 }
4090
4091 ir_rvalue *
4092 ast_uniform_block::hir(exec_list *instructions,
4093 struct _mesa_glsl_parse_state *state)
4094 {
4095 YYLTYPE loc = this->get_location();
4096
4097 /* The ast_uniform_block has a list of ast_declarator_lists. We
4098 * need to turn those into ir_variables with an association
4099 * with this uniform block.
4100 */
4101 enum glsl_interface_packing packing;
4102 if (this->layout.flags.q.shared) {
4103 packing = GLSL_INTERFACE_PACKING_SHARED;
4104 } else if (this->layout.flags.q.packed) {
4105 packing = GLSL_INTERFACE_PACKING_PACKED;
4106 } else {
4107 /* The default layout is std140.
4108 */
4109 packing = GLSL_INTERFACE_PACKING_STD140;
4110 }
4111
4112 bool block_row_major = this->layout.flags.q.row_major;
4113 exec_list declared_variables;
4114 glsl_struct_field *fields;
4115 unsigned int num_variables =
4116 ast_process_structure_or_interface_block(&declared_variables,
4117 state,
4118 &this->declarations,
4119 loc,
4120 &fields,
4121 true,
4122 block_row_major);
4123
4124 const glsl_type *block_type =
4125 glsl_type::get_interface_instance(fields,
4126 num_variables,
4127 packing,
4128 this->block_name);
4129
4130 if (!state->symbols->add_type(block_type->name, block_type)) {
4131 YYLTYPE loc = this->get_location();
4132 _mesa_glsl_error(&loc, state, "Uniform block name `%s' already taken in "
4133 "the current scope.\n", this->block_name);
4134 }
4135
4136 /* Since interface blocks cannot contain statements, it should be
4137 * impossible for the block to generate any instructions.
4138 */
4139 assert(declared_variables.is_empty());
4140
4141 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4142 * says:
4143 *
4144 * "If an instance name (instance-name) is used, then it puts all the
4145 * members inside a scope within its own name space, accessed with the
4146 * field selector ( . ) operator (analogously to structures)."
4147 */
4148 if (this->instance_name) {
4149 ir_variable *var;
4150
4151 if (this->array_size != NULL) {
4152 const glsl_type *block_array_type =
4153 process_array_type(&loc, block_type, this->array_size, state);
4154
4155 var = new(state) ir_variable(block_array_type,
4156 this->instance_name,
4157 ir_var_uniform);
4158 } else {
4159 var = new(state) ir_variable(block_type,
4160 this->instance_name,
4161 ir_var_uniform);
4162 }
4163
4164 var->interface_type = block_type;
4165 state->symbols->add_variable(var);
4166 instructions->push_tail(var);
4167 } else {
4168 /* In order to have an array size, the block must also be declared with
4169 * an instane name.
4170 */
4171 assert(this->array_size == NULL);
4172
4173 for (unsigned i = 0; i < num_variables; i++) {
4174 ir_variable *var =
4175 new(state) ir_variable(fields[i].type,
4176 ralloc_strdup(state, fields[i].name),
4177 ir_var_uniform);
4178 var->interface_type = block_type;
4179
4180 state->symbols->add_variable(var);
4181 instructions->push_tail(var);
4182 }
4183 }
4184
4185 return NULL;
4186 }
4187
4188 static void
4189 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
4190 exec_list *instructions)
4191 {
4192 bool gl_FragColor_assigned = false;
4193 bool gl_FragData_assigned = false;
4194 bool user_defined_fs_output_assigned = false;
4195 ir_variable *user_defined_fs_output = NULL;
4196
4197 /* It would be nice to have proper location information. */
4198 YYLTYPE loc;
4199 memset(&loc, 0, sizeof(loc));
4200
4201 foreach_list(node, instructions) {
4202 ir_variable *var = ((ir_instruction *)node)->as_variable();
4203
4204 if (!var || !var->assigned)
4205 continue;
4206
4207 if (strcmp(var->name, "gl_FragColor") == 0)
4208 gl_FragColor_assigned = true;
4209 else if (strcmp(var->name, "gl_FragData") == 0)
4210 gl_FragData_assigned = true;
4211 else if (strncmp(var->name, "gl_", 3) != 0) {
4212 if (state->target == fragment_shader &&
4213 var->mode == ir_var_shader_out) {
4214 user_defined_fs_output_assigned = true;
4215 user_defined_fs_output = var;
4216 }
4217 }
4218 }
4219
4220 /* From the GLSL 1.30 spec:
4221 *
4222 * "If a shader statically assigns a value to gl_FragColor, it
4223 * may not assign a value to any element of gl_FragData. If a
4224 * shader statically writes a value to any element of
4225 * gl_FragData, it may not assign a value to
4226 * gl_FragColor. That is, a shader may assign values to either
4227 * gl_FragColor or gl_FragData, but not both. Multiple shaders
4228 * linked together must also consistently write just one of
4229 * these variables. Similarly, if user declared output
4230 * variables are in use (statically assigned to), then the
4231 * built-in variables gl_FragColor and gl_FragData may not be
4232 * assigned to. These incorrect usages all generate compile
4233 * time errors."
4234 */
4235 if (gl_FragColor_assigned && gl_FragData_assigned) {
4236 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4237 "`gl_FragColor' and `gl_FragData'\n");
4238 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
4239 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4240 "`gl_FragColor' and `%s'\n",
4241 user_defined_fs_output->name);
4242 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
4243 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
4244 "`gl_FragData' and `%s'\n",
4245 user_defined_fs_output->name);
4246 }
4247 }