glsl: Forbid opaque variables as operands of the ternary operator.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "glsl_types.h"
56 #include "program/hash_table.h"
57 #include "ir.h"
58 #include "ir_builder.h"
59
60 using namespace ir_builder;
61
62 static void
63 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
64 exec_list *instructions);
65 static void
66 remove_per_vertex_blocks(exec_list *instructions,
67 _mesa_glsl_parse_state *state, ir_variable_mode mode);
68
69
70 void
71 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
72 {
73 _mesa_glsl_initialize_variables(instructions, state);
74
75 state->symbols->separate_function_namespace = state->language_version == 110;
76
77 state->current_function = NULL;
78
79 state->toplevel_ir = instructions;
80
81 state->gs_input_prim_type_specified = false;
82 state->cs_input_local_size_specified = false;
83
84 /* Section 4.2 of the GLSL 1.20 specification states:
85 * "The built-in functions are scoped in a scope outside the global scope
86 * users declare global variables in. That is, a shader's global scope,
87 * available for user-defined functions and global variables, is nested
88 * inside the scope containing the built-in functions."
89 *
90 * Since built-in functions like ftransform() access built-in variables,
91 * it follows that those must be in the outer scope as well.
92 *
93 * We push scope here to create this nesting effect...but don't pop.
94 * This way, a shader's globals are still in the symbol table for use
95 * by the linker.
96 */
97 state->symbols->push_scope();
98
99 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
100 ast->hir(instructions, state);
101
102 detect_recursion_unlinked(state, instructions);
103 detect_conflicting_assignments(state, instructions);
104
105 state->toplevel_ir = NULL;
106
107 /* Move all of the variable declarations to the front of the IR list, and
108 * reverse the order. This has the (intended!) side effect that vertex
109 * shader inputs and fragment shader outputs will appear in the IR in the
110 * same order that they appeared in the shader code. This results in the
111 * locations being assigned in the declared order. Many (arguably buggy)
112 * applications depend on this behavior, and it matches what nearly all
113 * other drivers do.
114 */
115 foreach_in_list_safe(ir_instruction, node, instructions) {
116 ir_variable *const var = node->as_variable();
117
118 if (var == NULL)
119 continue;
120
121 var->remove();
122 instructions->push_head(var);
123 }
124
125 /* Figure out if gl_FragCoord is actually used in fragment shader */
126 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
127 if (var != NULL)
128 state->fs_uses_gl_fragcoord = var->data.used;
129
130 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
131 *
132 * If multiple shaders using members of a built-in block belonging to
133 * the same interface are linked together in the same program, they
134 * must all redeclare the built-in block in the same way, as described
135 * in section 4.3.7 "Interface Blocks" for interface block matching, or
136 * a link error will result.
137 *
138 * The phrase "using members of a built-in block" implies that if two
139 * shaders are linked together and one of them *does not use* any members
140 * of the built-in block, then that shader does not need to have a matching
141 * redeclaration of the built-in block.
142 *
143 * This appears to be a clarification to the behaviour established for
144 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
145 * version.
146 *
147 * The definition of "interface" in section 4.3.7 that applies here is as
148 * follows:
149 *
150 * The boundary between adjacent programmable pipeline stages: This
151 * spans all the outputs in all compilation units of the first stage
152 * and all the inputs in all compilation units of the second stage.
153 *
154 * Therefore this rule applies to both inter- and intra-stage linking.
155 *
156 * The easiest way to implement this is to check whether the shader uses
157 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
158 * remove all the relevant variable declaration from the IR, so that the
159 * linker won't see them and complain about mismatches.
160 */
161 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
162 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
163 }
164
165
166 static ir_expression_operation
167 get_conversion_operation(const glsl_type *to, const glsl_type *from,
168 struct _mesa_glsl_parse_state *state)
169 {
170 switch (to->base_type) {
171 case GLSL_TYPE_FLOAT:
172 switch (from->base_type) {
173 case GLSL_TYPE_INT: return ir_unop_i2f;
174 case GLSL_TYPE_UINT: return ir_unop_u2f;
175 case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
176 default: return (ir_expression_operation)0;
177 }
178
179 case GLSL_TYPE_UINT:
180 if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
181 return (ir_expression_operation)0;
182 switch (from->base_type) {
183 case GLSL_TYPE_INT: return ir_unop_i2u;
184 default: return (ir_expression_operation)0;
185 }
186
187 case GLSL_TYPE_DOUBLE:
188 if (!state->has_double())
189 return (ir_expression_operation)0;
190 switch (from->base_type) {
191 case GLSL_TYPE_INT: return ir_unop_i2d;
192 case GLSL_TYPE_UINT: return ir_unop_u2d;
193 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
194 default: return (ir_expression_operation)0;
195 }
196
197 default: return (ir_expression_operation)0;
198 }
199 }
200
201
202 /**
203 * If a conversion is available, convert one operand to a different type
204 *
205 * The \c from \c ir_rvalue is converted "in place".
206 *
207 * \param to Type that the operand it to be converted to
208 * \param from Operand that is being converted
209 * \param state GLSL compiler state
210 *
211 * \return
212 * If a conversion is possible (or unnecessary), \c true is returned.
213 * Otherwise \c false is returned.
214 */
215 bool
216 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
217 struct _mesa_glsl_parse_state *state)
218 {
219 void *ctx = state;
220 if (to->base_type == from->type->base_type)
221 return true;
222
223 /* Prior to GLSL 1.20, there are no implicit conversions */
224 if (!state->is_version(120, 0))
225 return false;
226
227 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
228 *
229 * "There are no implicit array or structure conversions. For
230 * example, an array of int cannot be implicitly converted to an
231 * array of float.
232 */
233 if (!to->is_numeric() || !from->type->is_numeric())
234 return false;
235
236 /* We don't actually want the specific type `to`, we want a type
237 * with the same base type as `to`, but the same vector width as
238 * `from`.
239 */
240 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
241 from->type->matrix_columns);
242
243 ir_expression_operation op = get_conversion_operation(to, from->type, state);
244 if (op) {
245 from = new(ctx) ir_expression(op, to, from, NULL);
246 return true;
247 } else {
248 return false;
249 }
250 }
251
252
253 static const struct glsl_type *
254 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
255 bool multiply,
256 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
257 {
258 const glsl_type *type_a = value_a->type;
259 const glsl_type *type_b = value_b->type;
260
261 /* From GLSL 1.50 spec, page 56:
262 *
263 * "The arithmetic binary operators add (+), subtract (-),
264 * multiply (*), and divide (/) operate on integer and
265 * floating-point scalars, vectors, and matrices."
266 */
267 if (!type_a->is_numeric() || !type_b->is_numeric()) {
268 _mesa_glsl_error(loc, state,
269 "operands to arithmetic operators must be numeric");
270 return glsl_type::error_type;
271 }
272
273
274 /* "If one operand is floating-point based and the other is
275 * not, then the conversions from Section 4.1.10 "Implicit
276 * Conversions" are applied to the non-floating-point-based operand."
277 */
278 if (!apply_implicit_conversion(type_a, value_b, state)
279 && !apply_implicit_conversion(type_b, value_a, state)) {
280 _mesa_glsl_error(loc, state,
281 "could not implicitly convert operands to "
282 "arithmetic operator");
283 return glsl_type::error_type;
284 }
285 type_a = value_a->type;
286 type_b = value_b->type;
287
288 /* "If the operands are integer types, they must both be signed or
289 * both be unsigned."
290 *
291 * From this rule and the preceeding conversion it can be inferred that
292 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
293 * The is_numeric check above already filtered out the case where either
294 * type is not one of these, so now the base types need only be tested for
295 * equality.
296 */
297 if (type_a->base_type != type_b->base_type) {
298 _mesa_glsl_error(loc, state,
299 "base type mismatch for arithmetic operator");
300 return glsl_type::error_type;
301 }
302
303 /* "All arithmetic binary operators result in the same fundamental type
304 * (signed integer, unsigned integer, or floating-point) as the
305 * operands they operate on, after operand type conversion. After
306 * conversion, the following cases are valid
307 *
308 * * The two operands are scalars. In this case the operation is
309 * applied, resulting in a scalar."
310 */
311 if (type_a->is_scalar() && type_b->is_scalar())
312 return type_a;
313
314 /* "* One operand is a scalar, and the other is a vector or matrix.
315 * In this case, the scalar operation is applied independently to each
316 * component of the vector or matrix, resulting in the same size
317 * vector or matrix."
318 */
319 if (type_a->is_scalar()) {
320 if (!type_b->is_scalar())
321 return type_b;
322 } else if (type_b->is_scalar()) {
323 return type_a;
324 }
325
326 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
327 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
328 * handled.
329 */
330 assert(!type_a->is_scalar());
331 assert(!type_b->is_scalar());
332
333 /* "* The two operands are vectors of the same size. In this case, the
334 * operation is done component-wise resulting in the same size
335 * vector."
336 */
337 if (type_a->is_vector() && type_b->is_vector()) {
338 if (type_a == type_b) {
339 return type_a;
340 } else {
341 _mesa_glsl_error(loc, state,
342 "vector size mismatch for arithmetic operator");
343 return glsl_type::error_type;
344 }
345 }
346
347 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
348 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
349 * <vector, vector> have been handled. At least one of the operands must
350 * be matrix. Further, since there are no integer matrix types, the base
351 * type of both operands must be float.
352 */
353 assert(type_a->is_matrix() || type_b->is_matrix());
354 assert(type_a->base_type == GLSL_TYPE_FLOAT ||
355 type_a->base_type == GLSL_TYPE_DOUBLE);
356 assert(type_b->base_type == GLSL_TYPE_FLOAT ||
357 type_b->base_type == GLSL_TYPE_DOUBLE);
358
359 /* "* The operator is add (+), subtract (-), or divide (/), and the
360 * operands are matrices with the same number of rows and the same
361 * number of columns. In this case, the operation is done component-
362 * wise resulting in the same size matrix."
363 * * The operator is multiply (*), where both operands are matrices or
364 * one operand is a vector and the other a matrix. A right vector
365 * operand is treated as a column vector and a left vector operand as a
366 * row vector. In all these cases, it is required that the number of
367 * columns of the left operand is equal to the number of rows of the
368 * right operand. Then, the multiply (*) operation does a linear
369 * algebraic multiply, yielding an object that has the same number of
370 * rows as the left operand and the same number of columns as the right
371 * operand. Section 5.10 "Vector and Matrix Operations" explains in
372 * more detail how vectors and matrices are operated on."
373 */
374 if (! multiply) {
375 if (type_a == type_b)
376 return type_a;
377 } else {
378 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
379
380 if (type == glsl_type::error_type) {
381 _mesa_glsl_error(loc, state,
382 "size mismatch for matrix multiplication");
383 }
384
385 return type;
386 }
387
388
389 /* "All other cases are illegal."
390 */
391 _mesa_glsl_error(loc, state, "type mismatch");
392 return glsl_type::error_type;
393 }
394
395
396 static const struct glsl_type *
397 unary_arithmetic_result_type(const struct glsl_type *type,
398 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
399 {
400 /* From GLSL 1.50 spec, page 57:
401 *
402 * "The arithmetic unary operators negate (-), post- and pre-increment
403 * and decrement (-- and ++) operate on integer or floating-point
404 * values (including vectors and matrices). All unary operators work
405 * component-wise on their operands. These result with the same type
406 * they operated on."
407 */
408 if (!type->is_numeric()) {
409 _mesa_glsl_error(loc, state,
410 "operands to arithmetic operators must be numeric");
411 return glsl_type::error_type;
412 }
413
414 return type;
415 }
416
417 /**
418 * \brief Return the result type of a bit-logic operation.
419 *
420 * If the given types to the bit-logic operator are invalid, return
421 * glsl_type::error_type.
422 *
423 * \param type_a Type of LHS of bit-logic op
424 * \param type_b Type of RHS of bit-logic op
425 */
426 static const struct glsl_type *
427 bit_logic_result_type(const struct glsl_type *type_a,
428 const struct glsl_type *type_b,
429 ast_operators op,
430 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
431 {
432 if (!state->check_bitwise_operations_allowed(loc)) {
433 return glsl_type::error_type;
434 }
435
436 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
437 *
438 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
439 * (|). The operands must be of type signed or unsigned integers or
440 * integer vectors."
441 */
442 if (!type_a->is_integer()) {
443 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
444 ast_expression::operator_string(op));
445 return glsl_type::error_type;
446 }
447 if (!type_b->is_integer()) {
448 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
449 ast_expression::operator_string(op));
450 return glsl_type::error_type;
451 }
452
453 /* "The fundamental types of the operands (signed or unsigned) must
454 * match,"
455 */
456 if (type_a->base_type != type_b->base_type) {
457 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
458 "base type", ast_expression::operator_string(op));
459 return glsl_type::error_type;
460 }
461
462 /* "The operands cannot be vectors of differing size." */
463 if (type_a->is_vector() &&
464 type_b->is_vector() &&
465 type_a->vector_elements != type_b->vector_elements) {
466 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
467 "different sizes", ast_expression::operator_string(op));
468 return glsl_type::error_type;
469 }
470
471 /* "If one operand is a scalar and the other a vector, the scalar is
472 * applied component-wise to the vector, resulting in the same type as
473 * the vector. The fundamental types of the operands [...] will be the
474 * resulting fundamental type."
475 */
476 if (type_a->is_scalar())
477 return type_b;
478 else
479 return type_a;
480 }
481
482 static const struct glsl_type *
483 modulus_result_type(const struct glsl_type *type_a,
484 const struct glsl_type *type_b,
485 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
486 {
487 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
488 return glsl_type::error_type;
489 }
490
491 /* From GLSL 1.50 spec, page 56:
492 * "The operator modulus (%) operates on signed or unsigned integers or
493 * integer vectors. The operand types must both be signed or both be
494 * unsigned."
495 */
496 if (!type_a->is_integer()) {
497 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
498 return glsl_type::error_type;
499 }
500 if (!type_b->is_integer()) {
501 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
502 return glsl_type::error_type;
503 }
504 if (type_a->base_type != type_b->base_type) {
505 _mesa_glsl_error(loc, state,
506 "operands of %% must have the same base type");
507 return glsl_type::error_type;
508 }
509
510 /* "The operands cannot be vectors of differing size. If one operand is
511 * a scalar and the other vector, then the scalar is applied component-
512 * wise to the vector, resulting in the same type as the vector. If both
513 * are vectors of the same size, the result is computed component-wise."
514 */
515 if (type_a->is_vector()) {
516 if (!type_b->is_vector()
517 || (type_a->vector_elements == type_b->vector_elements))
518 return type_a;
519 } else
520 return type_b;
521
522 /* "The operator modulus (%) is not defined for any other data types
523 * (non-integer types)."
524 */
525 _mesa_glsl_error(loc, state, "type mismatch");
526 return glsl_type::error_type;
527 }
528
529
530 static const struct glsl_type *
531 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
532 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
533 {
534 const glsl_type *type_a = value_a->type;
535 const glsl_type *type_b = value_b->type;
536
537 /* From GLSL 1.50 spec, page 56:
538 * "The relational operators greater than (>), less than (<), greater
539 * than or equal (>=), and less than or equal (<=) operate only on
540 * scalar integer and scalar floating-point expressions."
541 */
542 if (!type_a->is_numeric()
543 || !type_b->is_numeric()
544 || !type_a->is_scalar()
545 || !type_b->is_scalar()) {
546 _mesa_glsl_error(loc, state,
547 "operands to relational operators must be scalar and "
548 "numeric");
549 return glsl_type::error_type;
550 }
551
552 /* "Either the operands' types must match, or the conversions from
553 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
554 * operand, after which the types must match."
555 */
556 if (!apply_implicit_conversion(type_a, value_b, state)
557 && !apply_implicit_conversion(type_b, value_a, state)) {
558 _mesa_glsl_error(loc, state,
559 "could not implicitly convert operands to "
560 "relational operator");
561 return glsl_type::error_type;
562 }
563 type_a = value_a->type;
564 type_b = value_b->type;
565
566 if (type_a->base_type != type_b->base_type) {
567 _mesa_glsl_error(loc, state, "base type mismatch");
568 return glsl_type::error_type;
569 }
570
571 /* "The result is scalar Boolean."
572 */
573 return glsl_type::bool_type;
574 }
575
576 /**
577 * \brief Return the result type of a bit-shift operation.
578 *
579 * If the given types to the bit-shift operator are invalid, return
580 * glsl_type::error_type.
581 *
582 * \param type_a Type of LHS of bit-shift op
583 * \param type_b Type of RHS of bit-shift op
584 */
585 static const struct glsl_type *
586 shift_result_type(const struct glsl_type *type_a,
587 const struct glsl_type *type_b,
588 ast_operators op,
589 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
590 {
591 if (!state->check_bitwise_operations_allowed(loc)) {
592 return glsl_type::error_type;
593 }
594
595 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
596 *
597 * "The shift operators (<<) and (>>). For both operators, the operands
598 * must be signed or unsigned integers or integer vectors. One operand
599 * can be signed while the other is unsigned."
600 */
601 if (!type_a->is_integer()) {
602 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
603 "integer vector", ast_expression::operator_string(op));
604 return glsl_type::error_type;
605
606 }
607 if (!type_b->is_integer()) {
608 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
609 "integer vector", ast_expression::operator_string(op));
610 return glsl_type::error_type;
611 }
612
613 /* "If the first operand is a scalar, the second operand has to be
614 * a scalar as well."
615 */
616 if (type_a->is_scalar() && !type_b->is_scalar()) {
617 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
618 "second must be scalar as well",
619 ast_expression::operator_string(op));
620 return glsl_type::error_type;
621 }
622
623 /* If both operands are vectors, check that they have same number of
624 * elements.
625 */
626 if (type_a->is_vector() &&
627 type_b->is_vector() &&
628 type_a->vector_elements != type_b->vector_elements) {
629 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
630 "have same number of elements",
631 ast_expression::operator_string(op));
632 return glsl_type::error_type;
633 }
634
635 /* "In all cases, the resulting type will be the same type as the left
636 * operand."
637 */
638 return type_a;
639 }
640
641 /**
642 * Validates that a value can be assigned to a location with a specified type
643 *
644 * Validates that \c rhs can be assigned to some location. If the types are
645 * not an exact match but an automatic conversion is possible, \c rhs will be
646 * converted.
647 *
648 * \return
649 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
650 * Otherwise the actual RHS to be assigned will be returned. This may be
651 * \c rhs, or it may be \c rhs after some type conversion.
652 *
653 * \note
654 * In addition to being used for assignments, this function is used to
655 * type-check return values.
656 */
657 ir_rvalue *
658 validate_assignment(struct _mesa_glsl_parse_state *state,
659 YYLTYPE loc, const glsl_type *lhs_type,
660 ir_rvalue *rhs, bool is_initializer)
661 {
662 /* If there is already some error in the RHS, just return it. Anything
663 * else will lead to an avalanche of error message back to the user.
664 */
665 if (rhs->type->is_error())
666 return rhs;
667
668 /* If the types are identical, the assignment can trivially proceed.
669 */
670 if (rhs->type == lhs_type)
671 return rhs;
672
673 /* If the array element types are the same and the LHS is unsized,
674 * the assignment is okay for initializers embedded in variable
675 * declarations.
676 *
677 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
678 * is handled by ir_dereference::is_lvalue.
679 */
680 if (lhs_type->is_unsized_array() && rhs->type->is_array()
681 && (lhs_type->element_type() == rhs->type->element_type())) {
682 if (is_initializer) {
683 return rhs;
684 } else {
685 _mesa_glsl_error(&loc, state,
686 "implicitly sized arrays cannot be assigned");
687 return NULL;
688 }
689 }
690
691 /* Check for implicit conversion in GLSL 1.20 */
692 if (apply_implicit_conversion(lhs_type, rhs, state)) {
693 if (rhs->type == lhs_type)
694 return rhs;
695 }
696
697 _mesa_glsl_error(&loc, state,
698 "%s of type %s cannot be assigned to "
699 "variable of type %s",
700 is_initializer ? "initializer" : "value",
701 rhs->type->name, lhs_type->name);
702
703 return NULL;
704 }
705
706 static void
707 mark_whole_array_access(ir_rvalue *access)
708 {
709 ir_dereference_variable *deref = access->as_dereference_variable();
710
711 if (deref && deref->var) {
712 deref->var->data.max_array_access = deref->type->length - 1;
713 }
714 }
715
716 static bool
717 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
718 const char *non_lvalue_description,
719 ir_rvalue *lhs, ir_rvalue *rhs,
720 ir_rvalue **out_rvalue, bool needs_rvalue,
721 bool is_initializer,
722 YYLTYPE lhs_loc)
723 {
724 void *ctx = state;
725 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
726 ir_rvalue *extract_channel = NULL;
727
728 /* If the assignment LHS comes back as an ir_binop_vector_extract
729 * expression, move it to the RHS as an ir_triop_vector_insert.
730 */
731 if (lhs->ir_type == ir_type_expression) {
732 ir_expression *const lhs_expr = lhs->as_expression();
733
734 if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
735 ir_rvalue *new_rhs =
736 validate_assignment(state, lhs_loc, lhs->type,
737 rhs, is_initializer);
738
739 if (new_rhs == NULL) {
740 return lhs;
741 } else {
742 /* This converts:
743 * - LHS: (expression float vector_extract <vec> <channel>)
744 * - RHS: <scalar>
745 * into:
746 * - LHS: <vec>
747 * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
748 *
749 * The LHS type is now a vector instead of a scalar. Since GLSL
750 * allows assignments to be used as rvalues, we need to re-extract
751 * the channel from assignment_temp when returning the rvalue.
752 */
753 extract_channel = lhs_expr->operands[1];
754 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
755 lhs_expr->operands[0]->type,
756 lhs_expr->operands[0],
757 new_rhs,
758 extract_channel);
759 lhs = lhs_expr->operands[0]->clone(ctx, NULL);
760 }
761 }
762 }
763
764 ir_variable *lhs_var = lhs->variable_referenced();
765 if (lhs_var)
766 lhs_var->data.assigned = true;
767
768 if (!error_emitted) {
769 if (non_lvalue_description != NULL) {
770 _mesa_glsl_error(&lhs_loc, state,
771 "assignment to %s",
772 non_lvalue_description);
773 error_emitted = true;
774 } else if (lhs_var != NULL && lhs_var->data.read_only) {
775 _mesa_glsl_error(&lhs_loc, state,
776 "assignment to read-only variable '%s'",
777 lhs_var->name);
778 error_emitted = true;
779 } else if (lhs->type->is_array() &&
780 !state->check_version(120, 300, &lhs_loc,
781 "whole array assignment forbidden")) {
782 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
783 *
784 * "Other binary or unary expressions, non-dereferenced
785 * arrays, function names, swizzles with repeated fields,
786 * and constants cannot be l-values."
787 *
788 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
789 */
790 error_emitted = true;
791 } else if (!lhs->is_lvalue()) {
792 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
793 error_emitted = true;
794 }
795 }
796
797 ir_rvalue *new_rhs =
798 validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
799 if (new_rhs != NULL) {
800 rhs = new_rhs;
801
802 /* If the LHS array was not declared with a size, it takes it size from
803 * the RHS. If the LHS is an l-value and a whole array, it must be a
804 * dereference of a variable. Any other case would require that the LHS
805 * is either not an l-value or not a whole array.
806 */
807 if (lhs->type->is_unsized_array()) {
808 ir_dereference *const d = lhs->as_dereference();
809
810 assert(d != NULL);
811
812 ir_variable *const var = d->variable_referenced();
813
814 assert(var != NULL);
815
816 if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
817 /* FINISHME: This should actually log the location of the RHS. */
818 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
819 "previous access",
820 var->data.max_array_access);
821 }
822
823 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
824 rhs->type->array_size());
825 d->type = var->type;
826 }
827 if (lhs->type->is_array()) {
828 mark_whole_array_access(rhs);
829 mark_whole_array_access(lhs);
830 }
831 }
832
833 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
834 * but not post_inc) need the converted assigned value as an rvalue
835 * to handle things like:
836 *
837 * i = j += 1;
838 */
839 if (needs_rvalue) {
840 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
841 ir_var_temporary);
842 instructions->push_tail(var);
843 instructions->push_tail(assign(var, rhs));
844
845 if (!error_emitted) {
846 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
847 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
848 }
849 ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
850
851 if (extract_channel) {
852 rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
853 rvalue,
854 extract_channel->clone(ctx, NULL));
855 }
856
857 *out_rvalue = rvalue;
858 } else {
859 if (!error_emitted)
860 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
861 *out_rvalue = NULL;
862 }
863
864 return error_emitted;
865 }
866
867 static ir_rvalue *
868 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
869 {
870 void *ctx = ralloc_parent(lvalue);
871 ir_variable *var;
872
873 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
874 ir_var_temporary);
875 instructions->push_tail(var);
876
877 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
878 lvalue));
879
880 return new(ctx) ir_dereference_variable(var);
881 }
882
883
884 ir_rvalue *
885 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
886 {
887 (void) instructions;
888 (void) state;
889
890 return NULL;
891 }
892
893 void
894 ast_function_expression::hir_no_rvalue(exec_list *instructions,
895 struct _mesa_glsl_parse_state *state)
896 {
897 (void)hir(instructions, state);
898 }
899
900 void
901 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
902 struct _mesa_glsl_parse_state *state)
903 {
904 (void)hir(instructions, state);
905 }
906
907 static ir_rvalue *
908 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
909 {
910 int join_op;
911 ir_rvalue *cmp = NULL;
912
913 if (operation == ir_binop_all_equal)
914 join_op = ir_binop_logic_and;
915 else
916 join_op = ir_binop_logic_or;
917
918 switch (op0->type->base_type) {
919 case GLSL_TYPE_FLOAT:
920 case GLSL_TYPE_UINT:
921 case GLSL_TYPE_INT:
922 case GLSL_TYPE_BOOL:
923 case GLSL_TYPE_DOUBLE:
924 return new(mem_ctx) ir_expression(operation, op0, op1);
925
926 case GLSL_TYPE_ARRAY: {
927 for (unsigned int i = 0; i < op0->type->length; i++) {
928 ir_rvalue *e0, *e1, *result;
929
930 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
931 new(mem_ctx) ir_constant(i));
932 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
933 new(mem_ctx) ir_constant(i));
934 result = do_comparison(mem_ctx, operation, e0, e1);
935
936 if (cmp) {
937 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
938 } else {
939 cmp = result;
940 }
941 }
942
943 mark_whole_array_access(op0);
944 mark_whole_array_access(op1);
945 break;
946 }
947
948 case GLSL_TYPE_STRUCT: {
949 for (unsigned int i = 0; i < op0->type->length; i++) {
950 ir_rvalue *e0, *e1, *result;
951 const char *field_name = op0->type->fields.structure[i].name;
952
953 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
954 field_name);
955 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
956 field_name);
957 result = do_comparison(mem_ctx, operation, e0, e1);
958
959 if (cmp) {
960 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
961 } else {
962 cmp = result;
963 }
964 }
965 break;
966 }
967
968 case GLSL_TYPE_ERROR:
969 case GLSL_TYPE_VOID:
970 case GLSL_TYPE_SAMPLER:
971 case GLSL_TYPE_IMAGE:
972 case GLSL_TYPE_INTERFACE:
973 case GLSL_TYPE_ATOMIC_UINT:
974 /* I assume a comparison of a struct containing a sampler just
975 * ignores the sampler present in the type.
976 */
977 break;
978 }
979
980 if (cmp == NULL)
981 cmp = new(mem_ctx) ir_constant(true);
982
983 return cmp;
984 }
985
986 /* For logical operations, we want to ensure that the operands are
987 * scalar booleans. If it isn't, emit an error and return a constant
988 * boolean to avoid triggering cascading error messages.
989 */
990 ir_rvalue *
991 get_scalar_boolean_operand(exec_list *instructions,
992 struct _mesa_glsl_parse_state *state,
993 ast_expression *parent_expr,
994 int operand,
995 const char *operand_name,
996 bool *error_emitted)
997 {
998 ast_expression *expr = parent_expr->subexpressions[operand];
999 void *ctx = state;
1000 ir_rvalue *val = expr->hir(instructions, state);
1001
1002 if (val->type->is_boolean() && val->type->is_scalar())
1003 return val;
1004
1005 if (!*error_emitted) {
1006 YYLTYPE loc = expr->get_location();
1007 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1008 operand_name,
1009 parent_expr->operator_string(parent_expr->oper));
1010 *error_emitted = true;
1011 }
1012
1013 return new(ctx) ir_constant(true);
1014 }
1015
1016 /**
1017 * If name refers to a builtin array whose maximum allowed size is less than
1018 * size, report an error and return true. Otherwise return false.
1019 */
1020 void
1021 check_builtin_array_max_size(const char *name, unsigned size,
1022 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1023 {
1024 if ((strcmp("gl_TexCoord", name) == 0)
1025 && (size > state->Const.MaxTextureCoords)) {
1026 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1027 *
1028 * "The size [of gl_TexCoord] can be at most
1029 * gl_MaxTextureCoords."
1030 */
1031 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1032 "be larger than gl_MaxTextureCoords (%u)",
1033 state->Const.MaxTextureCoords);
1034 } else if (strcmp("gl_ClipDistance", name) == 0
1035 && size > state->Const.MaxClipPlanes) {
1036 /* From section 7.1 (Vertex Shader Special Variables) of the
1037 * GLSL 1.30 spec:
1038 *
1039 * "The gl_ClipDistance array is predeclared as unsized and
1040 * must be sized by the shader either redeclaring it with a
1041 * size or indexing it only with integral constant
1042 * expressions. ... The size can be at most
1043 * gl_MaxClipDistances."
1044 */
1045 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1046 "be larger than gl_MaxClipDistances (%u)",
1047 state->Const.MaxClipPlanes);
1048 }
1049 }
1050
1051 /**
1052 * Create the constant 1, of a which is appropriate for incrementing and
1053 * decrementing values of the given GLSL type. For example, if type is vec4,
1054 * this creates a constant value of 1.0 having type float.
1055 *
1056 * If the given type is invalid for increment and decrement operators, return
1057 * a floating point 1--the error will be detected later.
1058 */
1059 static ir_rvalue *
1060 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1061 {
1062 switch (type->base_type) {
1063 case GLSL_TYPE_UINT:
1064 return new(ctx) ir_constant((unsigned) 1);
1065 case GLSL_TYPE_INT:
1066 return new(ctx) ir_constant(1);
1067 default:
1068 case GLSL_TYPE_FLOAT:
1069 return new(ctx) ir_constant(1.0f);
1070 }
1071 }
1072
1073 ir_rvalue *
1074 ast_expression::hir(exec_list *instructions,
1075 struct _mesa_glsl_parse_state *state)
1076 {
1077 return do_hir(instructions, state, true);
1078 }
1079
1080 void
1081 ast_expression::hir_no_rvalue(exec_list *instructions,
1082 struct _mesa_glsl_parse_state *state)
1083 {
1084 do_hir(instructions, state, false);
1085 }
1086
1087 ir_rvalue *
1088 ast_expression::do_hir(exec_list *instructions,
1089 struct _mesa_glsl_parse_state *state,
1090 bool needs_rvalue)
1091 {
1092 void *ctx = state;
1093 static const int operations[AST_NUM_OPERATORS] = {
1094 -1, /* ast_assign doesn't convert to ir_expression. */
1095 -1, /* ast_plus doesn't convert to ir_expression. */
1096 ir_unop_neg,
1097 ir_binop_add,
1098 ir_binop_sub,
1099 ir_binop_mul,
1100 ir_binop_div,
1101 ir_binop_mod,
1102 ir_binop_lshift,
1103 ir_binop_rshift,
1104 ir_binop_less,
1105 ir_binop_greater,
1106 ir_binop_lequal,
1107 ir_binop_gequal,
1108 ir_binop_all_equal,
1109 ir_binop_any_nequal,
1110 ir_binop_bit_and,
1111 ir_binop_bit_xor,
1112 ir_binop_bit_or,
1113 ir_unop_bit_not,
1114 ir_binop_logic_and,
1115 ir_binop_logic_xor,
1116 ir_binop_logic_or,
1117 ir_unop_logic_not,
1118
1119 /* Note: The following block of expression types actually convert
1120 * to multiple IR instructions.
1121 */
1122 ir_binop_mul, /* ast_mul_assign */
1123 ir_binop_div, /* ast_div_assign */
1124 ir_binop_mod, /* ast_mod_assign */
1125 ir_binop_add, /* ast_add_assign */
1126 ir_binop_sub, /* ast_sub_assign */
1127 ir_binop_lshift, /* ast_ls_assign */
1128 ir_binop_rshift, /* ast_rs_assign */
1129 ir_binop_bit_and, /* ast_and_assign */
1130 ir_binop_bit_xor, /* ast_xor_assign */
1131 ir_binop_bit_or, /* ast_or_assign */
1132
1133 -1, /* ast_conditional doesn't convert to ir_expression. */
1134 ir_binop_add, /* ast_pre_inc. */
1135 ir_binop_sub, /* ast_pre_dec. */
1136 ir_binop_add, /* ast_post_inc. */
1137 ir_binop_sub, /* ast_post_dec. */
1138 -1, /* ast_field_selection doesn't conv to ir_expression. */
1139 -1, /* ast_array_index doesn't convert to ir_expression. */
1140 -1, /* ast_function_call doesn't conv to ir_expression. */
1141 -1, /* ast_identifier doesn't convert to ir_expression. */
1142 -1, /* ast_int_constant doesn't convert to ir_expression. */
1143 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1144 -1, /* ast_float_constant doesn't conv to ir_expression. */
1145 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1146 -1, /* ast_sequence doesn't convert to ir_expression. */
1147 };
1148 ir_rvalue *result = NULL;
1149 ir_rvalue *op[3];
1150 const struct glsl_type *type; /* a temporary variable for switch cases */
1151 bool error_emitted = false;
1152 YYLTYPE loc;
1153
1154 loc = this->get_location();
1155
1156 switch (this->oper) {
1157 case ast_aggregate:
1158 assert(!"ast_aggregate: Should never get here.");
1159 break;
1160
1161 case ast_assign: {
1162 op[0] = this->subexpressions[0]->hir(instructions, state);
1163 op[1] = this->subexpressions[1]->hir(instructions, state);
1164
1165 error_emitted =
1166 do_assignment(instructions, state,
1167 this->subexpressions[0]->non_lvalue_description,
1168 op[0], op[1], &result, needs_rvalue, false,
1169 this->subexpressions[0]->get_location());
1170 break;
1171 }
1172
1173 case ast_plus:
1174 op[0] = this->subexpressions[0]->hir(instructions, state);
1175
1176 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1177
1178 error_emitted = type->is_error();
1179
1180 result = op[0];
1181 break;
1182
1183 case ast_neg:
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185
1186 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1187
1188 error_emitted = type->is_error();
1189
1190 result = new(ctx) ir_expression(operations[this->oper], type,
1191 op[0], NULL);
1192 break;
1193
1194 case ast_add:
1195 case ast_sub:
1196 case ast_mul:
1197 case ast_div:
1198 op[0] = this->subexpressions[0]->hir(instructions, state);
1199 op[1] = this->subexpressions[1]->hir(instructions, state);
1200
1201 type = arithmetic_result_type(op[0], op[1],
1202 (this->oper == ast_mul),
1203 state, & loc);
1204 error_emitted = type->is_error();
1205
1206 result = new(ctx) ir_expression(operations[this->oper], type,
1207 op[0], op[1]);
1208 break;
1209
1210 case ast_mod:
1211 op[0] = this->subexpressions[0]->hir(instructions, state);
1212 op[1] = this->subexpressions[1]->hir(instructions, state);
1213
1214 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1215
1216 assert(operations[this->oper] == ir_binop_mod);
1217
1218 result = new(ctx) ir_expression(operations[this->oper], type,
1219 op[0], op[1]);
1220 error_emitted = type->is_error();
1221 break;
1222
1223 case ast_lshift:
1224 case ast_rshift:
1225 if (!state->check_bitwise_operations_allowed(&loc)) {
1226 error_emitted = true;
1227 }
1228
1229 op[0] = this->subexpressions[0]->hir(instructions, state);
1230 op[1] = this->subexpressions[1]->hir(instructions, state);
1231 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1232 &loc);
1233 result = new(ctx) ir_expression(operations[this->oper], type,
1234 op[0], op[1]);
1235 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1236 break;
1237
1238 case ast_less:
1239 case ast_greater:
1240 case ast_lequal:
1241 case ast_gequal:
1242 op[0] = this->subexpressions[0]->hir(instructions, state);
1243 op[1] = this->subexpressions[1]->hir(instructions, state);
1244
1245 type = relational_result_type(op[0], op[1], state, & loc);
1246
1247 /* The relational operators must either generate an error or result
1248 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1249 */
1250 assert(type->is_error()
1251 || ((type->base_type == GLSL_TYPE_BOOL)
1252 && type->is_scalar()));
1253
1254 result = new(ctx) ir_expression(operations[this->oper], type,
1255 op[0], op[1]);
1256 error_emitted = type->is_error();
1257 break;
1258
1259 case ast_nequal:
1260 case ast_equal:
1261 op[0] = this->subexpressions[0]->hir(instructions, state);
1262 op[1] = this->subexpressions[1]->hir(instructions, state);
1263
1264 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1265 *
1266 * "The equality operators equal (==), and not equal (!=)
1267 * operate on all types. They result in a scalar Boolean. If
1268 * the operand types do not match, then there must be a
1269 * conversion from Section 4.1.10 "Implicit Conversions"
1270 * applied to one operand that can make them match, in which
1271 * case this conversion is done."
1272 */
1273 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1274 && !apply_implicit_conversion(op[1]->type, op[0], state))
1275 || (op[0]->type != op[1]->type)) {
1276 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1277 "type", (this->oper == ast_equal) ? "==" : "!=");
1278 error_emitted = true;
1279 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1280 !state->check_version(120, 300, &loc,
1281 "array comparisons forbidden")) {
1282 error_emitted = true;
1283 } else if ((op[0]->type->contains_opaque() ||
1284 op[1]->type->contains_opaque())) {
1285 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1286 error_emitted = true;
1287 }
1288
1289 if (error_emitted) {
1290 result = new(ctx) ir_constant(false);
1291 } else {
1292 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1293 assert(result->type == glsl_type::bool_type);
1294 }
1295 break;
1296
1297 case ast_bit_and:
1298 case ast_bit_xor:
1299 case ast_bit_or:
1300 op[0] = this->subexpressions[0]->hir(instructions, state);
1301 op[1] = this->subexpressions[1]->hir(instructions, state);
1302 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1303 state, &loc);
1304 result = new(ctx) ir_expression(operations[this->oper], type,
1305 op[0], op[1]);
1306 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1307 break;
1308
1309 case ast_bit_not:
1310 op[0] = this->subexpressions[0]->hir(instructions, state);
1311
1312 if (!state->check_bitwise_operations_allowed(&loc)) {
1313 error_emitted = true;
1314 }
1315
1316 if (!op[0]->type->is_integer()) {
1317 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1318 error_emitted = true;
1319 }
1320
1321 type = error_emitted ? glsl_type::error_type : op[0]->type;
1322 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1323 break;
1324
1325 case ast_logic_and: {
1326 exec_list rhs_instructions;
1327 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1328 "LHS", &error_emitted);
1329 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1330 "RHS", &error_emitted);
1331
1332 if (rhs_instructions.is_empty()) {
1333 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1334 type = result->type;
1335 } else {
1336 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1337 "and_tmp",
1338 ir_var_temporary);
1339 instructions->push_tail(tmp);
1340
1341 ir_if *const stmt = new(ctx) ir_if(op[0]);
1342 instructions->push_tail(stmt);
1343
1344 stmt->then_instructions.append_list(&rhs_instructions);
1345 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1346 ir_assignment *const then_assign =
1347 new(ctx) ir_assignment(then_deref, op[1]);
1348 stmt->then_instructions.push_tail(then_assign);
1349
1350 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1351 ir_assignment *const else_assign =
1352 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1353 stmt->else_instructions.push_tail(else_assign);
1354
1355 result = new(ctx) ir_dereference_variable(tmp);
1356 type = tmp->type;
1357 }
1358 break;
1359 }
1360
1361 case ast_logic_or: {
1362 exec_list rhs_instructions;
1363 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1364 "LHS", &error_emitted);
1365 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1366 "RHS", &error_emitted);
1367
1368 if (rhs_instructions.is_empty()) {
1369 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1370 type = result->type;
1371 } else {
1372 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1373 "or_tmp",
1374 ir_var_temporary);
1375 instructions->push_tail(tmp);
1376
1377 ir_if *const stmt = new(ctx) ir_if(op[0]);
1378 instructions->push_tail(stmt);
1379
1380 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1381 ir_assignment *const then_assign =
1382 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1383 stmt->then_instructions.push_tail(then_assign);
1384
1385 stmt->else_instructions.append_list(&rhs_instructions);
1386 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1387 ir_assignment *const else_assign =
1388 new(ctx) ir_assignment(else_deref, op[1]);
1389 stmt->else_instructions.push_tail(else_assign);
1390
1391 result = new(ctx) ir_dereference_variable(tmp);
1392 type = tmp->type;
1393 }
1394 break;
1395 }
1396
1397 case ast_logic_xor:
1398 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1399 *
1400 * "The logical binary operators and (&&), or ( | | ), and
1401 * exclusive or (^^). They operate only on two Boolean
1402 * expressions and result in a Boolean expression."
1403 */
1404 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1405 &error_emitted);
1406 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1407 &error_emitted);
1408
1409 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1410 op[0], op[1]);
1411 break;
1412
1413 case ast_logic_not:
1414 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1415 "operand", &error_emitted);
1416
1417 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1418 op[0], NULL);
1419 break;
1420
1421 case ast_mul_assign:
1422 case ast_div_assign:
1423 case ast_add_assign:
1424 case ast_sub_assign: {
1425 op[0] = this->subexpressions[0]->hir(instructions, state);
1426 op[1] = this->subexpressions[1]->hir(instructions, state);
1427
1428 type = arithmetic_result_type(op[0], op[1],
1429 (this->oper == ast_mul_assign),
1430 state, & loc);
1431
1432 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1433 op[0], op[1]);
1434
1435 error_emitted =
1436 do_assignment(instructions, state,
1437 this->subexpressions[0]->non_lvalue_description,
1438 op[0]->clone(ctx, NULL), temp_rhs,
1439 &result, needs_rvalue, false,
1440 this->subexpressions[0]->get_location());
1441
1442 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1443 * explicitly test for this because none of the binary expression
1444 * operators allow array operands either.
1445 */
1446
1447 break;
1448 }
1449
1450 case ast_mod_assign: {
1451 op[0] = this->subexpressions[0]->hir(instructions, state);
1452 op[1] = this->subexpressions[1]->hir(instructions, state);
1453
1454 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1455
1456 assert(operations[this->oper] == ir_binop_mod);
1457
1458 ir_rvalue *temp_rhs;
1459 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1460 op[0], op[1]);
1461
1462 error_emitted =
1463 do_assignment(instructions, state,
1464 this->subexpressions[0]->non_lvalue_description,
1465 op[0]->clone(ctx, NULL), temp_rhs,
1466 &result, needs_rvalue, false,
1467 this->subexpressions[0]->get_location());
1468 break;
1469 }
1470
1471 case ast_ls_assign:
1472 case ast_rs_assign: {
1473 op[0] = this->subexpressions[0]->hir(instructions, state);
1474 op[1] = this->subexpressions[1]->hir(instructions, state);
1475 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1476 &loc);
1477 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1478 type, op[0], op[1]);
1479 error_emitted =
1480 do_assignment(instructions, state,
1481 this->subexpressions[0]->non_lvalue_description,
1482 op[0]->clone(ctx, NULL), temp_rhs,
1483 &result, needs_rvalue, false,
1484 this->subexpressions[0]->get_location());
1485 break;
1486 }
1487
1488 case ast_and_assign:
1489 case ast_xor_assign:
1490 case ast_or_assign: {
1491 op[0] = this->subexpressions[0]->hir(instructions, state);
1492 op[1] = this->subexpressions[1]->hir(instructions, state);
1493 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1494 state, &loc);
1495 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1496 type, op[0], op[1]);
1497 error_emitted =
1498 do_assignment(instructions, state,
1499 this->subexpressions[0]->non_lvalue_description,
1500 op[0]->clone(ctx, NULL), temp_rhs,
1501 &result, needs_rvalue, false,
1502 this->subexpressions[0]->get_location());
1503 break;
1504 }
1505
1506 case ast_conditional: {
1507 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1508 *
1509 * "The ternary selection operator (?:). It operates on three
1510 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1511 * first expression, which must result in a scalar Boolean."
1512 */
1513 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1514 "condition", &error_emitted);
1515
1516 /* The :? operator is implemented by generating an anonymous temporary
1517 * followed by an if-statement. The last instruction in each branch of
1518 * the if-statement assigns a value to the anonymous temporary. This
1519 * temporary is the r-value of the expression.
1520 */
1521 exec_list then_instructions;
1522 exec_list else_instructions;
1523
1524 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1525 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1526
1527 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1528 *
1529 * "The second and third expressions can be any type, as
1530 * long their types match, or there is a conversion in
1531 * Section 4.1.10 "Implicit Conversions" that can be applied
1532 * to one of the expressions to make their types match. This
1533 * resulting matching type is the type of the entire
1534 * expression."
1535 */
1536 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1537 && !apply_implicit_conversion(op[2]->type, op[1], state))
1538 || (op[1]->type != op[2]->type)) {
1539 YYLTYPE loc = this->subexpressions[1]->get_location();
1540
1541 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1542 "operator must have matching types");
1543 error_emitted = true;
1544 type = glsl_type::error_type;
1545 } else {
1546 type = op[1]->type;
1547 }
1548
1549 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1550 *
1551 * "The second and third expressions must be the same type, but can
1552 * be of any type other than an array."
1553 */
1554 if (type->is_array() &&
1555 !state->check_version(120, 300, &loc,
1556 "second and third operands of ?: operator "
1557 "cannot be arrays")) {
1558 error_emitted = true;
1559 }
1560
1561 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1562 *
1563 * "Except for array indexing, structure member selection, and
1564 * parentheses, opaque variables are not allowed to be operands in
1565 * expressions; such use results in a compile-time error."
1566 */
1567 if (type->contains_opaque()) {
1568 _mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
1569 "of the ?: operator");
1570 error_emitted = true;
1571 }
1572
1573 ir_constant *cond_val = op[0]->constant_expression_value();
1574
1575 if (then_instructions.is_empty()
1576 && else_instructions.is_empty()
1577 && cond_val != NULL) {
1578 result = cond_val->value.b[0] ? op[1] : op[2];
1579 } else {
1580 /* The copy to conditional_tmp reads the whole array. */
1581 if (type->is_array()) {
1582 mark_whole_array_access(op[1]);
1583 mark_whole_array_access(op[2]);
1584 }
1585
1586 ir_variable *const tmp =
1587 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1588 instructions->push_tail(tmp);
1589
1590 ir_if *const stmt = new(ctx) ir_if(op[0]);
1591 instructions->push_tail(stmt);
1592
1593 then_instructions.move_nodes_to(& stmt->then_instructions);
1594 ir_dereference *const then_deref =
1595 new(ctx) ir_dereference_variable(tmp);
1596 ir_assignment *const then_assign =
1597 new(ctx) ir_assignment(then_deref, op[1]);
1598 stmt->then_instructions.push_tail(then_assign);
1599
1600 else_instructions.move_nodes_to(& stmt->else_instructions);
1601 ir_dereference *const else_deref =
1602 new(ctx) ir_dereference_variable(tmp);
1603 ir_assignment *const else_assign =
1604 new(ctx) ir_assignment(else_deref, op[2]);
1605 stmt->else_instructions.push_tail(else_assign);
1606
1607 result = new(ctx) ir_dereference_variable(tmp);
1608 }
1609 break;
1610 }
1611
1612 case ast_pre_inc:
1613 case ast_pre_dec: {
1614 this->non_lvalue_description = (this->oper == ast_pre_inc)
1615 ? "pre-increment operation" : "pre-decrement operation";
1616
1617 op[0] = this->subexpressions[0]->hir(instructions, state);
1618 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1619
1620 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1621
1622 ir_rvalue *temp_rhs;
1623 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1624 op[0], op[1]);
1625
1626 error_emitted =
1627 do_assignment(instructions, state,
1628 this->subexpressions[0]->non_lvalue_description,
1629 op[0]->clone(ctx, NULL), temp_rhs,
1630 &result, needs_rvalue, false,
1631 this->subexpressions[0]->get_location());
1632 break;
1633 }
1634
1635 case ast_post_inc:
1636 case ast_post_dec: {
1637 this->non_lvalue_description = (this->oper == ast_post_inc)
1638 ? "post-increment operation" : "post-decrement operation";
1639 op[0] = this->subexpressions[0]->hir(instructions, state);
1640 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1641
1642 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1643
1644 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1645
1646 ir_rvalue *temp_rhs;
1647 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1648 op[0], op[1]);
1649
1650 /* Get a temporary of a copy of the lvalue before it's modified.
1651 * This may get thrown away later.
1652 */
1653 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1654
1655 ir_rvalue *junk_rvalue;
1656 error_emitted =
1657 do_assignment(instructions, state,
1658 this->subexpressions[0]->non_lvalue_description,
1659 op[0]->clone(ctx, NULL), temp_rhs,
1660 &junk_rvalue, false, false,
1661 this->subexpressions[0]->get_location());
1662
1663 break;
1664 }
1665
1666 case ast_field_selection:
1667 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1668 break;
1669
1670 case ast_array_index: {
1671 YYLTYPE index_loc = subexpressions[1]->get_location();
1672
1673 op[0] = subexpressions[0]->hir(instructions, state);
1674 op[1] = subexpressions[1]->hir(instructions, state);
1675
1676 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1677 loc, index_loc);
1678
1679 if (result->type->is_error())
1680 error_emitted = true;
1681
1682 break;
1683 }
1684
1685 case ast_function_call:
1686 /* Should *NEVER* get here. ast_function_call should always be handled
1687 * by ast_function_expression::hir.
1688 */
1689 assert(0);
1690 break;
1691
1692 case ast_identifier: {
1693 /* ast_identifier can appear several places in a full abstract syntax
1694 * tree. This particular use must be at location specified in the grammar
1695 * as 'variable_identifier'.
1696 */
1697 ir_variable *var =
1698 state->symbols->get_variable(this->primary_expression.identifier);
1699
1700 if (var != NULL) {
1701 var->data.used = true;
1702 result = new(ctx) ir_dereference_variable(var);
1703 } else {
1704 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1705 this->primary_expression.identifier);
1706
1707 result = ir_rvalue::error_value(ctx);
1708 error_emitted = true;
1709 }
1710 break;
1711 }
1712
1713 case ast_int_constant:
1714 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1715 break;
1716
1717 case ast_uint_constant:
1718 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1719 break;
1720
1721 case ast_float_constant:
1722 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1723 break;
1724
1725 case ast_bool_constant:
1726 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1727 break;
1728
1729 case ast_double_constant:
1730 result = new(ctx) ir_constant(this->primary_expression.double_constant);
1731 break;
1732
1733 case ast_sequence: {
1734 /* It should not be possible to generate a sequence in the AST without
1735 * any expressions in it.
1736 */
1737 assert(!this->expressions.is_empty());
1738
1739 /* The r-value of a sequence is the last expression in the sequence. If
1740 * the other expressions in the sequence do not have side-effects (and
1741 * therefore add instructions to the instruction list), they get dropped
1742 * on the floor.
1743 */
1744 exec_node *previous_tail_pred = NULL;
1745 YYLTYPE previous_operand_loc = loc;
1746
1747 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1748 /* If one of the operands of comma operator does not generate any
1749 * code, we want to emit a warning. At each pass through the loop
1750 * previous_tail_pred will point to the last instruction in the
1751 * stream *before* processing the previous operand. Naturally,
1752 * instructions->tail_pred will point to the last instruction in the
1753 * stream *after* processing the previous operand. If the two
1754 * pointers match, then the previous operand had no effect.
1755 *
1756 * The warning behavior here differs slightly from GCC. GCC will
1757 * only emit a warning if none of the left-hand operands have an
1758 * effect. However, it will emit a warning for each. I believe that
1759 * there are some cases in C (especially with GCC extensions) where
1760 * it is useful to have an intermediate step in a sequence have no
1761 * effect, but I don't think these cases exist in GLSL. Either way,
1762 * it would be a giant hassle to replicate that behavior.
1763 */
1764 if (previous_tail_pred == instructions->tail_pred) {
1765 _mesa_glsl_warning(&previous_operand_loc, state,
1766 "left-hand operand of comma expression has "
1767 "no effect");
1768 }
1769
1770 /* tail_pred is directly accessed instead of using the get_tail()
1771 * method for performance reasons. get_tail() has extra code to
1772 * return NULL when the list is empty. We don't care about that
1773 * here, so using tail_pred directly is fine.
1774 */
1775 previous_tail_pred = instructions->tail_pred;
1776 previous_operand_loc = ast->get_location();
1777
1778 result = ast->hir(instructions, state);
1779 }
1780
1781 /* Any errors should have already been emitted in the loop above.
1782 */
1783 error_emitted = true;
1784 break;
1785 }
1786 }
1787 type = NULL; /* use result->type, not type. */
1788 assert(result != NULL || !needs_rvalue);
1789
1790 if (result && result->type->is_error() && !error_emitted)
1791 _mesa_glsl_error(& loc, state, "type mismatch");
1792
1793 return result;
1794 }
1795
1796
1797 ir_rvalue *
1798 ast_expression_statement::hir(exec_list *instructions,
1799 struct _mesa_glsl_parse_state *state)
1800 {
1801 /* It is possible to have expression statements that don't have an
1802 * expression. This is the solitary semicolon:
1803 *
1804 * for (i = 0; i < 5; i++)
1805 * ;
1806 *
1807 * In this case the expression will be NULL. Test for NULL and don't do
1808 * anything in that case.
1809 */
1810 if (expression != NULL)
1811 expression->hir_no_rvalue(instructions, state);
1812
1813 /* Statements do not have r-values.
1814 */
1815 return NULL;
1816 }
1817
1818
1819 ir_rvalue *
1820 ast_compound_statement::hir(exec_list *instructions,
1821 struct _mesa_glsl_parse_state *state)
1822 {
1823 if (new_scope)
1824 state->symbols->push_scope();
1825
1826 foreach_list_typed (ast_node, ast, link, &this->statements)
1827 ast->hir(instructions, state);
1828
1829 if (new_scope)
1830 state->symbols->pop_scope();
1831
1832 /* Compound statements do not have r-values.
1833 */
1834 return NULL;
1835 }
1836
1837 /**
1838 * Evaluate the given exec_node (which should be an ast_node representing
1839 * a single array dimension) and return its integer value.
1840 */
1841 static unsigned
1842 process_array_size(exec_node *node,
1843 struct _mesa_glsl_parse_state *state)
1844 {
1845 exec_list dummy_instructions;
1846
1847 ast_node *array_size = exec_node_data(ast_node, node, link);
1848 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1849 YYLTYPE loc = array_size->get_location();
1850
1851 if (ir == NULL) {
1852 _mesa_glsl_error(& loc, state,
1853 "array size could not be resolved");
1854 return 0;
1855 }
1856
1857 if (!ir->type->is_integer()) {
1858 _mesa_glsl_error(& loc, state,
1859 "array size must be integer type");
1860 return 0;
1861 }
1862
1863 if (!ir->type->is_scalar()) {
1864 _mesa_glsl_error(& loc, state,
1865 "array size must be scalar type");
1866 return 0;
1867 }
1868
1869 ir_constant *const size = ir->constant_expression_value();
1870 if (size == NULL) {
1871 _mesa_glsl_error(& loc, state, "array size must be a "
1872 "constant valued expression");
1873 return 0;
1874 }
1875
1876 if (size->value.i[0] <= 0) {
1877 _mesa_glsl_error(& loc, state, "array size must be > 0");
1878 return 0;
1879 }
1880
1881 assert(size->type == ir->type);
1882
1883 /* If the array size is const (and we've verified that
1884 * it is) then no instructions should have been emitted
1885 * when we converted it to HIR. If they were emitted,
1886 * then either the array size isn't const after all, or
1887 * we are emitting unnecessary instructions.
1888 */
1889 assert(dummy_instructions.is_empty());
1890
1891 return size->value.u[0];
1892 }
1893
1894 static const glsl_type *
1895 process_array_type(YYLTYPE *loc, const glsl_type *base,
1896 ast_array_specifier *array_specifier,
1897 struct _mesa_glsl_parse_state *state)
1898 {
1899 const glsl_type *array_type = base;
1900
1901 if (array_specifier != NULL) {
1902 if (base->is_array()) {
1903
1904 /* From page 19 (page 25) of the GLSL 1.20 spec:
1905 *
1906 * "Only one-dimensional arrays may be declared."
1907 */
1908 if (!state->ARB_arrays_of_arrays_enable) {
1909 _mesa_glsl_error(loc, state,
1910 "invalid array of `%s'"
1911 "GL_ARB_arrays_of_arrays "
1912 "required for defining arrays of arrays",
1913 base->name);
1914 return glsl_type::error_type;
1915 }
1916
1917 if (base->length == 0) {
1918 _mesa_glsl_error(loc, state,
1919 "only the outermost array dimension can "
1920 "be unsized",
1921 base->name);
1922 return glsl_type::error_type;
1923 }
1924 }
1925
1926 for (exec_node *node = array_specifier->array_dimensions.tail_pred;
1927 !node->is_head_sentinel(); node = node->prev) {
1928 unsigned array_size = process_array_size(node, state);
1929 array_type = glsl_type::get_array_instance(array_type, array_size);
1930 }
1931
1932 if (array_specifier->is_unsized_array)
1933 array_type = glsl_type::get_array_instance(array_type, 0);
1934 }
1935
1936 return array_type;
1937 }
1938
1939
1940 const glsl_type *
1941 ast_type_specifier::glsl_type(const char **name,
1942 struct _mesa_glsl_parse_state *state) const
1943 {
1944 const struct glsl_type *type;
1945
1946 type = state->symbols->get_type(this->type_name);
1947 *name = this->type_name;
1948
1949 YYLTYPE loc = this->get_location();
1950 type = process_array_type(&loc, type, this->array_specifier, state);
1951
1952 return type;
1953 }
1954
1955 const glsl_type *
1956 ast_fully_specified_type::glsl_type(const char **name,
1957 struct _mesa_glsl_parse_state *state) const
1958 {
1959 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1960
1961 if (type == NULL)
1962 return NULL;
1963
1964 if (type->base_type == GLSL_TYPE_FLOAT
1965 && state->es_shader
1966 && state->stage == MESA_SHADER_FRAGMENT
1967 && this->qualifier.precision == ast_precision_none
1968 && state->symbols->get_variable("#default precision") == NULL) {
1969 YYLTYPE loc = this->get_location();
1970 _mesa_glsl_error(&loc, state,
1971 "no precision specified this scope for type `%s'",
1972 type->name);
1973 }
1974
1975 return type;
1976 }
1977
1978 /**
1979 * Determine whether a toplevel variable declaration declares a varying. This
1980 * function operates by examining the variable's mode and the shader target,
1981 * so it correctly identifies linkage variables regardless of whether they are
1982 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1983 *
1984 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1985 * this function will produce undefined results.
1986 */
1987 static bool
1988 is_varying_var(ir_variable *var, gl_shader_stage target)
1989 {
1990 switch (target) {
1991 case MESA_SHADER_VERTEX:
1992 return var->data.mode == ir_var_shader_out;
1993 case MESA_SHADER_FRAGMENT:
1994 return var->data.mode == ir_var_shader_in;
1995 default:
1996 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
1997 }
1998 }
1999
2000
2001 /**
2002 * Matrix layout qualifiers are only allowed on certain types
2003 */
2004 static void
2005 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2006 YYLTYPE *loc,
2007 const glsl_type *type,
2008 ir_variable *var)
2009 {
2010 if (var && !var->is_in_uniform_block()) {
2011 /* Layout qualifiers may only apply to interface blocks and fields in
2012 * them.
2013 */
2014 _mesa_glsl_error(loc, state,
2015 "uniform block layout qualifiers row_major and "
2016 "column_major may not be applied to variables "
2017 "outside of uniform blocks");
2018 } else if (!type->is_matrix()) {
2019 /* The OpenGL ES 3.0 conformance tests did not originally allow
2020 * matrix layout qualifiers on non-matrices. However, the OpenGL
2021 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2022 * amended to specifically allow these layouts on all types. Emit
2023 * a warning so that people know their code may not be portable.
2024 */
2025 _mesa_glsl_warning(loc, state,
2026 "uniform block layout qualifiers row_major and "
2027 "column_major applied to non-matrix types may "
2028 "be rejected by older compilers");
2029 } else if (type->is_record()) {
2030 /* We allow 'layout(row_major)' on structure types because it's the only
2031 * way to get row-major layouts on matrices contained in structures.
2032 */
2033 _mesa_glsl_warning(loc, state,
2034 "uniform block layout qualifiers row_major and "
2035 "column_major applied to structure types is not "
2036 "strictly conformant and may be rejected by other "
2037 "compilers");
2038 }
2039 }
2040
2041 static bool
2042 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
2043 YYLTYPE *loc,
2044 ir_variable *var,
2045 const ast_type_qualifier *qual)
2046 {
2047 if (var->data.mode != ir_var_uniform) {
2048 _mesa_glsl_error(loc, state,
2049 "the \"binding\" qualifier only applies to uniforms");
2050 return false;
2051 }
2052
2053 if (qual->binding < 0) {
2054 _mesa_glsl_error(loc, state, "binding values must be >= 0");
2055 return false;
2056 }
2057
2058 const struct gl_context *const ctx = state->ctx;
2059 unsigned elements = var->type->is_array() ? var->type->length : 1;
2060 unsigned max_index = qual->binding + elements - 1;
2061
2062 if (var->type->is_interface()) {
2063 /* UBOs. From page 60 of the GLSL 4.20 specification:
2064 * "If the binding point for any uniform block instance is less than zero,
2065 * or greater than or equal to the implementation-dependent maximum
2066 * number of uniform buffer bindings, a compilation error will occur.
2067 * When the binding identifier is used with a uniform block instanced as
2068 * an array of size N, all elements of the array from binding through
2069 * binding + N – 1 must be within this range."
2070 *
2071 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2072 */
2073 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
2074 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
2075 "the maximum number of UBO binding points (%d)",
2076 qual->binding, elements,
2077 ctx->Const.MaxUniformBufferBindings);
2078 return false;
2079 }
2080 } else if (var->type->is_sampler() ||
2081 (var->type->is_array() && var->type->fields.array->is_sampler())) {
2082 /* Samplers. From page 63 of the GLSL 4.20 specification:
2083 * "If the binding is less than zero, or greater than or equal to the
2084 * implementation-dependent maximum supported number of units, a
2085 * compilation error will occur. When the binding identifier is used
2086 * with an array of size N, all elements of the array from binding
2087 * through binding + N - 1 must be within this range."
2088 */
2089 unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;
2090
2091 if (max_index >= limit) {
2092 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
2093 "exceeds the maximum number of texture image units "
2094 "(%d)", qual->binding, elements, limit);
2095
2096 return false;
2097 }
2098 } else if (var->type->contains_atomic()) {
2099 assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
2100 if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
2101 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
2102 " maximum number of atomic counter buffer bindings"
2103 "(%d)", qual->binding,
2104 ctx->Const.MaxAtomicBufferBindings);
2105
2106 return false;
2107 }
2108 } else {
2109 _mesa_glsl_error(loc, state,
2110 "the \"binding\" qualifier only applies to uniform "
2111 "blocks, samplers, atomic counters, or arrays thereof");
2112 return false;
2113 }
2114
2115 return true;
2116 }
2117
2118
2119 static glsl_interp_qualifier
2120 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
2121 ir_variable_mode mode,
2122 struct _mesa_glsl_parse_state *state,
2123 YYLTYPE *loc)
2124 {
2125 glsl_interp_qualifier interpolation;
2126 if (qual->flags.q.flat)
2127 interpolation = INTERP_QUALIFIER_FLAT;
2128 else if (qual->flags.q.noperspective)
2129 interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2130 else if (qual->flags.q.smooth)
2131 interpolation = INTERP_QUALIFIER_SMOOTH;
2132 else
2133 interpolation = INTERP_QUALIFIER_NONE;
2134
2135 if (interpolation != INTERP_QUALIFIER_NONE) {
2136 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2137 _mesa_glsl_error(loc, state,
2138 "interpolation qualifier `%s' can only be applied to "
2139 "shader inputs or outputs.",
2140 interpolation_string(interpolation));
2141
2142 }
2143
2144 if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
2145 (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
2146 _mesa_glsl_error(loc, state,
2147 "interpolation qualifier `%s' cannot be applied to "
2148 "vertex shader inputs or fragment shader outputs",
2149 interpolation_string(interpolation));
2150 }
2151 }
2152
2153 return interpolation;
2154 }
2155
2156
2157 static void
2158 validate_explicit_location(const struct ast_type_qualifier *qual,
2159 ir_variable *var,
2160 struct _mesa_glsl_parse_state *state,
2161 YYLTYPE *loc)
2162 {
2163 bool fail = false;
2164
2165 /* Checks for GL_ARB_explicit_uniform_location. */
2166 if (qual->flags.q.uniform) {
2167 if (!state->check_explicit_uniform_location_allowed(loc, var))
2168 return;
2169
2170 const struct gl_context *const ctx = state->ctx;
2171 unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
2172
2173 /* ARB_explicit_uniform_location specification states:
2174 *
2175 * "The explicitly defined locations and the generated locations
2176 * must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
2177 *
2178 * "Valid locations for default-block uniform variable locations
2179 * are in the range of 0 to the implementation-defined maximum
2180 * number of uniform locations."
2181 */
2182 if (qual->location < 0) {
2183 _mesa_glsl_error(loc, state,
2184 "explicit location < 0 for uniform %s", var->name);
2185 return;
2186 }
2187
2188 if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
2189 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
2190 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
2191 ctx->Const.MaxUserAssignableUniformLocations);
2192 return;
2193 }
2194
2195 var->data.explicit_location = true;
2196 var->data.location = qual->location;
2197 return;
2198 }
2199
2200 /* Between GL_ARB_explicit_attrib_location an
2201 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
2202 * stage can be assigned explicit locations. The checking here associates
2203 * the correct extension with the correct stage's input / output:
2204 *
2205 * input output
2206 * ----- ------
2207 * vertex explicit_loc sso
2208 * geometry sso sso
2209 * fragment sso explicit_loc
2210 */
2211 switch (state->stage) {
2212 case MESA_SHADER_VERTEX:
2213 if (var->data.mode == ir_var_shader_in) {
2214 if (!state->check_explicit_attrib_location_allowed(loc, var))
2215 return;
2216
2217 break;
2218 }
2219
2220 if (var->data.mode == ir_var_shader_out) {
2221 if (!state->check_separate_shader_objects_allowed(loc, var))
2222 return;
2223
2224 break;
2225 }
2226
2227 fail = true;
2228 break;
2229
2230 case MESA_SHADER_GEOMETRY:
2231 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
2232 if (!state->check_separate_shader_objects_allowed(loc, var))
2233 return;
2234
2235 break;
2236 }
2237
2238 fail = true;
2239 break;
2240
2241 case MESA_SHADER_FRAGMENT:
2242 if (var->data.mode == ir_var_shader_in) {
2243 if (!state->check_separate_shader_objects_allowed(loc, var))
2244 return;
2245
2246 break;
2247 }
2248
2249 if (var->data.mode == ir_var_shader_out) {
2250 if (!state->check_explicit_attrib_location_allowed(loc, var))
2251 return;
2252
2253 break;
2254 }
2255
2256 fail = true;
2257 break;
2258
2259 case MESA_SHADER_COMPUTE:
2260 _mesa_glsl_error(loc, state,
2261 "compute shader variables cannot be given "
2262 "explicit locations");
2263 return;
2264 };
2265
2266 if (fail) {
2267 _mesa_glsl_error(loc, state,
2268 "%s cannot be given an explicit location in %s shader",
2269 mode_string(var),
2270 _mesa_shader_stage_to_string(state->stage));
2271 } else {
2272 var->data.explicit_location = true;
2273
2274 /* This bit of silliness is needed because invalid explicit locations
2275 * are supposed to be flagged during linking. Small negative values
2276 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2277 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2278 * The linker needs to be able to differentiate these cases. This
2279 * ensures that negative values stay negative.
2280 */
2281 if (qual->location >= 0) {
2282 switch (state->stage) {
2283 case MESA_SHADER_VERTEX:
2284 var->data.location = (var->data.mode == ir_var_shader_in)
2285 ? (qual->location + VERT_ATTRIB_GENERIC0)
2286 : (qual->location + VARYING_SLOT_VAR0);
2287 break;
2288
2289 case MESA_SHADER_GEOMETRY:
2290 var->data.location = qual->location + VARYING_SLOT_VAR0;
2291 break;
2292
2293 case MESA_SHADER_FRAGMENT:
2294 var->data.location = (var->data.mode == ir_var_shader_out)
2295 ? (qual->location + FRAG_RESULT_DATA0)
2296 : (qual->location + VARYING_SLOT_VAR0);
2297 break;
2298 case MESA_SHADER_COMPUTE:
2299 assert(!"Unexpected shader type");
2300 break;
2301 }
2302 } else {
2303 var->data.location = qual->location;
2304 }
2305
2306 if (qual->flags.q.explicit_index) {
2307 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2308 * Layout Qualifiers):
2309 *
2310 * "It is also a compile-time error if a fragment shader
2311 * sets a layout index to less than 0 or greater than 1."
2312 *
2313 * Older specifications don't mandate a behavior; we take
2314 * this as a clarification and always generate the error.
2315 */
2316 if (qual->index < 0 || qual->index > 1) {
2317 _mesa_glsl_error(loc, state,
2318 "explicit index may only be 0 or 1");
2319 } else {
2320 var->data.explicit_index = true;
2321 var->data.index = qual->index;
2322 }
2323 }
2324 }
2325 }
2326
2327 static void
2328 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
2329 ir_variable *var,
2330 struct _mesa_glsl_parse_state *state,
2331 YYLTYPE *loc)
2332 {
2333 const glsl_type *base_type =
2334 (var->type->is_array() ? var->type->element_type() : var->type);
2335
2336 if (base_type->is_image()) {
2337 if (var->data.mode != ir_var_uniform &&
2338 var->data.mode != ir_var_function_in) {
2339 _mesa_glsl_error(loc, state, "image variables may only be declared as "
2340 "function parameters or uniform-qualified "
2341 "global variables");
2342 }
2343
2344 var->data.image_read_only |= qual->flags.q.read_only;
2345 var->data.image_write_only |= qual->flags.q.write_only;
2346 var->data.image_coherent |= qual->flags.q.coherent;
2347 var->data.image_volatile |= qual->flags.q._volatile;
2348 var->data.image_restrict |= qual->flags.q.restrict_flag;
2349 var->data.read_only = true;
2350
2351 if (qual->flags.q.explicit_image_format) {
2352 if (var->data.mode == ir_var_function_in) {
2353 _mesa_glsl_error(loc, state, "format qualifiers cannot be "
2354 "used on image function parameters");
2355 }
2356
2357 if (qual->image_base_type != base_type->sampler_type) {
2358 _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
2359 "base data type of the image");
2360 }
2361
2362 var->data.image_format = qual->image_format;
2363 } else {
2364 if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
2365 _mesa_glsl_error(loc, state, "uniforms not qualified with "
2366 "`writeonly' must have a format layout "
2367 "qualifier");
2368 }
2369
2370 var->data.image_format = GL_NONE;
2371 }
2372 }
2373 }
2374
2375 static inline const char*
2376 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
2377 {
2378 if (origin_upper_left && pixel_center_integer)
2379 return "origin_upper_left, pixel_center_integer";
2380 else if (origin_upper_left)
2381 return "origin_upper_left";
2382 else if (pixel_center_integer)
2383 return "pixel_center_integer";
2384 else
2385 return " ";
2386 }
2387
2388 static inline bool
2389 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
2390 const struct ast_type_qualifier *qual)
2391 {
2392 /* If gl_FragCoord was previously declared, and the qualifiers were
2393 * different in any way, return true.
2394 */
2395 if (state->fs_redeclares_gl_fragcoord) {
2396 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
2397 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
2398 }
2399
2400 return false;
2401 }
2402
2403 static void
2404 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
2405 ir_variable *var,
2406 struct _mesa_glsl_parse_state *state,
2407 YYLTYPE *loc,
2408 bool is_parameter)
2409 {
2410 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
2411
2412 if (qual->flags.q.invariant) {
2413 if (var->data.used) {
2414 _mesa_glsl_error(loc, state,
2415 "variable `%s' may not be redeclared "
2416 "`invariant' after being used",
2417 var->name);
2418 } else {
2419 var->data.invariant = 1;
2420 }
2421 }
2422
2423 if (qual->flags.q.precise) {
2424 if (var->data.used) {
2425 _mesa_glsl_error(loc, state,
2426 "variable `%s' may not be redeclared "
2427 "`precise' after being used",
2428 var->name);
2429 } else {
2430 var->data.precise = 1;
2431 }
2432 }
2433
2434 if (qual->flags.q.constant || qual->flags.q.attribute
2435 || qual->flags.q.uniform
2436 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2437 var->data.read_only = 1;
2438
2439 if (qual->flags.q.centroid)
2440 var->data.centroid = 1;
2441
2442 if (qual->flags.q.sample)
2443 var->data.sample = 1;
2444
2445 if (state->stage == MESA_SHADER_GEOMETRY &&
2446 qual->flags.q.out && qual->flags.q.stream) {
2447 var->data.stream = qual->stream;
2448 }
2449
2450 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
2451 var->type = glsl_type::error_type;
2452 _mesa_glsl_error(loc, state,
2453 "`attribute' variables may not be declared in the "
2454 "%s shader",
2455 _mesa_shader_stage_to_string(state->stage));
2456 }
2457
2458 /* Disallow layout qualifiers which may only appear on layout declarations. */
2459 if (qual->flags.q.prim_type) {
2460 _mesa_glsl_error(loc, state,
2461 "Primitive type may only be specified on GS input or output "
2462 "layout declaration, not on variables.");
2463 }
2464
2465 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2466 *
2467 * "However, the const qualifier cannot be used with out or inout."
2468 *
2469 * The same section of the GLSL 4.40 spec further clarifies this saying:
2470 *
2471 * "The const qualifier cannot be used with out or inout, or a
2472 * compile-time error results."
2473 */
2474 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2475 _mesa_glsl_error(loc, state,
2476 "`const' may not be applied to `out' or `inout' "
2477 "function parameters");
2478 }
2479
2480 /* If there is no qualifier that changes the mode of the variable, leave
2481 * the setting alone.
2482 */
2483 assert(var->data.mode != ir_var_temporary);
2484 if (qual->flags.q.in && qual->flags.q.out)
2485 var->data.mode = ir_var_function_inout;
2486 else if (qual->flags.q.in)
2487 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2488 else if (qual->flags.q.attribute
2489 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
2490 var->data.mode = ir_var_shader_in;
2491 else if (qual->flags.q.out)
2492 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2493 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
2494 var->data.mode = ir_var_shader_out;
2495 else if (qual->flags.q.uniform)
2496 var->data.mode = ir_var_uniform;
2497
2498 if (!is_parameter && is_varying_var(var, state->stage)) {
2499 /* User-defined ins/outs are not permitted in compute shaders. */
2500 if (state->stage == MESA_SHADER_COMPUTE) {
2501 _mesa_glsl_error(loc, state,
2502 "user-defined input and output variables are not "
2503 "permitted in compute shaders");
2504 }
2505
2506 /* This variable is being used to link data between shader stages (in
2507 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2508 * that is allowed for such purposes.
2509 *
2510 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2511 *
2512 * "The varying qualifier can be used only with the data types
2513 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2514 * these."
2515 *
2516 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2517 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2518 *
2519 * "Fragment inputs can only be signed and unsigned integers and
2520 * integer vectors, float, floating-point vectors, matrices, or
2521 * arrays of these. Structures cannot be input.
2522 *
2523 * Similar text exists in the section on vertex shader outputs.
2524 *
2525 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2526 * 3.00 spec allows structs as well. Varying structs are also allowed
2527 * in GLSL 1.50.
2528 */
2529 switch (var->type->get_scalar_type()->base_type) {
2530 case GLSL_TYPE_FLOAT:
2531 /* Ok in all GLSL versions */
2532 break;
2533 case GLSL_TYPE_UINT:
2534 case GLSL_TYPE_INT:
2535 if (state->is_version(130, 300))
2536 break;
2537 _mesa_glsl_error(loc, state,
2538 "varying variables must be of base type float in %s",
2539 state->get_version_string());
2540 break;
2541 case GLSL_TYPE_STRUCT:
2542 if (state->is_version(150, 300))
2543 break;
2544 _mesa_glsl_error(loc, state,
2545 "varying variables may not be of type struct");
2546 break;
2547 case GLSL_TYPE_DOUBLE:
2548 break;
2549 default:
2550 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2551 break;
2552 }
2553 }
2554
2555 if (state->all_invariant && (state->current_function == NULL)) {
2556 switch (state->stage) {
2557 case MESA_SHADER_VERTEX:
2558 if (var->data.mode == ir_var_shader_out)
2559 var->data.invariant = true;
2560 break;
2561 case MESA_SHADER_GEOMETRY:
2562 if ((var->data.mode == ir_var_shader_in)
2563 || (var->data.mode == ir_var_shader_out))
2564 var->data.invariant = true;
2565 break;
2566 case MESA_SHADER_FRAGMENT:
2567 if (var->data.mode == ir_var_shader_in)
2568 var->data.invariant = true;
2569 break;
2570 case MESA_SHADER_COMPUTE:
2571 /* Invariance isn't meaningful in compute shaders. */
2572 break;
2573 }
2574 }
2575
2576 var->data.interpolation =
2577 interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
2578 state, loc);
2579
2580 var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
2581 var->data.origin_upper_left = qual->flags.q.origin_upper_left;
2582 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2583 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2584 const char *const qual_string = (qual->flags.q.origin_upper_left)
2585 ? "origin_upper_left" : "pixel_center_integer";
2586
2587 _mesa_glsl_error(loc, state,
2588 "layout qualifier `%s' can only be applied to "
2589 "fragment shader input `gl_FragCoord'",
2590 qual_string);
2591 }
2592
2593 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
2594
2595 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
2596 *
2597 * "Within any shader, the first redeclarations of gl_FragCoord
2598 * must appear before any use of gl_FragCoord."
2599 *
2600 * Generate a compiler error if above condition is not met by the
2601 * fragment shader.
2602 */
2603 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
2604 if (earlier != NULL &&
2605 earlier->data.used &&
2606 !state->fs_redeclares_gl_fragcoord) {
2607 _mesa_glsl_error(loc, state,
2608 "gl_FragCoord used before its first redeclaration "
2609 "in fragment shader");
2610 }
2611
2612 /* Make sure all gl_FragCoord redeclarations specify the same layout
2613 * qualifiers.
2614 */
2615 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
2616 const char *const qual_string =
2617 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
2618 qual->flags.q.pixel_center_integer);
2619
2620 const char *const state_string =
2621 get_layout_qualifier_string(state->fs_origin_upper_left,
2622 state->fs_pixel_center_integer);
2623
2624 _mesa_glsl_error(loc, state,
2625 "gl_FragCoord redeclared with different layout "
2626 "qualifiers (%s) and (%s) ",
2627 state_string,
2628 qual_string);
2629 }
2630 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
2631 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
2632 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
2633 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
2634 state->fs_redeclares_gl_fragcoord =
2635 state->fs_origin_upper_left ||
2636 state->fs_pixel_center_integer ||
2637 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
2638 }
2639
2640 if (qual->flags.q.explicit_location) {
2641 validate_explicit_location(qual, var, state, loc);
2642 } else if (qual->flags.q.explicit_index) {
2643 _mesa_glsl_error(loc, state, "explicit index requires explicit location");
2644 }
2645
2646 if (qual->flags.q.explicit_binding &&
2647 validate_binding_qualifier(state, loc, var, qual)) {
2648 var->data.explicit_binding = true;
2649 var->data.binding = qual->binding;
2650 }
2651
2652 if (var->type->contains_atomic()) {
2653 if (var->data.mode == ir_var_uniform) {
2654 if (var->data.explicit_binding) {
2655 unsigned *offset =
2656 &state->atomic_counter_offsets[var->data.binding];
2657
2658 if (*offset % ATOMIC_COUNTER_SIZE)
2659 _mesa_glsl_error(loc, state,
2660 "misaligned atomic counter offset");
2661
2662 var->data.atomic.offset = *offset;
2663 *offset += var->type->atomic_size();
2664
2665 } else {
2666 _mesa_glsl_error(loc, state,
2667 "atomic counters require explicit binding point");
2668 }
2669 } else if (var->data.mode != ir_var_function_in) {
2670 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
2671 "function parameters or uniform-qualified "
2672 "global variables");
2673 }
2674 }
2675
2676 /* Does the declaration use the deprecated 'attribute' or 'varying'
2677 * keywords?
2678 */
2679 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2680 || qual->flags.q.varying;
2681
2682
2683 /* Validate auxiliary storage qualifiers */
2684
2685 /* From section 4.3.4 of the GLSL 1.30 spec:
2686 * "It is an error to use centroid in in a vertex shader."
2687 *
2688 * From section 4.3.4 of the GLSL ES 3.00 spec:
2689 * "It is an error to use centroid in or interpolation qualifiers in
2690 * a vertex shader input."
2691 */
2692
2693 /* Section 4.3.6 of the GLSL 1.30 specification states:
2694 * "It is an error to use centroid out in a fragment shader."
2695 *
2696 * The GL_ARB_shading_language_420pack extension specification states:
2697 * "It is an error to use auxiliary storage qualifiers or interpolation
2698 * qualifiers on an output in a fragment shader."
2699 */
2700 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
2701 _mesa_glsl_error(loc, state,
2702 "sample qualifier may only be used on `in` or `out` "
2703 "variables between shader stages");
2704 }
2705 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
2706 _mesa_glsl_error(loc, state,
2707 "centroid qualifier may only be used with `in', "
2708 "`out' or `varying' variables between shader stages");
2709 }
2710
2711
2712 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2713 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2714 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2715 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2716 * These extensions and all following extensions that add the 'layout'
2717 * keyword have been modified to require the use of 'in' or 'out'.
2718 *
2719 * The following extension do not allow the deprecated keywords:
2720 *
2721 * GL_AMD_conservative_depth
2722 * GL_ARB_conservative_depth
2723 * GL_ARB_gpu_shader5
2724 * GL_ARB_separate_shader_objects
2725 * GL_ARB_tesselation_shader
2726 * GL_ARB_transform_feedback3
2727 * GL_ARB_uniform_buffer_object
2728 *
2729 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2730 * allow layout with the deprecated keywords.
2731 */
2732 const bool relaxed_layout_qualifier_checking =
2733 state->ARB_fragment_coord_conventions_enable;
2734
2735 if (qual->has_layout() && uses_deprecated_qualifier) {
2736 if (relaxed_layout_qualifier_checking) {
2737 _mesa_glsl_warning(loc, state,
2738 "`layout' qualifier may not be used with "
2739 "`attribute' or `varying'");
2740 } else {
2741 _mesa_glsl_error(loc, state,
2742 "`layout' qualifier may not be used with "
2743 "`attribute' or `varying'");
2744 }
2745 }
2746
2747 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2748 * AMD_conservative_depth.
2749 */
2750 int depth_layout_count = qual->flags.q.depth_any
2751 + qual->flags.q.depth_greater
2752 + qual->flags.q.depth_less
2753 + qual->flags.q.depth_unchanged;
2754 if (depth_layout_count > 0
2755 && !state->AMD_conservative_depth_enable
2756 && !state->ARB_conservative_depth_enable) {
2757 _mesa_glsl_error(loc, state,
2758 "extension GL_AMD_conservative_depth or "
2759 "GL_ARB_conservative_depth must be enabled "
2760 "to use depth layout qualifiers");
2761 } else if (depth_layout_count > 0
2762 && strcmp(var->name, "gl_FragDepth") != 0) {
2763 _mesa_glsl_error(loc, state,
2764 "depth layout qualifiers can be applied only to "
2765 "gl_FragDepth");
2766 } else if (depth_layout_count > 1
2767 && strcmp(var->name, "gl_FragDepth") == 0) {
2768 _mesa_glsl_error(loc, state,
2769 "at most one depth layout qualifier can be applied to "
2770 "gl_FragDepth");
2771 }
2772 if (qual->flags.q.depth_any)
2773 var->data.depth_layout = ir_depth_layout_any;
2774 else if (qual->flags.q.depth_greater)
2775 var->data.depth_layout = ir_depth_layout_greater;
2776 else if (qual->flags.q.depth_less)
2777 var->data.depth_layout = ir_depth_layout_less;
2778 else if (qual->flags.q.depth_unchanged)
2779 var->data.depth_layout = ir_depth_layout_unchanged;
2780 else
2781 var->data.depth_layout = ir_depth_layout_none;
2782
2783 if (qual->flags.q.std140 ||
2784 qual->flags.q.packed ||
2785 qual->flags.q.shared) {
2786 _mesa_glsl_error(loc, state,
2787 "uniform block layout qualifiers std140, packed, and "
2788 "shared can only be applied to uniform blocks, not "
2789 "members");
2790 }
2791
2792 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2793 validate_matrix_layout_for_type(state, loc, var->type, var);
2794 }
2795
2796 if (var->type->contains_image())
2797 apply_image_qualifier_to_variable(qual, var, state, loc);
2798 }
2799
2800 /**
2801 * Get the variable that is being redeclared by this declaration
2802 *
2803 * Semantic checks to verify the validity of the redeclaration are also
2804 * performed. If semantic checks fail, compilation error will be emitted via
2805 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2806 *
2807 * \returns
2808 * A pointer to an existing variable in the current scope if the declaration
2809 * is a redeclaration, \c NULL otherwise.
2810 */
2811 static ir_variable *
2812 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2813 struct _mesa_glsl_parse_state *state,
2814 bool allow_all_redeclarations)
2815 {
2816 /* Check if this declaration is actually a re-declaration, either to
2817 * resize an array or add qualifiers to an existing variable.
2818 *
2819 * This is allowed for variables in the current scope, or when at
2820 * global scope (for built-ins in the implicit outer scope).
2821 */
2822 ir_variable *earlier = state->symbols->get_variable(var->name);
2823 if (earlier == NULL ||
2824 (state->current_function != NULL &&
2825 !state->symbols->name_declared_this_scope(var->name))) {
2826 return NULL;
2827 }
2828
2829
2830 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2831 *
2832 * "It is legal to declare an array without a size and then
2833 * later re-declare the same name as an array of the same
2834 * type and specify a size."
2835 */
2836 if (earlier->type->is_unsized_array() && var->type->is_array()
2837 && (var->type->element_type() == earlier->type->element_type())) {
2838 /* FINISHME: This doesn't match the qualifiers on the two
2839 * FINISHME: declarations. It's not 100% clear whether this is
2840 * FINISHME: required or not.
2841 */
2842
2843 const unsigned size = unsigned(var->type->array_size());
2844 check_builtin_array_max_size(var->name, size, loc, state);
2845 if ((size > 0) && (size <= earlier->data.max_array_access)) {
2846 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2847 "previous access",
2848 earlier->data.max_array_access);
2849 }
2850
2851 earlier->type = var->type;
2852 delete var;
2853 var = NULL;
2854 } else if ((state->ARB_fragment_coord_conventions_enable ||
2855 state->is_version(150, 0))
2856 && strcmp(var->name, "gl_FragCoord") == 0
2857 && earlier->type == var->type
2858 && earlier->data.mode == var->data.mode) {
2859 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2860 * qualifiers.
2861 */
2862 earlier->data.origin_upper_left = var->data.origin_upper_left;
2863 earlier->data.pixel_center_integer = var->data.pixel_center_integer;
2864
2865 /* According to section 4.3.7 of the GLSL 1.30 spec,
2866 * the following built-in varaibles can be redeclared with an
2867 * interpolation qualifier:
2868 * * gl_FrontColor
2869 * * gl_BackColor
2870 * * gl_FrontSecondaryColor
2871 * * gl_BackSecondaryColor
2872 * * gl_Color
2873 * * gl_SecondaryColor
2874 */
2875 } else if (state->is_version(130, 0)
2876 && (strcmp(var->name, "gl_FrontColor") == 0
2877 || strcmp(var->name, "gl_BackColor") == 0
2878 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2879 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2880 || strcmp(var->name, "gl_Color") == 0
2881 || strcmp(var->name, "gl_SecondaryColor") == 0)
2882 && earlier->type == var->type
2883 && earlier->data.mode == var->data.mode) {
2884 earlier->data.interpolation = var->data.interpolation;
2885
2886 /* Layout qualifiers for gl_FragDepth. */
2887 } else if ((state->AMD_conservative_depth_enable ||
2888 state->ARB_conservative_depth_enable)
2889 && strcmp(var->name, "gl_FragDepth") == 0
2890 && earlier->type == var->type
2891 && earlier->data.mode == var->data.mode) {
2892
2893 /** From the AMD_conservative_depth spec:
2894 * Within any shader, the first redeclarations of gl_FragDepth
2895 * must appear before any use of gl_FragDepth.
2896 */
2897 if (earlier->data.used) {
2898 _mesa_glsl_error(&loc, state,
2899 "the first redeclaration of gl_FragDepth "
2900 "must appear before any use of gl_FragDepth");
2901 }
2902
2903 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2904 if (earlier->data.depth_layout != ir_depth_layout_none
2905 && earlier->data.depth_layout != var->data.depth_layout) {
2906 _mesa_glsl_error(&loc, state,
2907 "gl_FragDepth: depth layout is declared here "
2908 "as '%s, but it was previously declared as "
2909 "'%s'",
2910 depth_layout_string(var->data.depth_layout),
2911 depth_layout_string(earlier->data.depth_layout));
2912 }
2913
2914 earlier->data.depth_layout = var->data.depth_layout;
2915
2916 } else if (allow_all_redeclarations) {
2917 if (earlier->data.mode != var->data.mode) {
2918 _mesa_glsl_error(&loc, state,
2919 "redeclaration of `%s' with incorrect qualifiers",
2920 var->name);
2921 } else if (earlier->type != var->type) {
2922 _mesa_glsl_error(&loc, state,
2923 "redeclaration of `%s' has incorrect type",
2924 var->name);
2925 }
2926 } else {
2927 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2928 }
2929
2930 return earlier;
2931 }
2932
2933 /**
2934 * Generate the IR for an initializer in a variable declaration
2935 */
2936 ir_rvalue *
2937 process_initializer(ir_variable *var, ast_declaration *decl,
2938 ast_fully_specified_type *type,
2939 exec_list *initializer_instructions,
2940 struct _mesa_glsl_parse_state *state)
2941 {
2942 ir_rvalue *result = NULL;
2943
2944 YYLTYPE initializer_loc = decl->initializer->get_location();
2945
2946 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2947 *
2948 * "All uniform variables are read-only and are initialized either
2949 * directly by an application via API commands, or indirectly by
2950 * OpenGL."
2951 */
2952 if (var->data.mode == ir_var_uniform) {
2953 state->check_version(120, 0, &initializer_loc,
2954 "cannot initialize uniforms");
2955 }
2956
2957 /* From section 4.1.7 of the GLSL 4.40 spec:
2958 *
2959 * "Opaque variables [...] are initialized only through the
2960 * OpenGL API; they cannot be declared with an initializer in a
2961 * shader."
2962 */
2963 if (var->type->contains_opaque()) {
2964 _mesa_glsl_error(& initializer_loc, state,
2965 "cannot initialize opaque variable");
2966 }
2967
2968 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
2969 _mesa_glsl_error(& initializer_loc, state,
2970 "cannot initialize %s shader input / %s",
2971 _mesa_shader_stage_to_string(state->stage),
2972 (state->stage == MESA_SHADER_VERTEX)
2973 ? "attribute" : "varying");
2974 }
2975
2976 /* If the initializer is an ast_aggregate_initializer, recursively store
2977 * type information from the LHS into it, so that its hir() function can do
2978 * type checking.
2979 */
2980 if (decl->initializer->oper == ast_aggregate)
2981 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
2982
2983 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2984 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
2985
2986 /* Calculate the constant value if this is a const or uniform
2987 * declaration.
2988 */
2989 if (type->qualifier.flags.q.constant
2990 || type->qualifier.flags.q.uniform) {
2991 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
2992 var->type, rhs, true);
2993 if (new_rhs != NULL) {
2994 rhs = new_rhs;
2995
2996 ir_constant *constant_value = rhs->constant_expression_value();
2997 if (!constant_value) {
2998 /* If ARB_shading_language_420pack is enabled, initializers of
2999 * const-qualified local variables do not have to be constant
3000 * expressions. Const-qualified global variables must still be
3001 * initialized with constant expressions.
3002 */
3003 if (!state->ARB_shading_language_420pack_enable
3004 || state->current_function == NULL) {
3005 _mesa_glsl_error(& initializer_loc, state,
3006 "initializer of %s variable `%s' must be a "
3007 "constant expression",
3008 (type->qualifier.flags.q.constant)
3009 ? "const" : "uniform",
3010 decl->identifier);
3011 if (var->type->is_numeric()) {
3012 /* Reduce cascading errors. */
3013 var->constant_value = ir_constant::zero(state, var->type);
3014 }
3015 }
3016 } else {
3017 rhs = constant_value;
3018 var->constant_value = constant_value;
3019 }
3020 } else {
3021 if (var->type->is_numeric()) {
3022 /* Reduce cascading errors. */
3023 var->constant_value = ir_constant::zero(state, var->type);
3024 }
3025 }
3026 }
3027
3028 if (rhs && !rhs->type->is_error()) {
3029 bool temp = var->data.read_only;
3030 if (type->qualifier.flags.q.constant)
3031 var->data.read_only = false;
3032
3033 /* Never emit code to initialize a uniform.
3034 */
3035 const glsl_type *initializer_type;
3036 if (!type->qualifier.flags.q.uniform) {
3037 do_assignment(initializer_instructions, state,
3038 NULL,
3039 lhs, rhs,
3040 &result, true,
3041 true,
3042 type->get_location());
3043 initializer_type = result->type;
3044 } else
3045 initializer_type = rhs->type;
3046
3047 var->constant_initializer = rhs->constant_expression_value();
3048 var->data.has_initializer = true;
3049
3050 /* If the declared variable is an unsized array, it must inherrit
3051 * its full type from the initializer. A declaration such as
3052 *
3053 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
3054 *
3055 * becomes
3056 *
3057 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
3058 *
3059 * The assignment generated in the if-statement (below) will also
3060 * automatically handle this case for non-uniforms.
3061 *
3062 * If the declared variable is not an array, the types must
3063 * already match exactly. As a result, the type assignment
3064 * here can be done unconditionally. For non-uniforms the call
3065 * to do_assignment can change the type of the initializer (via
3066 * the implicit conversion rules). For uniforms the initializer
3067 * must be a constant expression, and the type of that expression
3068 * was validated above.
3069 */
3070 var->type = initializer_type;
3071
3072 var->data.read_only = temp;
3073 }
3074
3075 return result;
3076 }
3077
3078
3079 /**
3080 * Do additional processing necessary for geometry shader input declarations
3081 * (this covers both interface blocks arrays and bare input variables).
3082 */
3083 static void
3084 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
3085 YYLTYPE loc, ir_variable *var)
3086 {
3087 unsigned num_vertices = 0;
3088 if (state->gs_input_prim_type_specified) {
3089 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
3090 }
3091
3092 /* Geometry shader input variables must be arrays. Caller should have
3093 * reported an error for this.
3094 */
3095 if (!var->type->is_array()) {
3096 assert(state->error);
3097
3098 /* To avoid cascading failures, short circuit the checks below. */
3099 return;
3100 }
3101
3102 if (var->type->is_unsized_array()) {
3103 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
3104 *
3105 * All geometry shader input unsized array declarations will be
3106 * sized by an earlier input layout qualifier, when present, as per
3107 * the following table.
3108 *
3109 * Followed by a table mapping each allowed input layout qualifier to
3110 * the corresponding input length.
3111 */
3112 if (num_vertices != 0)
3113 var->type = glsl_type::get_array_instance(var->type->fields.array,
3114 num_vertices);
3115 } else {
3116 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
3117 * includes the following examples of compile-time errors:
3118 *
3119 * // code sequence within one shader...
3120 * in vec4 Color1[]; // size unknown
3121 * ...Color1.length()...// illegal, length() unknown
3122 * in vec4 Color2[2]; // size is 2
3123 * ...Color1.length()...// illegal, Color1 still has no size
3124 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
3125 * layout(lines) in; // legal, input size is 2, matching
3126 * in vec4 Color4[3]; // illegal, contradicts layout
3127 * ...
3128 *
3129 * To detect the case illustrated by Color3, we verify that the size of
3130 * an explicitly-sized array matches the size of any previously declared
3131 * explicitly-sized array. To detect the case illustrated by Color4, we
3132 * verify that the size of an explicitly-sized array is consistent with
3133 * any previously declared input layout.
3134 */
3135 if (num_vertices != 0 && var->type->length != num_vertices) {
3136 _mesa_glsl_error(&loc, state,
3137 "geometry shader input size contradicts previously"
3138 " declared layout (size is %u, but layout requires a"
3139 " size of %u)", var->type->length, num_vertices);
3140 } else if (state->gs_input_size != 0 &&
3141 var->type->length != state->gs_input_size) {
3142 _mesa_glsl_error(&loc, state,
3143 "geometry shader input sizes are "
3144 "inconsistent (size is %u, but a previous "
3145 "declaration has size %u)",
3146 var->type->length, state->gs_input_size);
3147 } else {
3148 state->gs_input_size = var->type->length;
3149 }
3150 }
3151 }
3152
3153
3154 void
3155 validate_identifier(const char *identifier, YYLTYPE loc,
3156 struct _mesa_glsl_parse_state *state)
3157 {
3158 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3159 *
3160 * "Identifiers starting with "gl_" are reserved for use by
3161 * OpenGL, and may not be declared in a shader as either a
3162 * variable or a function."
3163 */
3164 if (is_gl_identifier(identifier)) {
3165 _mesa_glsl_error(&loc, state,
3166 "identifier `%s' uses reserved `gl_' prefix",
3167 identifier);
3168 } else if (strstr(identifier, "__")) {
3169 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
3170 * spec:
3171 *
3172 * "In addition, all identifiers containing two
3173 * consecutive underscores (__) are reserved as
3174 * possible future keywords."
3175 *
3176 * The intention is that names containing __ are reserved for internal
3177 * use by the implementation, and names prefixed with GL_ are reserved
3178 * for use by Khronos. Names simply containing __ are dangerous to use,
3179 * but should be allowed.
3180 *
3181 * A future version of the GLSL specification will clarify this.
3182 */
3183 _mesa_glsl_warning(&loc, state,
3184 "identifier `%s' uses reserved `__' string",
3185 identifier);
3186 }
3187 }
3188
3189 static bool
3190 precision_qualifier_allowed(const glsl_type *type)
3191 {
3192 /* Precision qualifiers apply to floating point, integer and sampler
3193 * types.
3194 *
3195 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3196 * "Any floating point or any integer declaration can have the type
3197 * preceded by one of these precision qualifiers [...] Literal
3198 * constants do not have precision qualifiers. Neither do Boolean
3199 * variables.
3200 *
3201 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3202 * spec also says:
3203 *
3204 * "Precision qualifiers are added for code portability with OpenGL
3205 * ES, not for functionality. They have the same syntax as in OpenGL
3206 * ES."
3207 *
3208 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3209 *
3210 * "uniform lowp sampler2D sampler;
3211 * highp vec2 coord;
3212 * ...
3213 * lowp vec4 col = texture2D (sampler, coord);
3214 * // texture2D returns lowp"
3215 *
3216 * From this, we infer that GLSL 1.30 (and later) should allow precision
3217 * qualifiers on sampler types just like float and integer types.
3218 */
3219 return type->is_float()
3220 || type->is_integer()
3221 || type->is_record()
3222 || type->is_sampler();
3223 }
3224
3225 ir_rvalue *
3226 ast_declarator_list::hir(exec_list *instructions,
3227 struct _mesa_glsl_parse_state *state)
3228 {
3229 void *ctx = state;
3230 const struct glsl_type *decl_type;
3231 const char *type_name = NULL;
3232 ir_rvalue *result = NULL;
3233 YYLTYPE loc = this->get_location();
3234
3235 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
3236 *
3237 * "To ensure that a particular output variable is invariant, it is
3238 * necessary to use the invariant qualifier. It can either be used to
3239 * qualify a previously declared variable as being invariant
3240 *
3241 * invariant gl_Position; // make existing gl_Position be invariant"
3242 *
3243 * In these cases the parser will set the 'invariant' flag in the declarator
3244 * list, and the type will be NULL.
3245 */
3246 if (this->invariant) {
3247 assert(this->type == NULL);
3248
3249 if (state->current_function != NULL) {
3250 _mesa_glsl_error(& loc, state,
3251 "all uses of `invariant' keyword must be at global "
3252 "scope");
3253 }
3254
3255 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3256 assert(decl->array_specifier == NULL);
3257 assert(decl->initializer == NULL);
3258
3259 ir_variable *const earlier =
3260 state->symbols->get_variable(decl->identifier);
3261 if (earlier == NULL) {
3262 _mesa_glsl_error(& loc, state,
3263 "undeclared variable `%s' cannot be marked "
3264 "invariant", decl->identifier);
3265 } else if (!is_varying_var(earlier, state->stage)) {
3266 _mesa_glsl_error(&loc, state,
3267 "`%s' cannot be marked invariant; interfaces between "
3268 "shader stages only.", decl->identifier);
3269 } else if (earlier->data.used) {
3270 _mesa_glsl_error(& loc, state,
3271 "variable `%s' may not be redeclared "
3272 "`invariant' after being used",
3273 earlier->name);
3274 } else {
3275 earlier->data.invariant = true;
3276 }
3277 }
3278
3279 /* Invariant redeclarations do not have r-values.
3280 */
3281 return NULL;
3282 }
3283
3284 if (this->precise) {
3285 assert(this->type == NULL);
3286
3287 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3288 assert(decl->array_specifier == NULL);
3289 assert(decl->initializer == NULL);
3290
3291 ir_variable *const earlier =
3292 state->symbols->get_variable(decl->identifier);
3293 if (earlier == NULL) {
3294 _mesa_glsl_error(& loc, state,
3295 "undeclared variable `%s' cannot be marked "
3296 "precise", decl->identifier);
3297 } else if (state->current_function != NULL &&
3298 !state->symbols->name_declared_this_scope(decl->identifier)) {
3299 /* Note: we have to check if we're in a function, since
3300 * builtins are treated as having come from another scope.
3301 */
3302 _mesa_glsl_error(& loc, state,
3303 "variable `%s' from an outer scope may not be "
3304 "redeclared `precise' in this scope",
3305 earlier->name);
3306 } else if (earlier->data.used) {
3307 _mesa_glsl_error(& loc, state,
3308 "variable `%s' may not be redeclared "
3309 "`precise' after being used",
3310 earlier->name);
3311 } else {
3312 earlier->data.precise = true;
3313 }
3314 }
3315
3316 /* Precise redeclarations do not have r-values either. */
3317 return NULL;
3318 }
3319
3320 assert(this->type != NULL);
3321 assert(!this->invariant);
3322 assert(!this->precise);
3323
3324 /* The type specifier may contain a structure definition. Process that
3325 * before any of the variable declarations.
3326 */
3327 (void) this->type->specifier->hir(instructions, state);
3328
3329 decl_type = this->type->glsl_type(& type_name, state);
3330
3331 /* An offset-qualified atomic counter declaration sets the default
3332 * offset for the next declaration within the same atomic counter
3333 * buffer.
3334 */
3335 if (decl_type && decl_type->contains_atomic()) {
3336 if (type->qualifier.flags.q.explicit_binding &&
3337 type->qualifier.flags.q.explicit_offset)
3338 state->atomic_counter_offsets[type->qualifier.binding] =
3339 type->qualifier.offset;
3340 }
3341
3342 if (this->declarations.is_empty()) {
3343 /* If there is no structure involved in the program text, there are two
3344 * possible scenarios:
3345 *
3346 * - The program text contained something like 'vec4;'. This is an
3347 * empty declaration. It is valid but weird. Emit a warning.
3348 *
3349 * - The program text contained something like 'S;' and 'S' is not the
3350 * name of a known structure type. This is both invalid and weird.
3351 * Emit an error.
3352 *
3353 * - The program text contained something like 'mediump float;'
3354 * when the programmer probably meant 'precision mediump
3355 * float;' Emit a warning with a description of what they
3356 * probably meant to do.
3357 *
3358 * Note that if decl_type is NULL and there is a structure involved,
3359 * there must have been some sort of error with the structure. In this
3360 * case we assume that an error was already generated on this line of
3361 * code for the structure. There is no need to generate an additional,
3362 * confusing error.
3363 */
3364 assert(this->type->specifier->structure == NULL || decl_type != NULL
3365 || state->error);
3366
3367 if (decl_type == NULL) {
3368 _mesa_glsl_error(&loc, state,
3369 "invalid type `%s' in empty declaration",
3370 type_name);
3371 } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
3372 /* Empty atomic counter declarations are allowed and useful
3373 * to set the default offset qualifier.
3374 */
3375 return NULL;
3376 } else if (this->type->qualifier.precision != ast_precision_none) {
3377 if (this->type->specifier->structure != NULL) {
3378 _mesa_glsl_error(&loc, state,
3379 "precision qualifiers can't be applied "
3380 "to structures");
3381 } else {
3382 static const char *const precision_names[] = {
3383 "highp",
3384 "highp",
3385 "mediump",
3386 "lowp"
3387 };
3388
3389 _mesa_glsl_warning(&loc, state,
3390 "empty declaration with precision qualifier, "
3391 "to set the default precision, use "
3392 "`precision %s %s;'",
3393 precision_names[this->type->qualifier.precision],
3394 type_name);
3395 }
3396 } else if (this->type->specifier->structure == NULL) {
3397 _mesa_glsl_warning(&loc, state, "empty declaration");
3398 }
3399 }
3400
3401 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
3402 const struct glsl_type *var_type;
3403 ir_variable *var;
3404
3405 /* FINISHME: Emit a warning if a variable declaration shadows a
3406 * FINISHME: declaration at a higher scope.
3407 */
3408
3409 if ((decl_type == NULL) || decl_type->is_void()) {
3410 if (type_name != NULL) {
3411 _mesa_glsl_error(& loc, state,
3412 "invalid type `%s' in declaration of `%s'",
3413 type_name, decl->identifier);
3414 } else {
3415 _mesa_glsl_error(& loc, state,
3416 "invalid type in declaration of `%s'",
3417 decl->identifier);
3418 }
3419 continue;
3420 }
3421
3422 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
3423 state);
3424
3425 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
3426
3427 /* The 'varying in' and 'varying out' qualifiers can only be used with
3428 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
3429 * yet.
3430 */
3431 if (this->type->qualifier.flags.q.varying) {
3432 if (this->type->qualifier.flags.q.in) {
3433 _mesa_glsl_error(& loc, state,
3434 "`varying in' qualifier in declaration of "
3435 "`%s' only valid for geometry shaders using "
3436 "ARB_geometry_shader4 or EXT_geometry_shader4",
3437 decl->identifier);
3438 } else if (this->type->qualifier.flags.q.out) {
3439 _mesa_glsl_error(& loc, state,
3440 "`varying out' qualifier in declaration of "
3441 "`%s' only valid for geometry shaders using "
3442 "ARB_geometry_shader4 or EXT_geometry_shader4",
3443 decl->identifier);
3444 }
3445 }
3446
3447 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
3448 *
3449 * "Global variables can only use the qualifiers const,
3450 * attribute, uniform, or varying. Only one may be
3451 * specified.
3452 *
3453 * Local variables can only use the qualifier const."
3454 *
3455 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
3456 * any extension that adds the 'layout' keyword.
3457 */
3458 if (!state->is_version(130, 300)
3459 && !state->has_explicit_attrib_location()
3460 && !state->has_separate_shader_objects()
3461 && !state->ARB_fragment_coord_conventions_enable) {
3462 if (this->type->qualifier.flags.q.out) {
3463 _mesa_glsl_error(& loc, state,
3464 "`out' qualifier in declaration of `%s' "
3465 "only valid for function parameters in %s",
3466 decl->identifier, state->get_version_string());
3467 }
3468 if (this->type->qualifier.flags.q.in) {
3469 _mesa_glsl_error(& loc, state,
3470 "`in' qualifier in declaration of `%s' "
3471 "only valid for function parameters in %s",
3472 decl->identifier, state->get_version_string());
3473 }
3474 /* FINISHME: Test for other invalid qualifiers. */
3475 }
3476
3477 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
3478 & loc, false);
3479
3480 if (this->type->qualifier.flags.q.invariant) {
3481 if (!is_varying_var(var, state->stage)) {
3482 _mesa_glsl_error(&loc, state,
3483 "`%s' cannot be marked invariant; interfaces between "
3484 "shader stages only", var->name);
3485 }
3486 }
3487
3488 if (state->current_function != NULL) {
3489 const char *mode = NULL;
3490 const char *extra = "";
3491
3492 /* There is no need to check for 'inout' here because the parser will
3493 * only allow that in function parameter lists.
3494 */
3495 if (this->type->qualifier.flags.q.attribute) {
3496 mode = "attribute";
3497 } else if (this->type->qualifier.flags.q.uniform) {
3498 mode = "uniform";
3499 } else if (this->type->qualifier.flags.q.varying) {
3500 mode = "varying";
3501 } else if (this->type->qualifier.flags.q.in) {
3502 mode = "in";
3503 extra = " or in function parameter list";
3504 } else if (this->type->qualifier.flags.q.out) {
3505 mode = "out";
3506 extra = " or in function parameter list";
3507 }
3508
3509 if (mode) {
3510 _mesa_glsl_error(& loc, state,
3511 "%s variable `%s' must be declared at "
3512 "global scope%s",
3513 mode, var->name, extra);
3514 }
3515 } else if (var->data.mode == ir_var_shader_in) {
3516 var->data.read_only = true;
3517
3518 if (state->stage == MESA_SHADER_VERTEX) {
3519 bool error_emitted = false;
3520
3521 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
3522 *
3523 * "Vertex shader inputs can only be float, floating-point
3524 * vectors, matrices, signed and unsigned integers and integer
3525 * vectors. Vertex shader inputs can also form arrays of these
3526 * types, but not structures."
3527 *
3528 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
3529 *
3530 * "Vertex shader inputs can only be float, floating-point
3531 * vectors, matrices, signed and unsigned integers and integer
3532 * vectors. They cannot be arrays or structures."
3533 *
3534 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
3535 *
3536 * "The attribute qualifier can be used only with float,
3537 * floating-point vectors, and matrices. Attribute variables
3538 * cannot be declared as arrays or structures."
3539 *
3540 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
3541 *
3542 * "Vertex shader inputs can only be float, floating-point
3543 * vectors, matrices, signed and unsigned integers and integer
3544 * vectors. Vertex shader inputs cannot be arrays or
3545 * structures."
3546 */
3547 const glsl_type *check_type = var->type->without_array();
3548
3549 switch (check_type->base_type) {
3550 case GLSL_TYPE_FLOAT:
3551 break;
3552 case GLSL_TYPE_UINT:
3553 case GLSL_TYPE_INT:
3554 if (state->is_version(120, 300))
3555 break;
3556 /* FALLTHROUGH */
3557 default:
3558 _mesa_glsl_error(& loc, state,
3559 "vertex shader input / attribute cannot have "
3560 "type %s`%s'",
3561 var->type->is_array() ? "array of " : "",
3562 check_type->name);
3563 error_emitted = true;
3564 }
3565
3566 if (!error_emitted && var->type->is_array() &&
3567 !state->check_version(150, 0, &loc,
3568 "vertex shader input / attribute "
3569 "cannot have array type")) {
3570 error_emitted = true;
3571 }
3572 } else if (state->stage == MESA_SHADER_GEOMETRY) {
3573 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3574 *
3575 * Geometry shader input variables get the per-vertex values
3576 * written out by vertex shader output variables of the same
3577 * names. Since a geometry shader operates on a set of
3578 * vertices, each input varying variable (or input block, see
3579 * interface blocks below) needs to be declared as an array.
3580 */
3581 if (!var->type->is_array()) {
3582 _mesa_glsl_error(&loc, state,
3583 "geometry shader inputs must be arrays");
3584 }
3585
3586 handle_geometry_shader_input_decl(state, loc, var);
3587 }
3588 } else if (var->data.mode == ir_var_shader_out) {
3589 const glsl_type *check_type = var->type->without_array();
3590
3591 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3592 *
3593 * It is a compile-time error to declare a vertex, tessellation
3594 * evaluation, tessellation control, or geometry shader output
3595 * that contains any of the following:
3596 *
3597 * * A Boolean type (bool, bvec2 ...)
3598 * * An opaque type
3599 */
3600 if (check_type->is_boolean() || check_type->contains_opaque())
3601 _mesa_glsl_error(&loc, state,
3602 "%s shader output cannot have type %s",
3603 _mesa_shader_stage_to_string(state->stage),
3604 check_type->name);
3605
3606 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
3607 *
3608 * It is a compile-time error to declare a fragment shader output
3609 * that contains any of the following:
3610 *
3611 * * A Boolean type (bool, bvec2 ...)
3612 * * A double-precision scalar or vector (double, dvec2 ...)
3613 * * An opaque type
3614 * * Any matrix type
3615 * * A structure
3616 */
3617 if (state->stage == MESA_SHADER_FRAGMENT) {
3618 if (check_type->is_record() || check_type->is_matrix())
3619 _mesa_glsl_error(&loc, state,
3620 "fragment shader output "
3621 "cannot have struct or array type");
3622 switch (check_type->base_type) {
3623 case GLSL_TYPE_UINT:
3624 case GLSL_TYPE_INT:
3625 case GLSL_TYPE_FLOAT:
3626 break;
3627 default:
3628 _mesa_glsl_error(&loc, state,
3629 "fragment shader output cannot have "
3630 "type %s", check_type->name);
3631 }
3632 }
3633 }
3634
3635 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3636 * so must integer vertex outputs.
3637 *
3638 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3639 * "Fragment shader inputs that are signed or unsigned integers or
3640 * integer vectors must be qualified with the interpolation qualifier
3641 * flat."
3642 *
3643 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3644 * "Fragment shader inputs that are, or contain, signed or unsigned
3645 * integers or integer vectors must be qualified with the
3646 * interpolation qualifier flat."
3647 *
3648 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3649 * "Vertex shader outputs that are, or contain, signed or unsigned
3650 * integers or integer vectors must be qualified with the
3651 * interpolation qualifier flat."
3652 *
3653 * Note that prior to GLSL 1.50, this requirement applied to vertex
3654 * outputs rather than fragment inputs. That creates problems in the
3655 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3656 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3657 * apply the restriction to both vertex outputs and fragment inputs.
3658 *
3659 * Note also that the desktop GLSL specs are missing the text "or
3660 * contain"; this is presumably an oversight, since there is no
3661 * reasonable way to interpolate a fragment shader input that contains
3662 * an integer.
3663 */
3664 if (state->is_version(130, 300) &&
3665 var->type->contains_integer() &&
3666 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3667 ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
3668 || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
3669 && state->es_shader))) {
3670 const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
3671 "vertex output" : "fragment input";
3672 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3673 "an integer, then it must be qualified with 'flat'",
3674 var_type);
3675 }
3676
3677 /* Double fragment inputs must be qualified with 'flat'. */
3678 if (var->type->contains_double() &&
3679 var->data.interpolation != INTERP_QUALIFIER_FLAT &&
3680 state->stage == MESA_SHADER_FRAGMENT &&
3681 var->data.mode == ir_var_shader_in) {
3682 _mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
3683 "a double, then it must be qualified with 'flat'",
3684 var_type);
3685 }
3686
3687 /* Interpolation qualifiers cannot be applied to 'centroid' and
3688 * 'centroid varying'.
3689 *
3690 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3691 * "interpolation qualifiers may only precede the qualifiers in,
3692 * centroid in, out, or centroid out in a declaration. They do not apply
3693 * to the deprecated storage qualifiers varying or centroid varying."
3694 *
3695 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3696 */
3697 if (state->is_version(130, 0)
3698 && this->type->qualifier.has_interpolation()
3699 && this->type->qualifier.flags.q.varying) {
3700
3701 const char *i = this->type->qualifier.interpolation_string();
3702 assert(i != NULL);
3703 const char *s;
3704 if (this->type->qualifier.flags.q.centroid)
3705 s = "centroid varying";
3706 else
3707 s = "varying";
3708
3709 _mesa_glsl_error(&loc, state,
3710 "qualifier '%s' cannot be applied to the "
3711 "deprecated storage qualifier '%s'", i, s);
3712 }
3713
3714
3715 /* Interpolation qualifiers can only apply to vertex shader outputs and
3716 * fragment shader inputs.
3717 *
3718 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3719 * "Outputs from a vertex shader (out) and inputs to a fragment
3720 * shader (in) can be further qualified with one or more of these
3721 * interpolation qualifiers"
3722 *
3723 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3724 * "These interpolation qualifiers may only precede the qualifiers
3725 * in, centroid in, out, or centroid out in a declaration. They do
3726 * not apply to inputs into a vertex shader or outputs from a
3727 * fragment shader."
3728 */
3729 if (state->is_version(130, 300)
3730 && this->type->qualifier.has_interpolation()) {
3731
3732 const char *i = this->type->qualifier.interpolation_string();
3733 assert(i != NULL);
3734
3735 switch (state->stage) {
3736 case MESA_SHADER_VERTEX:
3737 if (this->type->qualifier.flags.q.in) {
3738 _mesa_glsl_error(&loc, state,
3739 "qualifier '%s' cannot be applied to vertex "
3740 "shader inputs", i);
3741 }
3742 break;
3743 case MESA_SHADER_FRAGMENT:
3744 if (this->type->qualifier.flags.q.out) {
3745 _mesa_glsl_error(&loc, state,
3746 "qualifier '%s' cannot be applied to fragment "
3747 "shader outputs", i);
3748 }
3749 break;
3750 default:
3751 break;
3752 }
3753 }
3754
3755
3756 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3757 */
3758 if (this->type->qualifier.precision != ast_precision_none) {
3759 state->check_precision_qualifiers_allowed(&loc);
3760 }
3761
3762
3763 /* If a precision qualifier is allowed on a type, it is allowed on
3764 * an array of that type.
3765 */
3766 if (!(this->type->qualifier.precision == ast_precision_none
3767 || precision_qualifier_allowed(var->type)
3768 || (var->type->is_array()
3769 && precision_qualifier_allowed(var->type->fields.array)))) {
3770
3771 _mesa_glsl_error(&loc, state,
3772 "precision qualifiers apply only to floating point"
3773 ", integer and sampler types");
3774 }
3775
3776 /* From section 4.1.7 of the GLSL 4.40 spec:
3777 *
3778 * "[Opaque types] can only be declared as function
3779 * parameters or uniform-qualified variables."
3780 */
3781 if (var_type->contains_opaque() &&
3782 !this->type->qualifier.flags.q.uniform) {
3783 _mesa_glsl_error(&loc, state,
3784 "opaque variables must be declared uniform");
3785 }
3786
3787 /* Process the initializer and add its instructions to a temporary
3788 * list. This list will be added to the instruction stream (below) after
3789 * the declaration is added. This is done because in some cases (such as
3790 * redeclarations) the declaration may not actually be added to the
3791 * instruction stream.
3792 */
3793 exec_list initializer_instructions;
3794
3795 /* Examine var name here since var may get deleted in the next call */
3796 bool var_is_gl_id = is_gl_identifier(var->name);
3797
3798 ir_variable *earlier =
3799 get_variable_being_redeclared(var, decl->get_location(), state,
3800 false /* allow_all_redeclarations */);
3801 if (earlier != NULL) {
3802 if (var_is_gl_id &&
3803 earlier->data.how_declared == ir_var_declared_in_block) {
3804 _mesa_glsl_error(&loc, state,
3805 "`%s' has already been redeclared using "
3806 "gl_PerVertex", earlier->name);
3807 }
3808 earlier->data.how_declared = ir_var_declared_normally;
3809 }
3810
3811 if (decl->initializer != NULL) {
3812 result = process_initializer((earlier == NULL) ? var : earlier,
3813 decl, this->type,
3814 &initializer_instructions, state);
3815 }
3816
3817 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3818 *
3819 * "It is an error to write to a const variable outside of
3820 * its declaration, so they must be initialized when
3821 * declared."
3822 */
3823 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3824 _mesa_glsl_error(& loc, state,
3825 "const declaration of `%s' must be initialized",
3826 decl->identifier);
3827 }
3828
3829 if (state->es_shader) {
3830 const glsl_type *const t = (earlier == NULL)
3831 ? var->type : earlier->type;
3832
3833 if (t->is_unsized_array())
3834 /* Section 10.17 of the GLSL ES 1.00 specification states that
3835 * unsized array declarations have been removed from the language.
3836 * Arrays that are sized using an initializer are still explicitly
3837 * sized. However, GLSL ES 1.00 does not allow array
3838 * initializers. That is only allowed in GLSL ES 3.00.
3839 *
3840 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3841 *
3842 * "An array type can also be formed without specifying a size
3843 * if the definition includes an initializer:
3844 *
3845 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3846 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3847 *
3848 * float a[5];
3849 * float b[] = a;"
3850 */
3851 _mesa_glsl_error(& loc, state,
3852 "unsized array declarations are not allowed in "
3853 "GLSL ES");
3854 }
3855
3856 /* If the declaration is not a redeclaration, there are a few additional
3857 * semantic checks that must be applied. In addition, variable that was
3858 * created for the declaration should be added to the IR stream.
3859 */
3860 if (earlier == NULL) {
3861 validate_identifier(decl->identifier, loc, state);
3862
3863 /* Add the variable to the symbol table. Note that the initializer's
3864 * IR was already processed earlier (though it hasn't been emitted
3865 * yet), without the variable in scope.
3866 *
3867 * This differs from most C-like languages, but it follows the GLSL
3868 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3869 * spec:
3870 *
3871 * "Within a declaration, the scope of a name starts immediately
3872 * after the initializer if present or immediately after the name
3873 * being declared if not."
3874 */
3875 if (!state->symbols->add_variable(var)) {
3876 YYLTYPE loc = this->get_location();
3877 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3878 "current scope", decl->identifier);
3879 continue;
3880 }
3881
3882 /* Push the variable declaration to the top. It means that all the
3883 * variable declarations will appear in a funny last-to-first order,
3884 * but otherwise we run into trouble if a function is prototyped, a
3885 * global var is decled, then the function is defined with usage of
3886 * the global var. See glslparsertest's CorrectModule.frag.
3887 */
3888 instructions->push_head(var);
3889 }
3890
3891 instructions->append_list(&initializer_instructions);
3892 }
3893
3894
3895 /* Generally, variable declarations do not have r-values. However,
3896 * one is used for the declaration in
3897 *
3898 * while (bool b = some_condition()) {
3899 * ...
3900 * }
3901 *
3902 * so we return the rvalue from the last seen declaration here.
3903 */
3904 return result;
3905 }
3906
3907
3908 ir_rvalue *
3909 ast_parameter_declarator::hir(exec_list *instructions,
3910 struct _mesa_glsl_parse_state *state)
3911 {
3912 void *ctx = state;
3913 const struct glsl_type *type;
3914 const char *name = NULL;
3915 YYLTYPE loc = this->get_location();
3916
3917 type = this->type->glsl_type(& name, state);
3918
3919 if (type == NULL) {
3920 if (name != NULL) {
3921 _mesa_glsl_error(& loc, state,
3922 "invalid type `%s' in declaration of `%s'",
3923 name, this->identifier);
3924 } else {
3925 _mesa_glsl_error(& loc, state,
3926 "invalid type in declaration of `%s'",
3927 this->identifier);
3928 }
3929
3930 type = glsl_type::error_type;
3931 }
3932
3933 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3934 *
3935 * "Functions that accept no input arguments need not use void in the
3936 * argument list because prototypes (or definitions) are required and
3937 * therefore there is no ambiguity when an empty argument list "( )" is
3938 * declared. The idiom "(void)" as a parameter list is provided for
3939 * convenience."
3940 *
3941 * Placing this check here prevents a void parameter being set up
3942 * for a function, which avoids tripping up checks for main taking
3943 * parameters and lookups of an unnamed symbol.
3944 */
3945 if (type->is_void()) {
3946 if (this->identifier != NULL)
3947 _mesa_glsl_error(& loc, state,
3948 "named parameter cannot have type `void'");
3949
3950 is_void = true;
3951 return NULL;
3952 }
3953
3954 if (formal_parameter && (this->identifier == NULL)) {
3955 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3956 return NULL;
3957 }
3958
3959 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3960 * call already handled the "vec4[..] foo" case.
3961 */
3962 type = process_array_type(&loc, type, this->array_specifier, state);
3963
3964 if (!type->is_error() && type->is_unsized_array()) {
3965 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3966 "a declared size");
3967 type = glsl_type::error_type;
3968 }
3969
3970 is_void = false;
3971 ir_variable *var = new(ctx)
3972 ir_variable(type, this->identifier, ir_var_function_in);
3973
3974 /* Apply any specified qualifiers to the parameter declaration. Note that
3975 * for function parameters the default mode is 'in'.
3976 */
3977 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3978 true);
3979
3980 /* From section 4.1.7 of the GLSL 4.40 spec:
3981 *
3982 * "Opaque variables cannot be treated as l-values; hence cannot
3983 * be used as out or inout function parameters, nor can they be
3984 * assigned into."
3985 */
3986 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
3987 && type->contains_opaque()) {
3988 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
3989 "contain opaque variables");
3990 type = glsl_type::error_type;
3991 }
3992
3993 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3994 *
3995 * "When calling a function, expressions that do not evaluate to
3996 * l-values cannot be passed to parameters declared as out or inout."
3997 *
3998 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3999 *
4000 * "Other binary or unary expressions, non-dereferenced arrays,
4001 * function names, swizzles with repeated fields, and constants
4002 * cannot be l-values."
4003 *
4004 * So for GLSL 1.10, passing an array as an out or inout parameter is not
4005 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
4006 */
4007 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
4008 && type->is_array()
4009 && !state->check_version(120, 100, &loc,
4010 "arrays cannot be out or inout parameters")) {
4011 type = glsl_type::error_type;
4012 }
4013
4014 instructions->push_tail(var);
4015
4016 /* Parameter declarations do not have r-values.
4017 */
4018 return NULL;
4019 }
4020
4021
4022 void
4023 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
4024 bool formal,
4025 exec_list *ir_parameters,
4026 _mesa_glsl_parse_state *state)
4027 {
4028 ast_parameter_declarator *void_param = NULL;
4029 unsigned count = 0;
4030
4031 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
4032 param->formal_parameter = formal;
4033 param->hir(ir_parameters, state);
4034
4035 if (param->is_void)
4036 void_param = param;
4037
4038 count++;
4039 }
4040
4041 if ((void_param != NULL) && (count > 1)) {
4042 YYLTYPE loc = void_param->get_location();
4043
4044 _mesa_glsl_error(& loc, state,
4045 "`void' parameter must be only parameter");
4046 }
4047 }
4048
4049
4050 void
4051 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
4052 {
4053 /* IR invariants disallow function declarations or definitions
4054 * nested within other function definitions. But there is no
4055 * requirement about the relative order of function declarations
4056 * and definitions with respect to one another. So simply insert
4057 * the new ir_function block at the end of the toplevel instruction
4058 * list.
4059 */
4060 state->toplevel_ir->push_tail(f);
4061 }
4062
4063
4064 ir_rvalue *
4065 ast_function::hir(exec_list *instructions,
4066 struct _mesa_glsl_parse_state *state)
4067 {
4068 void *ctx = state;
4069 ir_function *f = NULL;
4070 ir_function_signature *sig = NULL;
4071 exec_list hir_parameters;
4072
4073 const char *const name = identifier;
4074
4075 /* New functions are always added to the top-level IR instruction stream,
4076 * so this instruction list pointer is ignored. See also emit_function
4077 * (called below).
4078 */
4079 (void) instructions;
4080
4081 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
4082 *
4083 * "Function declarations (prototypes) cannot occur inside of functions;
4084 * they must be at global scope, or for the built-in functions, outside
4085 * the global scope."
4086 *
4087 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
4088 *
4089 * "User defined functions may only be defined within the global scope."
4090 *
4091 * Note that this language does not appear in GLSL 1.10.
4092 */
4093 if ((state->current_function != NULL) &&
4094 state->is_version(120, 100)) {
4095 YYLTYPE loc = this->get_location();
4096 _mesa_glsl_error(&loc, state,
4097 "declaration of function `%s' not allowed within "
4098 "function body", name);
4099 }
4100
4101 validate_identifier(name, this->get_location(), state);
4102
4103 /* Convert the list of function parameters to HIR now so that they can be
4104 * used below to compare this function's signature with previously seen
4105 * signatures for functions with the same name.
4106 */
4107 ast_parameter_declarator::parameters_to_hir(& this->parameters,
4108 is_definition,
4109 & hir_parameters, state);
4110
4111 const char *return_type_name;
4112 const glsl_type *return_type =
4113 this->return_type->glsl_type(& return_type_name, state);
4114
4115 if (!return_type) {
4116 YYLTYPE loc = this->get_location();
4117 _mesa_glsl_error(&loc, state,
4118 "function `%s' has undeclared return type `%s'",
4119 name, return_type_name);
4120 return_type = glsl_type::error_type;
4121 }
4122
4123 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
4124 * "No qualifier is allowed on the return type of a function."
4125 */
4126 if (this->return_type->has_qualifiers()) {
4127 YYLTYPE loc = this->get_location();
4128 _mesa_glsl_error(& loc, state,
4129 "function `%s' return type has qualifiers", name);
4130 }
4131
4132 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
4133 *
4134 * "Arrays are allowed as arguments and as the return type. In both
4135 * cases, the array must be explicitly sized."
4136 */
4137 if (return_type->is_unsized_array()) {
4138 YYLTYPE loc = this->get_location();
4139 _mesa_glsl_error(& loc, state,
4140 "function `%s' return type array must be explicitly "
4141 "sized", name);
4142 }
4143
4144 /* From section 4.1.7 of the GLSL 4.40 spec:
4145 *
4146 * "[Opaque types] can only be declared as function parameters
4147 * or uniform-qualified variables."
4148 */
4149 if (return_type->contains_opaque()) {
4150 YYLTYPE loc = this->get_location();
4151 _mesa_glsl_error(&loc, state,
4152 "function `%s' return type can't contain an opaque type",
4153 name);
4154 }
4155
4156 /* Create an ir_function if one doesn't already exist. */
4157 f = state->symbols->get_function(name);
4158 if (f == NULL) {
4159 f = new(ctx) ir_function(name);
4160 if (!state->symbols->add_function(f)) {
4161 /* This function name shadows a non-function use of the same name. */
4162 YYLTYPE loc = this->get_location();
4163
4164 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
4165 "non-function", name);
4166 return NULL;
4167 }
4168
4169 emit_function(state, f);
4170 }
4171
4172 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
4173 *
4174 * "A shader cannot redefine or overload built-in functions."
4175 *
4176 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
4177 *
4178 * "User code can overload the built-in functions but cannot redefine
4179 * them."
4180 */
4181 if (state->es_shader && state->language_version >= 300) {
4182 /* Local shader has no exact candidates; check the built-ins. */
4183 _mesa_glsl_initialize_builtin_functions();
4184 if (_mesa_glsl_find_builtin_function_by_name(state, name)) {
4185 YYLTYPE loc = this->get_location();
4186 _mesa_glsl_error(& loc, state,
4187 "A shader cannot redefine or overload built-in "
4188 "function `%s' in GLSL ES 3.00", name);
4189 return NULL;
4190 }
4191 }
4192
4193 /* Verify that this function's signature either doesn't match a previously
4194 * seen signature for a function with the same name, or, if a match is found,
4195 * that the previously seen signature does not have an associated definition.
4196 */
4197 if (state->es_shader || f->has_user_signature()) {
4198 sig = f->exact_matching_signature(state, &hir_parameters);
4199 if (sig != NULL) {
4200 const char *badvar = sig->qualifiers_match(&hir_parameters);
4201 if (badvar != NULL) {
4202 YYLTYPE loc = this->get_location();
4203
4204 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
4205 "qualifiers don't match prototype", name, badvar);
4206 }
4207
4208 if (sig->return_type != return_type) {
4209 YYLTYPE loc = this->get_location();
4210
4211 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
4212 "match prototype", name);
4213 }
4214
4215 if (sig->is_defined) {
4216 if (is_definition) {
4217 YYLTYPE loc = this->get_location();
4218 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
4219 } else {
4220 /* We just encountered a prototype that exactly matches a
4221 * function that's already been defined. This is redundant,
4222 * and we should ignore it.
4223 */
4224 return NULL;
4225 }
4226 }
4227 }
4228 }
4229
4230 /* Verify the return type of main() */
4231 if (strcmp(name, "main") == 0) {
4232 if (! return_type->is_void()) {
4233 YYLTYPE loc = this->get_location();
4234
4235 _mesa_glsl_error(& loc, state, "main() must return void");
4236 }
4237
4238 if (!hir_parameters.is_empty()) {
4239 YYLTYPE loc = this->get_location();
4240
4241 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
4242 }
4243 }
4244
4245 /* Finish storing the information about this new function in its signature.
4246 */
4247 if (sig == NULL) {
4248 sig = new(ctx) ir_function_signature(return_type);
4249 f->add_signature(sig);
4250 }
4251
4252 sig->replace_parameters(&hir_parameters);
4253 signature = sig;
4254
4255 /* Function declarations (prototypes) do not have r-values.
4256 */
4257 return NULL;
4258 }
4259
4260
4261 ir_rvalue *
4262 ast_function_definition::hir(exec_list *instructions,
4263 struct _mesa_glsl_parse_state *state)
4264 {
4265 prototype->is_definition = true;
4266 prototype->hir(instructions, state);
4267
4268 ir_function_signature *signature = prototype->signature;
4269 if (signature == NULL)
4270 return NULL;
4271
4272 assert(state->current_function == NULL);
4273 state->current_function = signature;
4274 state->found_return = false;
4275
4276 /* Duplicate parameters declared in the prototype as concrete variables.
4277 * Add these to the symbol table.
4278 */
4279 state->symbols->push_scope();
4280 foreach_in_list(ir_variable, var, &signature->parameters) {
4281 assert(var->as_variable() != NULL);
4282
4283 /* The only way a parameter would "exist" is if two parameters have
4284 * the same name.
4285 */
4286 if (state->symbols->name_declared_this_scope(var->name)) {
4287 YYLTYPE loc = this->get_location();
4288
4289 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
4290 } else {
4291 state->symbols->add_variable(var);
4292 }
4293 }
4294
4295 /* Convert the body of the function to HIR. */
4296 this->body->hir(&signature->body, state);
4297 signature->is_defined = true;
4298
4299 state->symbols->pop_scope();
4300
4301 assert(state->current_function == signature);
4302 state->current_function = NULL;
4303
4304 if (!signature->return_type->is_void() && !state->found_return) {
4305 YYLTYPE loc = this->get_location();
4306 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
4307 "%s, but no return statement",
4308 signature->function_name(),
4309 signature->return_type->name);
4310 }
4311
4312 /* Function definitions do not have r-values.
4313 */
4314 return NULL;
4315 }
4316
4317
4318 ir_rvalue *
4319 ast_jump_statement::hir(exec_list *instructions,
4320 struct _mesa_glsl_parse_state *state)
4321 {
4322 void *ctx = state;
4323
4324 switch (mode) {
4325 case ast_return: {
4326 ir_return *inst;
4327 assert(state->current_function);
4328
4329 if (opt_return_value) {
4330 ir_rvalue *ret = opt_return_value->hir(instructions, state);
4331
4332 /* The value of the return type can be NULL if the shader says
4333 * 'return foo();' and foo() is a function that returns void.
4334 *
4335 * NOTE: The GLSL spec doesn't say that this is an error. The type
4336 * of the return value is void. If the return type of the function is
4337 * also void, then this should compile without error. Seriously.
4338 */
4339 const glsl_type *const ret_type =
4340 (ret == NULL) ? glsl_type::void_type : ret->type;
4341
4342 /* Implicit conversions are not allowed for return values prior to
4343 * ARB_shading_language_420pack.
4344 */
4345 if (state->current_function->return_type != ret_type) {
4346 YYLTYPE loc = this->get_location();
4347
4348 if (state->ARB_shading_language_420pack_enable) {
4349 if (!apply_implicit_conversion(state->current_function->return_type,
4350 ret, state)) {
4351 _mesa_glsl_error(& loc, state,
4352 "could not implicitly convert return value "
4353 "to %s, in function `%s'",
4354 state->current_function->return_type->name,
4355 state->current_function->function_name());
4356 }
4357 } else {
4358 _mesa_glsl_error(& loc, state,
4359 "`return' with wrong type %s, in function `%s' "
4360 "returning %s",
4361 ret_type->name,
4362 state->current_function->function_name(),
4363 state->current_function->return_type->name);
4364 }
4365 } else if (state->current_function->return_type->base_type ==
4366 GLSL_TYPE_VOID) {
4367 YYLTYPE loc = this->get_location();
4368
4369 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
4370 * specs add a clarification:
4371 *
4372 * "A void function can only use return without a return argument, even if
4373 * the return argument has void type. Return statements only accept values:
4374 *
4375 * void func1() { }
4376 * void func2() { return func1(); } // illegal return statement"
4377 */
4378 _mesa_glsl_error(& loc, state,
4379 "void functions can only use `return' without a "
4380 "return argument");
4381 }
4382
4383 inst = new(ctx) ir_return(ret);
4384 } else {
4385 if (state->current_function->return_type->base_type !=
4386 GLSL_TYPE_VOID) {
4387 YYLTYPE loc = this->get_location();
4388
4389 _mesa_glsl_error(& loc, state,
4390 "`return' with no value, in function %s returning "
4391 "non-void",
4392 state->current_function->function_name());
4393 }
4394 inst = new(ctx) ir_return;
4395 }
4396
4397 state->found_return = true;
4398 instructions->push_tail(inst);
4399 break;
4400 }
4401
4402 case ast_discard:
4403 if (state->stage != MESA_SHADER_FRAGMENT) {
4404 YYLTYPE loc = this->get_location();
4405
4406 _mesa_glsl_error(& loc, state,
4407 "`discard' may only appear in a fragment shader");
4408 }
4409 instructions->push_tail(new(ctx) ir_discard);
4410 break;
4411
4412 case ast_break:
4413 case ast_continue:
4414 if (mode == ast_continue &&
4415 state->loop_nesting_ast == NULL) {
4416 YYLTYPE loc = this->get_location();
4417
4418 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
4419 } else if (mode == ast_break &&
4420 state->loop_nesting_ast == NULL &&
4421 state->switch_state.switch_nesting_ast == NULL) {
4422 YYLTYPE loc = this->get_location();
4423
4424 _mesa_glsl_error(& loc, state,
4425 "break may only appear in a loop or a switch");
4426 } else {
4427 /* For a loop, inline the for loop expression again, since we don't
4428 * know where near the end of the loop body the normal copy of it is
4429 * going to be placed. Same goes for the condition for a do-while
4430 * loop.
4431 */
4432 if (state->loop_nesting_ast != NULL &&
4433 mode == ast_continue && !state->switch_state.is_switch_innermost) {
4434 if (state->loop_nesting_ast->rest_expression) {
4435 state->loop_nesting_ast->rest_expression->hir(instructions,
4436 state);
4437 }
4438 if (state->loop_nesting_ast->mode ==
4439 ast_iteration_statement::ast_do_while) {
4440 state->loop_nesting_ast->condition_to_hir(instructions, state);
4441 }
4442 }
4443
4444 if (state->switch_state.is_switch_innermost &&
4445 mode == ast_continue) {
4446 /* Set 'continue_inside' to true. */
4447 ir_rvalue *const true_val = new (ctx) ir_constant(true);
4448 ir_dereference_variable *deref_continue_inside_var =
4449 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4450 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4451 true_val));
4452
4453 /* Break out from the switch, continue for the loop will
4454 * be called right after switch. */
4455 ir_loop_jump *const jump =
4456 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4457 instructions->push_tail(jump);
4458
4459 } else if (state->switch_state.is_switch_innermost &&
4460 mode == ast_break) {
4461 /* Force break out of switch by inserting a break. */
4462 ir_loop_jump *const jump =
4463 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4464 instructions->push_tail(jump);
4465 } else {
4466 ir_loop_jump *const jump =
4467 new(ctx) ir_loop_jump((mode == ast_break)
4468 ? ir_loop_jump::jump_break
4469 : ir_loop_jump::jump_continue);
4470 instructions->push_tail(jump);
4471 }
4472 }
4473
4474 break;
4475 }
4476
4477 /* Jump instructions do not have r-values.
4478 */
4479 return NULL;
4480 }
4481
4482
4483 ir_rvalue *
4484 ast_selection_statement::hir(exec_list *instructions,
4485 struct _mesa_glsl_parse_state *state)
4486 {
4487 void *ctx = state;
4488
4489 ir_rvalue *const condition = this->condition->hir(instructions, state);
4490
4491 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
4492 *
4493 * "Any expression whose type evaluates to a Boolean can be used as the
4494 * conditional expression bool-expression. Vector types are not accepted
4495 * as the expression to if."
4496 *
4497 * The checks are separated so that higher quality diagnostics can be
4498 * generated for cases where both rules are violated.
4499 */
4500 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
4501 YYLTYPE loc = this->condition->get_location();
4502
4503 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
4504 "boolean");
4505 }
4506
4507 ir_if *const stmt = new(ctx) ir_if(condition);
4508
4509 if (then_statement != NULL) {
4510 state->symbols->push_scope();
4511 then_statement->hir(& stmt->then_instructions, state);
4512 state->symbols->pop_scope();
4513 }
4514
4515 if (else_statement != NULL) {
4516 state->symbols->push_scope();
4517 else_statement->hir(& stmt->else_instructions, state);
4518 state->symbols->pop_scope();
4519 }
4520
4521 instructions->push_tail(stmt);
4522
4523 /* if-statements do not have r-values.
4524 */
4525 return NULL;
4526 }
4527
4528
4529 ir_rvalue *
4530 ast_switch_statement::hir(exec_list *instructions,
4531 struct _mesa_glsl_parse_state *state)
4532 {
4533 void *ctx = state;
4534
4535 ir_rvalue *const test_expression =
4536 this->test_expression->hir(instructions, state);
4537
4538 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
4539 *
4540 * "The type of init-expression in a switch statement must be a
4541 * scalar integer."
4542 */
4543 if (!test_expression->type->is_scalar() ||
4544 !test_expression->type->is_integer()) {
4545 YYLTYPE loc = this->test_expression->get_location();
4546
4547 _mesa_glsl_error(& loc,
4548 state,
4549 "switch-statement expression must be scalar "
4550 "integer");
4551 }
4552
4553 /* Track the switch-statement nesting in a stack-like manner.
4554 */
4555 struct glsl_switch_state saved = state->switch_state;
4556
4557 state->switch_state.is_switch_innermost = true;
4558 state->switch_state.switch_nesting_ast = this;
4559 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
4560 hash_table_pointer_compare);
4561 state->switch_state.previous_default = NULL;
4562
4563 /* Initalize is_fallthru state to false.
4564 */
4565 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
4566 state->switch_state.is_fallthru_var =
4567 new(ctx) ir_variable(glsl_type::bool_type,
4568 "switch_is_fallthru_tmp",
4569 ir_var_temporary);
4570 instructions->push_tail(state->switch_state.is_fallthru_var);
4571
4572 ir_dereference_variable *deref_is_fallthru_var =
4573 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4574 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
4575 is_fallthru_val));
4576
4577 /* Initialize continue_inside state to false.
4578 */
4579 state->switch_state.continue_inside =
4580 new(ctx) ir_variable(glsl_type::bool_type,
4581 "continue_inside_tmp",
4582 ir_var_temporary);
4583 instructions->push_tail(state->switch_state.continue_inside);
4584
4585 ir_rvalue *const false_val = new (ctx) ir_constant(false);
4586 ir_dereference_variable *deref_continue_inside_var =
4587 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4588 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
4589 false_val));
4590
4591 state->switch_state.run_default =
4592 new(ctx) ir_variable(glsl_type::bool_type,
4593 "run_default_tmp",
4594 ir_var_temporary);
4595 instructions->push_tail(state->switch_state.run_default);
4596
4597 /* Loop around the switch is used for flow control. */
4598 ir_loop * loop = new(ctx) ir_loop();
4599 instructions->push_tail(loop);
4600
4601 /* Cache test expression.
4602 */
4603 test_to_hir(&loop->body_instructions, state);
4604
4605 /* Emit code for body of switch stmt.
4606 */
4607 body->hir(&loop->body_instructions, state);
4608
4609 /* Insert a break at the end to exit loop. */
4610 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4611 loop->body_instructions.push_tail(jump);
4612
4613 /* If we are inside loop, check if continue got called inside switch. */
4614 if (state->loop_nesting_ast != NULL) {
4615 ir_dereference_variable *deref_continue_inside =
4616 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
4617 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
4618 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
4619
4620 if (state->loop_nesting_ast != NULL) {
4621 if (state->loop_nesting_ast->rest_expression) {
4622 state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
4623 state);
4624 }
4625 if (state->loop_nesting_ast->mode ==
4626 ast_iteration_statement::ast_do_while) {
4627 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
4628 }
4629 }
4630 irif->then_instructions.push_tail(jump);
4631 instructions->push_tail(irif);
4632 }
4633
4634 hash_table_dtor(state->switch_state.labels_ht);
4635
4636 state->switch_state = saved;
4637
4638 /* Switch statements do not have r-values. */
4639 return NULL;
4640 }
4641
4642
4643 void
4644 ast_switch_statement::test_to_hir(exec_list *instructions,
4645 struct _mesa_glsl_parse_state *state)
4646 {
4647 void *ctx = state;
4648
4649 /* Cache value of test expression. */
4650 ir_rvalue *const test_val =
4651 test_expression->hir(instructions,
4652 state);
4653
4654 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4655 "switch_test_tmp",
4656 ir_var_temporary);
4657 ir_dereference_variable *deref_test_var =
4658 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4659
4660 instructions->push_tail(state->switch_state.test_var);
4661 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4662 }
4663
4664
4665 ir_rvalue *
4666 ast_switch_body::hir(exec_list *instructions,
4667 struct _mesa_glsl_parse_state *state)
4668 {
4669 if (stmts != NULL)
4670 stmts->hir(instructions, state);
4671
4672 /* Switch bodies do not have r-values. */
4673 return NULL;
4674 }
4675
4676 ir_rvalue *
4677 ast_case_statement_list::hir(exec_list *instructions,
4678 struct _mesa_glsl_parse_state *state)
4679 {
4680 exec_list default_case, after_default, tmp;
4681
4682 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
4683 case_stmt->hir(&tmp, state);
4684
4685 /* Default case. */
4686 if (state->switch_state.previous_default && default_case.is_empty()) {
4687 default_case.append_list(&tmp);
4688 continue;
4689 }
4690
4691 /* If default case found, append 'after_default' list. */
4692 if (!default_case.is_empty())
4693 after_default.append_list(&tmp);
4694 else
4695 instructions->append_list(&tmp);
4696 }
4697
4698 /* Handle the default case. This is done here because default might not be
4699 * the last case. We need to add checks against following cases first to see
4700 * if default should be chosen or not.
4701 */
4702 if (!default_case.is_empty()) {
4703
4704 ir_rvalue *const true_val = new (state) ir_constant(true);
4705 ir_dereference_variable *deref_run_default_var =
4706 new(state) ir_dereference_variable(state->switch_state.run_default);
4707
4708 /* Choose to run default case initially, following conditional
4709 * assignments might change this.
4710 */
4711 ir_assignment *const init_var =
4712 new(state) ir_assignment(deref_run_default_var, true_val);
4713 instructions->push_tail(init_var);
4714
4715 /* Default case was the last one, no checks required. */
4716 if (after_default.is_empty()) {
4717 instructions->append_list(&default_case);
4718 return NULL;
4719 }
4720
4721 foreach_in_list(ir_instruction, ir, &after_default) {
4722 ir_assignment *assign = ir->as_assignment();
4723
4724 if (!assign)
4725 continue;
4726
4727 /* Clone the check between case label and init expression. */
4728 ir_expression *exp = (ir_expression*) assign->condition;
4729 ir_expression *clone = exp->clone(state, NULL);
4730
4731 ir_dereference_variable *deref_var =
4732 new(state) ir_dereference_variable(state->switch_state.run_default);
4733 ir_rvalue *const false_val = new (state) ir_constant(false);
4734
4735 ir_assignment *const set_false =
4736 new(state) ir_assignment(deref_var, false_val, clone);
4737
4738 instructions->push_tail(set_false);
4739 }
4740
4741 /* Append default case and all cases after it. */
4742 instructions->append_list(&default_case);
4743 instructions->append_list(&after_default);
4744 }
4745
4746 /* Case statements do not have r-values. */
4747 return NULL;
4748 }
4749
4750 ir_rvalue *
4751 ast_case_statement::hir(exec_list *instructions,
4752 struct _mesa_glsl_parse_state *state)
4753 {
4754 labels->hir(instructions, state);
4755
4756 /* Guard case statements depending on fallthru state. */
4757 ir_dereference_variable *const deref_fallthru_guard =
4758 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4759 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4760
4761 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4762 stmt->hir(& test_fallthru->then_instructions, state);
4763
4764 instructions->push_tail(test_fallthru);
4765
4766 /* Case statements do not have r-values. */
4767 return NULL;
4768 }
4769
4770
4771 ir_rvalue *
4772 ast_case_label_list::hir(exec_list *instructions,
4773 struct _mesa_glsl_parse_state *state)
4774 {
4775 foreach_list_typed (ast_case_label, label, link, & this->labels)
4776 label->hir(instructions, state);
4777
4778 /* Case labels do not have r-values. */
4779 return NULL;
4780 }
4781
4782 ir_rvalue *
4783 ast_case_label::hir(exec_list *instructions,
4784 struct _mesa_glsl_parse_state *state)
4785 {
4786 void *ctx = state;
4787
4788 ir_dereference_variable *deref_fallthru_var =
4789 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4790
4791 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4792
4793 /* If not default case, ... */
4794 if (this->test_value != NULL) {
4795 /* Conditionally set fallthru state based on
4796 * comparison of cached test expression value to case label.
4797 */
4798 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4799 ir_constant *label_const = label_rval->constant_expression_value();
4800
4801 if (!label_const) {
4802 YYLTYPE loc = this->test_value->get_location();
4803
4804 _mesa_glsl_error(& loc, state,
4805 "switch statement case label must be a "
4806 "constant expression");
4807
4808 /* Stuff a dummy value in to allow processing to continue. */
4809 label_const = new(ctx) ir_constant(0);
4810 } else {
4811 ast_expression *previous_label = (ast_expression *)
4812 hash_table_find(state->switch_state.labels_ht,
4813 (void *)(uintptr_t)label_const->value.u[0]);
4814
4815 if (previous_label) {
4816 YYLTYPE loc = this->test_value->get_location();
4817 _mesa_glsl_error(& loc, state, "duplicate case value");
4818
4819 loc = previous_label->get_location();
4820 _mesa_glsl_error(& loc, state, "this is the previous case label");
4821 } else {
4822 hash_table_insert(state->switch_state.labels_ht,
4823 this->test_value,
4824 (void *)(uintptr_t)label_const->value.u[0]);
4825 }
4826 }
4827
4828 ir_dereference_variable *deref_test_var =
4829 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4830
4831 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4832 label_const,
4833 deref_test_var);
4834
4835 /*
4836 * From GLSL 4.40 specification section 6.2 ("Selection"):
4837 *
4838 * "The type of the init-expression value in a switch statement must
4839 * be a scalar int or uint. The type of the constant-expression value
4840 * in a case label also must be a scalar int or uint. When any pair
4841 * of these values is tested for "equal value" and the types do not
4842 * match, an implicit conversion will be done to convert the int to a
4843 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
4844 * is done."
4845 */
4846 if (label_const->type != state->switch_state.test_var->type) {
4847 YYLTYPE loc = this->test_value->get_location();
4848
4849 const glsl_type *type_a = label_const->type;
4850 const glsl_type *type_b = state->switch_state.test_var->type;
4851
4852 /* Check if int->uint implicit conversion is supported. */
4853 bool integer_conversion_supported =
4854 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
4855 state);
4856
4857 if ((!type_a->is_integer() || !type_b->is_integer()) ||
4858 !integer_conversion_supported) {
4859 _mesa_glsl_error(&loc, state, "type mismatch with switch "
4860 "init-expression and case label (%s != %s)",
4861 type_a->name, type_b->name);
4862 } else {
4863 /* Conversion of the case label. */
4864 if (type_a->base_type == GLSL_TYPE_INT) {
4865 if (!apply_implicit_conversion(glsl_type::uint_type,
4866 test_cond->operands[0], state))
4867 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4868 } else {
4869 /* Conversion of the init-expression value. */
4870 if (!apply_implicit_conversion(glsl_type::uint_type,
4871 test_cond->operands[1], state))
4872 _mesa_glsl_error(&loc, state, "implicit type conversion error");
4873 }
4874 }
4875 }
4876
4877 ir_assignment *set_fallthru_on_test =
4878 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4879
4880 instructions->push_tail(set_fallthru_on_test);
4881 } else { /* default case */
4882 if (state->switch_state.previous_default) {
4883 YYLTYPE loc = this->get_location();
4884 _mesa_glsl_error(& loc, state,
4885 "multiple default labels in one switch");
4886
4887 loc = state->switch_state.previous_default->get_location();
4888 _mesa_glsl_error(& loc, state, "this is the first default label");
4889 }
4890 state->switch_state.previous_default = this;
4891
4892 /* Set fallthru condition on 'run_default' bool. */
4893 ir_dereference_variable *deref_run_default =
4894 new(ctx) ir_dereference_variable(state->switch_state.run_default);
4895 ir_rvalue *const cond_true = new(ctx) ir_constant(true);
4896 ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4897 cond_true,
4898 deref_run_default);
4899
4900 /* Set falltrhu state. */
4901 ir_assignment *set_fallthru =
4902 new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
4903
4904 instructions->push_tail(set_fallthru);
4905 }
4906
4907 /* Case statements do not have r-values. */
4908 return NULL;
4909 }
4910
4911 void
4912 ast_iteration_statement::condition_to_hir(exec_list *instructions,
4913 struct _mesa_glsl_parse_state *state)
4914 {
4915 void *ctx = state;
4916
4917 if (condition != NULL) {
4918 ir_rvalue *const cond =
4919 condition->hir(instructions, state);
4920
4921 if ((cond == NULL)
4922 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4923 YYLTYPE loc = condition->get_location();
4924
4925 _mesa_glsl_error(& loc, state,
4926 "loop condition must be scalar boolean");
4927 } else {
4928 /* As the first code in the loop body, generate a block that looks
4929 * like 'if (!condition) break;' as the loop termination condition.
4930 */
4931 ir_rvalue *const not_cond =
4932 new(ctx) ir_expression(ir_unop_logic_not, cond);
4933
4934 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4935
4936 ir_jump *const break_stmt =
4937 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4938
4939 if_stmt->then_instructions.push_tail(break_stmt);
4940 instructions->push_tail(if_stmt);
4941 }
4942 }
4943 }
4944
4945
4946 ir_rvalue *
4947 ast_iteration_statement::hir(exec_list *instructions,
4948 struct _mesa_glsl_parse_state *state)
4949 {
4950 void *ctx = state;
4951
4952 /* For-loops and while-loops start a new scope, but do-while loops do not.
4953 */
4954 if (mode != ast_do_while)
4955 state->symbols->push_scope();
4956
4957 if (init_statement != NULL)
4958 init_statement->hir(instructions, state);
4959
4960 ir_loop *const stmt = new(ctx) ir_loop();
4961 instructions->push_tail(stmt);
4962
4963 /* Track the current loop nesting. */
4964 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4965
4966 state->loop_nesting_ast = this;
4967
4968 /* Likewise, indicate that following code is closest to a loop,
4969 * NOT closest to a switch.
4970 */
4971 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4972 state->switch_state.is_switch_innermost = false;
4973
4974 if (mode != ast_do_while)
4975 condition_to_hir(&stmt->body_instructions, state);
4976
4977 if (body != NULL)
4978 body->hir(& stmt->body_instructions, state);
4979
4980 if (rest_expression != NULL)
4981 rest_expression->hir(& stmt->body_instructions, state);
4982
4983 if (mode == ast_do_while)
4984 condition_to_hir(&stmt->body_instructions, state);
4985
4986 if (mode != ast_do_while)
4987 state->symbols->pop_scope();
4988
4989 /* Restore previous nesting before returning. */
4990 state->loop_nesting_ast = nesting_ast;
4991 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4992
4993 /* Loops do not have r-values.
4994 */
4995 return NULL;
4996 }
4997
4998
4999 /**
5000 * Determine if the given type is valid for establishing a default precision
5001 * qualifier.
5002 *
5003 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
5004 *
5005 * "The precision statement
5006 *
5007 * precision precision-qualifier type;
5008 *
5009 * can be used to establish a default precision qualifier. The type field
5010 * can be either int or float or any of the sampler types, and the
5011 * precision-qualifier can be lowp, mediump, or highp."
5012 *
5013 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
5014 * qualifiers on sampler types, but this seems like an oversight (since the
5015 * intention of including these in GLSL 1.30 is to allow compatibility with ES
5016 * shaders). So we allow int, float, and all sampler types regardless of GLSL
5017 * version.
5018 */
5019 static bool
5020 is_valid_default_precision_type(const struct glsl_type *const type)
5021 {
5022 if (type == NULL)
5023 return false;
5024
5025 switch (type->base_type) {
5026 case GLSL_TYPE_INT:
5027 case GLSL_TYPE_FLOAT:
5028 /* "int" and "float" are valid, but vectors and matrices are not. */
5029 return type->vector_elements == 1 && type->matrix_columns == 1;
5030 case GLSL_TYPE_SAMPLER:
5031 return true;
5032 default:
5033 return false;
5034 }
5035 }
5036
5037
5038 ir_rvalue *
5039 ast_type_specifier::hir(exec_list *instructions,
5040 struct _mesa_glsl_parse_state *state)
5041 {
5042 if (this->default_precision == ast_precision_none && this->structure == NULL)
5043 return NULL;
5044
5045 YYLTYPE loc = this->get_location();
5046
5047 /* If this is a precision statement, check that the type to which it is
5048 * applied is either float or int.
5049 *
5050 * From section 4.5.3 of the GLSL 1.30 spec:
5051 * "The precision statement
5052 * precision precision-qualifier type;
5053 * can be used to establish a default precision qualifier. The type
5054 * field can be either int or float [...]. Any other types or
5055 * qualifiers will result in an error.
5056 */
5057 if (this->default_precision != ast_precision_none) {
5058 if (!state->check_precision_qualifiers_allowed(&loc))
5059 return NULL;
5060
5061 if (this->structure != NULL) {
5062 _mesa_glsl_error(&loc, state,
5063 "precision qualifiers do not apply to structures");
5064 return NULL;
5065 }
5066
5067 if (this->array_specifier != NULL) {
5068 _mesa_glsl_error(&loc, state,
5069 "default precision statements do not apply to "
5070 "arrays");
5071 return NULL;
5072 }
5073
5074 const struct glsl_type *const type =
5075 state->symbols->get_type(this->type_name);
5076 if (!is_valid_default_precision_type(type)) {
5077 _mesa_glsl_error(&loc, state,
5078 "default precision statements apply only to "
5079 "float, int, and sampler types");
5080 return NULL;
5081 }
5082
5083 if (type->base_type == GLSL_TYPE_FLOAT
5084 && state->es_shader
5085 && state->stage == MESA_SHADER_FRAGMENT) {
5086 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
5087 * spec says:
5088 *
5089 * "The fragment language has no default precision qualifier for
5090 * floating point types."
5091 *
5092 * As a result, we have to track whether or not default precision has
5093 * been specified for float in GLSL ES fragment shaders.
5094 *
5095 * Earlier in that same section, the spec says:
5096 *
5097 * "Non-precision qualified declarations will use the precision
5098 * qualifier specified in the most recent precision statement
5099 * that is still in scope. The precision statement has the same
5100 * scoping rules as variable declarations. If it is declared
5101 * inside a compound statement, its effect stops at the end of
5102 * the innermost statement it was declared in. Precision
5103 * statements in nested scopes override precision statements in
5104 * outer scopes. Multiple precision statements for the same basic
5105 * type can appear inside the same scope, with later statements
5106 * overriding earlier statements within that scope."
5107 *
5108 * Default precision specifications follow the same scope rules as
5109 * variables. So, we can track the state of the default float
5110 * precision in the symbol table, and the rules will just work. This
5111 * is a slight abuse of the symbol table, but it has the semantics
5112 * that we want.
5113 */
5114 ir_variable *const junk =
5115 new(state) ir_variable(type, "#default precision",
5116 ir_var_auto);
5117
5118 state->symbols->add_variable(junk);
5119 }
5120
5121 /* FINISHME: Translate precision statements into IR. */
5122 return NULL;
5123 }
5124
5125 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
5126 * process_record_constructor() can do type-checking on C-style initializer
5127 * expressions of structs, but ast_struct_specifier should only be translated
5128 * to HIR if it is declaring the type of a structure.
5129 *
5130 * The ->is_declaration field is false for initializers of variables
5131 * declared separately from the struct's type definition.
5132 *
5133 * struct S { ... }; (is_declaration = true)
5134 * struct T { ... } t = { ... }; (is_declaration = true)
5135 * S s = { ... }; (is_declaration = false)
5136 */
5137 if (this->structure != NULL && this->structure->is_declaration)
5138 return this->structure->hir(instructions, state);
5139
5140 return NULL;
5141 }
5142
5143
5144 /**
5145 * Process a structure or interface block tree into an array of structure fields
5146 *
5147 * After parsing, where there are some syntax differnces, structures and
5148 * interface blocks are almost identical. They are similar enough that the
5149 * AST for each can be processed the same way into a set of
5150 * \c glsl_struct_field to describe the members.
5151 *
5152 * If we're processing an interface block, var_mode should be the type of the
5153 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
5154 * If we're processing a structure, var_mode should be ir_var_auto.
5155 *
5156 * \return
5157 * The number of fields processed. A pointer to the array structure fields is
5158 * stored in \c *fields_ret.
5159 */
5160 unsigned
5161 ast_process_structure_or_interface_block(exec_list *instructions,
5162 struct _mesa_glsl_parse_state *state,
5163 exec_list *declarations,
5164 YYLTYPE &loc,
5165 glsl_struct_field **fields_ret,
5166 bool is_interface,
5167 enum glsl_matrix_layout matrix_layout,
5168 bool allow_reserved_names,
5169 ir_variable_mode var_mode)
5170 {
5171 unsigned decl_count = 0;
5172
5173 /* Make an initial pass over the list of fields to determine how
5174 * many there are. Each element in this list is an ast_declarator_list.
5175 * This means that we actually need to count the number of elements in the
5176 * 'declarations' list in each of the elements.
5177 */
5178 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5179 decl_count += decl_list->declarations.length();
5180 }
5181
5182 /* Allocate storage for the fields and process the field
5183 * declarations. As the declarations are processed, try to also convert
5184 * the types to HIR. This ensures that structure definitions embedded in
5185 * other structure definitions or in interface blocks are processed.
5186 */
5187 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
5188 decl_count);
5189
5190 unsigned i = 0;
5191 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
5192 const char *type_name;
5193
5194 decl_list->type->specifier->hir(instructions, state);
5195
5196 /* Section 10.9 of the GLSL ES 1.00 specification states that
5197 * embedded structure definitions have been removed from the language.
5198 */
5199 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
5200 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
5201 "not allowed in GLSL ES 1.00");
5202 }
5203
5204 const glsl_type *decl_type =
5205 decl_list->type->glsl_type(& type_name, state);
5206
5207 foreach_list_typed (ast_declaration, decl, link,
5208 &decl_list->declarations) {
5209 if (!allow_reserved_names)
5210 validate_identifier(decl->identifier, loc, state);
5211
5212 /* From section 4.3.9 of the GLSL 4.40 spec:
5213 *
5214 * "[In interface blocks] opaque types are not allowed."
5215 *
5216 * It should be impossible for decl_type to be NULL here. Cases that
5217 * might naturally lead to decl_type being NULL, especially for the
5218 * is_interface case, will have resulted in compilation having
5219 * already halted due to a syntax error.
5220 */
5221 const struct glsl_type *field_type =
5222 decl_type != NULL ? decl_type : glsl_type::error_type;
5223
5224 if (is_interface && field_type->contains_opaque()) {
5225 YYLTYPE loc = decl_list->get_location();
5226 _mesa_glsl_error(&loc, state,
5227 "uniform in non-default uniform block contains "
5228 "opaque variable");
5229 }
5230
5231 if (field_type->contains_atomic()) {
5232 /* FINISHME: Add a spec quotation here once updated spec
5233 * FINISHME: language is available. See Khronos bug #10903
5234 * FINISHME: on whether atomic counters are allowed in
5235 * FINISHME: structures.
5236 */
5237 YYLTYPE loc = decl_list->get_location();
5238 _mesa_glsl_error(&loc, state, "atomic counter in structure or "
5239 "uniform block");
5240 }
5241
5242 if (field_type->contains_image()) {
5243 /* FINISHME: Same problem as with atomic counters.
5244 * FINISHME: Request clarification from Khronos and add
5245 * FINISHME: spec quotation here.
5246 */
5247 YYLTYPE loc = decl_list->get_location();
5248 _mesa_glsl_error(&loc, state,
5249 "image in structure or uniform block");
5250 }
5251
5252 const struct ast_type_qualifier *const qual =
5253 & decl_list->type->qualifier;
5254 if (qual->flags.q.std140 ||
5255 qual->flags.q.packed ||
5256 qual->flags.q.shared) {
5257 _mesa_glsl_error(&loc, state,
5258 "uniform block layout qualifiers std140, packed, and "
5259 "shared can only be applied to uniform blocks, not "
5260 "members");
5261 }
5262
5263 if (qual->flags.q.constant) {
5264 YYLTYPE loc = decl_list->get_location();
5265 _mesa_glsl_error(&loc, state,
5266 "const storage qualifier cannot be applied "
5267 "to struct or interface block members");
5268 }
5269
5270 field_type = process_array_type(&loc, decl_type,
5271 decl->array_specifier, state);
5272 fields[i].type = field_type;
5273 fields[i].name = decl->identifier;
5274 fields[i].location = -1;
5275 fields[i].interpolation =
5276 interpret_interpolation_qualifier(qual, var_mode, state, &loc);
5277 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
5278 fields[i].sample = qual->flags.q.sample ? 1 : 0;
5279
5280 /* Only save explicitly defined streams in block's field */
5281 fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
5282
5283 if (qual->flags.q.row_major || qual->flags.q.column_major) {
5284 if (!qual->flags.q.uniform) {
5285 _mesa_glsl_error(&loc, state,
5286 "row_major and column_major can only be "
5287 "applied to uniform interface blocks");
5288 } else
5289 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
5290 }
5291
5292 if (qual->flags.q.uniform && qual->has_interpolation()) {
5293 _mesa_glsl_error(&loc, state,
5294 "interpolation qualifiers cannot be used "
5295 "with uniform interface blocks");
5296 }
5297
5298 if ((qual->flags.q.uniform || !is_interface) &&
5299 qual->has_auxiliary_storage()) {
5300 _mesa_glsl_error(&loc, state,
5301 "auxiliary storage qualifiers cannot be used "
5302 "in uniform blocks or structures.");
5303 }
5304
5305 /* Propogate row- / column-major information down the fields of the
5306 * structure or interface block. Structures need this data because
5307 * the structure may contain a structure that contains ... a matrix
5308 * that need the proper layout.
5309 */
5310 if (field_type->without_array()->is_matrix()
5311 || field_type->without_array()->is_record()) {
5312 /* If no layout is specified for the field, inherit the layout
5313 * from the block.
5314 */
5315 fields[i].matrix_layout = matrix_layout;
5316
5317 if (qual->flags.q.row_major)
5318 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5319 else if (qual->flags.q.column_major)
5320 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5321
5322 /* If we're processing an interface block, the matrix layout must
5323 * be decided by this point.
5324 */
5325 assert(!is_interface
5326 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
5327 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
5328 }
5329
5330 i++;
5331 }
5332 }
5333
5334 assert(i == decl_count);
5335
5336 *fields_ret = fields;
5337 return decl_count;
5338 }
5339
5340
5341 ir_rvalue *
5342 ast_struct_specifier::hir(exec_list *instructions,
5343 struct _mesa_glsl_parse_state *state)
5344 {
5345 YYLTYPE loc = this->get_location();
5346
5347 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
5348 *
5349 * "Anonymous structures are not supported; so embedded structures must
5350 * have a declarator. A name given to an embedded struct is scoped at
5351 * the same level as the struct it is embedded in."
5352 *
5353 * The same section of the GLSL 1.20 spec says:
5354 *
5355 * "Anonymous structures are not supported. Embedded structures are not
5356 * supported.
5357 *
5358 * struct S { float f; };
5359 * struct T {
5360 * S; // Error: anonymous structures disallowed
5361 * struct { ... }; // Error: embedded structures disallowed
5362 * S s; // Okay: nested structures with name are allowed
5363 * };"
5364 *
5365 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
5366 * we allow embedded structures in 1.10 only.
5367 */
5368 if (state->language_version != 110 && state->struct_specifier_depth != 0)
5369 _mesa_glsl_error(&loc, state,
5370 "embedded structure declarations are not allowed");
5371
5372 state->struct_specifier_depth++;
5373
5374 glsl_struct_field *fields;
5375 unsigned decl_count =
5376 ast_process_structure_or_interface_block(instructions,
5377 state,
5378 &this->declarations,
5379 loc,
5380 &fields,
5381 false,
5382 GLSL_MATRIX_LAYOUT_INHERITED,
5383 false /* allow_reserved_names */,
5384 ir_var_auto);
5385
5386 validate_identifier(this->name, loc, state);
5387
5388 const glsl_type *t =
5389 glsl_type::get_record_instance(fields, decl_count, this->name);
5390
5391 if (!state->symbols->add_type(name, t)) {
5392 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
5393 } else {
5394 const glsl_type **s = reralloc(state, state->user_structures,
5395 const glsl_type *,
5396 state->num_user_structures + 1);
5397 if (s != NULL) {
5398 s[state->num_user_structures] = t;
5399 state->user_structures = s;
5400 state->num_user_structures++;
5401 }
5402 }
5403
5404 state->struct_specifier_depth--;
5405
5406 /* Structure type definitions do not have r-values.
5407 */
5408 return NULL;
5409 }
5410
5411
5412 /**
5413 * Visitor class which detects whether a given interface block has been used.
5414 */
5415 class interface_block_usage_visitor : public ir_hierarchical_visitor
5416 {
5417 public:
5418 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
5419 : mode(mode), block(block), found(false)
5420 {
5421 }
5422
5423 virtual ir_visitor_status visit(ir_dereference_variable *ir)
5424 {
5425 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
5426 found = true;
5427 return visit_stop;
5428 }
5429 return visit_continue;
5430 }
5431
5432 bool usage_found() const
5433 {
5434 return this->found;
5435 }
5436
5437 private:
5438 ir_variable_mode mode;
5439 const glsl_type *block;
5440 bool found;
5441 };
5442
5443
5444 ir_rvalue *
5445 ast_interface_block::hir(exec_list *instructions,
5446 struct _mesa_glsl_parse_state *state)
5447 {
5448 YYLTYPE loc = this->get_location();
5449
5450 /* Interface blocks must be declared at global scope */
5451 if (state->current_function != NULL) {
5452 _mesa_glsl_error(&loc, state,
5453 "Interface block `%s' must be declared "
5454 "at global scope",
5455 this->block_name);
5456 }
5457
5458 /* The ast_interface_block has a list of ast_declarator_lists. We
5459 * need to turn those into ir_variables with an association
5460 * with this uniform block.
5461 */
5462 enum glsl_interface_packing packing;
5463 if (this->layout.flags.q.shared) {
5464 packing = GLSL_INTERFACE_PACKING_SHARED;
5465 } else if (this->layout.flags.q.packed) {
5466 packing = GLSL_INTERFACE_PACKING_PACKED;
5467 } else {
5468 /* The default layout is std140.
5469 */
5470 packing = GLSL_INTERFACE_PACKING_STD140;
5471 }
5472
5473 ir_variable_mode var_mode;
5474 const char *iface_type_name;
5475 if (this->layout.flags.q.in) {
5476 var_mode = ir_var_shader_in;
5477 iface_type_name = "in";
5478 } else if (this->layout.flags.q.out) {
5479 var_mode = ir_var_shader_out;
5480 iface_type_name = "out";
5481 } else if (this->layout.flags.q.uniform) {
5482 var_mode = ir_var_uniform;
5483 iface_type_name = "uniform";
5484 } else {
5485 var_mode = ir_var_auto;
5486 iface_type_name = "UNKNOWN";
5487 assert(!"interface block layout qualifier not found!");
5488 }
5489
5490 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
5491 if (this->layout.flags.q.row_major)
5492 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
5493 else if (this->layout.flags.q.column_major)
5494 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
5495
5496 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
5497 exec_list declared_variables;
5498 glsl_struct_field *fields;
5499
5500 /* Treat an interface block as one level of nesting, so that embedded struct
5501 * specifiers will be disallowed.
5502 */
5503 state->struct_specifier_depth++;
5504
5505 unsigned int num_variables =
5506 ast_process_structure_or_interface_block(&declared_variables,
5507 state,
5508 &this->declarations,
5509 loc,
5510 &fields,
5511 true,
5512 matrix_layout,
5513 redeclaring_per_vertex,
5514 var_mode);
5515
5516 state->struct_specifier_depth--;
5517
5518 if (!redeclaring_per_vertex) {
5519 validate_identifier(this->block_name, loc, state);
5520
5521 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
5522 *
5523 * "Block names have no other use within a shader beyond interface
5524 * matching; it is a compile-time error to use a block name at global
5525 * scope for anything other than as a block name."
5526 */
5527 ir_variable *var = state->symbols->get_variable(this->block_name);
5528 if (var && !var->type->is_interface()) {
5529 _mesa_glsl_error(&loc, state, "Block name `%s' is "
5530 "already used in the scope.",
5531 this->block_name);
5532 }
5533 }
5534
5535 const glsl_type *earlier_per_vertex = NULL;
5536 if (redeclaring_per_vertex) {
5537 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
5538 * the named interface block gl_in, we can find it by looking at the
5539 * previous declaration of gl_in. Otherwise we can find it by looking
5540 * at the previous decalartion of any of the built-in outputs,
5541 * e.g. gl_Position.
5542 *
5543 * Also check that the instance name and array-ness of the redeclaration
5544 * are correct.
5545 */
5546 switch (var_mode) {
5547 case ir_var_shader_in:
5548 if (ir_variable *earlier_gl_in =
5549 state->symbols->get_variable("gl_in")) {
5550 earlier_per_vertex = earlier_gl_in->get_interface_type();
5551 } else {
5552 _mesa_glsl_error(&loc, state,
5553 "redeclaration of gl_PerVertex input not allowed "
5554 "in the %s shader",
5555 _mesa_shader_stage_to_string(state->stage));
5556 }
5557 if (this->instance_name == NULL ||
5558 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
5559 _mesa_glsl_error(&loc, state,
5560 "gl_PerVertex input must be redeclared as "
5561 "gl_in[]");
5562 }
5563 break;
5564 case ir_var_shader_out:
5565 if (ir_variable *earlier_gl_Position =
5566 state->symbols->get_variable("gl_Position")) {
5567 earlier_per_vertex = earlier_gl_Position->get_interface_type();
5568 } else {
5569 _mesa_glsl_error(&loc, state,
5570 "redeclaration of gl_PerVertex output not "
5571 "allowed in the %s shader",
5572 _mesa_shader_stage_to_string(state->stage));
5573 }
5574 if (this->instance_name != NULL) {
5575 _mesa_glsl_error(&loc, state,
5576 "gl_PerVertex output may not be redeclared with "
5577 "an instance name");
5578 }
5579 break;
5580 default:
5581 _mesa_glsl_error(&loc, state,
5582 "gl_PerVertex must be declared as an input or an "
5583 "output");
5584 break;
5585 }
5586
5587 if (earlier_per_vertex == NULL) {
5588 /* An error has already been reported. Bail out to avoid null
5589 * dereferences later in this function.
5590 */
5591 return NULL;
5592 }
5593
5594 /* Copy locations from the old gl_PerVertex interface block. */
5595 for (unsigned i = 0; i < num_variables; i++) {
5596 int j = earlier_per_vertex->field_index(fields[i].name);
5597 if (j == -1) {
5598 _mesa_glsl_error(&loc, state,
5599 "redeclaration of gl_PerVertex must be a subset "
5600 "of the built-in members of gl_PerVertex");
5601 } else {
5602 fields[i].location =
5603 earlier_per_vertex->fields.structure[j].location;
5604 fields[i].interpolation =
5605 earlier_per_vertex->fields.structure[j].interpolation;
5606 fields[i].centroid =
5607 earlier_per_vertex->fields.structure[j].centroid;
5608 fields[i].sample =
5609 earlier_per_vertex->fields.structure[j].sample;
5610 }
5611 }
5612
5613 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
5614 * spec:
5615 *
5616 * If a built-in interface block is redeclared, it must appear in
5617 * the shader before any use of any member included in the built-in
5618 * declaration, or a compilation error will result.
5619 *
5620 * This appears to be a clarification to the behaviour established for
5621 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
5622 * regardless of GLSL version.
5623 */
5624 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
5625 v.run(instructions);
5626 if (v.usage_found()) {
5627 _mesa_glsl_error(&loc, state,
5628 "redeclaration of a built-in interface block must "
5629 "appear before any use of any member of the "
5630 "interface block");
5631 }
5632 }
5633
5634 const glsl_type *block_type =
5635 glsl_type::get_interface_instance(fields,
5636 num_variables,
5637 packing,
5638 this->block_name);
5639
5640 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
5641 YYLTYPE loc = this->get_location();
5642 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
5643 "already taken in the current scope",
5644 this->block_name, iface_type_name);
5645 }
5646
5647 /* Since interface blocks cannot contain statements, it should be
5648 * impossible for the block to generate any instructions.
5649 */
5650 assert(declared_variables.is_empty());
5651
5652 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5653 *
5654 * Geometry shader input variables get the per-vertex values written
5655 * out by vertex shader output variables of the same names. Since a
5656 * geometry shader operates on a set of vertices, each input varying
5657 * variable (or input block, see interface blocks below) needs to be
5658 * declared as an array.
5659 */
5660 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
5661 var_mode == ir_var_shader_in) {
5662 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
5663 }
5664
5665 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
5666 * says:
5667 *
5668 * "If an instance name (instance-name) is used, then it puts all the
5669 * members inside a scope within its own name space, accessed with the
5670 * field selector ( . ) operator (analogously to structures)."
5671 */
5672 if (this->instance_name) {
5673 if (redeclaring_per_vertex) {
5674 /* When a built-in in an unnamed interface block is redeclared,
5675 * get_variable_being_redeclared() calls
5676 * check_builtin_array_max_size() to make sure that built-in array
5677 * variables aren't redeclared to illegal sizes. But we're looking
5678 * at a redeclaration of a named built-in interface block. So we
5679 * have to manually call check_builtin_array_max_size() for all parts
5680 * of the interface that are arrays.
5681 */
5682 for (unsigned i = 0; i < num_variables; i++) {
5683 if (fields[i].type->is_array()) {
5684 const unsigned size = fields[i].type->array_size();
5685 check_builtin_array_max_size(fields[i].name, size, loc, state);
5686 }
5687 }
5688 } else {
5689 validate_identifier(this->instance_name, loc, state);
5690 }
5691
5692 ir_variable *var;
5693
5694 if (this->array_specifier != NULL) {
5695 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
5696 *
5697 * For uniform blocks declared an array, each individual array
5698 * element corresponds to a separate buffer object backing one
5699 * instance of the block. As the array size indicates the number
5700 * of buffer objects needed, uniform block array declarations
5701 * must specify an array size.
5702 *
5703 * And a few paragraphs later:
5704 *
5705 * Geometry shader input blocks must be declared as arrays and
5706 * follow the array declaration and linking rules for all
5707 * geometry shader inputs. All other input and output block
5708 * arrays must specify an array size.
5709 *
5710 * The upshot of this is that the only circumstance where an
5711 * interface array size *doesn't* need to be specified is on a
5712 * geometry shader input.
5713 */
5714 if (this->array_specifier->is_unsized_array &&
5715 (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
5716 _mesa_glsl_error(&loc, state,
5717 "only geometry shader inputs may be unsized "
5718 "instance block arrays");
5719
5720 }
5721
5722 const glsl_type *block_array_type =
5723 process_array_type(&loc, block_type, this->array_specifier, state);
5724
5725 var = new(state) ir_variable(block_array_type,
5726 this->instance_name,
5727 var_mode);
5728 } else {
5729 var = new(state) ir_variable(block_type,
5730 this->instance_name,
5731 var_mode);
5732 }
5733
5734 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5735 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5736
5737 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
5738 var->data.read_only = true;
5739
5740 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
5741 handle_geometry_shader_input_decl(state, loc, var);
5742
5743 if (ir_variable *earlier =
5744 state->symbols->get_variable(this->instance_name)) {
5745 if (!redeclaring_per_vertex) {
5746 _mesa_glsl_error(&loc, state, "`%s' redeclared",
5747 this->instance_name);
5748 }
5749 earlier->data.how_declared = ir_var_declared_normally;
5750 earlier->type = var->type;
5751 earlier->reinit_interface_type(block_type);
5752 delete var;
5753 } else {
5754 /* Propagate the "binding" keyword into this UBO's fields;
5755 * the UBO declaration itself doesn't get an ir_variable unless it
5756 * has an instance name. This is ugly.
5757 */
5758 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5759 var->data.binding = this->layout.binding;
5760
5761 state->symbols->add_variable(var);
5762 instructions->push_tail(var);
5763 }
5764 } else {
5765 /* In order to have an array size, the block must also be declared with
5766 * an instance name.
5767 */
5768 assert(this->array_specifier == NULL);
5769
5770 for (unsigned i = 0; i < num_variables; i++) {
5771 ir_variable *var =
5772 new(state) ir_variable(fields[i].type,
5773 ralloc_strdup(state, fields[i].name),
5774 var_mode);
5775 var->data.interpolation = fields[i].interpolation;
5776 var->data.centroid = fields[i].centroid;
5777 var->data.sample = fields[i].sample;
5778 var->init_interface_type(block_type);
5779
5780 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
5781 var->data.read_only = true;
5782
5783 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
5784 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
5785 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
5786 } else {
5787 var->data.matrix_layout = fields[i].matrix_layout;
5788 }
5789
5790 if (fields[i].stream != -1 &&
5791 ((unsigned)fields[i].stream) != this->layout.stream) {
5792 _mesa_glsl_error(&loc, state,
5793 "stream layout qualifier on "
5794 "interface block member `%s' does not match "
5795 "the interface block (%d vs %d)",
5796 var->name, fields[i].stream, this->layout.stream);
5797 }
5798
5799 var->data.stream = this->layout.stream;
5800
5801 /* Examine var name here since var may get deleted in the next call */
5802 bool var_is_gl_id = is_gl_identifier(var->name);
5803
5804 if (redeclaring_per_vertex) {
5805 ir_variable *earlier =
5806 get_variable_being_redeclared(var, loc, state,
5807 true /* allow_all_redeclarations */);
5808 if (!var_is_gl_id || earlier == NULL) {
5809 _mesa_glsl_error(&loc, state,
5810 "redeclaration of gl_PerVertex can only "
5811 "include built-in variables");
5812 } else if (earlier->data.how_declared == ir_var_declared_normally) {
5813 _mesa_glsl_error(&loc, state,
5814 "`%s' has already been redeclared",
5815 earlier->name);
5816 } else {
5817 earlier->data.how_declared = ir_var_declared_in_block;
5818 earlier->reinit_interface_type(block_type);
5819 }
5820 continue;
5821 }
5822
5823 if (state->symbols->get_variable(var->name) != NULL)
5824 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
5825
5826 /* Propagate the "binding" keyword into this UBO's fields;
5827 * the UBO declaration itself doesn't get an ir_variable unless it
5828 * has an instance name. This is ugly.
5829 */
5830 var->data.explicit_binding = this->layout.flags.q.explicit_binding;
5831 var->data.binding = this->layout.binding;
5832
5833 state->symbols->add_variable(var);
5834 instructions->push_tail(var);
5835 }
5836
5837 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
5838 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
5839 *
5840 * It is also a compilation error ... to redeclare a built-in
5841 * block and then use a member from that built-in block that was
5842 * not included in the redeclaration.
5843 *
5844 * This appears to be a clarification to the behaviour established
5845 * for gl_PerVertex by GLSL 1.50, therefore we implement this
5846 * behaviour regardless of GLSL version.
5847 *
5848 * To prevent the shader from using a member that was not included in
5849 * the redeclaration, we disable any ir_variables that are still
5850 * associated with the old declaration of gl_PerVertex (since we've
5851 * already updated all of the variables contained in the new
5852 * gl_PerVertex to point to it).
5853 *
5854 * As a side effect this will prevent
5855 * validate_intrastage_interface_blocks() from getting confused and
5856 * thinking there are conflicting definitions of gl_PerVertex in the
5857 * shader.
5858 */
5859 foreach_in_list_safe(ir_instruction, node, instructions) {
5860 ir_variable *const var = node->as_variable();
5861 if (var != NULL &&
5862 var->get_interface_type() == earlier_per_vertex &&
5863 var->data.mode == var_mode) {
5864 if (var->data.how_declared == ir_var_declared_normally) {
5865 _mesa_glsl_error(&loc, state,
5866 "redeclaration of gl_PerVertex cannot "
5867 "follow a redeclaration of `%s'",
5868 var->name);
5869 }
5870 state->symbols->disable_variable(var->name);
5871 var->remove();
5872 }
5873 }
5874 }
5875 }
5876
5877 return NULL;
5878 }
5879
5880
5881 ir_rvalue *
5882 ast_gs_input_layout::hir(exec_list *instructions,
5883 struct _mesa_glsl_parse_state *state)
5884 {
5885 YYLTYPE loc = this->get_location();
5886
5887 /* If any geometry input layout declaration preceded this one, make sure it
5888 * was consistent with this one.
5889 */
5890 if (state->gs_input_prim_type_specified &&
5891 state->in_qualifier->prim_type != this->prim_type) {
5892 _mesa_glsl_error(&loc, state,
5893 "geometry shader input layout does not match"
5894 " previous declaration");
5895 return NULL;
5896 }
5897
5898 /* If any shader inputs occurred before this declaration and specified an
5899 * array size, make sure the size they specified is consistent with the
5900 * primitive type.
5901 */
5902 unsigned num_vertices = vertices_per_prim(this->prim_type);
5903 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
5904 _mesa_glsl_error(&loc, state,
5905 "this geometry shader input layout implies %u vertices"
5906 " per primitive, but a previous input is declared"
5907 " with size %u", num_vertices, state->gs_input_size);
5908 return NULL;
5909 }
5910
5911 state->gs_input_prim_type_specified = true;
5912
5913 /* If any shader inputs occurred before this declaration and did not
5914 * specify an array size, their size is determined now.
5915 */
5916 foreach_in_list(ir_instruction, node, instructions) {
5917 ir_variable *var = node->as_variable();
5918 if (var == NULL || var->data.mode != ir_var_shader_in)
5919 continue;
5920
5921 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5922 * array; skip it.
5923 */
5924
5925 if (var->type->is_unsized_array()) {
5926 if (var->data.max_array_access >= num_vertices) {
5927 _mesa_glsl_error(&loc, state,
5928 "this geometry shader input layout implies %u"
5929 " vertices, but an access to element %u of input"
5930 " `%s' already exists", num_vertices,
5931 var->data.max_array_access, var->name);
5932 } else {
5933 var->type = glsl_type::get_array_instance(var->type->fields.array,
5934 num_vertices);
5935 }
5936 }
5937 }
5938
5939 return NULL;
5940 }
5941
5942
5943 ir_rvalue *
5944 ast_cs_input_layout::hir(exec_list *instructions,
5945 struct _mesa_glsl_parse_state *state)
5946 {
5947 YYLTYPE loc = this->get_location();
5948
5949 /* If any compute input layout declaration preceded this one, make sure it
5950 * was consistent with this one.
5951 */
5952 if (state->cs_input_local_size_specified) {
5953 for (int i = 0; i < 3; i++) {
5954 if (state->cs_input_local_size[i] != this->local_size[i]) {
5955 _mesa_glsl_error(&loc, state,
5956 "compute shader input layout does not match"
5957 " previous declaration");
5958 return NULL;
5959 }
5960 }
5961 }
5962
5963 /* From the ARB_compute_shader specification:
5964 *
5965 * If the local size of the shader in any dimension is greater
5966 * than the maximum size supported by the implementation for that
5967 * dimension, a compile-time error results.
5968 *
5969 * It is not clear from the spec how the error should be reported if
5970 * the total size of the work group exceeds
5971 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
5972 * report it at compile time as well.
5973 */
5974 GLuint64 total_invocations = 1;
5975 for (int i = 0; i < 3; i++) {
5976 if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
5977 _mesa_glsl_error(&loc, state,
5978 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
5979 " (%d)", 'x' + i,
5980 state->ctx->Const.MaxComputeWorkGroupSize[i]);
5981 break;
5982 }
5983 total_invocations *= this->local_size[i];
5984 if (total_invocations >
5985 state->ctx->Const.MaxComputeWorkGroupInvocations) {
5986 _mesa_glsl_error(&loc, state,
5987 "product of local_sizes exceeds "
5988 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
5989 state->ctx->Const.MaxComputeWorkGroupInvocations);
5990 break;
5991 }
5992 }
5993
5994 state->cs_input_local_size_specified = true;
5995 for (int i = 0; i < 3; i++)
5996 state->cs_input_local_size[i] = this->local_size[i];
5997
5998 /* We may now declare the built-in constant gl_WorkGroupSize (see
5999 * builtin_variable_generator::generate_constants() for why we didn't
6000 * declare it earlier).
6001 */
6002 ir_variable *var = new(state->symbols)
6003 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
6004 var->data.how_declared = ir_var_declared_implicitly;
6005 var->data.read_only = true;
6006 instructions->push_tail(var);
6007 state->symbols->add_variable(var);
6008 ir_constant_data data;
6009 memset(&data, 0, sizeof(data));
6010 for (int i = 0; i < 3; i++)
6011 data.u[i] = this->local_size[i];
6012 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
6013 var->constant_initializer =
6014 new(var) ir_constant(glsl_type::uvec3_type, &data);
6015 var->data.has_initializer = true;
6016
6017 return NULL;
6018 }
6019
6020
6021 static void
6022 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
6023 exec_list *instructions)
6024 {
6025 bool gl_FragColor_assigned = false;
6026 bool gl_FragData_assigned = false;
6027 bool user_defined_fs_output_assigned = false;
6028 ir_variable *user_defined_fs_output = NULL;
6029
6030 /* It would be nice to have proper location information. */
6031 YYLTYPE loc;
6032 memset(&loc, 0, sizeof(loc));
6033
6034 foreach_in_list(ir_instruction, node, instructions) {
6035 ir_variable *var = node->as_variable();
6036
6037 if (!var || !var->data.assigned)
6038 continue;
6039
6040 if (strcmp(var->name, "gl_FragColor") == 0)
6041 gl_FragColor_assigned = true;
6042 else if (strcmp(var->name, "gl_FragData") == 0)
6043 gl_FragData_assigned = true;
6044 else if (!is_gl_identifier(var->name)) {
6045 if (state->stage == MESA_SHADER_FRAGMENT &&
6046 var->data.mode == ir_var_shader_out) {
6047 user_defined_fs_output_assigned = true;
6048 user_defined_fs_output = var;
6049 }
6050 }
6051 }
6052
6053 /* From the GLSL 1.30 spec:
6054 *
6055 * "If a shader statically assigns a value to gl_FragColor, it
6056 * may not assign a value to any element of gl_FragData. If a
6057 * shader statically writes a value to any element of
6058 * gl_FragData, it may not assign a value to
6059 * gl_FragColor. That is, a shader may assign values to either
6060 * gl_FragColor or gl_FragData, but not both. Multiple shaders
6061 * linked together must also consistently write just one of
6062 * these variables. Similarly, if user declared output
6063 * variables are in use (statically assigned to), then the
6064 * built-in variables gl_FragColor and gl_FragData may not be
6065 * assigned to. These incorrect usages all generate compile
6066 * time errors."
6067 */
6068 if (gl_FragColor_assigned && gl_FragData_assigned) {
6069 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6070 "`gl_FragColor' and `gl_FragData'");
6071 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
6072 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6073 "`gl_FragColor' and `%s'",
6074 user_defined_fs_output->name);
6075 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
6076 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
6077 "`gl_FragData' and `%s'",
6078 user_defined_fs_output->name);
6079 }
6080 }
6081
6082
6083 static void
6084 remove_per_vertex_blocks(exec_list *instructions,
6085 _mesa_glsl_parse_state *state, ir_variable_mode mode)
6086 {
6087 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
6088 * if it exists in this shader type.
6089 */
6090 const glsl_type *per_vertex = NULL;
6091 switch (mode) {
6092 case ir_var_shader_in:
6093 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
6094 per_vertex = gl_in->get_interface_type();
6095 break;
6096 case ir_var_shader_out:
6097 if (ir_variable *gl_Position =
6098 state->symbols->get_variable("gl_Position")) {
6099 per_vertex = gl_Position->get_interface_type();
6100 }
6101 break;
6102 default:
6103 assert(!"Unexpected mode");
6104 break;
6105 }
6106
6107 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
6108 * need to do anything.
6109 */
6110 if (per_vertex == NULL)
6111 return;
6112
6113 /* If the interface block is used by the shader, then we don't need to do
6114 * anything.
6115 */
6116 interface_block_usage_visitor v(mode, per_vertex);
6117 v.run(instructions);
6118 if (v.usage_found())
6119 return;
6120
6121 /* Remove any ir_variable declarations that refer to the interface block
6122 * we're removing.
6123 */
6124 foreach_in_list_safe(ir_instruction, node, instructions) {
6125 ir_variable *const var = node->as_variable();
6126 if (var != NULL && var->get_interface_type() == per_vertex &&
6127 var->data.mode == mode) {
6128 state->symbols->disable_variable(var->name);
6129 var->remove();
6130 }
6131 }
6132 }