glsl: Pull interpolation_string() out of ir_variable.
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "program/hash_table.h"
58 #include "ir.h"
59
60 static void
61 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
62 exec_list *instructions);
63
64 void
65 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
66 {
67 _mesa_glsl_initialize_variables(instructions, state);
68
69 state->symbols->separate_function_namespace = state->language_version == 110;
70
71 state->current_function = NULL;
72
73 state->toplevel_ir = instructions;
74
75 state->gs_input_prim_type_specified = false;
76
77 /* Section 4.2 of the GLSL 1.20 specification states:
78 * "The built-in functions are scoped in a scope outside the global scope
79 * users declare global variables in. That is, a shader's global scope,
80 * available for user-defined functions and global variables, is nested
81 * inside the scope containing the built-in functions."
82 *
83 * Since built-in functions like ftransform() access built-in variables,
84 * it follows that those must be in the outer scope as well.
85 *
86 * We push scope here to create this nesting effect...but don't pop.
87 * This way, a shader's globals are still in the symbol table for use
88 * by the linker.
89 */
90 state->symbols->push_scope();
91
92 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
93 ast->hir(instructions, state);
94
95 detect_recursion_unlinked(state, instructions);
96 detect_conflicting_assignments(state, instructions);
97
98 state->toplevel_ir = NULL;
99
100 /* Move all of the variable declarations to the front of the IR list, and
101 * reverse the order. This has the (intended!) side effect that vertex
102 * shader inputs and fragment shader outputs will appear in the IR in the
103 * same order that they appeared in the shader code. This results in the
104 * locations being assigned in the declared order. Many (arguably buggy)
105 * applications depend on this behavior, and it matches what nearly all
106 * other drivers do.
107 */
108 foreach_list_safe(node, instructions) {
109 ir_variable *const var = ((ir_instruction *) node)->as_variable();
110
111 if (var == NULL)
112 continue;
113
114 var->remove();
115 instructions->push_head(var);
116 }
117 }
118
119
120 /**
121 * If a conversion is available, convert one operand to a different type
122 *
123 * The \c from \c ir_rvalue is converted "in place".
124 *
125 * \param to Type that the operand it to be converted to
126 * \param from Operand that is being converted
127 * \param state GLSL compiler state
128 *
129 * \return
130 * If a conversion is possible (or unnecessary), \c true is returned.
131 * Otherwise \c false is returned.
132 */
133 bool
134 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
135 struct _mesa_glsl_parse_state *state)
136 {
137 void *ctx = state;
138 if (to->base_type == from->type->base_type)
139 return true;
140
141 /* This conversion was added in GLSL 1.20. If the compilation mode is
142 * GLSL 1.10, the conversion is skipped.
143 */
144 if (!state->is_version(120, 0))
145 return false;
146
147 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
148 *
149 * "There are no implicit array or structure conversions. For
150 * example, an array of int cannot be implicitly converted to an
151 * array of float. There are no implicit conversions between
152 * signed and unsigned integers."
153 */
154 /* FINISHME: The above comment is partially a lie. There is int/uint
155 * FINISHME: conversion for immediate constants.
156 */
157 if (!to->is_float() || !from->type->is_numeric())
158 return false;
159
160 /* Convert to a floating point type with the same number of components
161 * as the original type - i.e. int to float, not int to vec4.
162 */
163 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
164 from->type->matrix_columns);
165
166 switch (from->type->base_type) {
167 case GLSL_TYPE_INT:
168 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
169 break;
170 case GLSL_TYPE_UINT:
171 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
172 break;
173 case GLSL_TYPE_BOOL:
174 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
175 break;
176 default:
177 assert(0);
178 }
179
180 return true;
181 }
182
183
184 static const struct glsl_type *
185 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
186 bool multiply,
187 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
188 {
189 const glsl_type *type_a = value_a->type;
190 const glsl_type *type_b = value_b->type;
191
192 /* From GLSL 1.50 spec, page 56:
193 *
194 * "The arithmetic binary operators add (+), subtract (-),
195 * multiply (*), and divide (/) operate on integer and
196 * floating-point scalars, vectors, and matrices."
197 */
198 if (!type_a->is_numeric() || !type_b->is_numeric()) {
199 _mesa_glsl_error(loc, state,
200 "operands to arithmetic operators must be numeric");
201 return glsl_type::error_type;
202 }
203
204
205 /* "If one operand is floating-point based and the other is
206 * not, then the conversions from Section 4.1.10 "Implicit
207 * Conversions" are applied to the non-floating-point-based operand."
208 */
209 if (!apply_implicit_conversion(type_a, value_b, state)
210 && !apply_implicit_conversion(type_b, value_a, state)) {
211 _mesa_glsl_error(loc, state,
212 "could not implicitly convert operands to "
213 "arithmetic operator");
214 return glsl_type::error_type;
215 }
216 type_a = value_a->type;
217 type_b = value_b->type;
218
219 /* "If the operands are integer types, they must both be signed or
220 * both be unsigned."
221 *
222 * From this rule and the preceeding conversion it can be inferred that
223 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
224 * The is_numeric check above already filtered out the case where either
225 * type is not one of these, so now the base types need only be tested for
226 * equality.
227 */
228 if (type_a->base_type != type_b->base_type) {
229 _mesa_glsl_error(loc, state,
230 "base type mismatch for arithmetic operator");
231 return glsl_type::error_type;
232 }
233
234 /* "All arithmetic binary operators result in the same fundamental type
235 * (signed integer, unsigned integer, or floating-point) as the
236 * operands they operate on, after operand type conversion. After
237 * conversion, the following cases are valid
238 *
239 * * The two operands are scalars. In this case the operation is
240 * applied, resulting in a scalar."
241 */
242 if (type_a->is_scalar() && type_b->is_scalar())
243 return type_a;
244
245 /* "* One operand is a scalar, and the other is a vector or matrix.
246 * In this case, the scalar operation is applied independently to each
247 * component of the vector or matrix, resulting in the same size
248 * vector or matrix."
249 */
250 if (type_a->is_scalar()) {
251 if (!type_b->is_scalar())
252 return type_b;
253 } else if (type_b->is_scalar()) {
254 return type_a;
255 }
256
257 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
258 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
259 * handled.
260 */
261 assert(!type_a->is_scalar());
262 assert(!type_b->is_scalar());
263
264 /* "* The two operands are vectors of the same size. In this case, the
265 * operation is done component-wise resulting in the same size
266 * vector."
267 */
268 if (type_a->is_vector() && type_b->is_vector()) {
269 if (type_a == type_b) {
270 return type_a;
271 } else {
272 _mesa_glsl_error(loc, state,
273 "vector size mismatch for arithmetic operator");
274 return glsl_type::error_type;
275 }
276 }
277
278 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
279 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
280 * <vector, vector> have been handled. At least one of the operands must
281 * be matrix. Further, since there are no integer matrix types, the base
282 * type of both operands must be float.
283 */
284 assert(type_a->is_matrix() || type_b->is_matrix());
285 assert(type_a->base_type == GLSL_TYPE_FLOAT);
286 assert(type_b->base_type == GLSL_TYPE_FLOAT);
287
288 /* "* The operator is add (+), subtract (-), or divide (/), and the
289 * operands are matrices with the same number of rows and the same
290 * number of columns. In this case, the operation is done component-
291 * wise resulting in the same size matrix."
292 * * The operator is multiply (*), where both operands are matrices or
293 * one operand is a vector and the other a matrix. A right vector
294 * operand is treated as a column vector and a left vector operand as a
295 * row vector. In all these cases, it is required that the number of
296 * columns of the left operand is equal to the number of rows of the
297 * right operand. Then, the multiply (*) operation does a linear
298 * algebraic multiply, yielding an object that has the same number of
299 * rows as the left operand and the same number of columns as the right
300 * operand. Section 5.10 "Vector and Matrix Operations" explains in
301 * more detail how vectors and matrices are operated on."
302 */
303 if (! multiply) {
304 if (type_a == type_b)
305 return type_a;
306 } else {
307 if (type_a->is_matrix() && type_b->is_matrix()) {
308 /* Matrix multiply. The columns of A must match the rows of B. Given
309 * the other previously tested constraints, this means the vector type
310 * of a row from A must be the same as the vector type of a column from
311 * B.
312 */
313 if (type_a->row_type() == type_b->column_type()) {
314 /* The resulting matrix has the number of columns of matrix B and
315 * the number of rows of matrix A. We get the row count of A by
316 * looking at the size of a vector that makes up a column. The
317 * transpose (size of a row) is done for B.
318 */
319 const glsl_type *const type =
320 glsl_type::get_instance(type_a->base_type,
321 type_a->column_type()->vector_elements,
322 type_b->row_type()->vector_elements);
323 assert(type != glsl_type::error_type);
324
325 return type;
326 }
327 } else if (type_a->is_matrix()) {
328 /* A is a matrix and B is a column vector. Columns of A must match
329 * rows of B. Given the other previously tested constraints, this
330 * means the vector type of a row from A must be the same as the
331 * vector the type of B.
332 */
333 if (type_a->row_type() == type_b) {
334 /* The resulting vector has a number of elements equal to
335 * the number of rows of matrix A. */
336 const glsl_type *const type =
337 glsl_type::get_instance(type_a->base_type,
338 type_a->column_type()->vector_elements,
339 1);
340 assert(type != glsl_type::error_type);
341
342 return type;
343 }
344 } else {
345 assert(type_b->is_matrix());
346
347 /* A is a row vector and B is a matrix. Columns of A must match rows
348 * of B. Given the other previously tested constraints, this means
349 * the type of A must be the same as the vector type of a column from
350 * B.
351 */
352 if (type_a == type_b->column_type()) {
353 /* The resulting vector has a number of elements equal to
354 * the number of columns of matrix B. */
355 const glsl_type *const type =
356 glsl_type::get_instance(type_a->base_type,
357 type_b->row_type()->vector_elements,
358 1);
359 assert(type != glsl_type::error_type);
360
361 return type;
362 }
363 }
364
365 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
366 return glsl_type::error_type;
367 }
368
369
370 /* "All other cases are illegal."
371 */
372 _mesa_glsl_error(loc, state, "type mismatch");
373 return glsl_type::error_type;
374 }
375
376
377 static const struct glsl_type *
378 unary_arithmetic_result_type(const struct glsl_type *type,
379 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
380 {
381 /* From GLSL 1.50 spec, page 57:
382 *
383 * "The arithmetic unary operators negate (-), post- and pre-increment
384 * and decrement (-- and ++) operate on integer or floating-point
385 * values (including vectors and matrices). All unary operators work
386 * component-wise on their operands. These result with the same type
387 * they operated on."
388 */
389 if (!type->is_numeric()) {
390 _mesa_glsl_error(loc, state,
391 "operands to arithmetic operators must be numeric");
392 return glsl_type::error_type;
393 }
394
395 return type;
396 }
397
398 /**
399 * \brief Return the result type of a bit-logic operation.
400 *
401 * If the given types to the bit-logic operator are invalid, return
402 * glsl_type::error_type.
403 *
404 * \param type_a Type of LHS of bit-logic op
405 * \param type_b Type of RHS of bit-logic op
406 */
407 static const struct glsl_type *
408 bit_logic_result_type(const struct glsl_type *type_a,
409 const struct glsl_type *type_b,
410 ast_operators op,
411 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
412 {
413 if (!state->check_bitwise_operations_allowed(loc)) {
414 return glsl_type::error_type;
415 }
416
417 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
418 *
419 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
420 * (|). The operands must be of type signed or unsigned integers or
421 * integer vectors."
422 */
423 if (!type_a->is_integer()) {
424 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
425 ast_expression::operator_string(op));
426 return glsl_type::error_type;
427 }
428 if (!type_b->is_integer()) {
429 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
430 ast_expression::operator_string(op));
431 return glsl_type::error_type;
432 }
433
434 /* "The fundamental types of the operands (signed or unsigned) must
435 * match,"
436 */
437 if (type_a->base_type != type_b->base_type) {
438 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
439 "base type", ast_expression::operator_string(op));
440 return glsl_type::error_type;
441 }
442
443 /* "The operands cannot be vectors of differing size." */
444 if (type_a->is_vector() &&
445 type_b->is_vector() &&
446 type_a->vector_elements != type_b->vector_elements) {
447 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
448 "different sizes", ast_expression::operator_string(op));
449 return glsl_type::error_type;
450 }
451
452 /* "If one operand is a scalar and the other a vector, the scalar is
453 * applied component-wise to the vector, resulting in the same type as
454 * the vector. The fundamental types of the operands [...] will be the
455 * resulting fundamental type."
456 */
457 if (type_a->is_scalar())
458 return type_b;
459 else
460 return type_a;
461 }
462
463 static const struct glsl_type *
464 modulus_result_type(const struct glsl_type *type_a,
465 const struct glsl_type *type_b,
466 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
467 {
468 if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
469 return glsl_type::error_type;
470 }
471
472 /* From GLSL 1.50 spec, page 56:
473 * "The operator modulus (%) operates on signed or unsigned integers or
474 * integer vectors. The operand types must both be signed or both be
475 * unsigned."
476 */
477 if (!type_a->is_integer()) {
478 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
479 return glsl_type::error_type;
480 }
481 if (!type_b->is_integer()) {
482 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
483 return glsl_type::error_type;
484 }
485 if (type_a->base_type != type_b->base_type) {
486 _mesa_glsl_error(loc, state,
487 "operands of %% must have the same base type");
488 return glsl_type::error_type;
489 }
490
491 /* "The operands cannot be vectors of differing size. If one operand is
492 * a scalar and the other vector, then the scalar is applied component-
493 * wise to the vector, resulting in the same type as the vector. If both
494 * are vectors of the same size, the result is computed component-wise."
495 */
496 if (type_a->is_vector()) {
497 if (!type_b->is_vector()
498 || (type_a->vector_elements == type_b->vector_elements))
499 return type_a;
500 } else
501 return type_b;
502
503 /* "The operator modulus (%) is not defined for any other data types
504 * (non-integer types)."
505 */
506 _mesa_glsl_error(loc, state, "type mismatch");
507 return glsl_type::error_type;
508 }
509
510
511 static const struct glsl_type *
512 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
513 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
514 {
515 const glsl_type *type_a = value_a->type;
516 const glsl_type *type_b = value_b->type;
517
518 /* From GLSL 1.50 spec, page 56:
519 * "The relational operators greater than (>), less than (<), greater
520 * than or equal (>=), and less than or equal (<=) operate only on
521 * scalar integer and scalar floating-point expressions."
522 */
523 if (!type_a->is_numeric()
524 || !type_b->is_numeric()
525 || !type_a->is_scalar()
526 || !type_b->is_scalar()) {
527 _mesa_glsl_error(loc, state,
528 "operands to relational operators must be scalar and "
529 "numeric");
530 return glsl_type::error_type;
531 }
532
533 /* "Either the operands' types must match, or the conversions from
534 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
535 * operand, after which the types must match."
536 */
537 if (!apply_implicit_conversion(type_a, value_b, state)
538 && !apply_implicit_conversion(type_b, value_a, state)) {
539 _mesa_glsl_error(loc, state,
540 "could not implicitly convert operands to "
541 "relational operator");
542 return glsl_type::error_type;
543 }
544 type_a = value_a->type;
545 type_b = value_b->type;
546
547 if (type_a->base_type != type_b->base_type) {
548 _mesa_glsl_error(loc, state, "base type mismatch");
549 return glsl_type::error_type;
550 }
551
552 /* "The result is scalar Boolean."
553 */
554 return glsl_type::bool_type;
555 }
556
557 /**
558 * \brief Return the result type of a bit-shift operation.
559 *
560 * If the given types to the bit-shift operator are invalid, return
561 * glsl_type::error_type.
562 *
563 * \param type_a Type of LHS of bit-shift op
564 * \param type_b Type of RHS of bit-shift op
565 */
566 static const struct glsl_type *
567 shift_result_type(const struct glsl_type *type_a,
568 const struct glsl_type *type_b,
569 ast_operators op,
570 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
571 {
572 if (!state->check_bitwise_operations_allowed(loc)) {
573 return glsl_type::error_type;
574 }
575
576 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
577 *
578 * "The shift operators (<<) and (>>). For both operators, the operands
579 * must be signed or unsigned integers or integer vectors. One operand
580 * can be signed while the other is unsigned."
581 */
582 if (!type_a->is_integer()) {
583 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
584 "integer vector", ast_expression::operator_string(op));
585 return glsl_type::error_type;
586
587 }
588 if (!type_b->is_integer()) {
589 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
590 "integer vector", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If the first operand is a scalar, the second operand has to be
595 * a scalar as well."
596 */
597 if (type_a->is_scalar() && !type_b->is_scalar()) {
598 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
599 "second must be scalar as well",
600 ast_expression::operator_string(op));
601 return glsl_type::error_type;
602 }
603
604 /* If both operands are vectors, check that they have same number of
605 * elements.
606 */
607 if (type_a->is_vector() &&
608 type_b->is_vector() &&
609 type_a->vector_elements != type_b->vector_elements) {
610 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
611 "have same number of elements",
612 ast_expression::operator_string(op));
613 return glsl_type::error_type;
614 }
615
616 /* "In all cases, the resulting type will be the same type as the left
617 * operand."
618 */
619 return type_a;
620 }
621
622 /**
623 * Validates that a value can be assigned to a location with a specified type
624 *
625 * Validates that \c rhs can be assigned to some location. If the types are
626 * not an exact match but an automatic conversion is possible, \c rhs will be
627 * converted.
628 *
629 * \return
630 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
631 * Otherwise the actual RHS to be assigned will be returned. This may be
632 * \c rhs, or it may be \c rhs after some type conversion.
633 *
634 * \note
635 * In addition to being used for assignments, this function is used to
636 * type-check return values.
637 */
638 ir_rvalue *
639 validate_assignment(struct _mesa_glsl_parse_state *state,
640 const glsl_type *lhs_type, ir_rvalue *rhs,
641 bool is_initializer)
642 {
643 /* If there is already some error in the RHS, just return it. Anything
644 * else will lead to an avalanche of error message back to the user.
645 */
646 if (rhs->type->is_error())
647 return rhs;
648
649 /* If the types are identical, the assignment can trivially proceed.
650 */
651 if (rhs->type == lhs_type)
652 return rhs;
653
654 /* If the array element types are the same and the size of the LHS is zero,
655 * the assignment is okay for initializers embedded in variable
656 * declarations.
657 *
658 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
659 * is handled by ir_dereference::is_lvalue.
660 */
661 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
662 && (lhs_type->element_type() == rhs->type->element_type())
663 && (lhs_type->array_size() == 0)) {
664 return rhs;
665 }
666
667 /* Check for implicit conversion in GLSL 1.20 */
668 if (apply_implicit_conversion(lhs_type, rhs, state)) {
669 if (rhs->type == lhs_type)
670 return rhs;
671 }
672
673 return NULL;
674 }
675
676 static void
677 mark_whole_array_access(ir_rvalue *access)
678 {
679 ir_dereference_variable *deref = access->as_dereference_variable();
680
681 if (deref && deref->var) {
682 deref->var->max_array_access = deref->type->length - 1;
683 }
684 }
685
686 ir_rvalue *
687 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
688 const char *non_lvalue_description,
689 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
690 YYLTYPE lhs_loc)
691 {
692 void *ctx = state;
693 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
694
695 /* If the assignment LHS comes back as an ir_binop_vector_extract
696 * expression, move it to the RHS as an ir_triop_vector_insert.
697 */
698 if (lhs->ir_type == ir_type_expression) {
699 ir_expression *const expr = lhs->as_expression();
700
701 if (unlikely(expr->operation == ir_binop_vector_extract)) {
702 ir_rvalue *new_rhs =
703 validate_assignment(state, lhs->type, rhs, is_initializer);
704
705 if (new_rhs == NULL) {
706 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
707 return lhs;
708 } else {
709 rhs = new(ctx) ir_expression(ir_triop_vector_insert,
710 expr->operands[0]->type,
711 expr->operands[0],
712 new_rhs,
713 expr->operands[1]);
714 lhs = expr->operands[0]->clone(ctx, NULL);
715 }
716 }
717 }
718
719 ir_variable *lhs_var = lhs->variable_referenced();
720 if (lhs_var)
721 lhs_var->assigned = true;
722
723 if (!error_emitted) {
724 if (non_lvalue_description != NULL) {
725 _mesa_glsl_error(&lhs_loc, state,
726 "assignment to %s",
727 non_lvalue_description);
728 error_emitted = true;
729 } else if (lhs->variable_referenced() != NULL
730 && lhs->variable_referenced()->read_only) {
731 _mesa_glsl_error(&lhs_loc, state,
732 "assignment to read-only variable '%s'",
733 lhs->variable_referenced()->name);
734 error_emitted = true;
735
736 } else if (lhs->type->is_array() &&
737 !state->check_version(120, 300, &lhs_loc,
738 "whole array assignment forbidden")) {
739 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
740 *
741 * "Other binary or unary expressions, non-dereferenced
742 * arrays, function names, swizzles with repeated fields,
743 * and constants cannot be l-values."
744 *
745 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
746 */
747 error_emitted = true;
748 } else if (!lhs->is_lvalue()) {
749 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
750 error_emitted = true;
751 }
752 }
753
754 ir_rvalue *new_rhs =
755 validate_assignment(state, lhs->type, rhs, is_initializer);
756 if (new_rhs == NULL) {
757 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
758 } else {
759 rhs = new_rhs;
760
761 /* If the LHS array was not declared with a size, it takes it size from
762 * the RHS. If the LHS is an l-value and a whole array, it must be a
763 * dereference of a variable. Any other case would require that the LHS
764 * is either not an l-value or not a whole array.
765 */
766 if (lhs->type->array_size() == 0) {
767 ir_dereference *const d = lhs->as_dereference();
768
769 assert(d != NULL);
770
771 ir_variable *const var = d->variable_referenced();
772
773 assert(var != NULL);
774
775 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
776 /* FINISHME: This should actually log the location of the RHS. */
777 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
778 "previous access",
779 var->max_array_access);
780 }
781
782 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
783 rhs->type->array_size());
784 d->type = var->type;
785 }
786 mark_whole_array_access(rhs);
787 mark_whole_array_access(lhs);
788 }
789
790 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
791 * but not post_inc) need the converted assigned value as an rvalue
792 * to handle things like:
793 *
794 * i = j += 1;
795 *
796 * So we always just store the computed value being assigned to a
797 * temporary and return a deref of that temporary. If the rvalue
798 * ends up not being used, the temp will get copy-propagated out.
799 */
800 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
801 ir_var_temporary);
802 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
803 instructions->push_tail(var);
804 instructions->push_tail(new(ctx) ir_assignment(deref_var, rhs));
805 deref_var = new(ctx) ir_dereference_variable(var);
806
807 if (!error_emitted)
808 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
809
810 return new(ctx) ir_dereference_variable(var);
811 }
812
813 static ir_rvalue *
814 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
815 {
816 void *ctx = ralloc_parent(lvalue);
817 ir_variable *var;
818
819 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
820 ir_var_temporary);
821 instructions->push_tail(var);
822 var->mode = ir_var_auto;
823
824 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
825 lvalue));
826
827 return new(ctx) ir_dereference_variable(var);
828 }
829
830
831 ir_rvalue *
832 ast_node::hir(exec_list *instructions,
833 struct _mesa_glsl_parse_state *state)
834 {
835 (void) instructions;
836 (void) state;
837
838 return NULL;
839 }
840
841 static ir_rvalue *
842 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
843 {
844 int join_op;
845 ir_rvalue *cmp = NULL;
846
847 if (operation == ir_binop_all_equal)
848 join_op = ir_binop_logic_and;
849 else
850 join_op = ir_binop_logic_or;
851
852 switch (op0->type->base_type) {
853 case GLSL_TYPE_FLOAT:
854 case GLSL_TYPE_UINT:
855 case GLSL_TYPE_INT:
856 case GLSL_TYPE_BOOL:
857 return new(mem_ctx) ir_expression(operation, op0, op1);
858
859 case GLSL_TYPE_ARRAY: {
860 for (unsigned int i = 0; i < op0->type->length; i++) {
861 ir_rvalue *e0, *e1, *result;
862
863 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
864 new(mem_ctx) ir_constant(i));
865 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
866 new(mem_ctx) ir_constant(i));
867 result = do_comparison(mem_ctx, operation, e0, e1);
868
869 if (cmp) {
870 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
871 } else {
872 cmp = result;
873 }
874 }
875
876 mark_whole_array_access(op0);
877 mark_whole_array_access(op1);
878 break;
879 }
880
881 case GLSL_TYPE_STRUCT: {
882 for (unsigned int i = 0; i < op0->type->length; i++) {
883 ir_rvalue *e0, *e1, *result;
884 const char *field_name = op0->type->fields.structure[i].name;
885
886 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
887 field_name);
888 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
889 field_name);
890 result = do_comparison(mem_ctx, operation, e0, e1);
891
892 if (cmp) {
893 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
894 } else {
895 cmp = result;
896 }
897 }
898 break;
899 }
900
901 case GLSL_TYPE_ERROR:
902 case GLSL_TYPE_VOID:
903 case GLSL_TYPE_SAMPLER:
904 case GLSL_TYPE_INTERFACE:
905 /* I assume a comparison of a struct containing a sampler just
906 * ignores the sampler present in the type.
907 */
908 break;
909 }
910
911 if (cmp == NULL)
912 cmp = new(mem_ctx) ir_constant(true);
913
914 return cmp;
915 }
916
917 /* For logical operations, we want to ensure that the operands are
918 * scalar booleans. If it isn't, emit an error and return a constant
919 * boolean to avoid triggering cascading error messages.
920 */
921 ir_rvalue *
922 get_scalar_boolean_operand(exec_list *instructions,
923 struct _mesa_glsl_parse_state *state,
924 ast_expression *parent_expr,
925 int operand,
926 const char *operand_name,
927 bool *error_emitted)
928 {
929 ast_expression *expr = parent_expr->subexpressions[operand];
930 void *ctx = state;
931 ir_rvalue *val = expr->hir(instructions, state);
932
933 if (val->type->is_boolean() && val->type->is_scalar())
934 return val;
935
936 if (!*error_emitted) {
937 YYLTYPE loc = expr->get_location();
938 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
939 operand_name,
940 parent_expr->operator_string(parent_expr->oper));
941 *error_emitted = true;
942 }
943
944 return new(ctx) ir_constant(true);
945 }
946
947 /**
948 * If name refers to a builtin array whose maximum allowed size is less than
949 * size, report an error and return true. Otherwise return false.
950 */
951 void
952 check_builtin_array_max_size(const char *name, unsigned size,
953 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
954 {
955 if ((strcmp("gl_TexCoord", name) == 0)
956 && (size > state->Const.MaxTextureCoords)) {
957 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
958 *
959 * "The size [of gl_TexCoord] can be at most
960 * gl_MaxTextureCoords."
961 */
962 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
963 "be larger than gl_MaxTextureCoords (%u)",
964 state->Const.MaxTextureCoords);
965 } else if (strcmp("gl_ClipDistance", name) == 0
966 && size > state->Const.MaxClipPlanes) {
967 /* From section 7.1 (Vertex Shader Special Variables) of the
968 * GLSL 1.30 spec:
969 *
970 * "The gl_ClipDistance array is predeclared as unsized and
971 * must be sized by the shader either redeclaring it with a
972 * size or indexing it only with integral constant
973 * expressions. ... The size can be at most
974 * gl_MaxClipDistances."
975 */
976 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
977 "be larger than gl_MaxClipDistances (%u)",
978 state->Const.MaxClipPlanes);
979 }
980 }
981
982 /**
983 * Create the constant 1, of a which is appropriate for incrementing and
984 * decrementing values of the given GLSL type. For example, if type is vec4,
985 * this creates a constant value of 1.0 having type float.
986 *
987 * If the given type is invalid for increment and decrement operators, return
988 * a floating point 1--the error will be detected later.
989 */
990 static ir_rvalue *
991 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
992 {
993 switch (type->base_type) {
994 case GLSL_TYPE_UINT:
995 return new(ctx) ir_constant((unsigned) 1);
996 case GLSL_TYPE_INT:
997 return new(ctx) ir_constant(1);
998 default:
999 case GLSL_TYPE_FLOAT:
1000 return new(ctx) ir_constant(1.0f);
1001 }
1002 }
1003
1004 ir_rvalue *
1005 ast_expression::hir(exec_list *instructions,
1006 struct _mesa_glsl_parse_state *state)
1007 {
1008 void *ctx = state;
1009 static const int operations[AST_NUM_OPERATORS] = {
1010 -1, /* ast_assign doesn't convert to ir_expression. */
1011 -1, /* ast_plus doesn't convert to ir_expression. */
1012 ir_unop_neg,
1013 ir_binop_add,
1014 ir_binop_sub,
1015 ir_binop_mul,
1016 ir_binop_div,
1017 ir_binop_mod,
1018 ir_binop_lshift,
1019 ir_binop_rshift,
1020 ir_binop_less,
1021 ir_binop_greater,
1022 ir_binop_lequal,
1023 ir_binop_gequal,
1024 ir_binop_all_equal,
1025 ir_binop_any_nequal,
1026 ir_binop_bit_and,
1027 ir_binop_bit_xor,
1028 ir_binop_bit_or,
1029 ir_unop_bit_not,
1030 ir_binop_logic_and,
1031 ir_binop_logic_xor,
1032 ir_binop_logic_or,
1033 ir_unop_logic_not,
1034
1035 /* Note: The following block of expression types actually convert
1036 * to multiple IR instructions.
1037 */
1038 ir_binop_mul, /* ast_mul_assign */
1039 ir_binop_div, /* ast_div_assign */
1040 ir_binop_mod, /* ast_mod_assign */
1041 ir_binop_add, /* ast_add_assign */
1042 ir_binop_sub, /* ast_sub_assign */
1043 ir_binop_lshift, /* ast_ls_assign */
1044 ir_binop_rshift, /* ast_rs_assign */
1045 ir_binop_bit_and, /* ast_and_assign */
1046 ir_binop_bit_xor, /* ast_xor_assign */
1047 ir_binop_bit_or, /* ast_or_assign */
1048
1049 -1, /* ast_conditional doesn't convert to ir_expression. */
1050 ir_binop_add, /* ast_pre_inc. */
1051 ir_binop_sub, /* ast_pre_dec. */
1052 ir_binop_add, /* ast_post_inc. */
1053 ir_binop_sub, /* ast_post_dec. */
1054 -1, /* ast_field_selection doesn't conv to ir_expression. */
1055 -1, /* ast_array_index doesn't convert to ir_expression. */
1056 -1, /* ast_function_call doesn't conv to ir_expression. */
1057 -1, /* ast_identifier doesn't convert to ir_expression. */
1058 -1, /* ast_int_constant doesn't convert to ir_expression. */
1059 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1060 -1, /* ast_float_constant doesn't conv to ir_expression. */
1061 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1062 -1, /* ast_sequence doesn't convert to ir_expression. */
1063 };
1064 ir_rvalue *result = NULL;
1065 ir_rvalue *op[3];
1066 const struct glsl_type *type; /* a temporary variable for switch cases */
1067 bool error_emitted = false;
1068 YYLTYPE loc;
1069
1070 loc = this->get_location();
1071
1072 switch (this->oper) {
1073 case ast_aggregate:
1074 assert(!"ast_aggregate: Should never get here.");
1075 break;
1076
1077 case ast_assign: {
1078 op[0] = this->subexpressions[0]->hir(instructions, state);
1079 op[1] = this->subexpressions[1]->hir(instructions, state);
1080
1081 result = do_assignment(instructions, state,
1082 this->subexpressions[0]->non_lvalue_description,
1083 op[0], op[1], false,
1084 this->subexpressions[0]->get_location());
1085 error_emitted = result->type->is_error();
1086 break;
1087 }
1088
1089 case ast_plus:
1090 op[0] = this->subexpressions[0]->hir(instructions, state);
1091
1092 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1093
1094 error_emitted = type->is_error();
1095
1096 result = op[0];
1097 break;
1098
1099 case ast_neg:
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101
1102 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1103
1104 error_emitted = type->is_error();
1105
1106 result = new(ctx) ir_expression(operations[this->oper], type,
1107 op[0], NULL);
1108 break;
1109
1110 case ast_add:
1111 case ast_sub:
1112 case ast_mul:
1113 case ast_div:
1114 op[0] = this->subexpressions[0]->hir(instructions, state);
1115 op[1] = this->subexpressions[1]->hir(instructions, state);
1116
1117 type = arithmetic_result_type(op[0], op[1],
1118 (this->oper == ast_mul),
1119 state, & loc);
1120 error_emitted = type->is_error();
1121
1122 result = new(ctx) ir_expression(operations[this->oper], type,
1123 op[0], op[1]);
1124 break;
1125
1126 case ast_mod:
1127 op[0] = this->subexpressions[0]->hir(instructions, state);
1128 op[1] = this->subexpressions[1]->hir(instructions, state);
1129
1130 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1131
1132 assert(operations[this->oper] == ir_binop_mod);
1133
1134 result = new(ctx) ir_expression(operations[this->oper], type,
1135 op[0], op[1]);
1136 error_emitted = type->is_error();
1137 break;
1138
1139 case ast_lshift:
1140 case ast_rshift:
1141 if (!state->check_bitwise_operations_allowed(&loc)) {
1142 error_emitted = true;
1143 }
1144
1145 op[0] = this->subexpressions[0]->hir(instructions, state);
1146 op[1] = this->subexpressions[1]->hir(instructions, state);
1147 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1148 &loc);
1149 result = new(ctx) ir_expression(operations[this->oper], type,
1150 op[0], op[1]);
1151 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1152 break;
1153
1154 case ast_less:
1155 case ast_greater:
1156 case ast_lequal:
1157 case ast_gequal:
1158 op[0] = this->subexpressions[0]->hir(instructions, state);
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 type = relational_result_type(op[0], op[1], state, & loc);
1162
1163 /* The relational operators must either generate an error or result
1164 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1165 */
1166 assert(type->is_error()
1167 || ((type->base_type == GLSL_TYPE_BOOL)
1168 && type->is_scalar()));
1169
1170 result = new(ctx) ir_expression(operations[this->oper], type,
1171 op[0], op[1]);
1172 error_emitted = type->is_error();
1173 break;
1174
1175 case ast_nequal:
1176 case ast_equal:
1177 op[0] = this->subexpressions[0]->hir(instructions, state);
1178 op[1] = this->subexpressions[1]->hir(instructions, state);
1179
1180 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1181 *
1182 * "The equality operators equal (==), and not equal (!=)
1183 * operate on all types. They result in a scalar Boolean. If
1184 * the operand types do not match, then there must be a
1185 * conversion from Section 4.1.10 "Implicit Conversions"
1186 * applied to one operand that can make them match, in which
1187 * case this conversion is done."
1188 */
1189 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1190 && !apply_implicit_conversion(op[1]->type, op[0], state))
1191 || (op[0]->type != op[1]->type)) {
1192 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1193 "type", (this->oper == ast_equal) ? "==" : "!=");
1194 error_emitted = true;
1195 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1196 !state->check_version(120, 300, &loc,
1197 "array comparisons forbidden")) {
1198 error_emitted = true;
1199 }
1200
1201 if (error_emitted) {
1202 result = new(ctx) ir_constant(false);
1203 } else {
1204 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1205 assert(result->type == glsl_type::bool_type);
1206 }
1207 break;
1208
1209 case ast_bit_and:
1210 case ast_bit_xor:
1211 case ast_bit_or:
1212 op[0] = this->subexpressions[0]->hir(instructions, state);
1213 op[1] = this->subexpressions[1]->hir(instructions, state);
1214 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1215 state, &loc);
1216 result = new(ctx) ir_expression(operations[this->oper], type,
1217 op[0], op[1]);
1218 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1219 break;
1220
1221 case ast_bit_not:
1222 op[0] = this->subexpressions[0]->hir(instructions, state);
1223
1224 if (!state->check_bitwise_operations_allowed(&loc)) {
1225 error_emitted = true;
1226 }
1227
1228 if (!op[0]->type->is_integer()) {
1229 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1230 error_emitted = true;
1231 }
1232
1233 type = error_emitted ? glsl_type::error_type : op[0]->type;
1234 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1235 break;
1236
1237 case ast_logic_and: {
1238 exec_list rhs_instructions;
1239 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1240 "LHS", &error_emitted);
1241 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1242 "RHS", &error_emitted);
1243
1244 if (rhs_instructions.is_empty()) {
1245 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1246 type = result->type;
1247 } else {
1248 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1249 "and_tmp",
1250 ir_var_temporary);
1251 instructions->push_tail(tmp);
1252
1253 ir_if *const stmt = new(ctx) ir_if(op[0]);
1254 instructions->push_tail(stmt);
1255
1256 stmt->then_instructions.append_list(&rhs_instructions);
1257 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1258 ir_assignment *const then_assign =
1259 new(ctx) ir_assignment(then_deref, op[1]);
1260 stmt->then_instructions.push_tail(then_assign);
1261
1262 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1263 ir_assignment *const else_assign =
1264 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1265 stmt->else_instructions.push_tail(else_assign);
1266
1267 result = new(ctx) ir_dereference_variable(tmp);
1268 type = tmp->type;
1269 }
1270 break;
1271 }
1272
1273 case ast_logic_or: {
1274 exec_list rhs_instructions;
1275 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1276 "LHS", &error_emitted);
1277 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1278 "RHS", &error_emitted);
1279
1280 if (rhs_instructions.is_empty()) {
1281 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1282 type = result->type;
1283 } else {
1284 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1285 "or_tmp",
1286 ir_var_temporary);
1287 instructions->push_tail(tmp);
1288
1289 ir_if *const stmt = new(ctx) ir_if(op[0]);
1290 instructions->push_tail(stmt);
1291
1292 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1293 ir_assignment *const then_assign =
1294 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1295 stmt->then_instructions.push_tail(then_assign);
1296
1297 stmt->else_instructions.append_list(&rhs_instructions);
1298 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1299 ir_assignment *const else_assign =
1300 new(ctx) ir_assignment(else_deref, op[1]);
1301 stmt->else_instructions.push_tail(else_assign);
1302
1303 result = new(ctx) ir_dereference_variable(tmp);
1304 type = tmp->type;
1305 }
1306 break;
1307 }
1308
1309 case ast_logic_xor:
1310 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1311 *
1312 * "The logical binary operators and (&&), or ( | | ), and
1313 * exclusive or (^^). They operate only on two Boolean
1314 * expressions and result in a Boolean expression."
1315 */
1316 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1317 &error_emitted);
1318 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1319 &error_emitted);
1320
1321 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1322 op[0], op[1]);
1323 break;
1324
1325 case ast_logic_not:
1326 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1327 "operand", &error_emitted);
1328
1329 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1330 op[0], NULL);
1331 break;
1332
1333 case ast_mul_assign:
1334 case ast_div_assign:
1335 case ast_add_assign:
1336 case ast_sub_assign: {
1337 op[0] = this->subexpressions[0]->hir(instructions, state);
1338 op[1] = this->subexpressions[1]->hir(instructions, state);
1339
1340 type = arithmetic_result_type(op[0], op[1],
1341 (this->oper == ast_mul_assign),
1342 state, & loc);
1343
1344 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1345 op[0], op[1]);
1346
1347 result = do_assignment(instructions, state,
1348 this->subexpressions[0]->non_lvalue_description,
1349 op[0]->clone(ctx, NULL), temp_rhs, false,
1350 this->subexpressions[0]->get_location());
1351 error_emitted = (op[0]->type->is_error());
1352
1353 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1354 * explicitly test for this because none of the binary expression
1355 * operators allow array operands either.
1356 */
1357
1358 break;
1359 }
1360
1361 case ast_mod_assign: {
1362 op[0] = this->subexpressions[0]->hir(instructions, state);
1363 op[1] = this->subexpressions[1]->hir(instructions, state);
1364
1365 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1366
1367 assert(operations[this->oper] == ir_binop_mod);
1368
1369 ir_rvalue *temp_rhs;
1370 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1371 op[0], op[1]);
1372
1373 result = do_assignment(instructions, state,
1374 this->subexpressions[0]->non_lvalue_description,
1375 op[0]->clone(ctx, NULL), temp_rhs, false,
1376 this->subexpressions[0]->get_location());
1377 error_emitted = type->is_error();
1378 break;
1379 }
1380
1381 case ast_ls_assign:
1382 case ast_rs_assign: {
1383 op[0] = this->subexpressions[0]->hir(instructions, state);
1384 op[1] = this->subexpressions[1]->hir(instructions, state);
1385 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1386 &loc);
1387 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1388 type, op[0], op[1]);
1389 result = do_assignment(instructions, state,
1390 this->subexpressions[0]->non_lvalue_description,
1391 op[0]->clone(ctx, NULL), temp_rhs, false,
1392 this->subexpressions[0]->get_location());
1393 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1394 break;
1395 }
1396
1397 case ast_and_assign:
1398 case ast_xor_assign:
1399 case ast_or_assign: {
1400 op[0] = this->subexpressions[0]->hir(instructions, state);
1401 op[1] = this->subexpressions[1]->hir(instructions, state);
1402 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1403 state, &loc);
1404 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1405 type, op[0], op[1]);
1406 result = do_assignment(instructions, state,
1407 this->subexpressions[0]->non_lvalue_description,
1408 op[0]->clone(ctx, NULL), temp_rhs, false,
1409 this->subexpressions[0]->get_location());
1410 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_conditional: {
1415 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1416 *
1417 * "The ternary selection operator (?:). It operates on three
1418 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1419 * first expression, which must result in a scalar Boolean."
1420 */
1421 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1422 "condition", &error_emitted);
1423
1424 /* The :? operator is implemented by generating an anonymous temporary
1425 * followed by an if-statement. The last instruction in each branch of
1426 * the if-statement assigns a value to the anonymous temporary. This
1427 * temporary is the r-value of the expression.
1428 */
1429 exec_list then_instructions;
1430 exec_list else_instructions;
1431
1432 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1433 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1434
1435 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1436 *
1437 * "The second and third expressions can be any type, as
1438 * long their types match, or there is a conversion in
1439 * Section 4.1.10 "Implicit Conversions" that can be applied
1440 * to one of the expressions to make their types match. This
1441 * resulting matching type is the type of the entire
1442 * expression."
1443 */
1444 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1445 && !apply_implicit_conversion(op[2]->type, op[1], state))
1446 || (op[1]->type != op[2]->type)) {
1447 YYLTYPE loc = this->subexpressions[1]->get_location();
1448
1449 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1450 "operator must have matching types");
1451 error_emitted = true;
1452 type = glsl_type::error_type;
1453 } else {
1454 type = op[1]->type;
1455 }
1456
1457 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1458 *
1459 * "The second and third expressions must be the same type, but can
1460 * be of any type other than an array."
1461 */
1462 if (type->is_array() &&
1463 !state->check_version(120, 300, &loc,
1464 "second and third operands of ?: operator "
1465 "cannot be arrays")) {
1466 error_emitted = true;
1467 }
1468
1469 ir_constant *cond_val = op[0]->constant_expression_value();
1470 ir_constant *then_val = op[1]->constant_expression_value();
1471 ir_constant *else_val = op[2]->constant_expression_value();
1472
1473 if (then_instructions.is_empty()
1474 && else_instructions.is_empty()
1475 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1476 result = (cond_val->value.b[0]) ? then_val : else_val;
1477 } else {
1478 ir_variable *const tmp =
1479 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1480 instructions->push_tail(tmp);
1481
1482 ir_if *const stmt = new(ctx) ir_if(op[0]);
1483 instructions->push_tail(stmt);
1484
1485 then_instructions.move_nodes_to(& stmt->then_instructions);
1486 ir_dereference *const then_deref =
1487 new(ctx) ir_dereference_variable(tmp);
1488 ir_assignment *const then_assign =
1489 new(ctx) ir_assignment(then_deref, op[1]);
1490 stmt->then_instructions.push_tail(then_assign);
1491
1492 else_instructions.move_nodes_to(& stmt->else_instructions);
1493 ir_dereference *const else_deref =
1494 new(ctx) ir_dereference_variable(tmp);
1495 ir_assignment *const else_assign =
1496 new(ctx) ir_assignment(else_deref, op[2]);
1497 stmt->else_instructions.push_tail(else_assign);
1498
1499 result = new(ctx) ir_dereference_variable(tmp);
1500 }
1501 break;
1502 }
1503
1504 case ast_pre_inc:
1505 case ast_pre_dec: {
1506 this->non_lvalue_description = (this->oper == ast_pre_inc)
1507 ? "pre-increment operation" : "pre-decrement operation";
1508
1509 op[0] = this->subexpressions[0]->hir(instructions, state);
1510 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1511
1512 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1513
1514 ir_rvalue *temp_rhs;
1515 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1516 op[0], op[1]);
1517
1518 result = do_assignment(instructions, state,
1519 this->subexpressions[0]->non_lvalue_description,
1520 op[0]->clone(ctx, NULL), temp_rhs, false,
1521 this->subexpressions[0]->get_location());
1522 error_emitted = op[0]->type->is_error();
1523 break;
1524 }
1525
1526 case ast_post_inc:
1527 case ast_post_dec: {
1528 this->non_lvalue_description = (this->oper == ast_post_inc)
1529 ? "post-increment operation" : "post-decrement operation";
1530 op[0] = this->subexpressions[0]->hir(instructions, state);
1531 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1532
1533 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1534
1535 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1536
1537 ir_rvalue *temp_rhs;
1538 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1539 op[0], op[1]);
1540
1541 /* Get a temporary of a copy of the lvalue before it's modified.
1542 * This may get thrown away later.
1543 */
1544 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1545
1546 (void)do_assignment(instructions, state,
1547 this->subexpressions[0]->non_lvalue_description,
1548 op[0]->clone(ctx, NULL), temp_rhs, false,
1549 this->subexpressions[0]->get_location());
1550
1551 error_emitted = op[0]->type->is_error();
1552 break;
1553 }
1554
1555 case ast_field_selection:
1556 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1557 break;
1558
1559 case ast_array_index: {
1560 YYLTYPE index_loc = subexpressions[1]->get_location();
1561
1562 op[0] = subexpressions[0]->hir(instructions, state);
1563 op[1] = subexpressions[1]->hir(instructions, state);
1564
1565 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
1566 loc, index_loc);
1567
1568 if (result->type->is_error())
1569 error_emitted = true;
1570
1571 break;
1572 }
1573
1574 case ast_function_call:
1575 /* Should *NEVER* get here. ast_function_call should always be handled
1576 * by ast_function_expression::hir.
1577 */
1578 assert(0);
1579 break;
1580
1581 case ast_identifier: {
1582 /* ast_identifier can appear several places in a full abstract syntax
1583 * tree. This particular use must be at location specified in the grammar
1584 * as 'variable_identifier'.
1585 */
1586 ir_variable *var =
1587 state->symbols->get_variable(this->primary_expression.identifier);
1588
1589 if (var != NULL) {
1590 var->used = true;
1591 result = new(ctx) ir_dereference_variable(var);
1592 } else {
1593 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1594 this->primary_expression.identifier);
1595
1596 result = ir_rvalue::error_value(ctx);
1597 error_emitted = true;
1598 }
1599 break;
1600 }
1601
1602 case ast_int_constant:
1603 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1604 break;
1605
1606 case ast_uint_constant:
1607 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1608 break;
1609
1610 case ast_float_constant:
1611 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1612 break;
1613
1614 case ast_bool_constant:
1615 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1616 break;
1617
1618 case ast_sequence: {
1619 /* It should not be possible to generate a sequence in the AST without
1620 * any expressions in it.
1621 */
1622 assert(!this->expressions.is_empty());
1623
1624 /* The r-value of a sequence is the last expression in the sequence. If
1625 * the other expressions in the sequence do not have side-effects (and
1626 * therefore add instructions to the instruction list), they get dropped
1627 * on the floor.
1628 */
1629 exec_node *previous_tail_pred = NULL;
1630 YYLTYPE previous_operand_loc = loc;
1631
1632 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1633 /* If one of the operands of comma operator does not generate any
1634 * code, we want to emit a warning. At each pass through the loop
1635 * previous_tail_pred will point to the last instruction in the
1636 * stream *before* processing the previous operand. Naturally,
1637 * instructions->tail_pred will point to the last instruction in the
1638 * stream *after* processing the previous operand. If the two
1639 * pointers match, then the previous operand had no effect.
1640 *
1641 * The warning behavior here differs slightly from GCC. GCC will
1642 * only emit a warning if none of the left-hand operands have an
1643 * effect. However, it will emit a warning for each. I believe that
1644 * there are some cases in C (especially with GCC extensions) where
1645 * it is useful to have an intermediate step in a sequence have no
1646 * effect, but I don't think these cases exist in GLSL. Either way,
1647 * it would be a giant hassle to replicate that behavior.
1648 */
1649 if (previous_tail_pred == instructions->tail_pred) {
1650 _mesa_glsl_warning(&previous_operand_loc, state,
1651 "left-hand operand of comma expression has "
1652 "no effect");
1653 }
1654
1655 /* tail_pred is directly accessed instead of using the get_tail()
1656 * method for performance reasons. get_tail() has extra code to
1657 * return NULL when the list is empty. We don't care about that
1658 * here, so using tail_pred directly is fine.
1659 */
1660 previous_tail_pred = instructions->tail_pred;
1661 previous_operand_loc = ast->get_location();
1662
1663 result = ast->hir(instructions, state);
1664 }
1665
1666 /* Any errors should have already been emitted in the loop above.
1667 */
1668 error_emitted = true;
1669 break;
1670 }
1671 }
1672 type = NULL; /* use result->type, not type. */
1673 assert(result != NULL);
1674
1675 if (result->type->is_error() && !error_emitted)
1676 _mesa_glsl_error(& loc, state, "type mismatch");
1677
1678 return result;
1679 }
1680
1681
1682 ir_rvalue *
1683 ast_expression_statement::hir(exec_list *instructions,
1684 struct _mesa_glsl_parse_state *state)
1685 {
1686 /* It is possible to have expression statements that don't have an
1687 * expression. This is the solitary semicolon:
1688 *
1689 * for (i = 0; i < 5; i++)
1690 * ;
1691 *
1692 * In this case the expression will be NULL. Test for NULL and don't do
1693 * anything in that case.
1694 */
1695 if (expression != NULL)
1696 expression->hir(instructions, state);
1697
1698 /* Statements do not have r-values.
1699 */
1700 return NULL;
1701 }
1702
1703
1704 ir_rvalue *
1705 ast_compound_statement::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 if (new_scope)
1709 state->symbols->push_scope();
1710
1711 foreach_list_typed (ast_node, ast, link, &this->statements)
1712 ast->hir(instructions, state);
1713
1714 if (new_scope)
1715 state->symbols->pop_scope();
1716
1717 /* Compound statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 static const glsl_type *
1724 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 unsigned length = 0;
1728
1729 if (base == NULL)
1730 return glsl_type::error_type;
1731
1732 /* From page 19 (page 25) of the GLSL 1.20 spec:
1733 *
1734 * "Only one-dimensional arrays may be declared."
1735 */
1736 if (base->is_array()) {
1737 _mesa_glsl_error(loc, state,
1738 "invalid array of `%s' (only one-dimensional arrays "
1739 "may be declared)",
1740 base->name);
1741 return glsl_type::error_type;
1742 }
1743
1744 if (array_size != NULL) {
1745 exec_list dummy_instructions;
1746 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1747 YYLTYPE loc = array_size->get_location();
1748
1749 if (ir != NULL) {
1750 if (!ir->type->is_integer()) {
1751 _mesa_glsl_error(& loc, state, "array size must be integer type");
1752 } else if (!ir->type->is_scalar()) {
1753 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1754 } else {
1755 ir_constant *const size = ir->constant_expression_value();
1756
1757 if (size == NULL) {
1758 _mesa_glsl_error(& loc, state, "array size must be a "
1759 "constant valued expression");
1760 } else if (size->value.i[0] <= 0) {
1761 _mesa_glsl_error(& loc, state, "array size must be > 0");
1762 } else {
1763 assert(size->type == ir->type);
1764 length = size->value.u[0];
1765
1766 /* If the array size is const (and we've verified that
1767 * it is) then no instructions should have been emitted
1768 * when we converted it to HIR. If they were emitted,
1769 * then either the array size isn't const after all, or
1770 * we are emitting unnecessary instructions.
1771 */
1772 assert(dummy_instructions.is_empty());
1773 }
1774 }
1775 }
1776 }
1777
1778 const glsl_type *array_type = glsl_type::get_array_instance(base, length);
1779 return array_type != NULL ? array_type : glsl_type::error_type;
1780 }
1781
1782
1783 const glsl_type *
1784 ast_type_specifier::glsl_type(const char **name,
1785 struct _mesa_glsl_parse_state *state) const
1786 {
1787 const struct glsl_type *type;
1788
1789 type = state->symbols->get_type(this->type_name);
1790 *name = this->type_name;
1791
1792 if (this->is_array) {
1793 YYLTYPE loc = this->get_location();
1794 type = process_array_type(&loc, type, this->array_size, state);
1795 }
1796
1797 return type;
1798 }
1799
1800 const glsl_type *
1801 ast_fully_specified_type::glsl_type(const char **name,
1802 struct _mesa_glsl_parse_state *state) const
1803 {
1804 const struct glsl_type *type = this->specifier->glsl_type(name, state);
1805
1806 if (type == NULL)
1807 return NULL;
1808
1809 if (type->base_type == GLSL_TYPE_FLOAT
1810 && state->es_shader
1811 && state->target == fragment_shader
1812 && this->qualifier.precision == ast_precision_none
1813 && state->symbols->get_variable("#default precision") == NULL) {
1814 YYLTYPE loc = this->get_location();
1815 _mesa_glsl_error(&loc, state,
1816 "no precision specified this scope for type `%s'",
1817 type->name);
1818 }
1819
1820 return type;
1821 }
1822
1823 /**
1824 * Determine whether a toplevel variable declaration declares a varying. This
1825 * function operates by examining the variable's mode and the shader target,
1826 * so it correctly identifies linkage variables regardless of whether they are
1827 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
1828 *
1829 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
1830 * this function will produce undefined results.
1831 */
1832 static bool
1833 is_varying_var(ir_variable *var, _mesa_glsl_parser_targets target)
1834 {
1835 switch (target) {
1836 case vertex_shader:
1837 return var->mode == ir_var_shader_out;
1838 case fragment_shader:
1839 return var->mode == ir_var_shader_in;
1840 default:
1841 return var->mode == ir_var_shader_out || var->mode == ir_var_shader_in;
1842 }
1843 }
1844
1845
1846 /**
1847 * Matrix layout qualifiers are only allowed on certain types
1848 */
1849 static void
1850 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
1851 YYLTYPE *loc,
1852 const glsl_type *type,
1853 ir_variable *var)
1854 {
1855 if (var && !var->is_in_uniform_block()) {
1856 /* Layout qualifiers may only apply to interface blocks and fields in
1857 * them.
1858 */
1859 _mesa_glsl_error(loc, state,
1860 "uniform block layout qualifiers row_major and "
1861 "column_major may not be applied to variables "
1862 "outside of uniform blocks");
1863 } else if (!type->is_matrix()) {
1864 /* The OpenGL ES 3.0 conformance tests did not originally allow
1865 * matrix layout qualifiers on non-matrices. However, the OpenGL
1866 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
1867 * amended to specifically allow these layouts on all types. Emit
1868 * a warning so that people know their code may not be portable.
1869 */
1870 _mesa_glsl_warning(loc, state,
1871 "uniform block layout qualifiers row_major and "
1872 "column_major applied to non-matrix types may "
1873 "be rejected by older compilers");
1874 } else if (type->is_record()) {
1875 /* We allow 'layout(row_major)' on structure types because it's the only
1876 * way to get row-major layouts on matrices contained in structures.
1877 */
1878 _mesa_glsl_warning(loc, state,
1879 "uniform block layout qualifiers row_major and "
1880 "column_major applied to structure types is not "
1881 "strictly conformant and may be rejected by other "
1882 "compilers");
1883 }
1884 }
1885
1886 static bool
1887 validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
1888 YYLTYPE *loc,
1889 ir_variable *var,
1890 const ast_type_qualifier *qual)
1891 {
1892 if (var->mode != ir_var_uniform) {
1893 _mesa_glsl_error(loc, state,
1894 "the \"binding\" qualifier only applies to uniforms");
1895 return false;
1896 }
1897
1898 if (qual->binding < 0) {
1899 _mesa_glsl_error(loc, state, "binding values must be >= 0");
1900 return false;
1901 }
1902
1903 const struct gl_context *const ctx = state->ctx;
1904 unsigned elements = var->type->is_array() ? var->type->length : 1;
1905 unsigned max_index = qual->binding + elements - 1;
1906
1907 if (var->type->is_interface()) {
1908 /* UBOs. From page 60 of the GLSL 4.20 specification:
1909 * "If the binding point for any uniform block instance is less than zero,
1910 * or greater than or equal to the implementation-dependent maximum
1911 * number of uniform buffer bindings, a compilation error will occur.
1912 * When the binding identifier is used with a uniform block instanced as
1913 * an array of size N, all elements of the array from binding through
1914 * binding + N – 1 must be within this range."
1915 *
1916 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
1917 */
1918 if (max_index >= ctx->Const.MaxUniformBufferBindings) {
1919 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
1920 "the maximum number of UBO binding points (%d)",
1921 qual->binding, elements,
1922 ctx->Const.MaxUniformBufferBindings);
1923 return false;
1924 }
1925 } else if (var->type->is_sampler() ||
1926 (var->type->is_array() && var->type->fields.array->is_sampler())) {
1927 /* Samplers. From page 63 of the GLSL 4.20 specification:
1928 * "If the binding is less than zero, or greater than or equal to the
1929 * implementation-dependent maximum supported number of units, a
1930 * compilation error will occur. When the binding identifier is used
1931 * with an array of size N, all elements of the array from binding
1932 * through binding + N - 1 must be within this range."
1933 */
1934 unsigned limit = 0;
1935 switch (state->target) {
1936 case vertex_shader:
1937 limit = ctx->Const.VertexProgram.MaxTextureImageUnits;
1938 break;
1939 case geometry_shader:
1940 limit = ctx->Const.GeometryProgram.MaxTextureImageUnits;
1941 break;
1942 case fragment_shader:
1943 limit = ctx->Const.FragmentProgram.MaxTextureImageUnits;
1944 break;
1945 }
1946
1947 if (max_index >= limit) {
1948 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
1949 "exceeds the maximum number of texture image units "
1950 "(%d)", qual->binding, elements, limit);
1951
1952 return false;
1953 }
1954 } else {
1955 _mesa_glsl_error(loc, state,
1956 "the \"binding\" qualifier only applies to uniform "
1957 "blocks, samplers, or arrays of samplers");
1958 return false;
1959 }
1960
1961 return true;
1962 }
1963
1964 static void
1965 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1966 ir_variable *var,
1967 struct _mesa_glsl_parse_state *state,
1968 YYLTYPE *loc,
1969 bool is_parameter)
1970 {
1971 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
1972
1973 if (qual->flags.q.invariant) {
1974 if (var->used) {
1975 _mesa_glsl_error(loc, state,
1976 "variable `%s' may not be redeclared "
1977 "`invariant' after being used",
1978 var->name);
1979 } else {
1980 var->invariant = 1;
1981 }
1982 }
1983
1984 if (qual->flags.q.constant || qual->flags.q.attribute
1985 || qual->flags.q.uniform
1986 || (qual->flags.q.varying && (state->target == fragment_shader)))
1987 var->read_only = 1;
1988
1989 if (qual->flags.q.centroid)
1990 var->centroid = 1;
1991
1992 if (qual->flags.q.attribute && state->target != vertex_shader) {
1993 var->type = glsl_type::error_type;
1994 _mesa_glsl_error(loc, state,
1995 "`attribute' variables may not be declared in the "
1996 "%s shader",
1997 _mesa_glsl_shader_target_name(state->target));
1998 }
1999
2000 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
2001 *
2002 * "However, the const qualifier cannot be used with out or inout."
2003 *
2004 * The same section of the GLSL 4.40 spec further clarifies this saying:
2005 *
2006 * "The const qualifier cannot be used with out or inout, or a
2007 * compile-time error results."
2008 */
2009 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
2010 _mesa_glsl_error(loc, state,
2011 "`const' may not be applied to `out' or `inout' "
2012 "function parameters");
2013 }
2014
2015 /* If there is no qualifier that changes the mode of the variable, leave
2016 * the setting alone.
2017 */
2018 if (qual->flags.q.in && qual->flags.q.out)
2019 var->mode = ir_var_function_inout;
2020 else if (qual->flags.q.in)
2021 var->mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
2022 else if (qual->flags.q.attribute
2023 || (qual->flags.q.varying && (state->target == fragment_shader)))
2024 var->mode = ir_var_shader_in;
2025 else if (qual->flags.q.out)
2026 var->mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
2027 else if (qual->flags.q.varying && (state->target == vertex_shader))
2028 var->mode = ir_var_shader_out;
2029 else if (qual->flags.q.uniform)
2030 var->mode = ir_var_uniform;
2031
2032 if (!is_parameter && is_varying_var(var, state->target)) {
2033 /* This variable is being used to link data between shader stages (in
2034 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
2035 * that is allowed for such purposes.
2036 *
2037 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
2038 *
2039 * "The varying qualifier can be used only with the data types
2040 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
2041 * these."
2042 *
2043 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
2044 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
2045 *
2046 * "Fragment inputs can only be signed and unsigned integers and
2047 * integer vectors, float, floating-point vectors, matrices, or
2048 * arrays of these. Structures cannot be input.
2049 *
2050 * Similar text exists in the section on vertex shader outputs.
2051 *
2052 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
2053 * 3.00 spec allows structs as well. Varying structs are also allowed
2054 * in GLSL 1.50.
2055 */
2056 switch (var->type->get_scalar_type()->base_type) {
2057 case GLSL_TYPE_FLOAT:
2058 /* Ok in all GLSL versions */
2059 break;
2060 case GLSL_TYPE_UINT:
2061 case GLSL_TYPE_INT:
2062 if (state->is_version(130, 300))
2063 break;
2064 _mesa_glsl_error(loc, state,
2065 "varying variables must be of base type float in %s",
2066 state->get_version_string());
2067 break;
2068 case GLSL_TYPE_STRUCT:
2069 if (state->is_version(150, 300))
2070 break;
2071 _mesa_glsl_error(loc, state,
2072 "varying variables may not be of type struct");
2073 break;
2074 default:
2075 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
2076 break;
2077 }
2078 }
2079
2080 if (state->all_invariant && (state->current_function == NULL)) {
2081 switch (state->target) {
2082 case vertex_shader:
2083 if (var->mode == ir_var_shader_out)
2084 var->invariant = true;
2085 break;
2086 case geometry_shader:
2087 if ((var->mode == ir_var_shader_in)
2088 || (var->mode == ir_var_shader_out))
2089 var->invariant = true;
2090 break;
2091 case fragment_shader:
2092 if (var->mode == ir_var_shader_in)
2093 var->invariant = true;
2094 break;
2095 }
2096 }
2097
2098 if (qual->flags.q.flat)
2099 var->interpolation = INTERP_QUALIFIER_FLAT;
2100 else if (qual->flags.q.noperspective)
2101 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2102 else if (qual->flags.q.smooth)
2103 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2104 else
2105 var->interpolation = INTERP_QUALIFIER_NONE;
2106
2107 if (var->interpolation != INTERP_QUALIFIER_NONE) {
2108 ir_variable_mode mode = (ir_variable_mode) var->mode;
2109
2110 if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
2111 _mesa_glsl_error(loc, state,
2112 "interpolation qualifier `%s' can only be applied to "
2113 "shader inputs or outputs.",
2114 interpolation_string(var->interpolation));
2115
2116 }
2117
2118 if ((state->target == vertex_shader && mode == ir_var_shader_in) ||
2119 (state->target == fragment_shader && mode == ir_var_shader_out)) {
2120 _mesa_glsl_error(loc, state,
2121 "interpolation qualifier `%s' cannot be applied to "
2122 "vertex shader inputs or fragment shader outputs",
2123 interpolation_string(var->interpolation));
2124 }
2125 }
2126
2127 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2128 var->origin_upper_left = qual->flags.q.origin_upper_left;
2129 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2130 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2131 const char *const qual_string = (qual->flags.q.origin_upper_left)
2132 ? "origin_upper_left" : "pixel_center_integer";
2133
2134 _mesa_glsl_error(loc, state,
2135 "layout qualifier `%s' can only be applied to "
2136 "fragment shader input `gl_FragCoord'",
2137 qual_string);
2138 }
2139
2140 if (qual->flags.q.explicit_location) {
2141 const bool global_scope = (state->current_function == NULL);
2142 bool fail = false;
2143 const char *string = "";
2144
2145 /* In the vertex shader only shader inputs can be given explicit
2146 * locations.
2147 *
2148 * In the fragment shader only shader outputs can be given explicit
2149 * locations.
2150 */
2151 switch (state->target) {
2152 case vertex_shader:
2153 if (!global_scope || (var->mode != ir_var_shader_in)) {
2154 fail = true;
2155 string = "input";
2156 }
2157 break;
2158
2159 case geometry_shader:
2160 _mesa_glsl_error(loc, state,
2161 "geometry shader variables cannot be given "
2162 "explicit locations");
2163 break;
2164
2165 case fragment_shader:
2166 if (!global_scope || (var->mode != ir_var_shader_out)) {
2167 fail = true;
2168 string = "output";
2169 }
2170 break;
2171 };
2172
2173 if (fail) {
2174 _mesa_glsl_error(loc, state,
2175 "only %s shader %s variables can be given an "
2176 "explicit location",
2177 _mesa_glsl_shader_target_name(state->target),
2178 string);
2179 } else {
2180 var->explicit_location = true;
2181
2182 /* This bit of silliness is needed because invalid explicit locations
2183 * are supposed to be flagged during linking. Small negative values
2184 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2185 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2186 * The linker needs to be able to differentiate these cases. This
2187 * ensures that negative values stay negative.
2188 */
2189 if (qual->location >= 0) {
2190 var->location = (state->target == vertex_shader)
2191 ? (qual->location + VERT_ATTRIB_GENERIC0)
2192 : (qual->location + FRAG_RESULT_DATA0);
2193 } else {
2194 var->location = qual->location;
2195 }
2196
2197 if (qual->flags.q.explicit_index) {
2198 /* From the GLSL 4.30 specification, section 4.4.2 (Output
2199 * Layout Qualifiers):
2200 *
2201 * "It is also a compile-time error if a fragment shader
2202 * sets a layout index to less than 0 or greater than 1."
2203 *
2204 * Older specifications don't mandate a behavior; we take
2205 * this as a clarification and always generate the error.
2206 */
2207 if (qual->index < 0 || qual->index > 1) {
2208 _mesa_glsl_error(loc, state,
2209 "explicit index may only be 0 or 1");
2210 } else {
2211 var->explicit_index = true;
2212 var->index = qual->index;
2213 }
2214 }
2215 }
2216 } else if (qual->flags.q.explicit_index) {
2217 _mesa_glsl_error(loc, state,
2218 "explicit index requires explicit location");
2219 }
2220
2221 if (qual->flags.q.explicit_binding &&
2222 validate_binding_qualifier(state, loc, var, qual)) {
2223 var->explicit_binding = true;
2224 var->binding = qual->binding;
2225 }
2226
2227 /* Does the declaration use the deprecated 'attribute' or 'varying'
2228 * keywords?
2229 */
2230 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2231 || qual->flags.q.varying;
2232
2233 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2234 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2235 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2236 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2237 * These extensions and all following extensions that add the 'layout'
2238 * keyword have been modified to require the use of 'in' or 'out'.
2239 *
2240 * The following extension do not allow the deprecated keywords:
2241 *
2242 * GL_AMD_conservative_depth
2243 * GL_ARB_conservative_depth
2244 * GL_ARB_gpu_shader5
2245 * GL_ARB_separate_shader_objects
2246 * GL_ARB_tesselation_shader
2247 * GL_ARB_transform_feedback3
2248 * GL_ARB_uniform_buffer_object
2249 *
2250 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2251 * allow layout with the deprecated keywords.
2252 */
2253 const bool relaxed_layout_qualifier_checking =
2254 state->ARB_fragment_coord_conventions_enable;
2255
2256 if (qual->has_layout() && uses_deprecated_qualifier) {
2257 if (relaxed_layout_qualifier_checking) {
2258 _mesa_glsl_warning(loc, state,
2259 "`layout' qualifier may not be used with "
2260 "`attribute' or `varying'");
2261 } else {
2262 _mesa_glsl_error(loc, state,
2263 "`layout' qualifier may not be used with "
2264 "`attribute' or `varying'");
2265 }
2266 }
2267
2268 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2269 * AMD_conservative_depth.
2270 */
2271 int depth_layout_count = qual->flags.q.depth_any
2272 + qual->flags.q.depth_greater
2273 + qual->flags.q.depth_less
2274 + qual->flags.q.depth_unchanged;
2275 if (depth_layout_count > 0
2276 && !state->AMD_conservative_depth_enable
2277 && !state->ARB_conservative_depth_enable) {
2278 _mesa_glsl_error(loc, state,
2279 "extension GL_AMD_conservative_depth or "
2280 "GL_ARB_conservative_depth must be enabled "
2281 "to use depth layout qualifiers");
2282 } else if (depth_layout_count > 0
2283 && strcmp(var->name, "gl_FragDepth") != 0) {
2284 _mesa_glsl_error(loc, state,
2285 "depth layout qualifiers can be applied only to "
2286 "gl_FragDepth");
2287 } else if (depth_layout_count > 1
2288 && strcmp(var->name, "gl_FragDepth") == 0) {
2289 _mesa_glsl_error(loc, state,
2290 "at most one depth layout qualifier can be applied to "
2291 "gl_FragDepth");
2292 }
2293 if (qual->flags.q.depth_any)
2294 var->depth_layout = ir_depth_layout_any;
2295 else if (qual->flags.q.depth_greater)
2296 var->depth_layout = ir_depth_layout_greater;
2297 else if (qual->flags.q.depth_less)
2298 var->depth_layout = ir_depth_layout_less;
2299 else if (qual->flags.q.depth_unchanged)
2300 var->depth_layout = ir_depth_layout_unchanged;
2301 else
2302 var->depth_layout = ir_depth_layout_none;
2303
2304 if (qual->flags.q.std140 ||
2305 qual->flags.q.packed ||
2306 qual->flags.q.shared) {
2307 _mesa_glsl_error(loc, state,
2308 "uniform block layout qualifiers std140, packed, and "
2309 "shared can only be applied to uniform blocks, not "
2310 "members");
2311 }
2312
2313 if (qual->flags.q.row_major || qual->flags.q.column_major) {
2314 validate_matrix_layout_for_type(state, loc, var->type, var);
2315 }
2316 }
2317
2318 /**
2319 * Get the variable that is being redeclared by this declaration
2320 *
2321 * Semantic checks to verify the validity of the redeclaration are also
2322 * performed. If semantic checks fail, compilation error will be emitted via
2323 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2324 *
2325 * \returns
2326 * A pointer to an existing variable in the current scope if the declaration
2327 * is a redeclaration, \c NULL otherwise.
2328 */
2329 static ir_variable *
2330 get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
2331 struct _mesa_glsl_parse_state *state,
2332 bool allow_all_redeclarations)
2333 {
2334 /* Check if this declaration is actually a re-declaration, either to
2335 * resize an array or add qualifiers to an existing variable.
2336 *
2337 * This is allowed for variables in the current scope, or when at
2338 * global scope (for built-ins in the implicit outer scope).
2339 */
2340 ir_variable *earlier = state->symbols->get_variable(var->name);
2341 if (earlier == NULL ||
2342 (state->current_function != NULL &&
2343 !state->symbols->name_declared_this_scope(var->name))) {
2344 return NULL;
2345 }
2346
2347
2348 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2349 *
2350 * "It is legal to declare an array without a size and then
2351 * later re-declare the same name as an array of the same
2352 * type and specify a size."
2353 */
2354 if ((earlier->type->array_size() == 0)
2355 && var->type->is_array()
2356 && (var->type->element_type() == earlier->type->element_type())) {
2357 /* FINISHME: This doesn't match the qualifiers on the two
2358 * FINISHME: declarations. It's not 100% clear whether this is
2359 * FINISHME: required or not.
2360 */
2361
2362 const unsigned size = unsigned(var->type->array_size());
2363 check_builtin_array_max_size(var->name, size, loc, state);
2364 if ((size > 0) && (size <= earlier->max_array_access)) {
2365 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2366 "previous access",
2367 earlier->max_array_access);
2368 }
2369
2370 earlier->type = var->type;
2371 delete var;
2372 var = NULL;
2373 } else if ((state->ARB_fragment_coord_conventions_enable ||
2374 state->is_version(150, 0))
2375 && strcmp(var->name, "gl_FragCoord") == 0
2376 && earlier->type == var->type
2377 && earlier->mode == var->mode) {
2378 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2379 * qualifiers.
2380 */
2381 earlier->origin_upper_left = var->origin_upper_left;
2382 earlier->pixel_center_integer = var->pixel_center_integer;
2383
2384 /* According to section 4.3.7 of the GLSL 1.30 spec,
2385 * the following built-in varaibles can be redeclared with an
2386 * interpolation qualifier:
2387 * * gl_FrontColor
2388 * * gl_BackColor
2389 * * gl_FrontSecondaryColor
2390 * * gl_BackSecondaryColor
2391 * * gl_Color
2392 * * gl_SecondaryColor
2393 */
2394 } else if (state->is_version(130, 0)
2395 && (strcmp(var->name, "gl_FrontColor") == 0
2396 || strcmp(var->name, "gl_BackColor") == 0
2397 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2398 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2399 || strcmp(var->name, "gl_Color") == 0
2400 || strcmp(var->name, "gl_SecondaryColor") == 0)
2401 && earlier->type == var->type
2402 && earlier->mode == var->mode) {
2403 earlier->interpolation = var->interpolation;
2404
2405 /* Layout qualifiers for gl_FragDepth. */
2406 } else if ((state->AMD_conservative_depth_enable ||
2407 state->ARB_conservative_depth_enable)
2408 && strcmp(var->name, "gl_FragDepth") == 0
2409 && earlier->type == var->type
2410 && earlier->mode == var->mode) {
2411
2412 /** From the AMD_conservative_depth spec:
2413 * Within any shader, the first redeclarations of gl_FragDepth
2414 * must appear before any use of gl_FragDepth.
2415 */
2416 if (earlier->used) {
2417 _mesa_glsl_error(&loc, state,
2418 "the first redeclaration of gl_FragDepth "
2419 "must appear before any use of gl_FragDepth");
2420 }
2421
2422 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2423 if (earlier->depth_layout != ir_depth_layout_none
2424 && earlier->depth_layout != var->depth_layout) {
2425 _mesa_glsl_error(&loc, state,
2426 "gl_FragDepth: depth layout is declared here "
2427 "as '%s, but it was previously declared as "
2428 "'%s'",
2429 depth_layout_string(var->depth_layout),
2430 depth_layout_string(earlier->depth_layout));
2431 }
2432
2433 earlier->depth_layout = var->depth_layout;
2434
2435 } else if (allow_all_redeclarations) {
2436 if (earlier->mode != var->mode) {
2437 _mesa_glsl_error(&loc, state,
2438 "redeclaration of `%s' with incorrect qualifiers",
2439 var->name);
2440 } else if (earlier->type != var->type) {
2441 _mesa_glsl_error(&loc, state,
2442 "redeclaration of `%s' has incorrect type",
2443 var->name);
2444 }
2445 } else {
2446 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
2447 }
2448
2449 return earlier;
2450 }
2451
2452 /**
2453 * Generate the IR for an initializer in a variable declaration
2454 */
2455 ir_rvalue *
2456 process_initializer(ir_variable *var, ast_declaration *decl,
2457 ast_fully_specified_type *type,
2458 exec_list *initializer_instructions,
2459 struct _mesa_glsl_parse_state *state)
2460 {
2461 ir_rvalue *result = NULL;
2462
2463 YYLTYPE initializer_loc = decl->initializer->get_location();
2464
2465 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2466 *
2467 * "All uniform variables are read-only and are initialized either
2468 * directly by an application via API commands, or indirectly by
2469 * OpenGL."
2470 */
2471 if (var->mode == ir_var_uniform) {
2472 state->check_version(120, 0, &initializer_loc,
2473 "cannot initialize uniforms");
2474 }
2475
2476 if (var->type->is_sampler()) {
2477 _mesa_glsl_error(& initializer_loc, state,
2478 "cannot initialize samplers");
2479 }
2480
2481 if ((var->mode == ir_var_shader_in) && (state->current_function == NULL)) {
2482 _mesa_glsl_error(& initializer_loc, state,
2483 "cannot initialize %s shader input / %s",
2484 _mesa_glsl_shader_target_name(state->target),
2485 (state->target == vertex_shader)
2486 ? "attribute" : "varying");
2487 }
2488
2489 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2490 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2491 state);
2492
2493 /* Calculate the constant value if this is a const or uniform
2494 * declaration.
2495 */
2496 if (type->qualifier.flags.q.constant
2497 || type->qualifier.flags.q.uniform) {
2498 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2499 if (new_rhs != NULL) {
2500 rhs = new_rhs;
2501
2502 ir_constant *constant_value = rhs->constant_expression_value();
2503 if (!constant_value) {
2504 /* If ARB_shading_language_420pack is enabled, initializers of
2505 * const-qualified local variables do not have to be constant
2506 * expressions. Const-qualified global variables must still be
2507 * initialized with constant expressions.
2508 */
2509 if (!state->ARB_shading_language_420pack_enable
2510 || state->current_function == NULL) {
2511 _mesa_glsl_error(& initializer_loc, state,
2512 "initializer of %s variable `%s' must be a "
2513 "constant expression",
2514 (type->qualifier.flags.q.constant)
2515 ? "const" : "uniform",
2516 decl->identifier);
2517 if (var->type->is_numeric()) {
2518 /* Reduce cascading errors. */
2519 var->constant_value = ir_constant::zero(state, var->type);
2520 }
2521 }
2522 } else {
2523 rhs = constant_value;
2524 var->constant_value = constant_value;
2525 }
2526 } else {
2527 _mesa_glsl_error(&initializer_loc, state,
2528 "initializer of type %s cannot be assigned to "
2529 "variable of type %s",
2530 rhs->type->name, var->type->name);
2531 if (var->type->is_numeric()) {
2532 /* Reduce cascading errors. */
2533 var->constant_value = ir_constant::zero(state, var->type);
2534 }
2535 }
2536 }
2537
2538 if (rhs && !rhs->type->is_error()) {
2539 bool temp = var->read_only;
2540 if (type->qualifier.flags.q.constant)
2541 var->read_only = false;
2542
2543 /* Never emit code to initialize a uniform.
2544 */
2545 const glsl_type *initializer_type;
2546 if (!type->qualifier.flags.q.uniform) {
2547 result = do_assignment(initializer_instructions, state,
2548 NULL,
2549 lhs, rhs, true,
2550 type->get_location());
2551 initializer_type = result->type;
2552 } else
2553 initializer_type = rhs->type;
2554
2555 var->constant_initializer = rhs->constant_expression_value();
2556 var->has_initializer = true;
2557
2558 /* If the declared variable is an unsized array, it must inherrit
2559 * its full type from the initializer. A declaration such as
2560 *
2561 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2562 *
2563 * becomes
2564 *
2565 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2566 *
2567 * The assignment generated in the if-statement (below) will also
2568 * automatically handle this case for non-uniforms.
2569 *
2570 * If the declared variable is not an array, the types must
2571 * already match exactly. As a result, the type assignment
2572 * here can be done unconditionally. For non-uniforms the call
2573 * to do_assignment can change the type of the initializer (via
2574 * the implicit conversion rules). For uniforms the initializer
2575 * must be a constant expression, and the type of that expression
2576 * was validated above.
2577 */
2578 var->type = initializer_type;
2579
2580 var->read_only = temp;
2581 }
2582
2583 return result;
2584 }
2585
2586
2587 /**
2588 * Do additional processing necessary for geometry shader input declarations
2589 * (this covers both interface blocks arrays and bare input variables).
2590 */
2591 static void
2592 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
2593 YYLTYPE loc, ir_variable *var)
2594 {
2595 unsigned num_vertices = 0;
2596 if (state->gs_input_prim_type_specified) {
2597 num_vertices = vertices_per_prim(state->gs_input_prim_type);
2598 }
2599
2600 /* Geometry shader input variables must be arrays. Caller should have
2601 * reported an error for this.
2602 */
2603 if (!var->type->is_array()) {
2604 assert(state->error);
2605
2606 /* To avoid cascading failures, short circuit the checks below. */
2607 return;
2608 }
2609
2610 if (var->type->length == 0) {
2611 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
2612 *
2613 * All geometry shader input unsized array declarations will be
2614 * sized by an earlier input layout qualifier, when present, as per
2615 * the following table.
2616 *
2617 * Followed by a table mapping each allowed input layout qualifier to
2618 * the corresponding input length.
2619 */
2620 if (num_vertices != 0)
2621 var->type = glsl_type::get_array_instance(var->type->fields.array,
2622 num_vertices);
2623 } else {
2624 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
2625 * includes the following examples of compile-time errors:
2626 *
2627 * // code sequence within one shader...
2628 * in vec4 Color1[]; // size unknown
2629 * ...Color1.length()...// illegal, length() unknown
2630 * in vec4 Color2[2]; // size is 2
2631 * ...Color1.length()...// illegal, Color1 still has no size
2632 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
2633 * layout(lines) in; // legal, input size is 2, matching
2634 * in vec4 Color4[3]; // illegal, contradicts layout
2635 * ...
2636 *
2637 * To detect the case illustrated by Color3, we verify that the size of
2638 * an explicitly-sized array matches the size of any previously declared
2639 * explicitly-sized array. To detect the case illustrated by Color4, we
2640 * verify that the size of an explicitly-sized array is consistent with
2641 * any previously declared input layout.
2642 */
2643 if (num_vertices != 0 && var->type->length != num_vertices) {
2644 _mesa_glsl_error(&loc, state,
2645 "geometry shader input size contradicts previously"
2646 " declared layout (size is %u, but layout requires a"
2647 " size of %u)", var->type->length, num_vertices);
2648 } else if (state->gs_input_size != 0 &&
2649 var->type->length != state->gs_input_size) {
2650 _mesa_glsl_error(&loc, state,
2651 "geometry shader input sizes are "
2652 "inconsistent (size is %u, but a previous "
2653 "declaration has size %u)",
2654 var->type->length, state->gs_input_size);
2655 } else {
2656 state->gs_input_size = var->type->length;
2657 }
2658 }
2659 }
2660
2661
2662 void
2663 validate_identifier(const char *identifier, YYLTYPE loc,
2664 struct _mesa_glsl_parse_state *state)
2665 {
2666 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2667 *
2668 * "Identifiers starting with "gl_" are reserved for use by
2669 * OpenGL, and may not be declared in a shader as either a
2670 * variable or a function."
2671 */
2672 if (strncmp(identifier, "gl_", 3) == 0) {
2673 _mesa_glsl_error(&loc, state,
2674 "identifier `%s' uses reserved `gl_' prefix",
2675 identifier);
2676 } else if (strstr(identifier, "__")) {
2677 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2678 * spec:
2679 *
2680 * "In addition, all identifiers containing two
2681 * consecutive underscores (__) are reserved as
2682 * possible future keywords."
2683 */
2684 _mesa_glsl_error(&loc, state,
2685 "identifier `%s' uses reserved `__' string",
2686 identifier);
2687 }
2688 }
2689
2690
2691 ir_rvalue *
2692 ast_declarator_list::hir(exec_list *instructions,
2693 struct _mesa_glsl_parse_state *state)
2694 {
2695 void *ctx = state;
2696 const struct glsl_type *decl_type;
2697 const char *type_name = NULL;
2698 ir_rvalue *result = NULL;
2699 YYLTYPE loc = this->get_location();
2700
2701 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2702 *
2703 * "To ensure that a particular output variable is invariant, it is
2704 * necessary to use the invariant qualifier. It can either be used to
2705 * qualify a previously declared variable as being invariant
2706 *
2707 * invariant gl_Position; // make existing gl_Position be invariant"
2708 *
2709 * In these cases the parser will set the 'invariant' flag in the declarator
2710 * list, and the type will be NULL.
2711 */
2712 if (this->invariant) {
2713 assert(this->type == NULL);
2714
2715 if (state->current_function != NULL) {
2716 _mesa_glsl_error(& loc, state,
2717 "all uses of `invariant' keyword must be at global "
2718 "scope");
2719 }
2720
2721 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2722 assert(!decl->is_array);
2723 assert(decl->array_size == NULL);
2724 assert(decl->initializer == NULL);
2725
2726 ir_variable *const earlier =
2727 state->symbols->get_variable(decl->identifier);
2728 if (earlier == NULL) {
2729 _mesa_glsl_error(& loc, state,
2730 "undeclared variable `%s' cannot be marked "
2731 "invariant", decl->identifier);
2732 } else if ((state->target == vertex_shader)
2733 && (earlier->mode != ir_var_shader_out)) {
2734 _mesa_glsl_error(& loc, state,
2735 "`%s' cannot be marked invariant, vertex shader "
2736 "outputs only", decl->identifier);
2737 } else if ((state->target == fragment_shader)
2738 && (earlier->mode != ir_var_shader_in)) {
2739 _mesa_glsl_error(& loc, state,
2740 "`%s' cannot be marked invariant, fragment shader "
2741 "inputs only", decl->identifier);
2742 } else if (earlier->used) {
2743 _mesa_glsl_error(& loc, state,
2744 "variable `%s' may not be redeclared "
2745 "`invariant' after being used",
2746 earlier->name);
2747 } else {
2748 earlier->invariant = true;
2749 }
2750 }
2751
2752 /* Invariant redeclarations do not have r-values.
2753 */
2754 return NULL;
2755 }
2756
2757 assert(this->type != NULL);
2758 assert(!this->invariant);
2759
2760 /* The type specifier may contain a structure definition. Process that
2761 * before any of the variable declarations.
2762 */
2763 (void) this->type->specifier->hir(instructions, state);
2764
2765 decl_type = this->type->glsl_type(& type_name, state);
2766 if (this->declarations.is_empty()) {
2767 /* If there is no structure involved in the program text, there are two
2768 * possible scenarios:
2769 *
2770 * - The program text contained something like 'vec4;'. This is an
2771 * empty declaration. It is valid but weird. Emit a warning.
2772 *
2773 * - The program text contained something like 'S;' and 'S' is not the
2774 * name of a known structure type. This is both invalid and weird.
2775 * Emit an error.
2776 *
2777 * - The program text contained something like 'mediump float;'
2778 * when the programmer probably meant 'precision mediump
2779 * float;' Emit a warning with a description of what they
2780 * probably meant to do.
2781 *
2782 * Note that if decl_type is NULL and there is a structure involved,
2783 * there must have been some sort of error with the structure. In this
2784 * case we assume that an error was already generated on this line of
2785 * code for the structure. There is no need to generate an additional,
2786 * confusing error.
2787 */
2788 assert(this->type->specifier->structure == NULL || decl_type != NULL
2789 || state->error);
2790
2791 if (decl_type == NULL) {
2792 _mesa_glsl_error(&loc, state,
2793 "invalid type `%s' in empty declaration",
2794 type_name);
2795 } else if (this->type->qualifier.precision != ast_precision_none) {
2796 if (this->type->specifier->structure != NULL) {
2797 _mesa_glsl_error(&loc, state,
2798 "precision qualifiers can't be applied "
2799 "to structures");
2800 } else {
2801 static const char *const precision_names[] = {
2802 "highp",
2803 "highp",
2804 "mediump",
2805 "lowp"
2806 };
2807
2808 _mesa_glsl_warning(&loc, state,
2809 "empty declaration with precision qualifier, "
2810 "to set the default precision, use "
2811 "`precision %s %s;'",
2812 precision_names[this->type->qualifier.precision],
2813 type_name);
2814 }
2815 } else {
2816 _mesa_glsl_warning(&loc, state, "empty declaration");
2817 }
2818 }
2819
2820 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2821 const struct glsl_type *var_type;
2822 ir_variable *var;
2823
2824 /* FINISHME: Emit a warning if a variable declaration shadows a
2825 * FINISHME: declaration at a higher scope.
2826 */
2827
2828 if ((decl_type == NULL) || decl_type->is_void()) {
2829 if (type_name != NULL) {
2830 _mesa_glsl_error(& loc, state,
2831 "invalid type `%s' in declaration of `%s'",
2832 type_name, decl->identifier);
2833 } else {
2834 _mesa_glsl_error(& loc, state,
2835 "invalid type in declaration of `%s'",
2836 decl->identifier);
2837 }
2838 continue;
2839 }
2840
2841 if (decl->is_array) {
2842 var_type = process_array_type(&loc, decl_type, decl->array_size,
2843 state);
2844 if (var_type->is_error())
2845 continue;
2846 } else {
2847 var_type = decl_type;
2848 }
2849
2850 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2851
2852 /* The 'varying in' and 'varying out' qualifiers can only be used with
2853 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
2854 * yet.
2855 */
2856 if (this->type->qualifier.flags.q.varying) {
2857 if (this->type->qualifier.flags.q.in) {
2858 _mesa_glsl_error(& loc, state,
2859 "`varying in' qualifier in declaration of "
2860 "`%s' only valid for geometry shaders using "
2861 "ARB_geometry_shader4 or EXT_geometry_shader4",
2862 decl->identifier);
2863 } else if (this->type->qualifier.flags.q.out) {
2864 _mesa_glsl_error(& loc, state,
2865 "`varying out' qualifier in declaration of "
2866 "`%s' only valid for geometry shaders using "
2867 "ARB_geometry_shader4 or EXT_geometry_shader4",
2868 decl->identifier);
2869 }
2870 }
2871
2872 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2873 *
2874 * "Global variables can only use the qualifiers const,
2875 * attribute, uni form, or varying. Only one may be
2876 * specified.
2877 *
2878 * Local variables can only use the qualifier const."
2879 *
2880 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
2881 * any extension that adds the 'layout' keyword.
2882 */
2883 if (!state->is_version(130, 300)
2884 && !state->has_explicit_attrib_location()
2885 && !state->ARB_fragment_coord_conventions_enable) {
2886 if (this->type->qualifier.flags.q.out) {
2887 _mesa_glsl_error(& loc, state,
2888 "`out' qualifier in declaration of `%s' "
2889 "only valid for function parameters in %s",
2890 decl->identifier, state->get_version_string());
2891 }
2892 if (this->type->qualifier.flags.q.in) {
2893 _mesa_glsl_error(& loc, state,
2894 "`in' qualifier in declaration of `%s' "
2895 "only valid for function parameters in %s",
2896 decl->identifier, state->get_version_string());
2897 }
2898 /* FINISHME: Test for other invalid qualifiers. */
2899 }
2900
2901 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2902 & loc, false);
2903
2904 if (this->type->qualifier.flags.q.invariant) {
2905 if ((state->target == vertex_shader) &&
2906 var->mode != ir_var_shader_out) {
2907 _mesa_glsl_error(& loc, state,
2908 "`%s' cannot be marked invariant, vertex shader "
2909 "outputs only", var->name);
2910 } else if ((state->target == fragment_shader) &&
2911 var->mode != ir_var_shader_in) {
2912 /* FINISHME: Note that this doesn't work for invariant on
2913 * a function signature inval
2914 */
2915 _mesa_glsl_error(& loc, state,
2916 "`%s' cannot be marked invariant, fragment shader "
2917 "inputs only", var->name);
2918 }
2919 }
2920
2921 if (state->current_function != NULL) {
2922 const char *mode = NULL;
2923 const char *extra = "";
2924
2925 /* There is no need to check for 'inout' here because the parser will
2926 * only allow that in function parameter lists.
2927 */
2928 if (this->type->qualifier.flags.q.attribute) {
2929 mode = "attribute";
2930 } else if (this->type->qualifier.flags.q.uniform) {
2931 mode = "uniform";
2932 } else if (this->type->qualifier.flags.q.varying) {
2933 mode = "varying";
2934 } else if (this->type->qualifier.flags.q.in) {
2935 mode = "in";
2936 extra = " or in function parameter list";
2937 } else if (this->type->qualifier.flags.q.out) {
2938 mode = "out";
2939 extra = " or in function parameter list";
2940 }
2941
2942 if (mode) {
2943 _mesa_glsl_error(& loc, state,
2944 "%s variable `%s' must be declared at "
2945 "global scope%s",
2946 mode, var->name, extra);
2947 }
2948 } else if (var->mode == ir_var_shader_in) {
2949 var->read_only = true;
2950
2951 if (state->target == vertex_shader) {
2952 bool error_emitted = false;
2953
2954 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2955 *
2956 * "Vertex shader inputs can only be float, floating-point
2957 * vectors, matrices, signed and unsigned integers and integer
2958 * vectors. Vertex shader inputs can also form arrays of these
2959 * types, but not structures."
2960 *
2961 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2962 *
2963 * "Vertex shader inputs can only be float, floating-point
2964 * vectors, matrices, signed and unsigned integers and integer
2965 * vectors. They cannot be arrays or structures."
2966 *
2967 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2968 *
2969 * "The attribute qualifier can be used only with float,
2970 * floating-point vectors, and matrices. Attribute variables
2971 * cannot be declared as arrays or structures."
2972 *
2973 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
2974 *
2975 * "Vertex shader inputs can only be float, floating-point
2976 * vectors, matrices, signed and unsigned integers and integer
2977 * vectors. Vertex shader inputs cannot be arrays or
2978 * structures."
2979 */
2980 const glsl_type *check_type = var->type->is_array()
2981 ? var->type->fields.array : var->type;
2982
2983 switch (check_type->base_type) {
2984 case GLSL_TYPE_FLOAT:
2985 break;
2986 case GLSL_TYPE_UINT:
2987 case GLSL_TYPE_INT:
2988 if (state->is_version(120, 300))
2989 break;
2990 /* FALLTHROUGH */
2991 default:
2992 _mesa_glsl_error(& loc, state,
2993 "vertex shader input / attribute cannot have "
2994 "type %s`%s'",
2995 var->type->is_array() ? "array of " : "",
2996 check_type->name);
2997 error_emitted = true;
2998 }
2999
3000 if (!error_emitted && var->type->is_array() &&
3001 !state->check_version(150, 0, &loc,
3002 "vertex shader input / attribute "
3003 "cannot have array type")) {
3004 error_emitted = true;
3005 }
3006 } else if (state->target == geometry_shader) {
3007 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
3008 *
3009 * Geometry shader input variables get the per-vertex values
3010 * written out by vertex shader output variables of the same
3011 * names. Since a geometry shader operates on a set of
3012 * vertices, each input varying variable (or input block, see
3013 * interface blocks below) needs to be declared as an array.
3014 */
3015 if (!var->type->is_array()) {
3016 _mesa_glsl_error(&loc, state,
3017 "geometry shader inputs must be arrays");
3018 }
3019
3020 handle_geometry_shader_input_decl(state, loc, var);
3021 }
3022 }
3023
3024 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3025 * so must integer vertex outputs.
3026 *
3027 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3028 * "Fragment shader inputs that are signed or unsigned integers or
3029 * integer vectors must be qualified with the interpolation qualifier
3030 * flat."
3031 *
3032 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3033 * "Fragment shader inputs that are, or contain, signed or unsigned
3034 * integers or integer vectors must be qualified with the
3035 * interpolation qualifier flat."
3036 *
3037 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3038 * "Vertex shader outputs that are, or contain, signed or unsigned
3039 * integers or integer vectors must be qualified with the
3040 * interpolation qualifier flat."
3041 *
3042 * Note that prior to GLSL 1.50, this requirement applied to vertex
3043 * outputs rather than fragment inputs. That creates problems in the
3044 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3045 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3046 * apply the restriction to both vertex outputs and fragment inputs.
3047 *
3048 * Note also that the desktop GLSL specs are missing the text "or
3049 * contain"; this is presumably an oversight, since there is no
3050 * reasonable way to interpolate a fragment shader input that contains
3051 * an integer.
3052 */
3053 if (state->is_version(130, 300) &&
3054 var->type->contains_integer() &&
3055 var->interpolation != INTERP_QUALIFIER_FLAT &&
3056 ((state->target == fragment_shader && var->mode == ir_var_shader_in)
3057 || (state->target == vertex_shader && var->mode == ir_var_shader_out
3058 && state->es_shader))) {
3059 const char *var_type = (state->target == vertex_shader) ?
3060 "vertex output" : "fragment input";
3061 _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
3062 "an integer, then it must be qualified with 'flat'",
3063 var_type);
3064 }
3065
3066
3067 /* Interpolation qualifiers cannot be applied to 'centroid' and
3068 * 'centroid varying'.
3069 *
3070 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3071 * "interpolation qualifiers may only precede the qualifiers in,
3072 * centroid in, out, or centroid out in a declaration. They do not apply
3073 * to the deprecated storage qualifiers varying or centroid varying."
3074 *
3075 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3076 */
3077 if (state->is_version(130, 0)
3078 && this->type->qualifier.has_interpolation()
3079 && this->type->qualifier.flags.q.varying) {
3080
3081 const char *i = this->type->qualifier.interpolation_string();
3082 assert(i != NULL);
3083 const char *s;
3084 if (this->type->qualifier.flags.q.centroid)
3085 s = "centroid varying";
3086 else
3087 s = "varying";
3088
3089 _mesa_glsl_error(&loc, state,
3090 "qualifier '%s' cannot be applied to the "
3091 "deprecated storage qualifier '%s'", i, s);
3092 }
3093
3094
3095 /* Interpolation qualifiers can only apply to vertex shader outputs and
3096 * fragment shader inputs.
3097 *
3098 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
3099 * "Outputs from a vertex shader (out) and inputs to a fragment
3100 * shader (in) can be further qualified with one or more of these
3101 * interpolation qualifiers"
3102 *
3103 * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
3104 * "These interpolation qualifiers may only precede the qualifiers
3105 * in, centroid in, out, or centroid out in a declaration. They do
3106 * not apply to inputs into a vertex shader or outputs from a
3107 * fragment shader."
3108 */
3109 if (state->is_version(130, 300)
3110 && this->type->qualifier.has_interpolation()) {
3111
3112 const char *i = this->type->qualifier.interpolation_string();
3113 assert(i != NULL);
3114
3115 switch (state->target) {
3116 case vertex_shader:
3117 if (this->type->qualifier.flags.q.in) {
3118 _mesa_glsl_error(&loc, state,
3119 "qualifier '%s' cannot be applied to vertex "
3120 "shader inputs", i);
3121 }
3122 break;
3123 case fragment_shader:
3124 if (this->type->qualifier.flags.q.out) {
3125 _mesa_glsl_error(&loc, state,
3126 "qualifier '%s' cannot be applied to fragment "
3127 "shader outputs", i);
3128 }
3129 break;
3130 default:
3131 break;
3132 }
3133 }
3134
3135
3136 /* From section 4.3.4 of the GLSL 1.30 spec:
3137 * "It is an error to use centroid in in a vertex shader."
3138 *
3139 * From section 4.3.4 of the GLSL ES 3.00 spec:
3140 * "It is an error to use centroid in or interpolation qualifiers in
3141 * a vertex shader input."
3142 */
3143 if (state->is_version(130, 300)
3144 && this->type->qualifier.flags.q.centroid
3145 && this->type->qualifier.flags.q.in
3146 && state->target == vertex_shader) {
3147
3148 _mesa_glsl_error(&loc, state,
3149 "'centroid in' cannot be used in a vertex shader");
3150 }
3151
3152 /* Section 4.3.6 of the GLSL 1.30 specification states:
3153 * "It is an error to use centroid out in a fragment shader."
3154 *
3155 * The GL_ARB_shading_language_420pack extension specification states:
3156 * "It is an error to use auxiliary storage qualifiers or interpolation
3157 * qualifiers on an output in a fragment shader."
3158 */
3159 if (state->target == fragment_shader &&
3160 this->type->qualifier.flags.q.out &&
3161 this->type->qualifier.has_auxiliary_storage()) {
3162 _mesa_glsl_error(&loc, state,
3163 "auxiliary storage qualifiers cannot be used on "
3164 "fragment shader outputs");
3165 }
3166
3167 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
3168 */
3169 if (this->type->qualifier.precision != ast_precision_none) {
3170 state->check_precision_qualifiers_allowed(&loc);
3171 }
3172
3173
3174 /* Precision qualifiers apply to floating point, integer and sampler
3175 * types.
3176 *
3177 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
3178 * "Any floating point or any integer declaration can have the type
3179 * preceded by one of these precision qualifiers [...] Literal
3180 * constants do not have precision qualifiers. Neither do Boolean
3181 * variables.
3182 *
3183 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
3184 * spec also says:
3185 *
3186 * "Precision qualifiers are added for code portability with OpenGL
3187 * ES, not for functionality. They have the same syntax as in OpenGL
3188 * ES."
3189 *
3190 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
3191 *
3192 * "uniform lowp sampler2D sampler;
3193 * highp vec2 coord;
3194 * ...
3195 * lowp vec4 col = texture2D (sampler, coord);
3196 * // texture2D returns lowp"
3197 *
3198 * From this, we infer that GLSL 1.30 (and later) should allow precision
3199 * qualifiers on sampler types just like float and integer types.
3200 */
3201 if (this->type->qualifier.precision != ast_precision_none
3202 && !var->type->is_float()
3203 && !var->type->is_integer()
3204 && !var->type->is_record()
3205 && !var->type->is_sampler()
3206 && !(var->type->is_array()
3207 && (var->type->fields.array->is_float()
3208 || var->type->fields.array->is_integer()))) {
3209
3210 _mesa_glsl_error(&loc, state,
3211 "precision qualifiers apply only to floating point"
3212 ", integer and sampler types");
3213 }
3214
3215 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3216 *
3217 * "[Sampler types] can only be declared as function
3218 * parameters or uniform variables (see Section 4.3.5
3219 * "Uniform")".
3220 */
3221 if (var_type->contains_sampler() &&
3222 !this->type->qualifier.flags.q.uniform) {
3223 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
3224 }
3225
3226 /* Process the initializer and add its instructions to a temporary
3227 * list. This list will be added to the instruction stream (below) after
3228 * the declaration is added. This is done because in some cases (such as
3229 * redeclarations) the declaration may not actually be added to the
3230 * instruction stream.
3231 */
3232 exec_list initializer_instructions;
3233 ir_variable *earlier =
3234 get_variable_being_redeclared(var, decl->get_location(), state,
3235 false /* allow_all_redeclarations */);
3236
3237 if (decl->initializer != NULL) {
3238 result = process_initializer((earlier == NULL) ? var : earlier,
3239 decl, this->type,
3240 &initializer_instructions, state);
3241 }
3242
3243 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
3244 *
3245 * "It is an error to write to a const variable outside of
3246 * its declaration, so they must be initialized when
3247 * declared."
3248 */
3249 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
3250 _mesa_glsl_error(& loc, state,
3251 "const declaration of `%s' must be initialized",
3252 decl->identifier);
3253 }
3254
3255 if (state->es_shader) {
3256 const glsl_type *const t = (earlier == NULL)
3257 ? var->type : earlier->type;
3258
3259 if (t->is_array() && t->length == 0)
3260 /* Section 10.17 of the GLSL ES 1.00 specification states that
3261 * unsized array declarations have been removed from the language.
3262 * Arrays that are sized using an initializer are still explicitly
3263 * sized. However, GLSL ES 1.00 does not allow array
3264 * initializers. That is only allowed in GLSL ES 3.00.
3265 *
3266 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
3267 *
3268 * "An array type can also be formed without specifying a size
3269 * if the definition includes an initializer:
3270 *
3271 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
3272 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
3273 *
3274 * float a[5];
3275 * float b[] = a;"
3276 */
3277 _mesa_glsl_error(& loc, state,
3278 "unsized array declarations are not allowed in "
3279 "GLSL ES");
3280 }
3281
3282 /* If the declaration is not a redeclaration, there are a few additional
3283 * semantic checks that must be applied. In addition, variable that was
3284 * created for the declaration should be added to the IR stream.
3285 */
3286 if (earlier == NULL) {
3287 validate_identifier(decl->identifier, loc, state);
3288
3289 /* Add the variable to the symbol table. Note that the initializer's
3290 * IR was already processed earlier (though it hasn't been emitted
3291 * yet), without the variable in scope.
3292 *
3293 * This differs from most C-like languages, but it follows the GLSL
3294 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
3295 * spec:
3296 *
3297 * "Within a declaration, the scope of a name starts immediately
3298 * after the initializer if present or immediately after the name
3299 * being declared if not."
3300 */
3301 if (!state->symbols->add_variable(var)) {
3302 YYLTYPE loc = this->get_location();
3303 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
3304 "current scope", decl->identifier);
3305 continue;
3306 }
3307
3308 /* Push the variable declaration to the top. It means that all the
3309 * variable declarations will appear in a funny last-to-first order,
3310 * but otherwise we run into trouble if a function is prototyped, a
3311 * global var is decled, then the function is defined with usage of
3312 * the global var. See glslparsertest's CorrectModule.frag.
3313 */
3314 instructions->push_head(var);
3315 }
3316
3317 instructions->append_list(&initializer_instructions);
3318 }
3319
3320
3321 /* Generally, variable declarations do not have r-values. However,
3322 * one is used for the declaration in
3323 *
3324 * while (bool b = some_condition()) {
3325 * ...
3326 * }
3327 *
3328 * so we return the rvalue from the last seen declaration here.
3329 */
3330 return result;
3331 }
3332
3333
3334 ir_rvalue *
3335 ast_parameter_declarator::hir(exec_list *instructions,
3336 struct _mesa_glsl_parse_state *state)
3337 {
3338 void *ctx = state;
3339 const struct glsl_type *type;
3340 const char *name = NULL;
3341 YYLTYPE loc = this->get_location();
3342
3343 type = this->type->glsl_type(& name, state);
3344
3345 if (type == NULL) {
3346 if (name != NULL) {
3347 _mesa_glsl_error(& loc, state,
3348 "invalid type `%s' in declaration of `%s'",
3349 name, this->identifier);
3350 } else {
3351 _mesa_glsl_error(& loc, state,
3352 "invalid type in declaration of `%s'",
3353 this->identifier);
3354 }
3355
3356 type = glsl_type::error_type;
3357 }
3358
3359 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
3360 *
3361 * "Functions that accept no input arguments need not use void in the
3362 * argument list because prototypes (or definitions) are required and
3363 * therefore there is no ambiguity when an empty argument list "( )" is
3364 * declared. The idiom "(void)" as a parameter list is provided for
3365 * convenience."
3366 *
3367 * Placing this check here prevents a void parameter being set up
3368 * for a function, which avoids tripping up checks for main taking
3369 * parameters and lookups of an unnamed symbol.
3370 */
3371 if (type->is_void()) {
3372 if (this->identifier != NULL)
3373 _mesa_glsl_error(& loc, state,
3374 "named parameter cannot have type `void'");
3375
3376 is_void = true;
3377 return NULL;
3378 }
3379
3380 if (formal_parameter && (this->identifier == NULL)) {
3381 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3382 return NULL;
3383 }
3384
3385 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3386 * call already handled the "vec4[..] foo" case.
3387 */
3388 if (this->is_array) {
3389 type = process_array_type(&loc, type, this->array_size, state);
3390 }
3391
3392 if (!type->is_error() && type->array_size() == 0) {
3393 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3394 "a declared size");
3395 type = glsl_type::error_type;
3396 }
3397
3398 is_void = false;
3399 ir_variable *var = new(ctx)
3400 ir_variable(type, this->identifier, ir_var_function_in);
3401
3402 /* Apply any specified qualifiers to the parameter declaration. Note that
3403 * for function parameters the default mode is 'in'.
3404 */
3405 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
3406 true);
3407
3408 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3409 *
3410 * "Samplers cannot be treated as l-values; hence cannot be used
3411 * as out or inout function parameters, nor can they be assigned
3412 * into."
3413 */
3414 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3415 && type->contains_sampler()) {
3416 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3417 type = glsl_type::error_type;
3418 }
3419
3420 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3421 *
3422 * "When calling a function, expressions that do not evaluate to
3423 * l-values cannot be passed to parameters declared as out or inout."
3424 *
3425 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3426 *
3427 * "Other binary or unary expressions, non-dereferenced arrays,
3428 * function names, swizzles with repeated fields, and constants
3429 * cannot be l-values."
3430 *
3431 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3432 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3433 */
3434 if ((var->mode == ir_var_function_inout || var->mode == ir_var_function_out)
3435 && type->is_array()
3436 && !state->check_version(120, 100, &loc,
3437 "arrays cannot be out or inout parameters")) {
3438 type = glsl_type::error_type;
3439 }
3440
3441 instructions->push_tail(var);
3442
3443 /* Parameter declarations do not have r-values.
3444 */
3445 return NULL;
3446 }
3447
3448
3449 void
3450 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3451 bool formal,
3452 exec_list *ir_parameters,
3453 _mesa_glsl_parse_state *state)
3454 {
3455 ast_parameter_declarator *void_param = NULL;
3456 unsigned count = 0;
3457
3458 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3459 param->formal_parameter = formal;
3460 param->hir(ir_parameters, state);
3461
3462 if (param->is_void)
3463 void_param = param;
3464
3465 count++;
3466 }
3467
3468 if ((void_param != NULL) && (count > 1)) {
3469 YYLTYPE loc = void_param->get_location();
3470
3471 _mesa_glsl_error(& loc, state,
3472 "`void' parameter must be only parameter");
3473 }
3474 }
3475
3476
3477 void
3478 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3479 {
3480 /* IR invariants disallow function declarations or definitions
3481 * nested within other function definitions. But there is no
3482 * requirement about the relative order of function declarations
3483 * and definitions with respect to one another. So simply insert
3484 * the new ir_function block at the end of the toplevel instruction
3485 * list.
3486 */
3487 state->toplevel_ir->push_tail(f);
3488 }
3489
3490
3491 ir_rvalue *
3492 ast_function::hir(exec_list *instructions,
3493 struct _mesa_glsl_parse_state *state)
3494 {
3495 void *ctx = state;
3496 ir_function *f = NULL;
3497 ir_function_signature *sig = NULL;
3498 exec_list hir_parameters;
3499
3500 const char *const name = identifier;
3501
3502 /* New functions are always added to the top-level IR instruction stream,
3503 * so this instruction list pointer is ignored. See also emit_function
3504 * (called below).
3505 */
3506 (void) instructions;
3507
3508 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3509 *
3510 * "Function declarations (prototypes) cannot occur inside of functions;
3511 * they must be at global scope, or for the built-in functions, outside
3512 * the global scope."
3513 *
3514 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3515 *
3516 * "User defined functions may only be defined within the global scope."
3517 *
3518 * Note that this language does not appear in GLSL 1.10.
3519 */
3520 if ((state->current_function != NULL) &&
3521 state->is_version(120, 100)) {
3522 YYLTYPE loc = this->get_location();
3523 _mesa_glsl_error(&loc, state,
3524 "declaration of function `%s' not allowed within "
3525 "function body", name);
3526 }
3527
3528 validate_identifier(name, this->get_location(), state);
3529
3530 /* Convert the list of function parameters to HIR now so that they can be
3531 * used below to compare this function's signature with previously seen
3532 * signatures for functions with the same name.
3533 */
3534 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3535 is_definition,
3536 & hir_parameters, state);
3537
3538 const char *return_type_name;
3539 const glsl_type *return_type =
3540 this->return_type->glsl_type(& return_type_name, state);
3541
3542 if (!return_type) {
3543 YYLTYPE loc = this->get_location();
3544 _mesa_glsl_error(&loc, state,
3545 "function `%s' has undeclared return type `%s'",
3546 name, return_type_name);
3547 return_type = glsl_type::error_type;
3548 }
3549
3550 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3551 * "No qualifier is allowed on the return type of a function."
3552 */
3553 if (this->return_type->has_qualifiers()) {
3554 YYLTYPE loc = this->get_location();
3555 _mesa_glsl_error(& loc, state,
3556 "function `%s' return type has qualifiers", name);
3557 }
3558
3559 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
3560 *
3561 * "Arrays are allowed as arguments and as the return type. In both
3562 * cases, the array must be explicitly sized."
3563 */
3564 if (return_type->is_array() && return_type->length == 0) {
3565 YYLTYPE loc = this->get_location();
3566 _mesa_glsl_error(& loc, state,
3567 "function `%s' return type array must be explicitly "
3568 "sized", name);
3569 }
3570
3571 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3572 *
3573 * "[Sampler types] can only be declared as function parameters
3574 * or uniform variables (see Section 4.3.5 "Uniform")".
3575 */
3576 if (return_type->contains_sampler()) {
3577 YYLTYPE loc = this->get_location();
3578 _mesa_glsl_error(&loc, state,
3579 "function `%s' return type can't contain a sampler",
3580 name);
3581 }
3582
3583 /* Verify that this function's signature either doesn't match a previously
3584 * seen signature for a function with the same name, or, if a match is found,
3585 * that the previously seen signature does not have an associated definition.
3586 */
3587 f = state->symbols->get_function(name);
3588 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3589 sig = f->exact_matching_signature(state, &hir_parameters);
3590 if (sig != NULL) {
3591 const char *badvar = sig->qualifiers_match(&hir_parameters);
3592 if (badvar != NULL) {
3593 YYLTYPE loc = this->get_location();
3594
3595 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3596 "qualifiers don't match prototype", name, badvar);
3597 }
3598
3599 if (sig->return_type != return_type) {
3600 YYLTYPE loc = this->get_location();
3601
3602 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3603 "match prototype", name);
3604 }
3605
3606 if (sig->is_defined) {
3607 if (is_definition) {
3608 YYLTYPE loc = this->get_location();
3609 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3610 } else {
3611 /* We just encountered a prototype that exactly matches a
3612 * function that's already been defined. This is redundant,
3613 * and we should ignore it.
3614 */
3615 return NULL;
3616 }
3617 }
3618 }
3619 } else {
3620 f = new(ctx) ir_function(name);
3621 if (!state->symbols->add_function(f)) {
3622 /* This function name shadows a non-function use of the same name. */
3623 YYLTYPE loc = this->get_location();
3624
3625 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3626 "non-function", name);
3627 return NULL;
3628 }
3629
3630 emit_function(state, f);
3631 }
3632
3633 /* Verify the return type of main() */
3634 if (strcmp(name, "main") == 0) {
3635 if (! return_type->is_void()) {
3636 YYLTYPE loc = this->get_location();
3637
3638 _mesa_glsl_error(& loc, state, "main() must return void");
3639 }
3640
3641 if (!hir_parameters.is_empty()) {
3642 YYLTYPE loc = this->get_location();
3643
3644 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3645 }
3646 }
3647
3648 /* Finish storing the information about this new function in its signature.
3649 */
3650 if (sig == NULL) {
3651 sig = new(ctx) ir_function_signature(return_type);
3652 f->add_signature(sig);
3653 }
3654
3655 sig->replace_parameters(&hir_parameters);
3656 signature = sig;
3657
3658 /* Function declarations (prototypes) do not have r-values.
3659 */
3660 return NULL;
3661 }
3662
3663
3664 ir_rvalue *
3665 ast_function_definition::hir(exec_list *instructions,
3666 struct _mesa_glsl_parse_state *state)
3667 {
3668 prototype->is_definition = true;
3669 prototype->hir(instructions, state);
3670
3671 ir_function_signature *signature = prototype->signature;
3672 if (signature == NULL)
3673 return NULL;
3674
3675 assert(state->current_function == NULL);
3676 state->current_function = signature;
3677 state->found_return = false;
3678
3679 /* Duplicate parameters declared in the prototype as concrete variables.
3680 * Add these to the symbol table.
3681 */
3682 state->symbols->push_scope();
3683 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3684 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3685
3686 assert(var != NULL);
3687
3688 /* The only way a parameter would "exist" is if two parameters have
3689 * the same name.
3690 */
3691 if (state->symbols->name_declared_this_scope(var->name)) {
3692 YYLTYPE loc = this->get_location();
3693
3694 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3695 } else {
3696 state->symbols->add_variable(var);
3697 }
3698 }
3699
3700 /* Convert the body of the function to HIR. */
3701 this->body->hir(&signature->body, state);
3702 signature->is_defined = true;
3703
3704 state->symbols->pop_scope();
3705
3706 assert(state->current_function == signature);
3707 state->current_function = NULL;
3708
3709 if (!signature->return_type->is_void() && !state->found_return) {
3710 YYLTYPE loc = this->get_location();
3711 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3712 "%s, but no return statement",
3713 signature->function_name(),
3714 signature->return_type->name);
3715 }
3716
3717 /* Function definitions do not have r-values.
3718 */
3719 return NULL;
3720 }
3721
3722
3723 ir_rvalue *
3724 ast_jump_statement::hir(exec_list *instructions,
3725 struct _mesa_glsl_parse_state *state)
3726 {
3727 void *ctx = state;
3728
3729 switch (mode) {
3730 case ast_return: {
3731 ir_return *inst;
3732 assert(state->current_function);
3733
3734 if (opt_return_value) {
3735 ir_rvalue *ret = opt_return_value->hir(instructions, state);
3736
3737 /* The value of the return type can be NULL if the shader says
3738 * 'return foo();' and foo() is a function that returns void.
3739 *
3740 * NOTE: The GLSL spec doesn't say that this is an error. The type
3741 * of the return value is void. If the return type of the function is
3742 * also void, then this should compile without error. Seriously.
3743 */
3744 const glsl_type *const ret_type =
3745 (ret == NULL) ? glsl_type::void_type : ret->type;
3746
3747 /* Implicit conversions are not allowed for return values prior to
3748 * ARB_shading_language_420pack.
3749 */
3750 if (state->current_function->return_type != ret_type) {
3751 YYLTYPE loc = this->get_location();
3752
3753 if (state->ARB_shading_language_420pack_enable) {
3754 if (!apply_implicit_conversion(state->current_function->return_type,
3755 ret, state)) {
3756 _mesa_glsl_error(& loc, state,
3757 "could not implicitly convert return value "
3758 "to %s, in function `%s'",
3759 state->current_function->return_type->name,
3760 state->current_function->function_name());
3761 }
3762 } else {
3763 _mesa_glsl_error(& loc, state,
3764 "`return' with wrong type %s, in function `%s' "
3765 "returning %s",
3766 ret_type->name,
3767 state->current_function->function_name(),
3768 state->current_function->return_type->name);
3769 }
3770 } else if (state->current_function->return_type->base_type ==
3771 GLSL_TYPE_VOID) {
3772 YYLTYPE loc = this->get_location();
3773
3774 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
3775 * specs add a clarification:
3776 *
3777 * "A void function can only use return without a return argument, even if
3778 * the return argument has void type. Return statements only accept values:
3779 *
3780 * void func1() { }
3781 * void func2() { return func1(); } // illegal return statement"
3782 */
3783 _mesa_glsl_error(& loc, state,
3784 "void functions can only use `return' without a "
3785 "return argument");
3786 }
3787
3788 inst = new(ctx) ir_return(ret);
3789 } else {
3790 if (state->current_function->return_type->base_type !=
3791 GLSL_TYPE_VOID) {
3792 YYLTYPE loc = this->get_location();
3793
3794 _mesa_glsl_error(& loc, state,
3795 "`return' with no value, in function %s returning "
3796 "non-void",
3797 state->current_function->function_name());
3798 }
3799 inst = new(ctx) ir_return;
3800 }
3801
3802 state->found_return = true;
3803 instructions->push_tail(inst);
3804 break;
3805 }
3806
3807 case ast_discard:
3808 if (state->target != fragment_shader) {
3809 YYLTYPE loc = this->get_location();
3810
3811 _mesa_glsl_error(& loc, state,
3812 "`discard' may only appear in a fragment shader");
3813 }
3814 instructions->push_tail(new(ctx) ir_discard);
3815 break;
3816
3817 case ast_break:
3818 case ast_continue:
3819 if (mode == ast_continue &&
3820 state->loop_nesting_ast == NULL) {
3821 YYLTYPE loc = this->get_location();
3822
3823 _mesa_glsl_error(& loc, state,
3824 "continue may only appear in a loop");
3825 } else if (mode == ast_break &&
3826 state->loop_nesting_ast == NULL &&
3827 state->switch_state.switch_nesting_ast == NULL) {
3828 YYLTYPE loc = this->get_location();
3829
3830 _mesa_glsl_error(& loc, state,
3831 "break may only appear in a loop or a switch");
3832 } else {
3833 /* For a loop, inline the for loop expression again,
3834 * since we don't know where near the end of
3835 * the loop body the normal copy of it
3836 * is going to be placed.
3837 */
3838 if (state->loop_nesting_ast != NULL &&
3839 mode == ast_continue &&
3840 state->loop_nesting_ast->rest_expression) {
3841 state->loop_nesting_ast->rest_expression->hir(instructions,
3842 state);
3843 }
3844
3845 if (state->switch_state.is_switch_innermost &&
3846 mode == ast_break) {
3847 /* Force break out of switch by setting is_break switch state.
3848 */
3849 ir_variable *const is_break_var = state->switch_state.is_break_var;
3850 ir_dereference_variable *const deref_is_break_var =
3851 new(ctx) ir_dereference_variable(is_break_var);
3852 ir_constant *const true_val = new(ctx) ir_constant(true);
3853 ir_assignment *const set_break_var =
3854 new(ctx) ir_assignment(deref_is_break_var, true_val);
3855
3856 instructions->push_tail(set_break_var);
3857 }
3858 else {
3859 ir_loop_jump *const jump =
3860 new(ctx) ir_loop_jump((mode == ast_break)
3861 ? ir_loop_jump::jump_break
3862 : ir_loop_jump::jump_continue);
3863 instructions->push_tail(jump);
3864 }
3865 }
3866
3867 break;
3868 }
3869
3870 /* Jump instructions do not have r-values.
3871 */
3872 return NULL;
3873 }
3874
3875
3876 ir_rvalue *
3877 ast_selection_statement::hir(exec_list *instructions,
3878 struct _mesa_glsl_parse_state *state)
3879 {
3880 void *ctx = state;
3881
3882 ir_rvalue *const condition = this->condition->hir(instructions, state);
3883
3884 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3885 *
3886 * "Any expression whose type evaluates to a Boolean can be used as the
3887 * conditional expression bool-expression. Vector types are not accepted
3888 * as the expression to if."
3889 *
3890 * The checks are separated so that higher quality diagnostics can be
3891 * generated for cases where both rules are violated.
3892 */
3893 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3894 YYLTYPE loc = this->condition->get_location();
3895
3896 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3897 "boolean");
3898 }
3899
3900 ir_if *const stmt = new(ctx) ir_if(condition);
3901
3902 if (then_statement != NULL) {
3903 state->symbols->push_scope();
3904 then_statement->hir(& stmt->then_instructions, state);
3905 state->symbols->pop_scope();
3906 }
3907
3908 if (else_statement != NULL) {
3909 state->symbols->push_scope();
3910 else_statement->hir(& stmt->else_instructions, state);
3911 state->symbols->pop_scope();
3912 }
3913
3914 instructions->push_tail(stmt);
3915
3916 /* if-statements do not have r-values.
3917 */
3918 return NULL;
3919 }
3920
3921
3922 ir_rvalue *
3923 ast_switch_statement::hir(exec_list *instructions,
3924 struct _mesa_glsl_parse_state *state)
3925 {
3926 void *ctx = state;
3927
3928 ir_rvalue *const test_expression =
3929 this->test_expression->hir(instructions, state);
3930
3931 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3932 *
3933 * "The type of init-expression in a switch statement must be a
3934 * scalar integer."
3935 */
3936 if (!test_expression->type->is_scalar() ||
3937 !test_expression->type->is_integer()) {
3938 YYLTYPE loc = this->test_expression->get_location();
3939
3940 _mesa_glsl_error(& loc,
3941 state,
3942 "switch-statement expression must be scalar "
3943 "integer");
3944 }
3945
3946 /* Track the switch-statement nesting in a stack-like manner.
3947 */
3948 struct glsl_switch_state saved = state->switch_state;
3949
3950 state->switch_state.is_switch_innermost = true;
3951 state->switch_state.switch_nesting_ast = this;
3952 state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
3953 hash_table_pointer_compare);
3954 state->switch_state.previous_default = NULL;
3955
3956 /* Initalize is_fallthru state to false.
3957 */
3958 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3959 state->switch_state.is_fallthru_var =
3960 new(ctx) ir_variable(glsl_type::bool_type,
3961 "switch_is_fallthru_tmp",
3962 ir_var_temporary);
3963 instructions->push_tail(state->switch_state.is_fallthru_var);
3964
3965 ir_dereference_variable *deref_is_fallthru_var =
3966 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3967 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3968 is_fallthru_val));
3969
3970 /* Initalize is_break state to false.
3971 */
3972 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3973 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3974 "switch_is_break_tmp",
3975 ir_var_temporary);
3976 instructions->push_tail(state->switch_state.is_break_var);
3977
3978 ir_dereference_variable *deref_is_break_var =
3979 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3980 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3981 is_break_val));
3982
3983 /* Cache test expression.
3984 */
3985 test_to_hir(instructions, state);
3986
3987 /* Emit code for body of switch stmt.
3988 */
3989 body->hir(instructions, state);
3990
3991 hash_table_dtor(state->switch_state.labels_ht);
3992
3993 state->switch_state = saved;
3994
3995 /* Switch statements do not have r-values. */
3996 return NULL;
3997 }
3998
3999
4000 void
4001 ast_switch_statement::test_to_hir(exec_list *instructions,
4002 struct _mesa_glsl_parse_state *state)
4003 {
4004 void *ctx = state;
4005
4006 /* Cache value of test expression. */
4007 ir_rvalue *const test_val =
4008 test_expression->hir(instructions,
4009 state);
4010
4011 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
4012 "switch_test_tmp",
4013 ir_var_temporary);
4014 ir_dereference_variable *deref_test_var =
4015 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4016
4017 instructions->push_tail(state->switch_state.test_var);
4018 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
4019 }
4020
4021
4022 ir_rvalue *
4023 ast_switch_body::hir(exec_list *instructions,
4024 struct _mesa_glsl_parse_state *state)
4025 {
4026 if (stmts != NULL)
4027 stmts->hir(instructions, state);
4028
4029 /* Switch bodies do not have r-values. */
4030 return NULL;
4031 }
4032
4033 ir_rvalue *
4034 ast_case_statement_list::hir(exec_list *instructions,
4035 struct _mesa_glsl_parse_state *state)
4036 {
4037 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
4038 case_stmt->hir(instructions, state);
4039
4040 /* Case statements do not have r-values. */
4041 return NULL;
4042 }
4043
4044 ir_rvalue *
4045 ast_case_statement::hir(exec_list *instructions,
4046 struct _mesa_glsl_parse_state *state)
4047 {
4048 labels->hir(instructions, state);
4049
4050 /* Conditionally set fallthru state based on break state. */
4051 ir_constant *const false_val = new(state) ir_constant(false);
4052 ir_dereference_variable *const deref_is_fallthru_var =
4053 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4054 ir_dereference_variable *const deref_is_break_var =
4055 new(state) ir_dereference_variable(state->switch_state.is_break_var);
4056 ir_assignment *const reset_fallthru_on_break =
4057 new(state) ir_assignment(deref_is_fallthru_var,
4058 false_val,
4059 deref_is_break_var);
4060 instructions->push_tail(reset_fallthru_on_break);
4061
4062 /* Guard case statements depending on fallthru state. */
4063 ir_dereference_variable *const deref_fallthru_guard =
4064 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
4065 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
4066
4067 foreach_list_typed (ast_node, stmt, link, & this->stmts)
4068 stmt->hir(& test_fallthru->then_instructions, state);
4069
4070 instructions->push_tail(test_fallthru);
4071
4072 /* Case statements do not have r-values. */
4073 return NULL;
4074 }
4075
4076
4077 ir_rvalue *
4078 ast_case_label_list::hir(exec_list *instructions,
4079 struct _mesa_glsl_parse_state *state)
4080 {
4081 foreach_list_typed (ast_case_label, label, link, & this->labels)
4082 label->hir(instructions, state);
4083
4084 /* Case labels do not have r-values. */
4085 return NULL;
4086 }
4087
4088 ir_rvalue *
4089 ast_case_label::hir(exec_list *instructions,
4090 struct _mesa_glsl_parse_state *state)
4091 {
4092 void *ctx = state;
4093
4094 ir_dereference_variable *deref_fallthru_var =
4095 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
4096
4097 ir_rvalue *const true_val = new(ctx) ir_constant(true);
4098
4099 /* If not default case, ... */
4100 if (this->test_value != NULL) {
4101 /* Conditionally set fallthru state based on
4102 * comparison of cached test expression value to case label.
4103 */
4104 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
4105 ir_constant *label_const = label_rval->constant_expression_value();
4106
4107 if (!label_const) {
4108 YYLTYPE loc = this->test_value->get_location();
4109
4110 _mesa_glsl_error(& loc, state,
4111 "switch statement case label must be a "
4112 "constant expression");
4113
4114 /* Stuff a dummy value in to allow processing to continue. */
4115 label_const = new(ctx) ir_constant(0);
4116 } else {
4117 ast_expression *previous_label = (ast_expression *)
4118 hash_table_find(state->switch_state.labels_ht,
4119 (void *)(uintptr_t)label_const->value.u[0]);
4120
4121 if (previous_label) {
4122 YYLTYPE loc = this->test_value->get_location();
4123 _mesa_glsl_error(& loc, state,
4124 "duplicate case value");
4125
4126 loc = previous_label->get_location();
4127 _mesa_glsl_error(& loc, state,
4128 "this is the previous case label");
4129 } else {
4130 hash_table_insert(state->switch_state.labels_ht,
4131 this->test_value,
4132 (void *)(uintptr_t)label_const->value.u[0]);
4133 }
4134 }
4135
4136 ir_dereference_variable *deref_test_var =
4137 new(ctx) ir_dereference_variable(state->switch_state.test_var);
4138
4139 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
4140 label_const,
4141 deref_test_var);
4142
4143 ir_assignment *set_fallthru_on_test =
4144 new(ctx) ir_assignment(deref_fallthru_var,
4145 true_val,
4146 test_cond);
4147
4148 instructions->push_tail(set_fallthru_on_test);
4149 } else { /* default case */
4150 if (state->switch_state.previous_default) {
4151 YYLTYPE loc = this->get_location();
4152 _mesa_glsl_error(& loc, state,
4153 "multiple default labels in one switch");
4154
4155 loc = state->switch_state.previous_default->get_location();
4156 _mesa_glsl_error(& loc, state,
4157 "this is the first default label");
4158 }
4159 state->switch_state.previous_default = this;
4160
4161 /* Set falltrhu state. */
4162 ir_assignment *set_fallthru =
4163 new(ctx) ir_assignment(deref_fallthru_var, true_val);
4164
4165 instructions->push_tail(set_fallthru);
4166 }
4167
4168 /* Case statements do not have r-values. */
4169 return NULL;
4170 }
4171
4172 void
4173 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
4174 struct _mesa_glsl_parse_state *state)
4175 {
4176 void *ctx = state;
4177
4178 if (condition != NULL) {
4179 ir_rvalue *const cond =
4180 condition->hir(& stmt->body_instructions, state);
4181
4182 if ((cond == NULL)
4183 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
4184 YYLTYPE loc = condition->get_location();
4185
4186 _mesa_glsl_error(& loc, state,
4187 "loop condition must be scalar boolean");
4188 } else {
4189 /* As the first code in the loop body, generate a block that looks
4190 * like 'if (!condition) break;' as the loop termination condition.
4191 */
4192 ir_rvalue *const not_cond =
4193 new(ctx) ir_expression(ir_unop_logic_not, cond);
4194
4195 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
4196
4197 ir_jump *const break_stmt =
4198 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
4199
4200 if_stmt->then_instructions.push_tail(break_stmt);
4201 stmt->body_instructions.push_tail(if_stmt);
4202 }
4203 }
4204 }
4205
4206
4207 ir_rvalue *
4208 ast_iteration_statement::hir(exec_list *instructions,
4209 struct _mesa_glsl_parse_state *state)
4210 {
4211 void *ctx = state;
4212
4213 /* For-loops and while-loops start a new scope, but do-while loops do not.
4214 */
4215 if (mode != ast_do_while)
4216 state->symbols->push_scope();
4217
4218 if (init_statement != NULL)
4219 init_statement->hir(instructions, state);
4220
4221 ir_loop *const stmt = new(ctx) ir_loop();
4222 instructions->push_tail(stmt);
4223
4224 /* Track the current loop nesting. */
4225 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
4226
4227 state->loop_nesting_ast = this;
4228
4229 /* Likewise, indicate that following code is closest to a loop,
4230 * NOT closest to a switch.
4231 */
4232 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
4233 state->switch_state.is_switch_innermost = false;
4234
4235 if (mode != ast_do_while)
4236 condition_to_hir(stmt, state);
4237
4238 if (body != NULL)
4239 body->hir(& stmt->body_instructions, state);
4240
4241 if (rest_expression != NULL)
4242 rest_expression->hir(& stmt->body_instructions, state);
4243
4244 if (mode == ast_do_while)
4245 condition_to_hir(stmt, state);
4246
4247 if (mode != ast_do_while)
4248 state->symbols->pop_scope();
4249
4250 /* Restore previous nesting before returning. */
4251 state->loop_nesting_ast = nesting_ast;
4252 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
4253
4254 /* Loops do not have r-values.
4255 */
4256 return NULL;
4257 }
4258
4259
4260 /**
4261 * Determine if the given type is valid for establishing a default precision
4262 * qualifier.
4263 *
4264 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
4265 *
4266 * "The precision statement
4267 *
4268 * precision precision-qualifier type;
4269 *
4270 * can be used to establish a default precision qualifier. The type field
4271 * can be either int or float or any of the sampler types, and the
4272 * precision-qualifier can be lowp, mediump, or highp."
4273 *
4274 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
4275 * qualifiers on sampler types, but this seems like an oversight (since the
4276 * intention of including these in GLSL 1.30 is to allow compatibility with ES
4277 * shaders). So we allow int, float, and all sampler types regardless of GLSL
4278 * version.
4279 */
4280 static bool
4281 is_valid_default_precision_type(const struct glsl_type *const type)
4282 {
4283 if (type == NULL)
4284 return false;
4285
4286 switch (type->base_type) {
4287 case GLSL_TYPE_INT:
4288 case GLSL_TYPE_FLOAT:
4289 /* "int" and "float" are valid, but vectors and matrices are not. */
4290 return type->vector_elements == 1 && type->matrix_columns == 1;
4291 case GLSL_TYPE_SAMPLER:
4292 return true;
4293 default:
4294 return false;
4295 }
4296 }
4297
4298
4299 ir_rvalue *
4300 ast_type_specifier::hir(exec_list *instructions,
4301 struct _mesa_glsl_parse_state *state)
4302 {
4303 if (this->default_precision == ast_precision_none && this->structure == NULL)
4304 return NULL;
4305
4306 YYLTYPE loc = this->get_location();
4307
4308 /* If this is a precision statement, check that the type to which it is
4309 * applied is either float or int.
4310 *
4311 * From section 4.5.3 of the GLSL 1.30 spec:
4312 * "The precision statement
4313 * precision precision-qualifier type;
4314 * can be used to establish a default precision qualifier. The type
4315 * field can be either int or float [...]. Any other types or
4316 * qualifiers will result in an error.
4317 */
4318 if (this->default_precision != ast_precision_none) {
4319 if (!state->check_precision_qualifiers_allowed(&loc))
4320 return NULL;
4321
4322 if (this->structure != NULL) {
4323 _mesa_glsl_error(&loc, state,
4324 "precision qualifiers do not apply to structures");
4325 return NULL;
4326 }
4327
4328 if (this->is_array) {
4329 _mesa_glsl_error(&loc, state,
4330 "default precision statements do not apply to "
4331 "arrays");
4332 return NULL;
4333 }
4334
4335 const struct glsl_type *const type =
4336 state->symbols->get_type(this->type_name);
4337 if (!is_valid_default_precision_type(type)) {
4338 _mesa_glsl_error(&loc, state,
4339 "default precision statements apply only to "
4340 "float, int, and sampler types");
4341 return NULL;
4342 }
4343
4344 if (type->base_type == GLSL_TYPE_FLOAT
4345 && state->es_shader
4346 && state->target == fragment_shader) {
4347 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
4348 * spec says:
4349 *
4350 * "The fragment language has no default precision qualifier for
4351 * floating point types."
4352 *
4353 * As a result, we have to track whether or not default precision has
4354 * been specified for float in GLSL ES fragment shaders.
4355 *
4356 * Earlier in that same section, the spec says:
4357 *
4358 * "Non-precision qualified declarations will use the precision
4359 * qualifier specified in the most recent precision statement
4360 * that is still in scope. The precision statement has the same
4361 * scoping rules as variable declarations. If it is declared
4362 * inside a compound statement, its effect stops at the end of
4363 * the innermost statement it was declared in. Precision
4364 * statements in nested scopes override precision statements in
4365 * outer scopes. Multiple precision statements for the same basic
4366 * type can appear inside the same scope, with later statements
4367 * overriding earlier statements within that scope."
4368 *
4369 * Default precision specifications follow the same scope rules as
4370 * variables. So, we can track the state of the default float
4371 * precision in the symbol table, and the rules will just work. This
4372 * is a slight abuse of the symbol table, but it has the semantics
4373 * that we want.
4374 */
4375 ir_variable *const junk =
4376 new(state) ir_variable(type, "#default precision",
4377 ir_var_temporary);
4378
4379 state->symbols->add_variable(junk);
4380 }
4381
4382 /* FINISHME: Translate precision statements into IR. */
4383 return NULL;
4384 }
4385
4386 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
4387 * process_record_constructor() can do type-checking on C-style initializer
4388 * expressions of structs, but ast_struct_specifier should only be translated
4389 * to HIR if it is declaring the type of a structure.
4390 *
4391 * The ->is_declaration field is false for initializers of variables
4392 * declared separately from the struct's type definition.
4393 *
4394 * struct S { ... }; (is_declaration = true)
4395 * struct T { ... } t = { ... }; (is_declaration = true)
4396 * S s = { ... }; (is_declaration = false)
4397 */
4398 if (this->structure != NULL && this->structure->is_declaration)
4399 return this->structure->hir(instructions, state);
4400
4401 return NULL;
4402 }
4403
4404
4405 /**
4406 * Process a structure or interface block tree into an array of structure fields
4407 *
4408 * After parsing, where there are some syntax differnces, structures and
4409 * interface blocks are almost identical. They are similar enough that the
4410 * AST for each can be processed the same way into a set of
4411 * \c glsl_struct_field to describe the members.
4412 *
4413 * \return
4414 * The number of fields processed. A pointer to the array structure fields is
4415 * stored in \c *fields_ret.
4416 */
4417 unsigned
4418 ast_process_structure_or_interface_block(exec_list *instructions,
4419 struct _mesa_glsl_parse_state *state,
4420 exec_list *declarations,
4421 YYLTYPE &loc,
4422 glsl_struct_field **fields_ret,
4423 bool is_interface,
4424 bool block_row_major,
4425 bool allow_reserved_names)
4426 {
4427 unsigned decl_count = 0;
4428
4429 /* Make an initial pass over the list of fields to determine how
4430 * many there are. Each element in this list is an ast_declarator_list.
4431 * This means that we actually need to count the number of elements in the
4432 * 'declarations' list in each of the elements.
4433 */
4434 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4435 foreach_list_const (decl_ptr, & decl_list->declarations) {
4436 decl_count++;
4437 }
4438 }
4439
4440 /* Allocate storage for the fields and process the field
4441 * declarations. As the declarations are processed, try to also convert
4442 * the types to HIR. This ensures that structure definitions embedded in
4443 * other structure definitions or in interface blocks are processed.
4444 */
4445 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
4446 decl_count);
4447
4448 unsigned i = 0;
4449 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
4450 const char *type_name;
4451
4452 decl_list->type->specifier->hir(instructions, state);
4453
4454 /* Section 10.9 of the GLSL ES 1.00 specification states that
4455 * embedded structure definitions have been removed from the language.
4456 */
4457 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
4458 _mesa_glsl_error(&loc, state, "embedded structure definitions are "
4459 "not allowed in GLSL ES 1.00");
4460 }
4461
4462 const glsl_type *decl_type =
4463 decl_list->type->glsl_type(& type_name, state);
4464
4465 foreach_list_typed (ast_declaration, decl, link,
4466 &decl_list->declarations) {
4467 if (!allow_reserved_names)
4468 validate_identifier(decl->identifier, loc, state);
4469
4470 /* From the GL_ARB_uniform_buffer_object spec:
4471 *
4472 * "Sampler types are not allowed inside of uniform
4473 * blocks. All other types, arrays, and structures
4474 * allowed for uniforms are allowed within a uniform
4475 * block."
4476 *
4477 * It should be impossible for decl_type to be NULL here. Cases that
4478 * might naturally lead to decl_type being NULL, especially for the
4479 * is_interface case, will have resulted in compilation having
4480 * already halted due to a syntax error.
4481 */
4482 const struct glsl_type *field_type =
4483 decl_type != NULL ? decl_type : glsl_type::error_type;
4484
4485 if (is_interface && field_type->contains_sampler()) {
4486 YYLTYPE loc = decl_list->get_location();
4487 _mesa_glsl_error(&loc, state,
4488 "uniform in non-default uniform block contains sampler");
4489 }
4490
4491 const struct ast_type_qualifier *const qual =
4492 & decl_list->type->qualifier;
4493 if (qual->flags.q.std140 ||
4494 qual->flags.q.packed ||
4495 qual->flags.q.shared) {
4496 _mesa_glsl_error(&loc, state,
4497 "uniform block layout qualifiers std140, packed, and "
4498 "shared can only be applied to uniform blocks, not "
4499 "members");
4500 }
4501
4502 if (decl->is_array) {
4503 field_type = process_array_type(&loc, decl_type, decl->array_size,
4504 state);
4505 }
4506 fields[i].type = field_type;
4507 fields[i].name = decl->identifier;
4508 fields[i].location = -1;
4509
4510 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4511 if (!qual->flags.q.uniform) {
4512 _mesa_glsl_error(&loc, state,
4513 "row_major and column_major can only be "
4514 "applied to uniform interface blocks");
4515 } else
4516 validate_matrix_layout_for_type(state, &loc, field_type, NULL);
4517 }
4518
4519 if (qual->flags.q.uniform && qual->has_interpolation()) {
4520 _mesa_glsl_error(&loc, state,
4521 "interpolation qualifiers cannot be used "
4522 "with uniform interface blocks");
4523 }
4524
4525 if (field_type->is_matrix() ||
4526 (field_type->is_array() && field_type->fields.array->is_matrix())) {
4527 fields[i].row_major = block_row_major;
4528 if (qual->flags.q.row_major)
4529 fields[i].row_major = true;
4530 else if (qual->flags.q.column_major)
4531 fields[i].row_major = false;
4532 }
4533
4534 i++;
4535 }
4536 }
4537
4538 assert(i == decl_count);
4539
4540 *fields_ret = fields;
4541 return decl_count;
4542 }
4543
4544
4545 ir_rvalue *
4546 ast_struct_specifier::hir(exec_list *instructions,
4547 struct _mesa_glsl_parse_state *state)
4548 {
4549 YYLTYPE loc = this->get_location();
4550
4551 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
4552 *
4553 * "Anonymous structures are not supported; so embedded structures must
4554 * have a declarator. A name given to an embedded struct is scoped at
4555 * the same level as the struct it is embedded in."
4556 *
4557 * The same section of the GLSL 1.20 spec says:
4558 *
4559 * "Anonymous structures are not supported. Embedded structures are not
4560 * supported.
4561 *
4562 * struct S { float f; };
4563 * struct T {
4564 * S; // Error: anonymous structures disallowed
4565 * struct { ... }; // Error: embedded structures disallowed
4566 * S s; // Okay: nested structures with name are allowed
4567 * };"
4568 *
4569 * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
4570 * we allow embedded structures in 1.10 only.
4571 */
4572 if (state->language_version != 110 && state->struct_specifier_depth != 0)
4573 _mesa_glsl_error(&loc, state,
4574 "embedded structure declartions are not allowed");
4575
4576 state->struct_specifier_depth++;
4577
4578 glsl_struct_field *fields;
4579 unsigned decl_count =
4580 ast_process_structure_or_interface_block(instructions,
4581 state,
4582 &this->declarations,
4583 loc,
4584 &fields,
4585 false,
4586 false,
4587 false /* allow_reserved_names */);
4588
4589 validate_identifier(this->name, loc, state);
4590
4591 const glsl_type *t =
4592 glsl_type::get_record_instance(fields, decl_count, this->name);
4593
4594 if (!state->symbols->add_type(name, t)) {
4595 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
4596 } else {
4597 const glsl_type **s = reralloc(state, state->user_structures,
4598 const glsl_type *,
4599 state->num_user_structures + 1);
4600 if (s != NULL) {
4601 s[state->num_user_structures] = t;
4602 state->user_structures = s;
4603 state->num_user_structures++;
4604 }
4605 }
4606
4607 state->struct_specifier_depth--;
4608
4609 /* Structure type definitions do not have r-values.
4610 */
4611 return NULL;
4612 }
4613
4614
4615 /**
4616 * Visitor class which detects whether a given interface block has been used.
4617 */
4618 class interface_block_usage_visitor : public ir_hierarchical_visitor
4619 {
4620 public:
4621 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
4622 : mode(mode), block(block), found(false)
4623 {
4624 }
4625
4626 virtual ir_visitor_status visit(ir_dereference_variable *ir)
4627 {
4628 if (ir->var->mode == mode && ir->var->get_interface_type() == block) {
4629 found = true;
4630 return visit_stop;
4631 }
4632 return visit_continue;
4633 }
4634
4635 bool usage_found() const
4636 {
4637 return this->found;
4638 }
4639
4640 private:
4641 ir_variable_mode mode;
4642 const glsl_type *block;
4643 bool found;
4644 };
4645
4646
4647 ir_rvalue *
4648 ast_interface_block::hir(exec_list *instructions,
4649 struct _mesa_glsl_parse_state *state)
4650 {
4651 YYLTYPE loc = this->get_location();
4652
4653 /* The ast_interface_block has a list of ast_declarator_lists. We
4654 * need to turn those into ir_variables with an association
4655 * with this uniform block.
4656 */
4657 enum glsl_interface_packing packing;
4658 if (this->layout.flags.q.shared) {
4659 packing = GLSL_INTERFACE_PACKING_SHARED;
4660 } else if (this->layout.flags.q.packed) {
4661 packing = GLSL_INTERFACE_PACKING_PACKED;
4662 } else {
4663 /* The default layout is std140.
4664 */
4665 packing = GLSL_INTERFACE_PACKING_STD140;
4666 }
4667
4668 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
4669 bool block_row_major = this->layout.flags.q.row_major;
4670 exec_list declared_variables;
4671 glsl_struct_field *fields;
4672 unsigned int num_variables =
4673 ast_process_structure_or_interface_block(&declared_variables,
4674 state,
4675 &this->declarations,
4676 loc,
4677 &fields,
4678 true,
4679 block_row_major,
4680 redeclaring_per_vertex);
4681
4682 ir_variable_mode var_mode;
4683 const char *iface_type_name;
4684 if (this->layout.flags.q.in) {
4685 var_mode = ir_var_shader_in;
4686 iface_type_name = "in";
4687 } else if (this->layout.flags.q.out) {
4688 var_mode = ir_var_shader_out;
4689 iface_type_name = "out";
4690 } else if (this->layout.flags.q.uniform) {
4691 var_mode = ir_var_uniform;
4692 iface_type_name = "uniform";
4693 } else {
4694 var_mode = ir_var_auto;
4695 iface_type_name = "UNKNOWN";
4696 assert(!"interface block layout qualifier not found!");
4697 }
4698
4699 if (!redeclaring_per_vertex)
4700 validate_identifier(this->block_name, loc, state);
4701
4702 const glsl_type *earlier_per_vertex = NULL;
4703 if (redeclaring_per_vertex) {
4704 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
4705 * the named interface block gl_in, we can find it by looking at the
4706 * previous declaration of gl_in. Otherwise we can find it by looking
4707 * at the previous decalartion of any of the built-in outputs,
4708 * e.g. gl_Position.
4709 *
4710 * Also check that the instance name and array-ness of the redeclaration
4711 * are correct.
4712 */
4713 switch (var_mode) {
4714 case ir_var_shader_in:
4715 if (ir_variable *earlier_gl_in =
4716 state->symbols->get_variable("gl_in")) {
4717 earlier_per_vertex = earlier_gl_in->get_interface_type();
4718 } else {
4719 _mesa_glsl_error(&loc, state,
4720 "redeclaration of gl_PerVertex input not allowed "
4721 "in the %s shader",
4722 _mesa_glsl_shader_target_name(state->target));
4723 }
4724 if (this->instance_name == NULL ||
4725 strcmp(this->instance_name, "gl_in") != 0 || !this->is_array) {
4726 _mesa_glsl_error(&loc, state,
4727 "gl_PerVertex input must be redeclared as "
4728 "gl_in[]");
4729 }
4730 break;
4731 case ir_var_shader_out:
4732 if (ir_variable *earlier_gl_Position =
4733 state->symbols->get_variable("gl_Position")) {
4734 earlier_per_vertex = earlier_gl_Position->get_interface_type();
4735 } else {
4736 _mesa_glsl_error(&loc, state,
4737 "redeclaration of gl_PerVertex output not "
4738 "allowed in the %s shader",
4739 _mesa_glsl_shader_target_name(state->target));
4740 }
4741 if (this->instance_name != NULL) {
4742 _mesa_glsl_error(&loc, state,
4743 "gl_PerVertex input may not be redeclared with "
4744 "an instance name");
4745 }
4746 break;
4747 default:
4748 _mesa_glsl_error(&loc, state,
4749 "gl_PerVertex must be declared as an input or an "
4750 "output");
4751 break;
4752 }
4753
4754 if (earlier_per_vertex == NULL) {
4755 /* An error has already been reported. Bail out to avoid null
4756 * dereferences later in this function.
4757 */
4758 return NULL;
4759 }
4760
4761 /* Copy locations from the old gl_PerVertex interface block. */
4762 for (unsigned i = 0; i < num_variables; i++) {
4763 int j = earlier_per_vertex->field_index(fields[i].name);
4764 if (j == -1) {
4765 _mesa_glsl_error(&loc, state,
4766 "redeclaration of gl_PerVertex must be a subset "
4767 "of the built-in members of gl_PerVertex");
4768 } else {
4769 fields[i].location =
4770 earlier_per_vertex->fields.structure[j].location;
4771 }
4772 }
4773
4774 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
4775 * spec:
4776 *
4777 * If a built-in interface block is redeclared, it must appear in
4778 * the shader before any use of any member included in the built-in
4779 * declaration, or a compilation error will result.
4780 *
4781 * This appears to be a clarification to the behaviour established for
4782 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
4783 * regardless of GLSL version.
4784 */
4785 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
4786 v.run(instructions);
4787 if (v.usage_found()) {
4788 _mesa_glsl_error(&loc, state,
4789 "redeclaration of a built-in interface block must "
4790 "appear before any use of any member of the "
4791 "interface block");
4792 }
4793 }
4794
4795 const glsl_type *block_type =
4796 glsl_type::get_interface_instance(fields,
4797 num_variables,
4798 packing,
4799 this->block_name);
4800
4801 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
4802 YYLTYPE loc = this->get_location();
4803 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
4804 "already taken in the current scope",
4805 this->block_name, iface_type_name);
4806 }
4807
4808 /* Since interface blocks cannot contain statements, it should be
4809 * impossible for the block to generate any instructions.
4810 */
4811 assert(declared_variables.is_empty());
4812
4813 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
4814 *
4815 * Geometry shader input variables get the per-vertex values written
4816 * out by vertex shader output variables of the same names. Since a
4817 * geometry shader operates on a set of vertices, each input varying
4818 * variable (or input block, see interface blocks below) needs to be
4819 * declared as an array.
4820 */
4821 if (state->target == geometry_shader && !this->is_array &&
4822 var_mode == ir_var_shader_in) {
4823 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
4824 }
4825
4826 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
4827 * says:
4828 *
4829 * "If an instance name (instance-name) is used, then it puts all the
4830 * members inside a scope within its own name space, accessed with the
4831 * field selector ( . ) operator (analogously to structures)."
4832 */
4833 if (this->instance_name) {
4834 if (!redeclaring_per_vertex)
4835 validate_identifier(this->instance_name, loc, state);
4836
4837 ir_variable *var;
4838
4839 if (this->is_array) {
4840 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
4841 *
4842 * For uniform blocks declared an array, each individual array
4843 * element corresponds to a separate buffer object backing one
4844 * instance of the block. As the array size indicates the number
4845 * of buffer objects needed, uniform block array declarations
4846 * must specify an array size.
4847 *
4848 * And a few paragraphs later:
4849 *
4850 * Geometry shader input blocks must be declared as arrays and
4851 * follow the array declaration and linking rules for all
4852 * geometry shader inputs. All other input and output block
4853 * arrays must specify an array size.
4854 *
4855 * The upshot of this is that the only circumstance where an
4856 * interface array size *doesn't* need to be specified is on a
4857 * geometry shader input.
4858 */
4859 if (this->array_size == NULL &&
4860 (state->target != geometry_shader || !this->layout.flags.q.in)) {
4861 _mesa_glsl_error(&loc, state,
4862 "only geometry shader inputs may be unsized "
4863 "instance block arrays");
4864
4865 }
4866
4867 const glsl_type *block_array_type =
4868 process_array_type(&loc, block_type, this->array_size, state);
4869
4870 var = new(state) ir_variable(block_array_type,
4871 this->instance_name,
4872 var_mode);
4873 } else {
4874 var = new(state) ir_variable(block_type,
4875 this->instance_name,
4876 var_mode);
4877 }
4878
4879 if (state->target == geometry_shader && var_mode == ir_var_shader_in)
4880 handle_geometry_shader_input_decl(state, loc, var);
4881
4882 if (ir_variable *earlier =
4883 state->symbols->get_variable(this->instance_name)) {
4884 if (!redeclaring_per_vertex) {
4885 _mesa_glsl_error(&loc, state, "`%s' redeclared",
4886 this->instance_name);
4887 }
4888 earlier->type = var->type;
4889 earlier->reinit_interface_type(block_type);
4890 delete var;
4891 } else {
4892 state->symbols->add_variable(var);
4893 instructions->push_tail(var);
4894 }
4895 } else {
4896 /* In order to have an array size, the block must also be declared with
4897 * an instane name.
4898 */
4899 assert(!this->is_array);
4900
4901 for (unsigned i = 0; i < num_variables; i++) {
4902 ir_variable *var =
4903 new(state) ir_variable(fields[i].type,
4904 ralloc_strdup(state, fields[i].name),
4905 var_mode);
4906 var->init_interface_type(block_type);
4907
4908 if (redeclaring_per_vertex) {
4909 ir_variable *earlier =
4910 get_variable_being_redeclared(var, loc, state,
4911 true /* allow_all_redeclarations */);
4912 if (strncmp(var->name, "gl_", 3) != 0 || earlier == NULL) {
4913 _mesa_glsl_error(&loc, state,
4914 "redeclaration of gl_PerVertex can only "
4915 "include built-in variables");
4916 } else {
4917 earlier->reinit_interface_type(block_type);
4918 }
4919 continue;
4920 }
4921
4922 if (state->symbols->get_variable(var->name) != NULL)
4923 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4924
4925 /* Propagate the "binding" keyword into this UBO's fields;
4926 * the UBO declaration itself doesn't get an ir_variable unless it
4927 * has an instance name. This is ugly.
4928 */
4929 var->explicit_binding = this->layout.flags.q.explicit_binding;
4930 var->binding = this->layout.binding;
4931
4932 state->symbols->add_variable(var);
4933 instructions->push_tail(var);
4934 }
4935
4936 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
4937 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
4938 *
4939 * It is also a compilation error ... to redeclare a built-in
4940 * block and then use a member from that built-in block that was
4941 * not included in the redeclaration.
4942 *
4943 * This appears to be a clarification to the behaviour established
4944 * for gl_PerVertex by GLSL 1.50, therefore we implement this
4945 * behaviour regardless of GLSL version.
4946 *
4947 * To prevent the shader from using a member that was not included in
4948 * the redeclaration, we disable any ir_variables that are still
4949 * associated with the old declaration of gl_PerVertex (since we've
4950 * already updated all of the variables contained in the new
4951 * gl_PerVertex to point to it).
4952 *
4953 * As a side effect this will prevent
4954 * validate_intrastage_interface_blocks() from getting confused and
4955 * thinking there are conflicting definitions of gl_PerVertex in the
4956 * shader.
4957 */
4958 foreach_list_safe(node, instructions) {
4959 ir_variable *const var = ((ir_instruction *) node)->as_variable();
4960 if (var != NULL &&
4961 var->get_interface_type() == earlier_per_vertex) {
4962 state->symbols->disable_variable(var->name);
4963 var->remove();
4964 }
4965 }
4966 }
4967 }
4968
4969 return NULL;
4970 }
4971
4972
4973 ir_rvalue *
4974 ast_gs_input_layout::hir(exec_list *instructions,
4975 struct _mesa_glsl_parse_state *state)
4976 {
4977 YYLTYPE loc = this->get_location();
4978
4979 /* If any geometry input layout declaration preceded this one, make sure it
4980 * was consistent with this one.
4981 */
4982 if (state->gs_input_prim_type_specified &&
4983 state->gs_input_prim_type != this->prim_type) {
4984 _mesa_glsl_error(&loc, state,
4985 "geometry shader input layout does not match"
4986 " previous declaration");
4987 return NULL;
4988 }
4989
4990 /* If any shader inputs occurred before this declaration and specified an
4991 * array size, make sure the size they specified is consistent with the
4992 * primitive type.
4993 */
4994 unsigned num_vertices = vertices_per_prim(this->prim_type);
4995 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
4996 _mesa_glsl_error(&loc, state,
4997 "this geometry shader input layout implies %u vertices"
4998 " per primitive, but a previous input is declared"
4999 " with size %u", num_vertices, state->gs_input_size);
5000 return NULL;
5001 }
5002
5003 state->gs_input_prim_type_specified = true;
5004 state->gs_input_prim_type = this->prim_type;
5005
5006 /* If any shader inputs occurred before this declaration and did not
5007 * specify an array size, their size is determined now.
5008 */
5009 foreach_list (node, instructions) {
5010 ir_variable *var = ((ir_instruction *) node)->as_variable();
5011 if (var == NULL || var->mode != ir_var_shader_in)
5012 continue;
5013
5014 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
5015 * array; skip it.
5016 */
5017 if (!var->type->is_array())
5018 continue;
5019
5020 if (var->type->length == 0) {
5021 if (var->max_array_access >= num_vertices) {
5022 _mesa_glsl_error(&loc, state,
5023 "this geometry shader input layout implies %u"
5024 " vertices, but an access to element %u of input"
5025 " `%s' already exists", num_vertices,
5026 var->max_array_access, var->name);
5027 } else {
5028 var->type = glsl_type::get_array_instance(var->type->fields.array,
5029 num_vertices);
5030 }
5031 }
5032 }
5033
5034 return NULL;
5035 }
5036
5037
5038 static void
5039 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
5040 exec_list *instructions)
5041 {
5042 bool gl_FragColor_assigned = false;
5043 bool gl_FragData_assigned = false;
5044 bool user_defined_fs_output_assigned = false;
5045 ir_variable *user_defined_fs_output = NULL;
5046
5047 /* It would be nice to have proper location information. */
5048 YYLTYPE loc;
5049 memset(&loc, 0, sizeof(loc));
5050
5051 foreach_list(node, instructions) {
5052 ir_variable *var = ((ir_instruction *)node)->as_variable();
5053
5054 if (!var || !var->assigned)
5055 continue;
5056
5057 if (strcmp(var->name, "gl_FragColor") == 0)
5058 gl_FragColor_assigned = true;
5059 else if (strcmp(var->name, "gl_FragData") == 0)
5060 gl_FragData_assigned = true;
5061 else if (strncmp(var->name, "gl_", 3) != 0) {
5062 if (state->target == fragment_shader &&
5063 var->mode == ir_var_shader_out) {
5064 user_defined_fs_output_assigned = true;
5065 user_defined_fs_output = var;
5066 }
5067 }
5068 }
5069
5070 /* From the GLSL 1.30 spec:
5071 *
5072 * "If a shader statically assigns a value to gl_FragColor, it
5073 * may not assign a value to any element of gl_FragData. If a
5074 * shader statically writes a value to any element of
5075 * gl_FragData, it may not assign a value to
5076 * gl_FragColor. That is, a shader may assign values to either
5077 * gl_FragColor or gl_FragData, but not both. Multiple shaders
5078 * linked together must also consistently write just one of
5079 * these variables. Similarly, if user declared output
5080 * variables are in use (statically assigned to), then the
5081 * built-in variables gl_FragColor and gl_FragData may not be
5082 * assigned to. These incorrect usages all generate compile
5083 * time errors."
5084 */
5085 if (gl_FragColor_assigned && gl_FragData_assigned) {
5086 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5087 "`gl_FragColor' and `gl_FragData'");
5088 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
5089 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5090 "`gl_FragColor' and `%s'",
5091 user_defined_fs_output->name);
5092 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
5093 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
5094 "`gl_FragData' and `%s'",
5095 user_defined_fs_output->name);
5096 }
5097 }