Merge branch 'master' of git://anongit.freedesktop.org/mesa/mesa
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 static void
657 mark_whole_array_access(ir_rvalue *access)
658 {
659 ir_dereference_variable *deref = access->as_dereference_variable();
660
661 if (deref && deref->var) {
662 deref->var->max_array_access = deref->type->length - 1;
663 }
664 }
665
666 ir_rvalue *
667 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
668 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
669 YYLTYPE lhs_loc)
670 {
671 void *ctx = state;
672 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
673
674 if (!error_emitted) {
675 if (lhs->variable_referenced() != NULL
676 && lhs->variable_referenced()->read_only) {
677 _mesa_glsl_error(&lhs_loc, state,
678 "assignment to read-only variable '%s'",
679 lhs->variable_referenced()->name);
680 error_emitted = true;
681
682 } else if (!lhs->is_lvalue()) {
683 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
684 error_emitted = true;
685 }
686
687 if (state->es_shader && lhs->type->is_array()) {
688 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
689 "allowed in GLSL ES 1.00.");
690 error_emitted = true;
691 }
692 }
693
694 ir_rvalue *new_rhs =
695 validate_assignment(state, lhs->type, rhs, is_initializer);
696 if (new_rhs == NULL) {
697 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
698 } else {
699 rhs = new_rhs;
700
701 /* If the LHS array was not declared with a size, it takes it size from
702 * the RHS. If the LHS is an l-value and a whole array, it must be a
703 * dereference of a variable. Any other case would require that the LHS
704 * is either not an l-value or not a whole array.
705 */
706 if (lhs->type->array_size() == 0) {
707 ir_dereference *const d = lhs->as_dereference();
708
709 assert(d != NULL);
710
711 ir_variable *const var = d->variable_referenced();
712
713 assert(var != NULL);
714
715 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
716 /* FINISHME: This should actually log the location of the RHS. */
717 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
718 "previous access",
719 var->max_array_access);
720 }
721
722 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
723 rhs->type->array_size());
724 d->type = var->type;
725 }
726 mark_whole_array_access(lhs);
727 }
728
729 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
730 * but not post_inc) need the converted assigned value as an rvalue
731 * to handle things like:
732 *
733 * i = j += 1;
734 *
735 * So we always just store the computed value being assigned to a
736 * temporary and return a deref of that temporary. If the rvalue
737 * ends up not being used, the temp will get copy-propagated out.
738 */
739 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
740 ir_var_temporary);
741 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
742 instructions->push_tail(var);
743 instructions->push_tail(new(ctx) ir_assignment(deref_var,
744 rhs,
745 NULL));
746 deref_var = new(ctx) ir_dereference_variable(var);
747
748 if (!error_emitted)
749 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
750
751 return new(ctx) ir_dereference_variable(var);
752 }
753
754 static ir_rvalue *
755 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
756 {
757 void *ctx = ralloc_parent(lvalue);
758 ir_variable *var;
759
760 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
761 ir_var_temporary);
762 instructions->push_tail(var);
763 var->mode = ir_var_auto;
764
765 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
766 lvalue, NULL));
767
768 /* Once we've created this temporary, mark it read only so it's no
769 * longer considered an lvalue.
770 */
771 var->read_only = true;
772
773 return new(ctx) ir_dereference_variable(var);
774 }
775
776
777 ir_rvalue *
778 ast_node::hir(exec_list *instructions,
779 struct _mesa_glsl_parse_state *state)
780 {
781 (void) instructions;
782 (void) state;
783
784 return NULL;
785 }
786
787 static ir_rvalue *
788 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
789 {
790 int join_op;
791 ir_rvalue *cmp = NULL;
792
793 if (operation == ir_binop_all_equal)
794 join_op = ir_binop_logic_and;
795 else
796 join_op = ir_binop_logic_or;
797
798 switch (op0->type->base_type) {
799 case GLSL_TYPE_FLOAT:
800 case GLSL_TYPE_UINT:
801 case GLSL_TYPE_INT:
802 case GLSL_TYPE_BOOL:
803 return new(mem_ctx) ir_expression(operation, op0, op1);
804
805 case GLSL_TYPE_ARRAY: {
806 for (unsigned int i = 0; i < op0->type->length; i++) {
807 ir_rvalue *e0, *e1, *result;
808
809 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
810 new(mem_ctx) ir_constant(i));
811 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
812 new(mem_ctx) ir_constant(i));
813 result = do_comparison(mem_ctx, operation, e0, e1);
814
815 if (cmp) {
816 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
817 } else {
818 cmp = result;
819 }
820 }
821
822 mark_whole_array_access(op0);
823 mark_whole_array_access(op1);
824 break;
825 }
826
827 case GLSL_TYPE_STRUCT: {
828 for (unsigned int i = 0; i < op0->type->length; i++) {
829 ir_rvalue *e0, *e1, *result;
830 const char *field_name = op0->type->fields.structure[i].name;
831
832 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
833 field_name);
834 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
835 field_name);
836 result = do_comparison(mem_ctx, operation, e0, e1);
837
838 if (cmp) {
839 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
840 } else {
841 cmp = result;
842 }
843 }
844 break;
845 }
846
847 case GLSL_TYPE_ERROR:
848 case GLSL_TYPE_VOID:
849 case GLSL_TYPE_SAMPLER:
850 /* I assume a comparison of a struct containing a sampler just
851 * ignores the sampler present in the type.
852 */
853 break;
854
855 default:
856 assert(!"Should not get here.");
857 break;
858 }
859
860 if (cmp == NULL)
861 cmp = new(mem_ctx) ir_constant(true);
862
863 return cmp;
864 }
865
866 /* For logical operations, we want to ensure that the operands are
867 * scalar booleans. If it isn't, emit an error and return a constant
868 * boolean to avoid triggering cascading error messages.
869 */
870 ir_rvalue *
871 get_scalar_boolean_operand(exec_list *instructions,
872 struct _mesa_glsl_parse_state *state,
873 ast_expression *parent_expr,
874 int operand,
875 const char *operand_name,
876 bool *error_emitted)
877 {
878 ast_expression *expr = parent_expr->subexpressions[operand];
879 void *ctx = state;
880 ir_rvalue *val = expr->hir(instructions, state);
881
882 if (val->type->is_boolean() && val->type->is_scalar())
883 return val;
884
885 if (!*error_emitted) {
886 YYLTYPE loc = expr->get_location();
887 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
888 operand_name,
889 parent_expr->operator_string(parent_expr->oper));
890 *error_emitted = true;
891 }
892
893 return new(ctx) ir_constant(true);
894 }
895
896 ir_rvalue *
897 ast_expression::hir(exec_list *instructions,
898 struct _mesa_glsl_parse_state *state)
899 {
900 void *ctx = state;
901 static const int operations[AST_NUM_OPERATORS] = {
902 -1, /* ast_assign doesn't convert to ir_expression. */
903 -1, /* ast_plus doesn't convert to ir_expression. */
904 ir_unop_neg,
905 ir_binop_add,
906 ir_binop_sub,
907 ir_binop_mul,
908 ir_binop_div,
909 ir_binop_mod,
910 ir_binop_lshift,
911 ir_binop_rshift,
912 ir_binop_less,
913 ir_binop_greater,
914 ir_binop_lequal,
915 ir_binop_gequal,
916 ir_binop_all_equal,
917 ir_binop_any_nequal,
918 ir_binop_bit_and,
919 ir_binop_bit_xor,
920 ir_binop_bit_or,
921 ir_unop_bit_not,
922 ir_binop_logic_and,
923 ir_binop_logic_xor,
924 ir_binop_logic_or,
925 ir_unop_logic_not,
926
927 /* Note: The following block of expression types actually convert
928 * to multiple IR instructions.
929 */
930 ir_binop_mul, /* ast_mul_assign */
931 ir_binop_div, /* ast_div_assign */
932 ir_binop_mod, /* ast_mod_assign */
933 ir_binop_add, /* ast_add_assign */
934 ir_binop_sub, /* ast_sub_assign */
935 ir_binop_lshift, /* ast_ls_assign */
936 ir_binop_rshift, /* ast_rs_assign */
937 ir_binop_bit_and, /* ast_and_assign */
938 ir_binop_bit_xor, /* ast_xor_assign */
939 ir_binop_bit_or, /* ast_or_assign */
940
941 -1, /* ast_conditional doesn't convert to ir_expression. */
942 ir_binop_add, /* ast_pre_inc. */
943 ir_binop_sub, /* ast_pre_dec. */
944 ir_binop_add, /* ast_post_inc. */
945 ir_binop_sub, /* ast_post_dec. */
946 -1, /* ast_field_selection doesn't conv to ir_expression. */
947 -1, /* ast_array_index doesn't convert to ir_expression. */
948 -1, /* ast_function_call doesn't conv to ir_expression. */
949 -1, /* ast_identifier doesn't convert to ir_expression. */
950 -1, /* ast_int_constant doesn't convert to ir_expression. */
951 -1, /* ast_uint_constant doesn't conv to ir_expression. */
952 -1, /* ast_float_constant doesn't conv to ir_expression. */
953 -1, /* ast_bool_constant doesn't conv to ir_expression. */
954 -1, /* ast_sequence doesn't convert to ir_expression. */
955 };
956 ir_rvalue *result = NULL;
957 ir_rvalue *op[3];
958 const struct glsl_type *type; /* a temporary variable for switch cases */
959 bool error_emitted = false;
960 YYLTYPE loc;
961
962 loc = this->get_location();
963
964 switch (this->oper) {
965 case ast_assign: {
966 op[0] = this->subexpressions[0]->hir(instructions, state);
967 op[1] = this->subexpressions[1]->hir(instructions, state);
968
969 result = do_assignment(instructions, state, op[0], op[1], false,
970 this->subexpressions[0]->get_location());
971 error_emitted = result->type->is_error();
972 break;
973 }
974
975 case ast_plus:
976 op[0] = this->subexpressions[0]->hir(instructions, state);
977
978 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
979
980 error_emitted = type->is_error();
981
982 result = op[0];
983 break;
984
985 case ast_neg:
986 op[0] = this->subexpressions[0]->hir(instructions, state);
987
988 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
989
990 error_emitted = type->is_error();
991
992 result = new(ctx) ir_expression(operations[this->oper], type,
993 op[0], NULL);
994 break;
995
996 case ast_add:
997 case ast_sub:
998 case ast_mul:
999 case ast_div:
1000 op[0] = this->subexpressions[0]->hir(instructions, state);
1001 op[1] = this->subexpressions[1]->hir(instructions, state);
1002
1003 type = arithmetic_result_type(op[0], op[1],
1004 (this->oper == ast_mul),
1005 state, & loc);
1006 error_emitted = type->is_error();
1007
1008 result = new(ctx) ir_expression(operations[this->oper], type,
1009 op[0], op[1]);
1010 break;
1011
1012 case ast_mod:
1013 op[0] = this->subexpressions[0]->hir(instructions, state);
1014 op[1] = this->subexpressions[1]->hir(instructions, state);
1015
1016 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1017
1018 assert(operations[this->oper] == ir_binop_mod);
1019
1020 result = new(ctx) ir_expression(operations[this->oper], type,
1021 op[0], op[1]);
1022 error_emitted = type->is_error();
1023 break;
1024
1025 case ast_lshift:
1026 case ast_rshift:
1027 if (state->language_version < 130) {
1028 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1029 operator_string(this->oper));
1030 error_emitted = true;
1031 }
1032
1033 op[0] = this->subexpressions[0]->hir(instructions, state);
1034 op[1] = this->subexpressions[1]->hir(instructions, state);
1035 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1036 &loc);
1037 result = new(ctx) ir_expression(operations[this->oper], type,
1038 op[0], op[1]);
1039 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1040 break;
1041
1042 case ast_less:
1043 case ast_greater:
1044 case ast_lequal:
1045 case ast_gequal:
1046 op[0] = this->subexpressions[0]->hir(instructions, state);
1047 op[1] = this->subexpressions[1]->hir(instructions, state);
1048
1049 type = relational_result_type(op[0], op[1], state, & loc);
1050
1051 /* The relational operators must either generate an error or result
1052 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1053 */
1054 assert(type->is_error()
1055 || ((type->base_type == GLSL_TYPE_BOOL)
1056 && type->is_scalar()));
1057
1058 result = new(ctx) ir_expression(operations[this->oper], type,
1059 op[0], op[1]);
1060 error_emitted = type->is_error();
1061 break;
1062
1063 case ast_nequal:
1064 case ast_equal:
1065 op[0] = this->subexpressions[0]->hir(instructions, state);
1066 op[1] = this->subexpressions[1]->hir(instructions, state);
1067
1068 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1069 *
1070 * "The equality operators equal (==), and not equal (!=)
1071 * operate on all types. They result in a scalar Boolean. If
1072 * the operand types do not match, then there must be a
1073 * conversion from Section 4.1.10 "Implicit Conversions"
1074 * applied to one operand that can make them match, in which
1075 * case this conversion is done."
1076 */
1077 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1078 && !apply_implicit_conversion(op[1]->type, op[0], state))
1079 || (op[0]->type != op[1]->type)) {
1080 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1081 "type", (this->oper == ast_equal) ? "==" : "!=");
1082 error_emitted = true;
1083 } else if ((state->language_version <= 110)
1084 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1085 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1086 "GLSL 1.10");
1087 error_emitted = true;
1088 }
1089
1090 if (error_emitted) {
1091 result = new(ctx) ir_constant(false);
1092 } else {
1093 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1094 assert(result->type == glsl_type::bool_type);
1095 }
1096 break;
1097
1098 case ast_bit_and:
1099 case ast_bit_xor:
1100 case ast_bit_or:
1101 op[0] = this->subexpressions[0]->hir(instructions, state);
1102 op[1] = this->subexpressions[1]->hir(instructions, state);
1103 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1104 state, &loc);
1105 result = new(ctx) ir_expression(operations[this->oper], type,
1106 op[0], op[1]);
1107 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1108 break;
1109
1110 case ast_bit_not:
1111 op[0] = this->subexpressions[0]->hir(instructions, state);
1112
1113 if (state->language_version < 130) {
1114 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1115 error_emitted = true;
1116 }
1117
1118 if (!op[0]->type->is_integer()) {
1119 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1120 error_emitted = true;
1121 }
1122
1123 type = op[0]->type;
1124 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1125 break;
1126
1127 case ast_logic_and: {
1128 exec_list rhs_instructions;
1129 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1130 "LHS", &error_emitted);
1131 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1132 "RHS", &error_emitted);
1133
1134 ir_constant *op0_const = op[0]->constant_expression_value();
1135 if (op0_const) {
1136 if (op0_const->value.b[0]) {
1137 instructions->append_list(&rhs_instructions);
1138 result = op[1];
1139 } else {
1140 result = op0_const;
1141 }
1142 type = glsl_type::bool_type;
1143 } else {
1144 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1145 "and_tmp",
1146 ir_var_temporary);
1147 instructions->push_tail(tmp);
1148
1149 ir_if *const stmt = new(ctx) ir_if(op[0]);
1150 instructions->push_tail(stmt);
1151
1152 stmt->then_instructions.append_list(&rhs_instructions);
1153 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1154 ir_assignment *const then_assign =
1155 new(ctx) ir_assignment(then_deref, op[1], NULL);
1156 stmt->then_instructions.push_tail(then_assign);
1157
1158 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1159 ir_assignment *const else_assign =
1160 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1161 stmt->else_instructions.push_tail(else_assign);
1162
1163 result = new(ctx) ir_dereference_variable(tmp);
1164 type = tmp->type;
1165 }
1166 break;
1167 }
1168
1169 case ast_logic_or: {
1170 exec_list rhs_instructions;
1171 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1172 "LHS", &error_emitted);
1173 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1174 "RHS", &error_emitted);
1175
1176 ir_constant *op0_const = op[0]->constant_expression_value();
1177 if (op0_const) {
1178 if (op0_const->value.b[0]) {
1179 result = op0_const;
1180 } else {
1181 result = op[1];
1182 }
1183 type = glsl_type::bool_type;
1184 } else {
1185 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1186 "or_tmp",
1187 ir_var_temporary);
1188 instructions->push_tail(tmp);
1189
1190 ir_if *const stmt = new(ctx) ir_if(op[0]);
1191 instructions->push_tail(stmt);
1192
1193 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1194 ir_assignment *const then_assign =
1195 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1196 stmt->then_instructions.push_tail(then_assign);
1197
1198 stmt->else_instructions.append_list(&rhs_instructions);
1199 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1200 ir_assignment *const else_assign =
1201 new(ctx) ir_assignment(else_deref, op[1], NULL);
1202 stmt->else_instructions.push_tail(else_assign);
1203
1204 result = new(ctx) ir_dereference_variable(tmp);
1205 type = tmp->type;
1206 }
1207 break;
1208 }
1209
1210 case ast_logic_xor:
1211 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1212 *
1213 * "The logical binary operators and (&&), or ( | | ), and
1214 * exclusive or (^^). They operate only on two Boolean
1215 * expressions and result in a Boolean expression."
1216 */
1217 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1218 &error_emitted);
1219 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1220 &error_emitted);
1221
1222 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1223 op[0], op[1]);
1224 break;
1225
1226 case ast_logic_not:
1227 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1228 "operand", &error_emitted);
1229
1230 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1231 op[0], NULL);
1232 break;
1233
1234 case ast_mul_assign:
1235 case ast_div_assign:
1236 case ast_add_assign:
1237 case ast_sub_assign: {
1238 op[0] = this->subexpressions[0]->hir(instructions, state);
1239 op[1] = this->subexpressions[1]->hir(instructions, state);
1240
1241 type = arithmetic_result_type(op[0], op[1],
1242 (this->oper == ast_mul_assign),
1243 state, & loc);
1244
1245 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1246 op[0], op[1]);
1247
1248 result = do_assignment(instructions, state,
1249 op[0]->clone(ctx, NULL), temp_rhs, false,
1250 this->subexpressions[0]->get_location());
1251 error_emitted = (op[0]->type->is_error());
1252
1253 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1254 * explicitly test for this because none of the binary expression
1255 * operators allow array operands either.
1256 */
1257
1258 break;
1259 }
1260
1261 case ast_mod_assign: {
1262 op[0] = this->subexpressions[0]->hir(instructions, state);
1263 op[1] = this->subexpressions[1]->hir(instructions, state);
1264
1265 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1266
1267 assert(operations[this->oper] == ir_binop_mod);
1268
1269 ir_rvalue *temp_rhs;
1270 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1271 op[0], op[1]);
1272
1273 result = do_assignment(instructions, state,
1274 op[0]->clone(ctx, NULL), temp_rhs, false,
1275 this->subexpressions[0]->get_location());
1276 error_emitted = type->is_error();
1277 break;
1278 }
1279
1280 case ast_ls_assign:
1281 case ast_rs_assign: {
1282 op[0] = this->subexpressions[0]->hir(instructions, state);
1283 op[1] = this->subexpressions[1]->hir(instructions, state);
1284 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1285 &loc);
1286 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1287 type, op[0], op[1]);
1288 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1289 temp_rhs, false,
1290 this->subexpressions[0]->get_location());
1291 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1292 break;
1293 }
1294
1295 case ast_and_assign:
1296 case ast_xor_assign:
1297 case ast_or_assign: {
1298 op[0] = this->subexpressions[0]->hir(instructions, state);
1299 op[1] = this->subexpressions[1]->hir(instructions, state);
1300 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1301 state, &loc);
1302 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1303 type, op[0], op[1]);
1304 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1305 temp_rhs, false,
1306 this->subexpressions[0]->get_location());
1307 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1308 break;
1309 }
1310
1311 case ast_conditional: {
1312 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1313 *
1314 * "The ternary selection operator (?:). It operates on three
1315 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1316 * first expression, which must result in a scalar Boolean."
1317 */
1318 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1319 "condition", &error_emitted);
1320
1321 /* The :? operator is implemented by generating an anonymous temporary
1322 * followed by an if-statement. The last instruction in each branch of
1323 * the if-statement assigns a value to the anonymous temporary. This
1324 * temporary is the r-value of the expression.
1325 */
1326 exec_list then_instructions;
1327 exec_list else_instructions;
1328
1329 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1330 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1331
1332 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1333 *
1334 * "The second and third expressions can be any type, as
1335 * long their types match, or there is a conversion in
1336 * Section 4.1.10 "Implicit Conversions" that can be applied
1337 * to one of the expressions to make their types match. This
1338 * resulting matching type is the type of the entire
1339 * expression."
1340 */
1341 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1342 && !apply_implicit_conversion(op[2]->type, op[1], state))
1343 || (op[1]->type != op[2]->type)) {
1344 YYLTYPE loc = this->subexpressions[1]->get_location();
1345
1346 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1347 "operator must have matching types.");
1348 error_emitted = true;
1349 type = glsl_type::error_type;
1350 } else {
1351 type = op[1]->type;
1352 }
1353
1354 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1355 *
1356 * "The second and third expressions must be the same type, but can
1357 * be of any type other than an array."
1358 */
1359 if ((state->language_version <= 110) && type->is_array()) {
1360 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1361 "operator must not be arrays.");
1362 error_emitted = true;
1363 }
1364
1365 ir_constant *cond_val = op[0]->constant_expression_value();
1366 ir_constant *then_val = op[1]->constant_expression_value();
1367 ir_constant *else_val = op[2]->constant_expression_value();
1368
1369 if (then_instructions.is_empty()
1370 && else_instructions.is_empty()
1371 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1372 result = (cond_val->value.b[0]) ? then_val : else_val;
1373 } else {
1374 ir_variable *const tmp =
1375 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1376 instructions->push_tail(tmp);
1377
1378 ir_if *const stmt = new(ctx) ir_if(op[0]);
1379 instructions->push_tail(stmt);
1380
1381 then_instructions.move_nodes_to(& stmt->then_instructions);
1382 ir_dereference *const then_deref =
1383 new(ctx) ir_dereference_variable(tmp);
1384 ir_assignment *const then_assign =
1385 new(ctx) ir_assignment(then_deref, op[1], NULL);
1386 stmt->then_instructions.push_tail(then_assign);
1387
1388 else_instructions.move_nodes_to(& stmt->else_instructions);
1389 ir_dereference *const else_deref =
1390 new(ctx) ir_dereference_variable(tmp);
1391 ir_assignment *const else_assign =
1392 new(ctx) ir_assignment(else_deref, op[2], NULL);
1393 stmt->else_instructions.push_tail(else_assign);
1394
1395 result = new(ctx) ir_dereference_variable(tmp);
1396 }
1397 break;
1398 }
1399
1400 case ast_pre_inc:
1401 case ast_pre_dec: {
1402 op[0] = this->subexpressions[0]->hir(instructions, state);
1403 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1404 op[1] = new(ctx) ir_constant(1.0f);
1405 else
1406 op[1] = new(ctx) ir_constant(1);
1407
1408 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1409
1410 ir_rvalue *temp_rhs;
1411 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1412 op[0], op[1]);
1413
1414 result = do_assignment(instructions, state,
1415 op[0]->clone(ctx, NULL), temp_rhs, false,
1416 this->subexpressions[0]->get_location());
1417 error_emitted = op[0]->type->is_error();
1418 break;
1419 }
1420
1421 case ast_post_inc:
1422 case ast_post_dec: {
1423 op[0] = this->subexpressions[0]->hir(instructions, state);
1424 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1425 op[1] = new(ctx) ir_constant(1.0f);
1426 else
1427 op[1] = new(ctx) ir_constant(1);
1428
1429 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1430
1431 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1432
1433 ir_rvalue *temp_rhs;
1434 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1435 op[0], op[1]);
1436
1437 /* Get a temporary of a copy of the lvalue before it's modified.
1438 * This may get thrown away later.
1439 */
1440 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1441
1442 (void)do_assignment(instructions, state,
1443 op[0]->clone(ctx, NULL), temp_rhs, false,
1444 this->subexpressions[0]->get_location());
1445
1446 error_emitted = op[0]->type->is_error();
1447 break;
1448 }
1449
1450 case ast_field_selection:
1451 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1452 break;
1453
1454 case ast_array_index: {
1455 YYLTYPE index_loc = subexpressions[1]->get_location();
1456
1457 op[0] = subexpressions[0]->hir(instructions, state);
1458 op[1] = subexpressions[1]->hir(instructions, state);
1459
1460 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1461
1462 ir_rvalue *const array = op[0];
1463
1464 result = new(ctx) ir_dereference_array(op[0], op[1]);
1465
1466 /* Do not use op[0] after this point. Use array.
1467 */
1468 op[0] = NULL;
1469
1470
1471 if (error_emitted)
1472 break;
1473
1474 if (!array->type->is_array()
1475 && !array->type->is_matrix()
1476 && !array->type->is_vector()) {
1477 _mesa_glsl_error(& index_loc, state,
1478 "cannot dereference non-array / non-matrix / "
1479 "non-vector");
1480 error_emitted = true;
1481 }
1482
1483 if (!op[1]->type->is_integer()) {
1484 _mesa_glsl_error(& index_loc, state,
1485 "array index must be integer type");
1486 error_emitted = true;
1487 } else if (!op[1]->type->is_scalar()) {
1488 _mesa_glsl_error(& index_loc, state,
1489 "array index must be scalar");
1490 error_emitted = true;
1491 }
1492
1493 /* If the array index is a constant expression and the array has a
1494 * declared size, ensure that the access is in-bounds. If the array
1495 * index is not a constant expression, ensure that the array has a
1496 * declared size.
1497 */
1498 ir_constant *const const_index = op[1]->constant_expression_value();
1499 if (const_index != NULL) {
1500 const int idx = const_index->value.i[0];
1501 const char *type_name;
1502 unsigned bound = 0;
1503
1504 if (array->type->is_matrix()) {
1505 type_name = "matrix";
1506 } else if (array->type->is_vector()) {
1507 type_name = "vector";
1508 } else {
1509 type_name = "array";
1510 }
1511
1512 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1513 *
1514 * "It is illegal to declare an array with a size, and then
1515 * later (in the same shader) index the same array with an
1516 * integral constant expression greater than or equal to the
1517 * declared size. It is also illegal to index an array with a
1518 * negative constant expression."
1519 */
1520 if (array->type->is_matrix()) {
1521 if (array->type->row_type()->vector_elements <= idx) {
1522 bound = array->type->row_type()->vector_elements;
1523 }
1524 } else if (array->type->is_vector()) {
1525 if (array->type->vector_elements <= idx) {
1526 bound = array->type->vector_elements;
1527 }
1528 } else {
1529 if ((array->type->array_size() > 0)
1530 && (array->type->array_size() <= idx)) {
1531 bound = array->type->array_size();
1532 }
1533 }
1534
1535 if (bound > 0) {
1536 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1537 type_name, bound);
1538 error_emitted = true;
1539 } else if (idx < 0) {
1540 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1541 type_name);
1542 error_emitted = true;
1543 }
1544
1545 if (array->type->is_array()) {
1546 /* If the array is a variable dereference, it dereferences the
1547 * whole array, by definition. Use this to get the variable.
1548 *
1549 * FINISHME: Should some methods for getting / setting / testing
1550 * FINISHME: array access limits be added to ir_dereference?
1551 */
1552 ir_variable *const v = array->whole_variable_referenced();
1553 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1554 v->max_array_access = idx;
1555 }
1556 } else if (array->type->array_size() == 0) {
1557 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1558 } else {
1559 if (array->type->is_array()) {
1560 /* whole_variable_referenced can return NULL if the array is a
1561 * member of a structure. In this case it is safe to not update
1562 * the max_array_access field because it is never used for fields
1563 * of structures.
1564 */
1565 ir_variable *v = array->whole_variable_referenced();
1566 if (v != NULL)
1567 v->max_array_access = array->type->array_size() - 1;
1568 }
1569 }
1570
1571 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1572 *
1573 * "Samplers aggregated into arrays within a shader (using square
1574 * brackets [ ]) can only be indexed with integral constant
1575 * expressions [...]."
1576 *
1577 * This restriction was added in GLSL 1.30. Shaders using earlier version
1578 * of the language should not be rejected by the compiler front-end for
1579 * using this construct. This allows useful things such as using a loop
1580 * counter as the index to an array of samplers. If the loop in unrolled,
1581 * the code should compile correctly. Instead, emit a warning.
1582 */
1583 if (array->type->is_array() &&
1584 array->type->element_type()->is_sampler() &&
1585 const_index == NULL) {
1586
1587 if (state->language_version == 100) {
1588 _mesa_glsl_warning(&loc, state,
1589 "sampler arrays indexed with non-constant "
1590 "expressions is optional in GLSL ES 1.00");
1591 } else if (state->language_version < 130) {
1592 _mesa_glsl_warning(&loc, state,
1593 "sampler arrays indexed with non-constant "
1594 "expressions is forbidden in GLSL 1.30 and "
1595 "later");
1596 } else {
1597 _mesa_glsl_error(&loc, state,
1598 "sampler arrays indexed with non-constant "
1599 "expressions is forbidden in GLSL 1.30 and "
1600 "later");
1601 error_emitted = true;
1602 }
1603 }
1604
1605 if (error_emitted)
1606 result->type = glsl_type::error_type;
1607
1608 break;
1609 }
1610
1611 case ast_function_call:
1612 /* Should *NEVER* get here. ast_function_call should always be handled
1613 * by ast_function_expression::hir.
1614 */
1615 assert(0);
1616 break;
1617
1618 case ast_identifier: {
1619 /* ast_identifier can appear several places in a full abstract syntax
1620 * tree. This particular use must be at location specified in the grammar
1621 * as 'variable_identifier'.
1622 */
1623 ir_variable *var =
1624 state->symbols->get_variable(this->primary_expression.identifier);
1625
1626 result = new(ctx) ir_dereference_variable(var);
1627
1628 if (var != NULL) {
1629 var->used = true;
1630 } else {
1631 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1632 this->primary_expression.identifier);
1633
1634 error_emitted = true;
1635 }
1636 break;
1637 }
1638
1639 case ast_int_constant:
1640 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1641 break;
1642
1643 case ast_uint_constant:
1644 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1645 break;
1646
1647 case ast_float_constant:
1648 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1649 break;
1650
1651 case ast_bool_constant:
1652 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1653 break;
1654
1655 case ast_sequence: {
1656 /* It should not be possible to generate a sequence in the AST without
1657 * any expressions in it.
1658 */
1659 assert(!this->expressions.is_empty());
1660
1661 /* The r-value of a sequence is the last expression in the sequence. If
1662 * the other expressions in the sequence do not have side-effects (and
1663 * therefore add instructions to the instruction list), they get dropped
1664 * on the floor.
1665 */
1666 exec_node *previous_tail_pred = NULL;
1667 YYLTYPE previous_operand_loc = loc;
1668
1669 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1670 /* If one of the operands of comma operator does not generate any
1671 * code, we want to emit a warning. At each pass through the loop
1672 * previous_tail_pred will point to the last instruction in the
1673 * stream *before* processing the previous operand. Naturally,
1674 * instructions->tail_pred will point to the last instruction in the
1675 * stream *after* processing the previous operand. If the two
1676 * pointers match, then the previous operand had no effect.
1677 *
1678 * The warning behavior here differs slightly from GCC. GCC will
1679 * only emit a warning if none of the left-hand operands have an
1680 * effect. However, it will emit a warning for each. I believe that
1681 * there are some cases in C (especially with GCC extensions) where
1682 * it is useful to have an intermediate step in a sequence have no
1683 * effect, but I don't think these cases exist in GLSL. Either way,
1684 * it would be a giant hassle to replicate that behavior.
1685 */
1686 if (previous_tail_pred == instructions->tail_pred) {
1687 _mesa_glsl_warning(&previous_operand_loc, state,
1688 "left-hand operand of comma expression has "
1689 "no effect");
1690 }
1691
1692 /* tail_pred is directly accessed instead of using the get_tail()
1693 * method for performance reasons. get_tail() has extra code to
1694 * return NULL when the list is empty. We don't care about that
1695 * here, so using tail_pred directly is fine.
1696 */
1697 previous_tail_pred = instructions->tail_pred;
1698 previous_operand_loc = ast->get_location();
1699
1700 result = ast->hir(instructions, state);
1701 }
1702
1703 /* Any errors should have already been emitted in the loop above.
1704 */
1705 error_emitted = true;
1706 break;
1707 }
1708 }
1709 type = NULL; /* use result->type, not type. */
1710 assert(result != NULL);
1711
1712 if (result->type->is_error() && !error_emitted)
1713 _mesa_glsl_error(& loc, state, "type mismatch");
1714
1715 return result;
1716 }
1717
1718
1719 ir_rvalue *
1720 ast_expression_statement::hir(exec_list *instructions,
1721 struct _mesa_glsl_parse_state *state)
1722 {
1723 /* It is possible to have expression statements that don't have an
1724 * expression. This is the solitary semicolon:
1725 *
1726 * for (i = 0; i < 5; i++)
1727 * ;
1728 *
1729 * In this case the expression will be NULL. Test for NULL and don't do
1730 * anything in that case.
1731 */
1732 if (expression != NULL)
1733 expression->hir(instructions, state);
1734
1735 /* Statements do not have r-values.
1736 */
1737 return NULL;
1738 }
1739
1740
1741 ir_rvalue *
1742 ast_compound_statement::hir(exec_list *instructions,
1743 struct _mesa_glsl_parse_state *state)
1744 {
1745 if (new_scope)
1746 state->symbols->push_scope();
1747
1748 foreach_list_typed (ast_node, ast, link, &this->statements)
1749 ast->hir(instructions, state);
1750
1751 if (new_scope)
1752 state->symbols->pop_scope();
1753
1754 /* Compound statements do not have r-values.
1755 */
1756 return NULL;
1757 }
1758
1759
1760 static const glsl_type *
1761 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1762 struct _mesa_glsl_parse_state *state)
1763 {
1764 unsigned length = 0;
1765
1766 /* FINISHME: Reject delcarations of multidimensional arrays. */
1767
1768 if (array_size != NULL) {
1769 exec_list dummy_instructions;
1770 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1771 YYLTYPE loc = array_size->get_location();
1772
1773 if (ir != NULL) {
1774 if (!ir->type->is_integer()) {
1775 _mesa_glsl_error(& loc, state, "array size must be integer type");
1776 } else if (!ir->type->is_scalar()) {
1777 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1778 } else {
1779 ir_constant *const size = ir->constant_expression_value();
1780
1781 if (size == NULL) {
1782 _mesa_glsl_error(& loc, state, "array size must be a "
1783 "constant valued expression");
1784 } else if (size->value.i[0] <= 0) {
1785 _mesa_glsl_error(& loc, state, "array size must be > 0");
1786 } else {
1787 assert(size->type == ir->type);
1788 length = size->value.u[0];
1789
1790 /* If the array size is const (and we've verified that
1791 * it is) then no instructions should have been emitted
1792 * when we converted it to HIR. If they were emitted,
1793 * then either the array size isn't const after all, or
1794 * we are emitting unnecessary instructions.
1795 */
1796 assert(dummy_instructions.is_empty());
1797 }
1798 }
1799 }
1800 } else if (state->es_shader) {
1801 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1802 * array declarations have been removed from the language.
1803 */
1804 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1805 "allowed in GLSL ES 1.00.");
1806 }
1807
1808 return glsl_type::get_array_instance(base, length);
1809 }
1810
1811
1812 const glsl_type *
1813 ast_type_specifier::glsl_type(const char **name,
1814 struct _mesa_glsl_parse_state *state) const
1815 {
1816 const struct glsl_type *type;
1817
1818 type = state->symbols->get_type(this->type_name);
1819 *name = this->type_name;
1820
1821 if (this->is_array) {
1822 YYLTYPE loc = this->get_location();
1823 type = process_array_type(&loc, type, this->array_size, state);
1824 }
1825
1826 return type;
1827 }
1828
1829
1830 static void
1831 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1832 ir_variable *var,
1833 struct _mesa_glsl_parse_state *state,
1834 YYLTYPE *loc)
1835 {
1836 if (qual->flags.q.invariant) {
1837 if (var->used) {
1838 _mesa_glsl_error(loc, state,
1839 "variable `%s' may not be redeclared "
1840 "`invariant' after being used",
1841 var->name);
1842 } else {
1843 var->invariant = 1;
1844 }
1845 }
1846
1847 if (qual->flags.q.constant || qual->flags.q.attribute
1848 || qual->flags.q.uniform
1849 || (qual->flags.q.varying && (state->target == fragment_shader)))
1850 var->read_only = 1;
1851
1852 if (qual->flags.q.centroid)
1853 var->centroid = 1;
1854
1855 if (qual->flags.q.attribute && state->target != vertex_shader) {
1856 var->type = glsl_type::error_type;
1857 _mesa_glsl_error(loc, state,
1858 "`attribute' variables may not be declared in the "
1859 "%s shader",
1860 _mesa_glsl_shader_target_name(state->target));
1861 }
1862
1863 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1864 *
1865 * "The varying qualifier can be used only with the data types
1866 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1867 * these."
1868 */
1869 if (qual->flags.q.varying) {
1870 const glsl_type *non_array_type;
1871
1872 if (var->type && var->type->is_array())
1873 non_array_type = var->type->fields.array;
1874 else
1875 non_array_type = var->type;
1876
1877 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1878 var->type = glsl_type::error_type;
1879 _mesa_glsl_error(loc, state,
1880 "varying variables must be of base type float");
1881 }
1882 }
1883
1884 /* If there is no qualifier that changes the mode of the variable, leave
1885 * the setting alone.
1886 */
1887 if (qual->flags.q.in && qual->flags.q.out)
1888 var->mode = ir_var_inout;
1889 else if (qual->flags.q.attribute || qual->flags.q.in
1890 || (qual->flags.q.varying && (state->target == fragment_shader)))
1891 var->mode = ir_var_in;
1892 else if (qual->flags.q.out
1893 || (qual->flags.q.varying && (state->target == vertex_shader)))
1894 var->mode = ir_var_out;
1895 else if (qual->flags.q.uniform)
1896 var->mode = ir_var_uniform;
1897
1898 if (state->all_invariant && (state->current_function == NULL)) {
1899 switch (state->target) {
1900 case vertex_shader:
1901 if (var->mode == ir_var_out)
1902 var->invariant = true;
1903 break;
1904 case geometry_shader:
1905 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1906 var->invariant = true;
1907 break;
1908 case fragment_shader:
1909 if (var->mode == ir_var_in)
1910 var->invariant = true;
1911 break;
1912 }
1913 }
1914
1915 if (qual->flags.q.flat)
1916 var->interpolation = ir_var_flat;
1917 else if (qual->flags.q.noperspective)
1918 var->interpolation = ir_var_noperspective;
1919 else
1920 var->interpolation = ir_var_smooth;
1921
1922 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1923 var->origin_upper_left = qual->flags.q.origin_upper_left;
1924 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1925 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1926 const char *const qual_string = (qual->flags.q.origin_upper_left)
1927 ? "origin_upper_left" : "pixel_center_integer";
1928
1929 _mesa_glsl_error(loc, state,
1930 "layout qualifier `%s' can only be applied to "
1931 "fragment shader input `gl_FragCoord'",
1932 qual_string);
1933 }
1934
1935 if (qual->flags.q.explicit_location) {
1936 const bool global_scope = (state->current_function == NULL);
1937 bool fail = false;
1938 const char *string = "";
1939
1940 /* In the vertex shader only shader inputs can be given explicit
1941 * locations.
1942 *
1943 * In the fragment shader only shader outputs can be given explicit
1944 * locations.
1945 */
1946 switch (state->target) {
1947 case vertex_shader:
1948 if (!global_scope || (var->mode != ir_var_in)) {
1949 fail = true;
1950 string = "input";
1951 }
1952 break;
1953
1954 case geometry_shader:
1955 _mesa_glsl_error(loc, state,
1956 "geometry shader variables cannot be given "
1957 "explicit locations\n");
1958 break;
1959
1960 case fragment_shader:
1961 if (!global_scope || (var->mode != ir_var_out)) {
1962 fail = true;
1963 string = "output";
1964 }
1965 break;
1966 };
1967
1968 if (fail) {
1969 _mesa_glsl_error(loc, state,
1970 "only %s shader %s variables can be given an "
1971 "explicit location\n",
1972 _mesa_glsl_shader_target_name(state->target),
1973 string);
1974 } else {
1975 var->explicit_location = true;
1976
1977 /* This bit of silliness is needed because invalid explicit locations
1978 * are supposed to be flagged during linking. Small negative values
1979 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1980 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1981 * The linker needs to be able to differentiate these cases. This
1982 * ensures that negative values stay negative.
1983 */
1984 if (qual->location >= 0) {
1985 var->location = (state->target == vertex_shader)
1986 ? (qual->location + VERT_ATTRIB_GENERIC0)
1987 : (qual->location + FRAG_RESULT_DATA0);
1988 } else {
1989 var->location = qual->location;
1990 }
1991 }
1992 }
1993
1994 /* Does the declaration use the 'layout' keyword?
1995 */
1996 const bool uses_layout = qual->flags.q.pixel_center_integer
1997 || qual->flags.q.origin_upper_left
1998 || qual->flags.q.explicit_location;
1999
2000 /* Does the declaration use the deprecated 'attribute' or 'varying'
2001 * keywords?
2002 */
2003 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2004 || qual->flags.q.varying;
2005
2006 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2007 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2008 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2009 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2010 * These extensions and all following extensions that add the 'layout'
2011 * keyword have been modified to require the use of 'in' or 'out'.
2012 *
2013 * The following extension do not allow the deprecated keywords:
2014 *
2015 * GL_AMD_conservative_depth
2016 * GL_ARB_gpu_shader5
2017 * GL_ARB_separate_shader_objects
2018 * GL_ARB_tesselation_shader
2019 * GL_ARB_transform_feedback3
2020 * GL_ARB_uniform_buffer_object
2021 *
2022 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2023 * allow layout with the deprecated keywords.
2024 */
2025 const bool relaxed_layout_qualifier_checking =
2026 state->ARB_fragment_coord_conventions_enable;
2027
2028 if (uses_layout && uses_deprecated_qualifier) {
2029 if (relaxed_layout_qualifier_checking) {
2030 _mesa_glsl_warning(loc, state,
2031 "`layout' qualifier may not be used with "
2032 "`attribute' or `varying'");
2033 } else {
2034 _mesa_glsl_error(loc, state,
2035 "`layout' qualifier may not be used with "
2036 "`attribute' or `varying'");
2037 }
2038 }
2039
2040 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2041 * AMD_conservative_depth.
2042 */
2043 int depth_layout_count = qual->flags.q.depth_any
2044 + qual->flags.q.depth_greater
2045 + qual->flags.q.depth_less
2046 + qual->flags.q.depth_unchanged;
2047 if (depth_layout_count > 0
2048 && !state->AMD_conservative_depth_enable) {
2049 _mesa_glsl_error(loc, state,
2050 "extension GL_AMD_conservative_depth must be enabled "
2051 "to use depth layout qualifiers");
2052 } else if (depth_layout_count > 0
2053 && strcmp(var->name, "gl_FragDepth") != 0) {
2054 _mesa_glsl_error(loc, state,
2055 "depth layout qualifiers can be applied only to "
2056 "gl_FragDepth");
2057 } else if (depth_layout_count > 1
2058 && strcmp(var->name, "gl_FragDepth") == 0) {
2059 _mesa_glsl_error(loc, state,
2060 "at most one depth layout qualifier can be applied to "
2061 "gl_FragDepth");
2062 }
2063 if (qual->flags.q.depth_any)
2064 var->depth_layout = ir_depth_layout_any;
2065 else if (qual->flags.q.depth_greater)
2066 var->depth_layout = ir_depth_layout_greater;
2067 else if (qual->flags.q.depth_less)
2068 var->depth_layout = ir_depth_layout_less;
2069 else if (qual->flags.q.depth_unchanged)
2070 var->depth_layout = ir_depth_layout_unchanged;
2071 else
2072 var->depth_layout = ir_depth_layout_none;
2073
2074 if (var->type->is_array() && state->language_version != 110) {
2075 var->array_lvalue = true;
2076 }
2077 }
2078
2079 /**
2080 * Get the variable that is being redeclared by this declaration
2081 *
2082 * Semantic checks to verify the validity of the redeclaration are also
2083 * performed. If semantic checks fail, compilation error will be emitted via
2084 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2085 *
2086 * \returns
2087 * A pointer to an existing variable in the current scope if the declaration
2088 * is a redeclaration, \c NULL otherwise.
2089 */
2090 ir_variable *
2091 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2092 struct _mesa_glsl_parse_state *state)
2093 {
2094 /* Check if this declaration is actually a re-declaration, either to
2095 * resize an array or add qualifiers to an existing variable.
2096 *
2097 * This is allowed for variables in the current scope, or when at
2098 * global scope (for built-ins in the implicit outer scope).
2099 */
2100 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2101 if (earlier == NULL ||
2102 (state->current_function != NULL &&
2103 !state->symbols->name_declared_this_scope(decl->identifier))) {
2104 return NULL;
2105 }
2106
2107
2108 YYLTYPE loc = decl->get_location();
2109
2110 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2111 *
2112 * "It is legal to declare an array without a size and then
2113 * later re-declare the same name as an array of the same
2114 * type and specify a size."
2115 */
2116 if ((earlier->type->array_size() == 0)
2117 && var->type->is_array()
2118 && (var->type->element_type() == earlier->type->element_type())) {
2119 /* FINISHME: This doesn't match the qualifiers on the two
2120 * FINISHME: declarations. It's not 100% clear whether this is
2121 * FINISHME: required or not.
2122 */
2123
2124 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2125 *
2126 * "The size [of gl_TexCoord] can be at most
2127 * gl_MaxTextureCoords."
2128 */
2129 const unsigned size = unsigned(var->type->array_size());
2130 if ((strcmp("gl_TexCoord", var->name) == 0)
2131 && (size > state->Const.MaxTextureCoords)) {
2132 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2133 "be larger than gl_MaxTextureCoords (%u)\n",
2134 state->Const.MaxTextureCoords);
2135 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2136 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2137 "previous access",
2138 earlier->max_array_access);
2139 }
2140
2141 earlier->type = var->type;
2142 delete var;
2143 var = NULL;
2144 } else if (state->ARB_fragment_coord_conventions_enable
2145 && strcmp(var->name, "gl_FragCoord") == 0
2146 && earlier->type == var->type
2147 && earlier->mode == var->mode) {
2148 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2149 * qualifiers.
2150 */
2151 earlier->origin_upper_left = var->origin_upper_left;
2152 earlier->pixel_center_integer = var->pixel_center_integer;
2153
2154 /* According to section 4.3.7 of the GLSL 1.30 spec,
2155 * the following built-in varaibles can be redeclared with an
2156 * interpolation qualifier:
2157 * * gl_FrontColor
2158 * * gl_BackColor
2159 * * gl_FrontSecondaryColor
2160 * * gl_BackSecondaryColor
2161 * * gl_Color
2162 * * gl_SecondaryColor
2163 */
2164 } else if (state->language_version >= 130
2165 && (strcmp(var->name, "gl_FrontColor") == 0
2166 || strcmp(var->name, "gl_BackColor") == 0
2167 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2168 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2169 || strcmp(var->name, "gl_Color") == 0
2170 || strcmp(var->name, "gl_SecondaryColor") == 0)
2171 && earlier->type == var->type
2172 && earlier->mode == var->mode) {
2173 earlier->interpolation = var->interpolation;
2174
2175 /* Layout qualifiers for gl_FragDepth. */
2176 } else if (state->AMD_conservative_depth_enable
2177 && strcmp(var->name, "gl_FragDepth") == 0
2178 && earlier->type == var->type
2179 && earlier->mode == var->mode) {
2180
2181 /** From the AMD_conservative_depth spec:
2182 * Within any shader, the first redeclarations of gl_FragDepth
2183 * must appear before any use of gl_FragDepth.
2184 */
2185 if (earlier->used) {
2186 _mesa_glsl_error(&loc, state,
2187 "the first redeclaration of gl_FragDepth "
2188 "must appear before any use of gl_FragDepth");
2189 }
2190
2191 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2192 if (earlier->depth_layout != ir_depth_layout_none
2193 && earlier->depth_layout != var->depth_layout) {
2194 _mesa_glsl_error(&loc, state,
2195 "gl_FragDepth: depth layout is declared here "
2196 "as '%s, but it was previously declared as "
2197 "'%s'",
2198 depth_layout_string(var->depth_layout),
2199 depth_layout_string(earlier->depth_layout));
2200 }
2201
2202 earlier->depth_layout = var->depth_layout;
2203
2204 } else {
2205 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2206 }
2207
2208 return earlier;
2209 }
2210
2211 /**
2212 * Generate the IR for an initializer in a variable declaration
2213 */
2214 ir_rvalue *
2215 process_initializer(ir_variable *var, ast_declaration *decl,
2216 ast_fully_specified_type *type,
2217 exec_list *initializer_instructions,
2218 struct _mesa_glsl_parse_state *state)
2219 {
2220 ir_rvalue *result = NULL;
2221
2222 YYLTYPE initializer_loc = decl->initializer->get_location();
2223
2224 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2225 *
2226 * "All uniform variables are read-only and are initialized either
2227 * directly by an application via API commands, or indirectly by
2228 * OpenGL."
2229 */
2230 if ((state->language_version <= 110)
2231 && (var->mode == ir_var_uniform)) {
2232 _mesa_glsl_error(& initializer_loc, state,
2233 "cannot initialize uniforms in GLSL 1.10");
2234 }
2235
2236 if (var->type->is_sampler()) {
2237 _mesa_glsl_error(& initializer_loc, state,
2238 "cannot initialize samplers");
2239 }
2240
2241 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2242 _mesa_glsl_error(& initializer_loc, state,
2243 "cannot initialize %s shader input / %s",
2244 _mesa_glsl_shader_target_name(state->target),
2245 (state->target == vertex_shader)
2246 ? "attribute" : "varying");
2247 }
2248
2249 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2250 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2251 state);
2252
2253 /* Calculate the constant value if this is a const or uniform
2254 * declaration.
2255 */
2256 if (type->qualifier.flags.q.constant
2257 || type->qualifier.flags.q.uniform) {
2258 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2259 if (new_rhs != NULL) {
2260 rhs = new_rhs;
2261
2262 ir_constant *constant_value = rhs->constant_expression_value();
2263 if (!constant_value) {
2264 _mesa_glsl_error(& initializer_loc, state,
2265 "initializer of %s variable `%s' must be a "
2266 "constant expression",
2267 (type->qualifier.flags.q.constant)
2268 ? "const" : "uniform",
2269 decl->identifier);
2270 if (var->type->is_numeric()) {
2271 /* Reduce cascading errors. */
2272 var->constant_value = ir_constant::zero(state, var->type);
2273 }
2274 } else {
2275 rhs = constant_value;
2276 var->constant_value = constant_value;
2277 }
2278 } else {
2279 _mesa_glsl_error(&initializer_loc, state,
2280 "initializer of type %s cannot be assigned to "
2281 "variable of type %s",
2282 rhs->type->name, var->type->name);
2283 if (var->type->is_numeric()) {
2284 /* Reduce cascading errors. */
2285 var->constant_value = ir_constant::zero(state, var->type);
2286 }
2287 }
2288 }
2289
2290 if (rhs && !rhs->type->is_error()) {
2291 bool temp = var->read_only;
2292 if (type->qualifier.flags.q.constant)
2293 var->read_only = false;
2294
2295 /* Never emit code to initialize a uniform.
2296 */
2297 const glsl_type *initializer_type;
2298 if (!type->qualifier.flags.q.uniform) {
2299 result = do_assignment(initializer_instructions, state,
2300 lhs, rhs, true,
2301 type->get_location());
2302 initializer_type = result->type;
2303 } else
2304 initializer_type = rhs->type;
2305
2306 /* If the declared variable is an unsized array, it must inherrit
2307 * its full type from the initializer. A declaration such as
2308 *
2309 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2310 *
2311 * becomes
2312 *
2313 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2314 *
2315 * The assignment generated in the if-statement (below) will also
2316 * automatically handle this case for non-uniforms.
2317 *
2318 * If the declared variable is not an array, the types must
2319 * already match exactly. As a result, the type assignment
2320 * here can be done unconditionally. For non-uniforms the call
2321 * to do_assignment can change the type of the initializer (via
2322 * the implicit conversion rules). For uniforms the initializer
2323 * must be a constant expression, and the type of that expression
2324 * was validated above.
2325 */
2326 var->type = initializer_type;
2327
2328 var->read_only = temp;
2329 }
2330
2331 return result;
2332 }
2333
2334 ir_rvalue *
2335 ast_declarator_list::hir(exec_list *instructions,
2336 struct _mesa_glsl_parse_state *state)
2337 {
2338 void *ctx = state;
2339 const struct glsl_type *decl_type;
2340 const char *type_name = NULL;
2341 ir_rvalue *result = NULL;
2342 YYLTYPE loc = this->get_location();
2343
2344 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2345 *
2346 * "To ensure that a particular output variable is invariant, it is
2347 * necessary to use the invariant qualifier. It can either be used to
2348 * qualify a previously declared variable as being invariant
2349 *
2350 * invariant gl_Position; // make existing gl_Position be invariant"
2351 *
2352 * In these cases the parser will set the 'invariant' flag in the declarator
2353 * list, and the type will be NULL.
2354 */
2355 if (this->invariant) {
2356 assert(this->type == NULL);
2357
2358 if (state->current_function != NULL) {
2359 _mesa_glsl_error(& loc, state,
2360 "All uses of `invariant' keyword must be at global "
2361 "scope\n");
2362 }
2363
2364 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2365 assert(!decl->is_array);
2366 assert(decl->array_size == NULL);
2367 assert(decl->initializer == NULL);
2368
2369 ir_variable *const earlier =
2370 state->symbols->get_variable(decl->identifier);
2371 if (earlier == NULL) {
2372 _mesa_glsl_error(& loc, state,
2373 "Undeclared variable `%s' cannot be marked "
2374 "invariant\n", decl->identifier);
2375 } else if ((state->target == vertex_shader)
2376 && (earlier->mode != ir_var_out)) {
2377 _mesa_glsl_error(& loc, state,
2378 "`%s' cannot be marked invariant, vertex shader "
2379 "outputs only\n", decl->identifier);
2380 } else if ((state->target == fragment_shader)
2381 && (earlier->mode != ir_var_in)) {
2382 _mesa_glsl_error(& loc, state,
2383 "`%s' cannot be marked invariant, fragment shader "
2384 "inputs only\n", decl->identifier);
2385 } else if (earlier->used) {
2386 _mesa_glsl_error(& loc, state,
2387 "variable `%s' may not be redeclared "
2388 "`invariant' after being used",
2389 earlier->name);
2390 } else {
2391 earlier->invariant = true;
2392 }
2393 }
2394
2395 /* Invariant redeclarations do not have r-values.
2396 */
2397 return NULL;
2398 }
2399
2400 assert(this->type != NULL);
2401 assert(!this->invariant);
2402
2403 /* The type specifier may contain a structure definition. Process that
2404 * before any of the variable declarations.
2405 */
2406 (void) this->type->specifier->hir(instructions, state);
2407
2408 decl_type = this->type->specifier->glsl_type(& type_name, state);
2409 if (this->declarations.is_empty()) {
2410 if (decl_type != NULL) {
2411 /* Warn if this empty declaration is not for declaring a structure.
2412 */
2413 if (this->type->specifier->structure == NULL) {
2414 _mesa_glsl_warning(&loc, state, "empty declaration");
2415 }
2416 } else {
2417 _mesa_glsl_error(& loc, state, "incomplete declaration");
2418 }
2419 }
2420
2421 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2422 const struct glsl_type *var_type;
2423 ir_variable *var;
2424
2425 /* FINISHME: Emit a warning if a variable declaration shadows a
2426 * FINISHME: declaration at a higher scope.
2427 */
2428
2429 if ((decl_type == NULL) || decl_type->is_void()) {
2430 if (type_name != NULL) {
2431 _mesa_glsl_error(& loc, state,
2432 "invalid type `%s' in declaration of `%s'",
2433 type_name, decl->identifier);
2434 } else {
2435 _mesa_glsl_error(& loc, state,
2436 "invalid type in declaration of `%s'",
2437 decl->identifier);
2438 }
2439 continue;
2440 }
2441
2442 if (decl->is_array) {
2443 var_type = process_array_type(&loc, decl_type, decl->array_size,
2444 state);
2445 } else {
2446 var_type = decl_type;
2447 }
2448
2449 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2450
2451 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2452 *
2453 * "Global variables can only use the qualifiers const,
2454 * attribute, uni form, or varying. Only one may be
2455 * specified.
2456 *
2457 * Local variables can only use the qualifier const."
2458 *
2459 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2460 * that adds the 'layout' keyword.
2461 */
2462 if ((state->language_version < 130)
2463 && !state->ARB_explicit_attrib_location_enable
2464 && !state->ARB_fragment_coord_conventions_enable) {
2465 if (this->type->qualifier.flags.q.out) {
2466 _mesa_glsl_error(& loc, state,
2467 "`out' qualifier in declaration of `%s' "
2468 "only valid for function parameters in %s.",
2469 decl->identifier, state->version_string);
2470 }
2471 if (this->type->qualifier.flags.q.in) {
2472 _mesa_glsl_error(& loc, state,
2473 "`in' qualifier in declaration of `%s' "
2474 "only valid for function parameters in %s.",
2475 decl->identifier, state->version_string);
2476 }
2477 /* FINISHME: Test for other invalid qualifiers. */
2478 }
2479
2480 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2481 & loc);
2482
2483 if (this->type->qualifier.flags.q.invariant) {
2484 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2485 var->mode == ir_var_inout)) {
2486 /* FINISHME: Note that this doesn't work for invariant on
2487 * a function signature outval
2488 */
2489 _mesa_glsl_error(& loc, state,
2490 "`%s' cannot be marked invariant, vertex shader "
2491 "outputs only\n", var->name);
2492 } else if ((state->target == fragment_shader) &&
2493 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2494 /* FINISHME: Note that this doesn't work for invariant on
2495 * a function signature inval
2496 */
2497 _mesa_glsl_error(& loc, state,
2498 "`%s' cannot be marked invariant, fragment shader "
2499 "inputs only\n", var->name);
2500 }
2501 }
2502
2503 if (state->current_function != NULL) {
2504 const char *mode = NULL;
2505 const char *extra = "";
2506
2507 /* There is no need to check for 'inout' here because the parser will
2508 * only allow that in function parameter lists.
2509 */
2510 if (this->type->qualifier.flags.q.attribute) {
2511 mode = "attribute";
2512 } else if (this->type->qualifier.flags.q.uniform) {
2513 mode = "uniform";
2514 } else if (this->type->qualifier.flags.q.varying) {
2515 mode = "varying";
2516 } else if (this->type->qualifier.flags.q.in) {
2517 mode = "in";
2518 extra = " or in function parameter list";
2519 } else if (this->type->qualifier.flags.q.out) {
2520 mode = "out";
2521 extra = " or in function parameter list";
2522 }
2523
2524 if (mode) {
2525 _mesa_glsl_error(& loc, state,
2526 "%s variable `%s' must be declared at "
2527 "global scope%s",
2528 mode, var->name, extra);
2529 }
2530 } else if (var->mode == ir_var_in) {
2531 var->read_only = true;
2532
2533 if (state->target == vertex_shader) {
2534 bool error_emitted = false;
2535
2536 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2537 *
2538 * "Vertex shader inputs can only be float, floating-point
2539 * vectors, matrices, signed and unsigned integers and integer
2540 * vectors. Vertex shader inputs can also form arrays of these
2541 * types, but not structures."
2542 *
2543 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2544 *
2545 * "Vertex shader inputs can only be float, floating-point
2546 * vectors, matrices, signed and unsigned integers and integer
2547 * vectors. They cannot be arrays or structures."
2548 *
2549 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2550 *
2551 * "The attribute qualifier can be used only with float,
2552 * floating-point vectors, and matrices. Attribute variables
2553 * cannot be declared as arrays or structures."
2554 */
2555 const glsl_type *check_type = var->type->is_array()
2556 ? var->type->fields.array : var->type;
2557
2558 switch (check_type->base_type) {
2559 case GLSL_TYPE_FLOAT:
2560 break;
2561 case GLSL_TYPE_UINT:
2562 case GLSL_TYPE_INT:
2563 if (state->language_version > 120)
2564 break;
2565 /* FALLTHROUGH */
2566 default:
2567 _mesa_glsl_error(& loc, state,
2568 "vertex shader input / attribute cannot have "
2569 "type %s`%s'",
2570 var->type->is_array() ? "array of " : "",
2571 check_type->name);
2572 error_emitted = true;
2573 }
2574
2575 if (!error_emitted && (state->language_version <= 130)
2576 && var->type->is_array()) {
2577 _mesa_glsl_error(& loc, state,
2578 "vertex shader input / attribute cannot have "
2579 "array type");
2580 error_emitted = true;
2581 }
2582 }
2583 }
2584
2585 /* Integer vertex outputs must be qualified with 'flat'.
2586 *
2587 * From section 4.3.6 of the GLSL 1.30 spec:
2588 * "If a vertex output is a signed or unsigned integer or integer
2589 * vector, then it must be qualified with the interpolation qualifier
2590 * flat."
2591 */
2592 if (state->language_version >= 130
2593 && state->target == vertex_shader
2594 && state->current_function == NULL
2595 && var->type->is_integer()
2596 && var->mode == ir_var_out
2597 && var->interpolation != ir_var_flat) {
2598
2599 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2600 "then it must be qualified with 'flat'");
2601 }
2602
2603
2604 /* Interpolation qualifiers cannot be applied to 'centroid' and
2605 * 'centroid varying'.
2606 *
2607 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2608 * "interpolation qualifiers may only precede the qualifiers in,
2609 * centroid in, out, or centroid out in a declaration. They do not apply
2610 * to the deprecated storage qualifiers varying or centroid varying."
2611 */
2612 if (state->language_version >= 130
2613 && this->type->qualifier.has_interpolation()
2614 && this->type->qualifier.flags.q.varying) {
2615
2616 const char *i = this->type->qualifier.interpolation_string();
2617 assert(i != NULL);
2618 const char *s;
2619 if (this->type->qualifier.flags.q.centroid)
2620 s = "centroid varying";
2621 else
2622 s = "varying";
2623
2624 _mesa_glsl_error(&loc, state,
2625 "qualifier '%s' cannot be applied to the "
2626 "deprecated storage qualifier '%s'", i, s);
2627 }
2628
2629
2630 /* Interpolation qualifiers can only apply to vertex shader outputs and
2631 * fragment shader inputs.
2632 *
2633 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2634 * "Outputs from a vertex shader (out) and inputs to a fragment
2635 * shader (in) can be further qualified with one or more of these
2636 * interpolation qualifiers"
2637 */
2638 if (state->language_version >= 130
2639 && this->type->qualifier.has_interpolation()) {
2640
2641 const char *i = this->type->qualifier.interpolation_string();
2642 assert(i != NULL);
2643
2644 switch (state->target) {
2645 case vertex_shader:
2646 if (this->type->qualifier.flags.q.in) {
2647 _mesa_glsl_error(&loc, state,
2648 "qualifier '%s' cannot be applied to vertex "
2649 "shader inputs", i);
2650 }
2651 break;
2652 case fragment_shader:
2653 if (this->type->qualifier.flags.q.out) {
2654 _mesa_glsl_error(&loc, state,
2655 "qualifier '%s' cannot be applied to fragment "
2656 "shader outputs", i);
2657 }
2658 break;
2659 default:
2660 assert(0);
2661 }
2662 }
2663
2664
2665 /* From section 4.3.4 of the GLSL 1.30 spec:
2666 * "It is an error to use centroid in in a vertex shader."
2667 */
2668 if (state->language_version >= 130
2669 && this->type->qualifier.flags.q.centroid
2670 && this->type->qualifier.flags.q.in
2671 && state->target == vertex_shader) {
2672
2673 _mesa_glsl_error(&loc, state,
2674 "'centroid in' cannot be used in a vertex shader");
2675 }
2676
2677
2678 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2679 */
2680 if (this->type->specifier->precision != ast_precision_none
2681 && state->language_version != 100
2682 && state->language_version < 130) {
2683
2684 _mesa_glsl_error(&loc, state,
2685 "precision qualifiers are supported only in GLSL ES "
2686 "1.00, and GLSL 1.30 and later");
2687 }
2688
2689
2690 /* Precision qualifiers only apply to floating point and integer types.
2691 *
2692 * From section 4.5.2 of the GLSL 1.30 spec:
2693 * "Any floating point or any integer declaration can have the type
2694 * preceded by one of these precision qualifiers [...] Literal
2695 * constants do not have precision qualifiers. Neither do Boolean
2696 * variables.
2697 *
2698 * In GLSL ES, sampler types are also allowed.
2699 *
2700 * From page 87 of the GLSL ES spec:
2701 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2702 */
2703 if (this->type->specifier->precision != ast_precision_none
2704 && !var->type->is_float()
2705 && !var->type->is_integer()
2706 && !(var->type->is_sampler() && state->es_shader)
2707 && !(var->type->is_array()
2708 && (var->type->fields.array->is_float()
2709 || var->type->fields.array->is_integer()))) {
2710
2711 _mesa_glsl_error(&loc, state,
2712 "precision qualifiers apply only to floating point"
2713 "%s types", state->es_shader ? ", integer, and sampler"
2714 : "and integer");
2715 }
2716
2717 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2718 *
2719 * "[Sampler types] can only be declared as function
2720 * parameters or uniform variables (see Section 4.3.5
2721 * "Uniform")".
2722 */
2723 if (var_type->contains_sampler() &&
2724 !this->type->qualifier.flags.q.uniform) {
2725 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2726 }
2727
2728 /* Process the initializer and add its instructions to a temporary
2729 * list. This list will be added to the instruction stream (below) after
2730 * the declaration is added. This is done because in some cases (such as
2731 * redeclarations) the declaration may not actually be added to the
2732 * instruction stream.
2733 */
2734 exec_list initializer_instructions;
2735 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2736
2737 if (decl->initializer != NULL) {
2738 result = process_initializer((earlier == NULL) ? var : earlier,
2739 decl, this->type,
2740 &initializer_instructions, state);
2741 }
2742
2743 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2744 *
2745 * "It is an error to write to a const variable outside of
2746 * its declaration, so they must be initialized when
2747 * declared."
2748 */
2749 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2750 _mesa_glsl_error(& loc, state,
2751 "const declaration of `%s' must be initialized",
2752 decl->identifier);
2753 }
2754
2755 /* If the declaration is not a redeclaration, there are a few additional
2756 * semantic checks that must be applied. In addition, variable that was
2757 * created for the declaration should be added to the IR stream.
2758 */
2759 if (earlier == NULL) {
2760 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2761 *
2762 * "Identifiers starting with "gl_" are reserved for use by
2763 * OpenGL, and may not be declared in a shader as either a
2764 * variable or a function."
2765 */
2766 if (strncmp(decl->identifier, "gl_", 3) == 0)
2767 _mesa_glsl_error(& loc, state,
2768 "identifier `%s' uses reserved `gl_' prefix",
2769 decl->identifier);
2770
2771 /* Add the variable to the symbol table. Note that the initializer's
2772 * IR was already processed earlier (though it hasn't been emitted
2773 * yet), without the variable in scope.
2774 *
2775 * This differs from most C-like languages, but it follows the GLSL
2776 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2777 * spec:
2778 *
2779 * "Within a declaration, the scope of a name starts immediately
2780 * after the initializer if present or immediately after the name
2781 * being declared if not."
2782 */
2783 if (!state->symbols->add_variable(var)) {
2784 YYLTYPE loc = this->get_location();
2785 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2786 "current scope", decl->identifier);
2787 continue;
2788 }
2789
2790 /* Push the variable declaration to the top. It means that all the
2791 * variable declarations will appear in a funny last-to-first order,
2792 * but otherwise we run into trouble if a function is prototyped, a
2793 * global var is decled, then the function is defined with usage of
2794 * the global var. See glslparsertest's CorrectModule.frag.
2795 */
2796 instructions->push_head(var);
2797 }
2798
2799 instructions->append_list(&initializer_instructions);
2800 }
2801
2802
2803 /* Generally, variable declarations do not have r-values. However,
2804 * one is used for the declaration in
2805 *
2806 * while (bool b = some_condition()) {
2807 * ...
2808 * }
2809 *
2810 * so we return the rvalue from the last seen declaration here.
2811 */
2812 return result;
2813 }
2814
2815
2816 ir_rvalue *
2817 ast_parameter_declarator::hir(exec_list *instructions,
2818 struct _mesa_glsl_parse_state *state)
2819 {
2820 void *ctx = state;
2821 const struct glsl_type *type;
2822 const char *name = NULL;
2823 YYLTYPE loc = this->get_location();
2824
2825 type = this->type->specifier->glsl_type(& name, state);
2826
2827 if (type == NULL) {
2828 if (name != NULL) {
2829 _mesa_glsl_error(& loc, state,
2830 "invalid type `%s' in declaration of `%s'",
2831 name, this->identifier);
2832 } else {
2833 _mesa_glsl_error(& loc, state,
2834 "invalid type in declaration of `%s'",
2835 this->identifier);
2836 }
2837
2838 type = glsl_type::error_type;
2839 }
2840
2841 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2842 *
2843 * "Functions that accept no input arguments need not use void in the
2844 * argument list because prototypes (or definitions) are required and
2845 * therefore there is no ambiguity when an empty argument list "( )" is
2846 * declared. The idiom "(void)" as a parameter list is provided for
2847 * convenience."
2848 *
2849 * Placing this check here prevents a void parameter being set up
2850 * for a function, which avoids tripping up checks for main taking
2851 * parameters and lookups of an unnamed symbol.
2852 */
2853 if (type->is_void()) {
2854 if (this->identifier != NULL)
2855 _mesa_glsl_error(& loc, state,
2856 "named parameter cannot have type `void'");
2857
2858 is_void = true;
2859 return NULL;
2860 }
2861
2862 if (formal_parameter && (this->identifier == NULL)) {
2863 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2864 return NULL;
2865 }
2866
2867 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2868 * call already handled the "vec4[..] foo" case.
2869 */
2870 if (this->is_array) {
2871 type = process_array_type(&loc, type, this->array_size, state);
2872 }
2873
2874 if (type->array_size() == 0) {
2875 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2876 "a declared size.");
2877 type = glsl_type::error_type;
2878 }
2879
2880 is_void = false;
2881 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2882
2883 /* Apply any specified qualifiers to the parameter declaration. Note that
2884 * for function parameters the default mode is 'in'.
2885 */
2886 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2887
2888 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2889 *
2890 * "Samplers cannot be treated as l-values; hence cannot be used
2891 * as out or inout function parameters, nor can they be assigned
2892 * into."
2893 */
2894 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2895 && type->contains_sampler()) {
2896 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2897 type = glsl_type::error_type;
2898 }
2899
2900 instructions->push_tail(var);
2901
2902 /* Parameter declarations do not have r-values.
2903 */
2904 return NULL;
2905 }
2906
2907
2908 void
2909 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2910 bool formal,
2911 exec_list *ir_parameters,
2912 _mesa_glsl_parse_state *state)
2913 {
2914 ast_parameter_declarator *void_param = NULL;
2915 unsigned count = 0;
2916
2917 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2918 param->formal_parameter = formal;
2919 param->hir(ir_parameters, state);
2920
2921 if (param->is_void)
2922 void_param = param;
2923
2924 count++;
2925 }
2926
2927 if ((void_param != NULL) && (count > 1)) {
2928 YYLTYPE loc = void_param->get_location();
2929
2930 _mesa_glsl_error(& loc, state,
2931 "`void' parameter must be only parameter");
2932 }
2933 }
2934
2935
2936 void
2937 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
2938 {
2939 /* IR invariants disallow function declarations or definitions
2940 * nested within other function definitions. But there is no
2941 * requirement about the relative order of function declarations
2942 * and definitions with respect to one another. So simply insert
2943 * the new ir_function block at the end of the toplevel instruction
2944 * list.
2945 */
2946 state->toplevel_ir->push_tail(f);
2947 }
2948
2949
2950 ir_rvalue *
2951 ast_function::hir(exec_list *instructions,
2952 struct _mesa_glsl_parse_state *state)
2953 {
2954 void *ctx = state;
2955 ir_function *f = NULL;
2956 ir_function_signature *sig = NULL;
2957 exec_list hir_parameters;
2958
2959 const char *const name = identifier;
2960
2961 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2962 *
2963 * "Function declarations (prototypes) cannot occur inside of functions;
2964 * they must be at global scope, or for the built-in functions, outside
2965 * the global scope."
2966 *
2967 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2968 *
2969 * "User defined functions may only be defined within the global scope."
2970 *
2971 * Note that this language does not appear in GLSL 1.10.
2972 */
2973 if ((state->current_function != NULL) && (state->language_version != 110)) {
2974 YYLTYPE loc = this->get_location();
2975 _mesa_glsl_error(&loc, state,
2976 "declaration of function `%s' not allowed within "
2977 "function body", name);
2978 }
2979
2980 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2981 *
2982 * "Identifiers starting with "gl_" are reserved for use by
2983 * OpenGL, and may not be declared in a shader as either a
2984 * variable or a function."
2985 */
2986 if (strncmp(name, "gl_", 3) == 0) {
2987 YYLTYPE loc = this->get_location();
2988 _mesa_glsl_error(&loc, state,
2989 "identifier `%s' uses reserved `gl_' prefix", name);
2990 }
2991
2992 /* Convert the list of function parameters to HIR now so that they can be
2993 * used below to compare this function's signature with previously seen
2994 * signatures for functions with the same name.
2995 */
2996 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2997 is_definition,
2998 & hir_parameters, state);
2999
3000 const char *return_type_name;
3001 const glsl_type *return_type =
3002 this->return_type->specifier->glsl_type(& return_type_name, state);
3003
3004 if (!return_type) {
3005 YYLTYPE loc = this->get_location();
3006 _mesa_glsl_error(&loc, state,
3007 "function `%s' has undeclared return type `%s'",
3008 name, return_type_name);
3009 return_type = glsl_type::error_type;
3010 }
3011
3012 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3013 * "No qualifier is allowed on the return type of a function."
3014 */
3015 if (this->return_type->has_qualifiers()) {
3016 YYLTYPE loc = this->get_location();
3017 _mesa_glsl_error(& loc, state,
3018 "function `%s' return type has qualifiers", name);
3019 }
3020
3021 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3022 *
3023 * "[Sampler types] can only be declared as function parameters
3024 * or uniform variables (see Section 4.3.5 "Uniform")".
3025 */
3026 if (return_type->contains_sampler()) {
3027 YYLTYPE loc = this->get_location();
3028 _mesa_glsl_error(&loc, state,
3029 "function `%s' return type can't contain a sampler",
3030 name);
3031 }
3032
3033 /* Verify that this function's signature either doesn't match a previously
3034 * seen signature for a function with the same name, or, if a match is found,
3035 * that the previously seen signature does not have an associated definition.
3036 */
3037 f = state->symbols->get_function(name);
3038 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3039 sig = f->exact_matching_signature(&hir_parameters);
3040 if (sig != NULL) {
3041 const char *badvar = sig->qualifiers_match(&hir_parameters);
3042 if (badvar != NULL) {
3043 YYLTYPE loc = this->get_location();
3044
3045 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3046 "qualifiers don't match prototype", name, badvar);
3047 }
3048
3049 if (sig->return_type != return_type) {
3050 YYLTYPE loc = this->get_location();
3051
3052 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3053 "match prototype", name);
3054 }
3055
3056 if (is_definition && sig->is_defined) {
3057 YYLTYPE loc = this->get_location();
3058
3059 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3060 }
3061 }
3062 } else {
3063 f = new(ctx) ir_function(name);
3064 if (!state->symbols->add_function(f)) {
3065 /* This function name shadows a non-function use of the same name. */
3066 YYLTYPE loc = this->get_location();
3067
3068 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3069 "non-function", name);
3070 return NULL;
3071 }
3072
3073 emit_function(state, f);
3074 }
3075
3076 /* Verify the return type of main() */
3077 if (strcmp(name, "main") == 0) {
3078 if (! return_type->is_void()) {
3079 YYLTYPE loc = this->get_location();
3080
3081 _mesa_glsl_error(& loc, state, "main() must return void");
3082 }
3083
3084 if (!hir_parameters.is_empty()) {
3085 YYLTYPE loc = this->get_location();
3086
3087 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3088 }
3089 }
3090
3091 /* Finish storing the information about this new function in its signature.
3092 */
3093 if (sig == NULL) {
3094 sig = new(ctx) ir_function_signature(return_type);
3095 f->add_signature(sig);
3096 }
3097
3098 sig->replace_parameters(&hir_parameters);
3099 signature = sig;
3100
3101 /* Function declarations (prototypes) do not have r-values.
3102 */
3103 return NULL;
3104 }
3105
3106
3107 ir_rvalue *
3108 ast_function_definition::hir(exec_list *instructions,
3109 struct _mesa_glsl_parse_state *state)
3110 {
3111 prototype->is_definition = true;
3112 prototype->hir(instructions, state);
3113
3114 ir_function_signature *signature = prototype->signature;
3115 if (signature == NULL)
3116 return NULL;
3117
3118 assert(state->current_function == NULL);
3119 state->current_function = signature;
3120 state->found_return = false;
3121
3122 /* Duplicate parameters declared in the prototype as concrete variables.
3123 * Add these to the symbol table.
3124 */
3125 state->symbols->push_scope();
3126 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3127 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3128
3129 assert(var != NULL);
3130
3131 /* The only way a parameter would "exist" is if two parameters have
3132 * the same name.
3133 */
3134 if (state->symbols->name_declared_this_scope(var->name)) {
3135 YYLTYPE loc = this->get_location();
3136
3137 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3138 } else {
3139 state->symbols->add_variable(var);
3140 }
3141 }
3142
3143 /* Convert the body of the function to HIR. */
3144 this->body->hir(&signature->body, state);
3145 signature->is_defined = true;
3146
3147 state->symbols->pop_scope();
3148
3149 assert(state->current_function == signature);
3150 state->current_function = NULL;
3151
3152 if (!signature->return_type->is_void() && !state->found_return) {
3153 YYLTYPE loc = this->get_location();
3154 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3155 "%s, but no return statement",
3156 signature->function_name(),
3157 signature->return_type->name);
3158 }
3159
3160 /* Function definitions do not have r-values.
3161 */
3162 return NULL;
3163 }
3164
3165
3166 ir_rvalue *
3167 ast_jump_statement::hir(exec_list *instructions,
3168 struct _mesa_glsl_parse_state *state)
3169 {
3170 void *ctx = state;
3171
3172 switch (mode) {
3173 case ast_return: {
3174 ir_return *inst;
3175 assert(state->current_function);
3176
3177 if (opt_return_value) {
3178 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3179
3180 /* The value of the return type can be NULL if the shader says
3181 * 'return foo();' and foo() is a function that returns void.
3182 *
3183 * NOTE: The GLSL spec doesn't say that this is an error. The type
3184 * of the return value is void. If the return type of the function is
3185 * also void, then this should compile without error. Seriously.
3186 */
3187 const glsl_type *const ret_type =
3188 (ret == NULL) ? glsl_type::void_type : ret->type;
3189
3190 /* Implicit conversions are not allowed for return values. */
3191 if (state->current_function->return_type != ret_type) {
3192 YYLTYPE loc = this->get_location();
3193
3194 _mesa_glsl_error(& loc, state,
3195 "`return' with wrong type %s, in function `%s' "
3196 "returning %s",
3197 ret_type->name,
3198 state->current_function->function_name(),
3199 state->current_function->return_type->name);
3200 }
3201
3202 inst = new(ctx) ir_return(ret);
3203 } else {
3204 if (state->current_function->return_type->base_type !=
3205 GLSL_TYPE_VOID) {
3206 YYLTYPE loc = this->get_location();
3207
3208 _mesa_glsl_error(& loc, state,
3209 "`return' with no value, in function %s returning "
3210 "non-void",
3211 state->current_function->function_name());
3212 }
3213 inst = new(ctx) ir_return;
3214 }
3215
3216 state->found_return = true;
3217 instructions->push_tail(inst);
3218 break;
3219 }
3220
3221 case ast_discard:
3222 if (state->target != fragment_shader) {
3223 YYLTYPE loc = this->get_location();
3224
3225 _mesa_glsl_error(& loc, state,
3226 "`discard' may only appear in a fragment shader");
3227 }
3228 instructions->push_tail(new(ctx) ir_discard);
3229 break;
3230
3231 case ast_break:
3232 case ast_continue:
3233 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3234 * FINISHME: and they use a different IR instruction for 'break'.
3235 */
3236 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3237 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3238 * FINISHME: loop.
3239 */
3240 if (state->loop_or_switch_nesting == NULL) {
3241 YYLTYPE loc = this->get_location();
3242
3243 _mesa_glsl_error(& loc, state,
3244 "`%s' may only appear in a loop",
3245 (mode == ast_break) ? "break" : "continue");
3246 } else {
3247 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3248
3249 /* Inline the for loop expression again, since we don't know
3250 * where near the end of the loop body the normal copy of it
3251 * is going to be placed.
3252 */
3253 if (mode == ast_continue &&
3254 state->loop_or_switch_nesting_ast->rest_expression) {
3255 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3256 state);
3257 }
3258
3259 if (loop != NULL) {
3260 ir_loop_jump *const jump =
3261 new(ctx) ir_loop_jump((mode == ast_break)
3262 ? ir_loop_jump::jump_break
3263 : ir_loop_jump::jump_continue);
3264 instructions->push_tail(jump);
3265 }
3266 }
3267
3268 break;
3269 }
3270
3271 /* Jump instructions do not have r-values.
3272 */
3273 return NULL;
3274 }
3275
3276
3277 ir_rvalue *
3278 ast_selection_statement::hir(exec_list *instructions,
3279 struct _mesa_glsl_parse_state *state)
3280 {
3281 void *ctx = state;
3282
3283 ir_rvalue *const condition = this->condition->hir(instructions, state);
3284
3285 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3286 *
3287 * "Any expression whose type evaluates to a Boolean can be used as the
3288 * conditional expression bool-expression. Vector types are not accepted
3289 * as the expression to if."
3290 *
3291 * The checks are separated so that higher quality diagnostics can be
3292 * generated for cases where both rules are violated.
3293 */
3294 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3295 YYLTYPE loc = this->condition->get_location();
3296
3297 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3298 "boolean");
3299 }
3300
3301 ir_if *const stmt = new(ctx) ir_if(condition);
3302
3303 if (then_statement != NULL) {
3304 state->symbols->push_scope();
3305 then_statement->hir(& stmt->then_instructions, state);
3306 state->symbols->pop_scope();
3307 }
3308
3309 if (else_statement != NULL) {
3310 state->symbols->push_scope();
3311 else_statement->hir(& stmt->else_instructions, state);
3312 state->symbols->pop_scope();
3313 }
3314
3315 instructions->push_tail(stmt);
3316
3317 /* if-statements do not have r-values.
3318 */
3319 return NULL;
3320 }
3321
3322
3323 void
3324 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3325 struct _mesa_glsl_parse_state *state)
3326 {
3327 void *ctx = state;
3328
3329 if (condition != NULL) {
3330 ir_rvalue *const cond =
3331 condition->hir(& stmt->body_instructions, state);
3332
3333 if ((cond == NULL)
3334 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3335 YYLTYPE loc = condition->get_location();
3336
3337 _mesa_glsl_error(& loc, state,
3338 "loop condition must be scalar boolean");
3339 } else {
3340 /* As the first code in the loop body, generate a block that looks
3341 * like 'if (!condition) break;' as the loop termination condition.
3342 */
3343 ir_rvalue *const not_cond =
3344 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3345 NULL);
3346
3347 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3348
3349 ir_jump *const break_stmt =
3350 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3351
3352 if_stmt->then_instructions.push_tail(break_stmt);
3353 stmt->body_instructions.push_tail(if_stmt);
3354 }
3355 }
3356 }
3357
3358
3359 ir_rvalue *
3360 ast_iteration_statement::hir(exec_list *instructions,
3361 struct _mesa_glsl_parse_state *state)
3362 {
3363 void *ctx = state;
3364
3365 /* For-loops and while-loops start a new scope, but do-while loops do not.
3366 */
3367 if (mode != ast_do_while)
3368 state->symbols->push_scope();
3369
3370 if (init_statement != NULL)
3371 init_statement->hir(instructions, state);
3372
3373 ir_loop *const stmt = new(ctx) ir_loop();
3374 instructions->push_tail(stmt);
3375
3376 /* Track the current loop and / or switch-statement nesting.
3377 */
3378 ir_instruction *const nesting = state->loop_or_switch_nesting;
3379 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3380
3381 state->loop_or_switch_nesting = stmt;
3382 state->loop_or_switch_nesting_ast = this;
3383
3384 if (mode != ast_do_while)
3385 condition_to_hir(stmt, state);
3386
3387 if (body != NULL)
3388 body->hir(& stmt->body_instructions, state);
3389
3390 if (rest_expression != NULL)
3391 rest_expression->hir(& stmt->body_instructions, state);
3392
3393 if (mode == ast_do_while)
3394 condition_to_hir(stmt, state);
3395
3396 if (mode != ast_do_while)
3397 state->symbols->pop_scope();
3398
3399 /* Restore previous nesting before returning.
3400 */
3401 state->loop_or_switch_nesting = nesting;
3402 state->loop_or_switch_nesting_ast = nesting_ast;
3403
3404 /* Loops do not have r-values.
3405 */
3406 return NULL;
3407 }
3408
3409
3410 ir_rvalue *
3411 ast_type_specifier::hir(exec_list *instructions,
3412 struct _mesa_glsl_parse_state *state)
3413 {
3414 if (!this->is_precision_statement && this->structure == NULL)
3415 return NULL;
3416
3417 YYLTYPE loc = this->get_location();
3418
3419 if (this->precision != ast_precision_none
3420 && state->language_version != 100
3421 && state->language_version < 130) {
3422 _mesa_glsl_error(&loc, state,
3423 "precision qualifiers exist only in "
3424 "GLSL ES 1.00, and GLSL 1.30 and later");
3425 return NULL;
3426 }
3427 if (this->precision != ast_precision_none
3428 && this->structure != NULL) {
3429 _mesa_glsl_error(&loc, state,
3430 "precision qualifiers do not apply to structures");
3431 return NULL;
3432 }
3433
3434 /* If this is a precision statement, check that the type to which it is
3435 * applied is either float or int.
3436 *
3437 * From section 4.5.3 of the GLSL 1.30 spec:
3438 * "The precision statement
3439 * precision precision-qualifier type;
3440 * can be used to establish a default precision qualifier. The type
3441 * field can be either int or float [...]. Any other types or
3442 * qualifiers will result in an error.
3443 */
3444 if (this->is_precision_statement) {
3445 assert(this->precision != ast_precision_none);
3446 assert(this->structure == NULL); /* The check for structures was
3447 * performed above. */
3448 if (this->is_array) {
3449 _mesa_glsl_error(&loc, state,
3450 "default precision statements do not apply to "
3451 "arrays");
3452 return NULL;
3453 }
3454 if (this->type_specifier != ast_float
3455 && this->type_specifier != ast_int) {
3456 _mesa_glsl_error(&loc, state,
3457 "default precision statements apply only to types "
3458 "float and int");
3459 return NULL;
3460 }
3461
3462 /* FINISHME: Translate precision statements into IR. */
3463 return NULL;
3464 }
3465
3466 if (this->structure != NULL)
3467 return this->structure->hir(instructions, state);
3468
3469 return NULL;
3470 }
3471
3472
3473 ir_rvalue *
3474 ast_struct_specifier::hir(exec_list *instructions,
3475 struct _mesa_glsl_parse_state *state)
3476 {
3477 unsigned decl_count = 0;
3478
3479 /* Make an initial pass over the list of structure fields to determine how
3480 * many there are. Each element in this list is an ast_declarator_list.
3481 * This means that we actually need to count the number of elements in the
3482 * 'declarations' list in each of the elements.
3483 */
3484 foreach_list_typed (ast_declarator_list, decl_list, link,
3485 &this->declarations) {
3486 foreach_list_const (decl_ptr, & decl_list->declarations) {
3487 decl_count++;
3488 }
3489 }
3490
3491 /* Allocate storage for the structure fields and process the field
3492 * declarations. As the declarations are processed, try to also convert
3493 * the types to HIR. This ensures that structure definitions embedded in
3494 * other structure definitions are processed.
3495 */
3496 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3497 decl_count);
3498
3499 unsigned i = 0;
3500 foreach_list_typed (ast_declarator_list, decl_list, link,
3501 &this->declarations) {
3502 const char *type_name;
3503
3504 decl_list->type->specifier->hir(instructions, state);
3505
3506 /* Section 10.9 of the GLSL ES 1.00 specification states that
3507 * embedded structure definitions have been removed from the language.
3508 */
3509 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3510 YYLTYPE loc = this->get_location();
3511 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3512 "not allowed in GLSL ES 1.00.");
3513 }
3514
3515 const glsl_type *decl_type =
3516 decl_list->type->specifier->glsl_type(& type_name, state);
3517
3518 foreach_list_typed (ast_declaration, decl, link,
3519 &decl_list->declarations) {
3520 const struct glsl_type *field_type = decl_type;
3521 if (decl->is_array) {
3522 YYLTYPE loc = decl->get_location();
3523 field_type = process_array_type(&loc, decl_type, decl->array_size,
3524 state);
3525 }
3526 fields[i].type = (field_type != NULL)
3527 ? field_type : glsl_type::error_type;
3528 fields[i].name = decl->identifier;
3529 i++;
3530 }
3531 }
3532
3533 assert(i == decl_count);
3534
3535 const glsl_type *t =
3536 glsl_type::get_record_instance(fields, decl_count, this->name);
3537
3538 YYLTYPE loc = this->get_location();
3539 if (!state->symbols->add_type(name, t)) {
3540 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3541 } else {
3542 const glsl_type **s = reralloc(state, state->user_structures,
3543 const glsl_type *,
3544 state->num_user_structures + 1);
3545 if (s != NULL) {
3546 s[state->num_user_structures] = t;
3547 state->user_structures = s;
3548 state->num_user_structures++;
3549 }
3550 }
3551
3552 /* Structure type definitions do not have r-values.
3553 */
3554 return NULL;
3555 }