Merge branch 'glsl2-head' into glsl2
[mesa.git] / src / glsl / glsl_types.cpp
1 /*
2 * Copyright © 2009 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <cstdio>
25 #include <stdlib.h>
26 #include "glsl_symbol_table.h"
27 #include "glsl_parser_extras.h"
28 #include "glsl_types.h"
29 #include "builtin_types.h"
30 #include "hash_table.h"
31
32
33 hash_table *glsl_type::array_types = NULL;
34
35 static void
36 add_types_to_symbol_table(glsl_symbol_table *symtab,
37 const struct glsl_type *types,
38 unsigned num_types, bool warn)
39 {
40 (void) warn;
41
42 for (unsigned i = 0; i < num_types; i++) {
43 symtab->add_type(types[i].name, & types[i]);
44 }
45 }
46
47
48 static void
49 generate_110_types(glsl_symbol_table *symtab)
50 {
51 add_types_to_symbol_table(symtab, builtin_core_types,
52 Elements(builtin_core_types),
53 false);
54 add_types_to_symbol_table(symtab, builtin_structure_types,
55 Elements(builtin_structure_types),
56 false);
57 add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
58 Elements(builtin_110_deprecated_structure_types),
59 false);
60 add_types_to_symbol_table(symtab, & void_type, 1, false);
61 }
62
63
64 static void
65 generate_120_types(glsl_symbol_table *symtab)
66 {
67 generate_110_types(symtab);
68
69 add_types_to_symbol_table(symtab, builtin_120_types,
70 Elements(builtin_120_types), false);
71 }
72
73
74 static void
75 generate_130_types(glsl_symbol_table *symtab)
76 {
77 generate_120_types(symtab);
78
79 add_types_to_symbol_table(symtab, builtin_130_types,
80 Elements(builtin_130_types), false);
81 }
82
83
84 static void
85 generate_ARB_texture_rectangle_types(glsl_symbol_table *symtab, bool warn)
86 {
87 add_types_to_symbol_table(symtab, builtin_ARB_texture_rectangle_types,
88 Elements(builtin_ARB_texture_rectangle_types),
89 warn);
90 }
91
92
93 static void
94 generate_EXT_texture_array_types(glsl_symbol_table *symtab, bool warn)
95 {
96 add_types_to_symbol_table(symtab, builtin_EXT_texture_array_types,
97 Elements(builtin_EXT_texture_array_types),
98 warn);
99 }
100
101
102 void
103 _mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
104 {
105 switch (state->language_version) {
106 case 110:
107 generate_110_types(state->symbols);
108 break;
109 case 120:
110 generate_120_types(state->symbols);
111 break;
112 case 130:
113 generate_130_types(state->symbols);
114 break;
115 default:
116 /* error */
117 break;
118 }
119
120 if (state->ARB_texture_rectangle_enable) {
121 generate_ARB_texture_rectangle_types(state->symbols,
122 state->ARB_texture_rectangle_warn);
123 }
124
125 if (state->EXT_texture_array_enable && state->language_version < 130) {
126 // These are already included in 130; don't create twice.
127 generate_EXT_texture_array_types(state->symbols,
128 state->EXT_texture_array_warn);
129 }
130 }
131
132
133 const glsl_type *glsl_type::get_base_type() const
134 {
135 switch (base_type) {
136 case GLSL_TYPE_UINT:
137 return uint_type;
138 case GLSL_TYPE_INT:
139 return int_type;
140 case GLSL_TYPE_FLOAT:
141 return float_type;
142 case GLSL_TYPE_BOOL:
143 return bool_type;
144 default:
145 return error_type;
146 }
147 }
148
149
150 ir_function *
151 glsl_type::generate_constructor(glsl_symbol_table *symtab) const
152 {
153 void *ctx = symtab;
154
155 /* Generate the function name and add it to the symbol table.
156 */
157 ir_function *const f = new(ctx) ir_function(name);
158
159 bool added = symtab->add_function(name, f);
160 assert(added);
161
162 ir_function_signature *const sig = new(ctx) ir_function_signature(this);
163 f->add_signature(sig);
164
165 ir_variable **declarations =
166 (ir_variable **) malloc(sizeof(ir_variable *) * this->length);
167 for (unsigned i = 0; i < length; i++) {
168 char *const param_name = (char *) malloc(10);
169
170 snprintf(param_name, 10, "p%08X", i);
171
172 ir_variable *var = (this->base_type == GLSL_TYPE_ARRAY)
173 ? new(ctx) ir_variable(fields.array, param_name)
174 : new(ctx) ir_variable(fields.structure[i].type, param_name);
175
176 var->mode = ir_var_in;
177 declarations[i] = var;
178 sig->parameters.push_tail(var);
179 }
180
181 /* Generate the body of the constructor. The body assigns each of the
182 * parameters to a portion of a local variable called __retval that has
183 * the same type as the constructor. After initializing __retval,
184 * __retval is returned.
185 */
186 ir_variable *retval = new(ctx) ir_variable(this, "__retval");
187 sig->body.push_tail(retval);
188
189 for (unsigned i = 0; i < length; i++) {
190 ir_dereference *const lhs = (this->base_type == GLSL_TYPE_ARRAY)
191 ? (ir_dereference *) new(ctx) ir_dereference_array(retval,
192 new(ctx) ir_constant(i))
193 : (ir_dereference *) new(ctx) ir_dereference_record(retval,
194 fields.structure[i].name);
195
196 ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[i]);
197 ir_instruction *const assign = new(ctx) ir_assignment(lhs, rhs, NULL);
198
199 sig->body.push_tail(assign);
200 }
201
202 free(declarations);
203
204 ir_dereference *const retref = new(ctx) ir_dereference_variable(retval);
205 ir_instruction *const inst = new(ctx) ir_return(retref);
206 sig->body.push_tail(inst);
207
208 return f;
209 }
210
211
212 /**
213 * Generate the function intro for a constructor
214 *
215 * \param type Data type to be constructed
216 * \param count Number of parameters to this concrete constructor. Most
217 * types have at least two constructors. One will take a
218 * single scalar parameter and the other will take "N"
219 * scalar parameters.
220 * \param parameters Storage for the list of parameters. These are
221 * typically stored in an \c ir_function_signature.
222 * \param declarations Pointers to the variable declarations for the function
223 * parameters. These are used later to avoid having to use
224 * the symbol table.
225 */
226 static ir_function_signature *
227 generate_constructor_intro(void *ctx,
228 const glsl_type *type, unsigned parameter_count,
229 ir_variable **declarations)
230 {
231 /* Names of parameters used in vector and matrix constructors
232 */
233 static const char *const names[] = {
234 "a", "b", "c", "d", "e", "f", "g", "h",
235 "i", "j", "k", "l", "m", "n", "o", "p",
236 };
237
238 assert(parameter_count <= Elements(names));
239
240 const glsl_type *const parameter_type = type->get_base_type();
241
242 ir_function_signature *const signature = new(ctx) ir_function_signature(type);
243
244 for (unsigned i = 0; i < parameter_count; i++) {
245 ir_variable *var = new(ctx) ir_variable(parameter_type, names[i]);
246
247 var->mode = ir_var_in;
248 signature->parameters.push_tail(var);
249
250 declarations[i] = var;
251 }
252
253 ir_variable *retval = new(ctx) ir_variable(type, "__retval");
254 signature->body.push_tail(retval);
255
256 declarations[16] = retval;
257 return signature;
258 }
259
260
261 /**
262 * Generate the body of a vector constructor that takes a single scalar
263 */
264 static void
265 generate_vec_body_from_scalar(void *ctx,
266 exec_list *instructions,
267 ir_variable **declarations)
268 {
269 ir_instruction *inst;
270
271 /* Generate a single assignment of the parameter to __retval.x and return
272 * __retval.xxxx for however many vector components there are.
273 */
274 ir_dereference *const lhs_ref =
275 new(ctx) ir_dereference_variable(declarations[16]);
276 ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[0]);
277
278 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
279
280 inst = new(ctx) ir_assignment(lhs, rhs, NULL);
281 instructions->push_tail(inst);
282
283 ir_dereference *const retref = new(ctx) ir_dereference_variable(declarations[16]);
284
285 ir_swizzle *retval = new(ctx) ir_swizzle(retref, 0, 0, 0, 0,
286 declarations[16]->type->vector_elements);
287
288 inst = new(ctx) ir_return(retval);
289 instructions->push_tail(inst);
290 }
291
292
293 /**
294 * Generate the body of a vector constructor that takes multiple scalars
295 */
296 static void
297 generate_vec_body_from_N_scalars(void *ctx,
298 exec_list *instructions,
299 ir_variable **declarations)
300 {
301 ir_instruction *inst;
302 const glsl_type *const vec_type = declarations[16]->type;
303
304 /* Generate an assignment of each parameter to a single component of
305 * __retval.x and return __retval.
306 */
307 for (unsigned i = 0; i < vec_type->vector_elements; i++) {
308 ir_dereference *const lhs_ref =
309 new(ctx) ir_dereference_variable(declarations[16]);
310 ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[i]);
311
312 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
313
314 inst = new(ctx) ir_assignment(lhs, rhs, NULL);
315 instructions->push_tail(inst);
316 }
317
318 ir_dereference *retval = new(ctx) ir_dereference_variable(declarations[16]);
319
320 inst = new(ctx) ir_return(retval);
321 instructions->push_tail(inst);
322 }
323
324
325 /**
326 * Generate the body of a matrix constructor that takes a single scalar
327 */
328 static void
329 generate_mat_body_from_scalar(void *ctx,
330 exec_list *instructions,
331 ir_variable **declarations)
332 {
333 ir_instruction *inst;
334
335 /* Generate an assignment of the parameter to the X component of a
336 * temporary vector. Set the remaining fields of the vector to 0. The
337 * size of the vector is equal to the number of rows of the matrix.
338 *
339 * Set each column of the matrix to a successive "rotation" of the
340 * temporary vector. This fills the matrix with 0s, but writes the single
341 * scalar along the matrix's diagonal.
342 *
343 * For a mat4x3, this is equivalent to:
344 *
345 * vec3 tmp;
346 * mat4x3 __retval;
347 * tmp.x = a;
348 * tmp.y = 0.0;
349 * tmp.z = 0.0;
350 * __retval[0] = tmp.xyy;
351 * __retval[1] = tmp.yxy;
352 * __retval[2] = tmp.yyx;
353 * __retval[3] = tmp.yyy;
354 */
355 const glsl_type *const column_type = declarations[16]->type->column_type();
356 const glsl_type *const row_type = declarations[16]->type->row_type();
357
358 ir_variable *const column = new(ctx) ir_variable(column_type, "v");
359
360 instructions->push_tail(column);
361
362 ir_dereference *const lhs_ref = new(ctx) ir_dereference_variable(column);
363 ir_dereference *const rhs = new(ctx) ir_dereference_variable(declarations[0]);
364
365 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, 0, 0, 0, 0, 1);
366
367 inst = new(ctx) ir_assignment(lhs, rhs, NULL);
368 instructions->push_tail(inst);
369
370 for (unsigned i = 1; i < column_type->vector_elements; i++) {
371 ir_dereference *const lhs_ref = new(ctx) ir_dereference_variable(column);
372 ir_constant *const zero = new(ctx) ir_constant(0.0f);
373
374 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, i, 0, 0, 0, 1);
375
376 inst = new(ctx) ir_assignment(lhs, zero, NULL);
377 instructions->push_tail(inst);
378 }
379
380
381 for (unsigned i = 0; i < row_type->vector_elements; i++) {
382 static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
383 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(column);
384
385 /* This will be .xyyy when i=0, .yxyy when i=1, etc.
386 */
387 ir_swizzle *rhs = new(ctx) ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i],
388 swiz[5 - i], swiz[6 - i],
389 column_type->vector_elements);
390
391 ir_constant *const idx = new(ctx) ir_constant(int(i));
392 ir_dereference *const lhs =
393 new(ctx) ir_dereference_array(declarations[16], idx);
394
395 inst = new(ctx) ir_assignment(lhs, rhs, NULL);
396 instructions->push_tail(inst);
397 }
398
399 ir_dereference *const retval = new(ctx) ir_dereference_variable(declarations[16]);
400 inst = new(ctx) ir_return(retval);
401 instructions->push_tail(inst);
402 }
403
404
405 /**
406 * Generate the body of a vector constructor that takes multiple scalars
407 */
408 static void
409 generate_mat_body_from_N_scalars(void *ctx,
410 exec_list *instructions,
411 ir_variable **declarations)
412 {
413 ir_instruction *inst;
414 const glsl_type *const row_type = declarations[16]->type->row_type();
415 const glsl_type *const column_type = declarations[16]->type->column_type();
416
417 /* Generate an assignment of each parameter to a single component of
418 * of a particular column of __retval and return __retval.
419 */
420 for (unsigned i = 0; i < column_type->vector_elements; i++) {
421 for (unsigned j = 0; j < row_type->vector_elements; j++) {
422 ir_constant *row_index = new(ctx) ir_constant(int(i));
423 ir_dereference *const row_access =
424 new(ctx) ir_dereference_array(declarations[16], row_index);
425
426 ir_swizzle *component_access = new(ctx) ir_swizzle(row_access,
427 j, 0, 0, 0, 1);
428
429 const unsigned param = (i * row_type->vector_elements) + j;
430 ir_dereference *const rhs =
431 new(ctx) ir_dereference_variable(declarations[param]);
432
433 inst = new(ctx) ir_assignment(component_access, rhs, NULL);
434 instructions->push_tail(inst);
435 }
436 }
437
438 ir_dereference *retval = new(ctx) ir_dereference_variable(declarations[16]);
439
440 inst = new(ctx) ir_return(retval);
441 instructions->push_tail(inst);
442 }
443
444
445 /**
446 * Generate the constructors for a set of GLSL types
447 *
448 * Constructor implementations are added to \c instructions, and the symbols
449 * are added to \c symtab.
450 */
451 static void
452 generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
453 unsigned num_types, exec_list *instructions)
454 {
455 void *ctx = symtab;
456 ir_variable *declarations[17];
457
458 for (unsigned i = 0; i < num_types; i++) {
459 /* Only numeric and boolean vectors and matrices get constructors here.
460 * Structures need to be handled elsewhere. It is expected that scalar
461 * constructors are never actually called, so they are not generated.
462 */
463 if (!types[i].is_numeric() && !types[i].is_boolean())
464 continue;
465
466 if (types[i].is_scalar())
467 continue;
468
469 /* Generate the function block, add it to the symbol table, and emit it.
470 */
471 ir_function *const f = new(ctx) ir_function(types[i].name);
472
473 bool added = symtab->add_function(types[i].name, f);
474 assert(added);
475
476 instructions->push_tail(f);
477
478 /* Each type has several basic constructors. The total number of forms
479 * depends on the derived type.
480 *
481 * Vectors: 1 scalar, N scalars
482 * Matrices: 1 scalar, NxM scalars
483 *
484 * Several possible types of constructors are not included in this list.
485 *
486 * Scalar constructors are not included. The expectation is that the
487 * IR generator won't actually generate these as constructor calls. The
488 * expectation is that it will just generate the necessary type
489 * conversion.
490 *
491 * Matrix contructors from matrices are also not included. The
492 * expectation is that the IR generator will generate a call to the
493 * appropriate from-scalars constructor.
494 */
495 ir_function_signature *const sig =
496 generate_constructor_intro(ctx, &types[i], 1, declarations);
497 f->add_signature(sig);
498
499 if (types[i].is_vector()) {
500 generate_vec_body_from_scalar(ctx, &sig->body, declarations);
501
502 ir_function_signature *const vec_sig =
503 generate_constructor_intro(ctx,
504 &types[i], types[i].vector_elements,
505 declarations);
506 f->add_signature(vec_sig);
507
508 generate_vec_body_from_N_scalars(ctx, &vec_sig->body, declarations);
509 } else {
510 assert(types[i].is_matrix());
511
512 generate_mat_body_from_scalar(ctx, &sig->body, declarations);
513
514 ir_function_signature *const mat_sig =
515 generate_constructor_intro(ctx,
516 &types[i],
517 (types[i].vector_elements
518 * types[i].matrix_columns),
519 declarations);
520 f->add_signature(mat_sig);
521
522 generate_mat_body_from_N_scalars(ctx, &mat_sig->body, declarations);
523 }
524 }
525 }
526
527
528 void
529 generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
530 {
531 generate_constructor(symtab, builtin_core_types,
532 Elements(builtin_core_types), instructions);
533 }
534
535
536 void
537 generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
538 {
539 generate_110_constructors(symtab, instructions);
540
541 generate_constructor(symtab, builtin_120_types,
542 Elements(builtin_120_types), instructions);
543 }
544
545
546 void
547 generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
548 {
549 generate_120_constructors(symtab, instructions);
550
551 generate_constructor(symtab, builtin_130_types,
552 Elements(builtin_130_types), instructions);
553 }
554
555
556 void
557 _mesa_glsl_initialize_constructors(exec_list *instructions,
558 struct _mesa_glsl_parse_state *state)
559 {
560 switch (state->language_version) {
561 case 110:
562 generate_110_constructors(state->symbols, instructions);
563 break;
564 case 120:
565 generate_120_constructors(state->symbols, instructions);
566 break;
567 case 130:
568 generate_130_constructors(state->symbols, instructions);
569 break;
570 default:
571 /* error */
572 break;
573 }
574 }
575
576
577 glsl_type::glsl_type(void *ctx, const glsl_type *array, unsigned length) :
578 base_type(GLSL_TYPE_ARRAY),
579 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
580 sampler_type(0),
581 vector_elements(0), matrix_columns(0),
582 name(NULL), length(length)
583 {
584 this->fields.array = array;
585
586 /* Allow a maximum of 10 characters for the array size. This is enough
587 * for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
588 * NUL.
589 */
590 const unsigned name_length = strlen(array->name) + 10 + 3;
591 char *const n = (char *) talloc_size(ctx, name_length);
592
593 if (length == 0)
594 snprintf(n, name_length, "%s[]", array->name);
595 else
596 snprintf(n, name_length, "%s[%u]", array->name, length);
597
598 this->name = n;
599 }
600
601
602 const glsl_type *
603 glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
604 {
605 if (base_type == GLSL_TYPE_VOID)
606 return &void_type;
607
608 if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
609 return error_type;
610
611 /* Treat GLSL vectors as Nx1 matrices.
612 */
613 if (columns == 1) {
614 switch (base_type) {
615 case GLSL_TYPE_UINT:
616 return uint_type + (rows - 1);
617 case GLSL_TYPE_INT:
618 return int_type + (rows - 1);
619 case GLSL_TYPE_FLOAT:
620 return float_type + (rows - 1);
621 case GLSL_TYPE_BOOL:
622 return bool_type + (rows - 1);
623 default:
624 return error_type;
625 }
626 } else {
627 if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
628 return error_type;
629
630 /* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
631 * combinations are valid:
632 *
633 * 1 2 3 4
634 * 1
635 * 2 x x x
636 * 3 x x x
637 * 4 x x x
638 */
639 #define IDX(c,r) (((c-1)*3) + (r-1))
640
641 switch (IDX(columns, rows)) {
642 case IDX(2,2): return mat2_type;
643 case IDX(2,3): return mat2x3_type;
644 case IDX(2,4): return mat2x4_type;
645 case IDX(3,2): return mat3x2_type;
646 case IDX(3,3): return mat3_type;
647 case IDX(3,4): return mat3x4_type;
648 case IDX(4,2): return mat4x2_type;
649 case IDX(4,3): return mat4x3_type;
650 case IDX(4,4): return mat4_type;
651 default: return error_type;
652 }
653 }
654
655 assert(!"Should not get here.");
656 return error_type;
657 }
658
659
660 int
661 glsl_type::array_key_compare(const void *a, const void *b)
662 {
663 const glsl_type *const key1 = (glsl_type *) a;
664 const glsl_type *const key2 = (glsl_type *) b;
665
666 /* Return zero is the types match (there is zero difference) or non-zero
667 * otherwise.
668 */
669 return ((key1->fields.array == key2->fields.array)
670 && (key1->length == key2->length)) ? 0 : 1;
671 }
672
673
674 unsigned
675 glsl_type::array_key_hash(const void *a)
676 {
677 const glsl_type *const key = (glsl_type *) a;
678
679 const struct {
680 const glsl_type *t;
681 unsigned l;
682 char nul;
683 } hash_key = {
684 key->fields.array,
685 key->length,
686 '\0'
687 };
688
689 return hash_table_string_hash(& hash_key);
690 }
691
692
693 const glsl_type *
694 glsl_type::get_array_instance(void *ctx, const glsl_type *base,
695 unsigned array_size)
696 {
697 const glsl_type key(ctx, base, array_size);
698
699 if (array_types == NULL) {
700 array_types = hash_table_ctor(64, array_key_hash, array_key_compare);
701 }
702
703 const glsl_type *t = (glsl_type *) hash_table_find(array_types, & key);
704 if (t == NULL) {
705 t = new(ctx) glsl_type(ctx, base, array_size);
706
707 hash_table_insert(array_types, (void *) t, t);
708 }
709
710 assert(t->base_type == GLSL_TYPE_ARRAY);
711 assert(t->length == array_size);
712 assert(t->fields.array == base);
713
714 return t;
715 }
716
717
718 const glsl_type *
719 glsl_type::field_type(const char *name) const
720 {
721 if (this->base_type != GLSL_TYPE_STRUCT)
722 return error_type;
723
724 for (unsigned i = 0; i < this->length; i++) {
725 if (strcmp(name, this->fields.structure[i].name) == 0)
726 return this->fields.structure[i].type;
727 }
728
729 return error_type;
730 }
731
732
733 int
734 glsl_type::field_index(const char *name) const
735 {
736 if (this->base_type != GLSL_TYPE_STRUCT)
737 return -1;
738
739 for (unsigned i = 0; i < this->length; i++) {
740 if (strcmp(name, this->fields.structure[i].name) == 0)
741 return i;
742 }
743
744 return -1;
745 }
746
747
748 unsigned
749 glsl_type::component_slots() const
750 {
751 switch (this->base_type) {
752 case GLSL_TYPE_UINT:
753 case GLSL_TYPE_INT:
754 case GLSL_TYPE_FLOAT:
755 case GLSL_TYPE_BOOL:
756 return this->components();
757
758 case GLSL_TYPE_STRUCT: {
759 unsigned size = 0;
760
761 for (unsigned i = 0; i < this->length; i++)
762 size += this->fields.structure[i].type->component_slots();
763
764 return size;
765 }
766
767 case GLSL_TYPE_ARRAY:
768 return this->length * this->fields.array->component_slots();
769
770 default:
771 return 0;
772 }
773 }