glsl: Extend ir_constant::zero to handle more types.
[mesa.git] / src / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "ir_visitor.h"
27 #include "glsl_types.h"
28
29 ir_rvalue::ir_rvalue()
30 {
31 this->type = glsl_type::error_type;
32 }
33
34 bool ir_rvalue::is_zero() const
35 {
36 return false;
37 }
38
39 bool ir_rvalue::is_one() const
40 {
41 return false;
42 }
43
44 bool ir_rvalue::is_negative_one() const
45 {
46 return false;
47 }
48
49 /**
50 * Modify the swizzle make to move one component to another
51 *
52 * \param m IR swizzle to be modified
53 * \param from Component in the RHS that is to be swizzled
54 * \param to Desired swizzle location of \c from
55 */
56 static void
57 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
58 {
59 switch (to) {
60 case 0: m.x = from; break;
61 case 1: m.y = from; break;
62 case 2: m.z = from; break;
63 case 3: m.w = from; break;
64 default: assert(!"Should not get here.");
65 }
66
67 m.num_components = MAX2(m.num_components, (to + 1));
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 }
99
100 this->write_mask = write_mask;
101 lhs = swiz->val;
102
103 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
104 swizzled = true;
105 }
106
107 if (swizzled) {
108 /* Now, RHS channels line up with the LHS writemask. Collapse it
109 * to just the channels that will be written.
110 */
111 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
112 int rhs_chan = 0;
113 for (int i = 0; i < 4; i++) {
114 if (write_mask & (1 << i))
115 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
116 }
117 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
118 }
119
120 assert((lhs == NULL) || lhs->as_dereference());
121
122 this->lhs = (ir_dereference *) lhs;
123 }
124
125 ir_variable *
126 ir_assignment::whole_variable_written()
127 {
128 ir_variable *v = this->lhs->whole_variable_referenced();
129
130 if (v == NULL)
131 return NULL;
132
133 if (v->type->is_scalar())
134 return v;
135
136 if (v->type->is_vector()) {
137 const unsigned mask = (1U << v->type->vector_elements) - 1;
138
139 if (mask != this->write_mask)
140 return NULL;
141 }
142
143 /* Either all the vector components are assigned or the variable is some
144 * composite type (and the whole thing is assigned.
145 */
146 return v;
147 }
148
149 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
150 ir_rvalue *condition, unsigned write_mask)
151 {
152 this->ir_type = ir_type_assignment;
153 this->condition = condition;
154 this->rhs = rhs;
155 this->lhs = lhs;
156 this->write_mask = write_mask;
157
158 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
159 int lhs_components = 0;
160 for (int i = 0; i < 4; i++) {
161 if (write_mask & (1 << i))
162 lhs_components++;
163 }
164
165 assert(lhs_components == this->rhs->type->vector_elements);
166 }
167 }
168
169 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
170 ir_rvalue *condition)
171 {
172 this->ir_type = ir_type_assignment;
173 this->condition = condition;
174 this->rhs = rhs;
175
176 /* If the RHS is a vector type, assume that all components of the vector
177 * type are being written to the LHS. The write mask comes from the RHS
178 * because we can have a case where the LHS is a vec4 and the RHS is a
179 * vec3. In that case, the assignment is:
180 *
181 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
182 */
183 if (rhs->type->is_vector())
184 this->write_mask = (1U << rhs->type->vector_elements) - 1;
185 else if (rhs->type->is_scalar())
186 this->write_mask = 1;
187 else
188 this->write_mask = 0;
189
190 this->set_lhs(lhs);
191 }
192
193
194 ir_expression::ir_expression(int op, const struct glsl_type *type,
195 ir_rvalue *op0)
196 {
197 assert(get_num_operands(ir_expression_operation(op)) == 1);
198 this->ir_type = ir_type_expression;
199 this->type = type;
200 this->operation = ir_expression_operation(op);
201 this->operands[0] = op0;
202 this->operands[1] = NULL;
203 this->operands[2] = NULL;
204 this->operands[3] = NULL;
205 }
206
207 ir_expression::ir_expression(int op, const struct glsl_type *type,
208 ir_rvalue *op0, ir_rvalue *op1)
209 {
210 assert(((op1 == NULL) && (get_num_operands(ir_expression_operation(op)) == 1))
211 || (get_num_operands(ir_expression_operation(op)) == 2));
212 this->ir_type = ir_type_expression;
213 this->type = type;
214 this->operation = ir_expression_operation(op);
215 this->operands[0] = op0;
216 this->operands[1] = op1;
217 this->operands[2] = NULL;
218 this->operands[3] = NULL;
219 }
220
221 ir_expression::ir_expression(int op, const struct glsl_type *type,
222 ir_rvalue *op0, ir_rvalue *op1,
223 ir_rvalue *op2, ir_rvalue *op3)
224 {
225 this->ir_type = ir_type_expression;
226 this->type = type;
227 this->operation = ir_expression_operation(op);
228 this->operands[0] = op0;
229 this->operands[1] = op1;
230 this->operands[2] = op2;
231 this->operands[3] = op3;
232 }
233
234 ir_expression::ir_expression(int op, ir_rvalue *op0)
235 {
236 this->ir_type = ir_type_expression;
237
238 this->operation = ir_expression_operation(op);
239 this->operands[0] = op0;
240 this->operands[1] = NULL;
241 this->operands[2] = NULL;
242 this->operands[3] = NULL;
243
244 assert(op <= ir_last_unop);
245
246 switch (this->operation) {
247 case ir_unop_bit_not:
248 case ir_unop_logic_not:
249 case ir_unop_neg:
250 case ir_unop_abs:
251 case ir_unop_sign:
252 case ir_unop_rcp:
253 case ir_unop_rsq:
254 case ir_unop_sqrt:
255 case ir_unop_exp:
256 case ir_unop_log:
257 case ir_unop_exp2:
258 case ir_unop_log2:
259 case ir_unop_trunc:
260 case ir_unop_ceil:
261 case ir_unop_floor:
262 case ir_unop_fract:
263 case ir_unop_round_even:
264 case ir_unop_sin:
265 case ir_unop_cos:
266 case ir_unop_sin_reduced:
267 case ir_unop_cos_reduced:
268 case ir_unop_dFdx:
269 case ir_unop_dFdy:
270 this->type = op0->type;
271 break;
272
273 case ir_unop_f2i:
274 case ir_unop_b2i:
275 case ir_unop_u2i:
276 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
277 op0->type->vector_elements, 1);
278 break;
279
280 case ir_unop_b2f:
281 case ir_unop_i2f:
282 case ir_unop_u2f:
283 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
284 op0->type->vector_elements, 1);
285 break;
286
287 case ir_unop_f2b:
288 case ir_unop_i2b:
289 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
290 op0->type->vector_elements, 1);
291 break;
292
293 case ir_unop_i2u:
294 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
295 op0->type->vector_elements, 1);
296 break;
297
298 case ir_unop_noise:
299 this->type = glsl_type::float_type;
300 break;
301
302 case ir_unop_any:
303 this->type = glsl_type::bool_type;
304 break;
305
306 default:
307 assert(!"not reached: missing automatic type setup for ir_expression");
308 this->type = op0->type;
309 break;
310 }
311 }
312
313 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
314 {
315 this->ir_type = ir_type_expression;
316
317 this->operation = ir_expression_operation(op);
318 this->operands[0] = op0;
319 this->operands[1] = op1;
320 this->operands[2] = NULL;
321 this->operands[3] = NULL;
322
323 assert(op > ir_last_unop);
324
325 switch (this->operation) {
326 case ir_binop_all_equal:
327 case ir_binop_any_nequal:
328 this->type = glsl_type::bool_type;
329 break;
330
331 case ir_binop_add:
332 case ir_binop_sub:
333 case ir_binop_min:
334 case ir_binop_max:
335 case ir_binop_pow:
336 case ir_binop_mul:
337 case ir_binop_div:
338 case ir_binop_mod:
339 if (op0->type->is_scalar()) {
340 this->type = op1->type;
341 } else if (op1->type->is_scalar()) {
342 this->type = op0->type;
343 } else {
344 /* FINISHME: matrix types */
345 assert(!op0->type->is_matrix() && !op1->type->is_matrix());
346 assert(op0->type == op1->type);
347 this->type = op0->type;
348 }
349 break;
350
351 case ir_binop_logic_and:
352 case ir_binop_logic_xor:
353 case ir_binop_logic_or:
354 case ir_binop_bit_and:
355 case ir_binop_bit_xor:
356 case ir_binop_bit_or:
357 if (op0->type->is_scalar()) {
358 this->type = op1->type;
359 } else if (op1->type->is_scalar()) {
360 this->type = op0->type;
361 }
362 break;
363
364 case ir_binop_equal:
365 case ir_binop_nequal:
366 case ir_binop_lequal:
367 case ir_binop_gequal:
368 case ir_binop_less:
369 case ir_binop_greater:
370 assert(op0->type == op1->type);
371 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
372 op0->type->vector_elements, 1);
373 break;
374
375 case ir_binop_dot:
376 this->type = glsl_type::float_type;
377 break;
378
379 case ir_binop_lshift:
380 case ir_binop_rshift:
381 this->type = op0->type;
382 break;
383
384 default:
385 assert(!"not reached: missing automatic type setup for ir_expression");
386 this->type = glsl_type::float_type;
387 }
388 }
389
390 unsigned int
391 ir_expression::get_num_operands(ir_expression_operation op)
392 {
393 assert(op <= ir_last_opcode);
394
395 if (op <= ir_last_unop)
396 return 1;
397
398 if (op <= ir_last_binop)
399 return 2;
400
401 if (op == ir_quadop_vector)
402 return 4;
403
404 assert(false);
405 return 0;
406 }
407
408 static const char *const operator_strs[] = {
409 "~",
410 "!",
411 "neg",
412 "abs",
413 "sign",
414 "rcp",
415 "rsq",
416 "sqrt",
417 "exp",
418 "log",
419 "exp2",
420 "log2",
421 "f2i",
422 "i2f",
423 "f2b",
424 "b2f",
425 "i2b",
426 "b2i",
427 "u2f",
428 "i2u",
429 "u2i",
430 "any",
431 "trunc",
432 "ceil",
433 "floor",
434 "fract",
435 "round_even",
436 "sin",
437 "cos",
438 "sin_reduced",
439 "cos_reduced",
440 "dFdx",
441 "dFdy",
442 "noise",
443 "+",
444 "-",
445 "*",
446 "/",
447 "%",
448 "<",
449 ">",
450 "<=",
451 ">=",
452 "==",
453 "!=",
454 "all_equal",
455 "any_nequal",
456 "<<",
457 ">>",
458 "&",
459 "^",
460 "|",
461 "&&",
462 "^^",
463 "||",
464 "dot",
465 "min",
466 "max",
467 "pow",
468 "vector",
469 };
470
471 const char *ir_expression::operator_string(ir_expression_operation op)
472 {
473 assert((unsigned int) op < Elements(operator_strs));
474 assert(Elements(operator_strs) == (ir_quadop_vector + 1));
475 return operator_strs[op];
476 }
477
478 const char *ir_expression::operator_string()
479 {
480 return operator_string(this->operation);
481 }
482
483 const char*
484 depth_layout_string(ir_depth_layout layout)
485 {
486 switch(layout) {
487 case ir_depth_layout_none: return "";
488 case ir_depth_layout_any: return "depth_any";
489 case ir_depth_layout_greater: return "depth_greater";
490 case ir_depth_layout_less: return "depth_less";
491 case ir_depth_layout_unchanged: return "depth_unchanged";
492
493 default:
494 assert(0);
495 return "";
496 }
497 }
498
499 ir_expression_operation
500 ir_expression::get_operator(const char *str)
501 {
502 const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
503 for (int op = 0; op < operator_count; op++) {
504 if (strcmp(str, operator_strs[op]) == 0)
505 return (ir_expression_operation) op;
506 }
507 return (ir_expression_operation) -1;
508 }
509
510 ir_constant::ir_constant()
511 {
512 this->ir_type = ir_type_constant;
513 }
514
515 ir_constant::ir_constant(const struct glsl_type *type,
516 const ir_constant_data *data)
517 {
518 assert((type->base_type >= GLSL_TYPE_UINT)
519 && (type->base_type <= GLSL_TYPE_BOOL));
520
521 this->ir_type = ir_type_constant;
522 this->type = type;
523 memcpy(& this->value, data, sizeof(this->value));
524 }
525
526 ir_constant::ir_constant(float f)
527 {
528 this->ir_type = ir_type_constant;
529 this->type = glsl_type::float_type;
530 this->value.f[0] = f;
531 for (int i = 1; i < 16; i++) {
532 this->value.f[i] = 0;
533 }
534 }
535
536 ir_constant::ir_constant(unsigned int u)
537 {
538 this->ir_type = ir_type_constant;
539 this->type = glsl_type::uint_type;
540 this->value.u[0] = u;
541 for (int i = 1; i < 16; i++) {
542 this->value.u[i] = 0;
543 }
544 }
545
546 ir_constant::ir_constant(int i)
547 {
548 this->ir_type = ir_type_constant;
549 this->type = glsl_type::int_type;
550 this->value.i[0] = i;
551 for (int i = 1; i < 16; i++) {
552 this->value.i[i] = 0;
553 }
554 }
555
556 ir_constant::ir_constant(bool b)
557 {
558 this->ir_type = ir_type_constant;
559 this->type = glsl_type::bool_type;
560 this->value.b[0] = b;
561 for (int i = 1; i < 16; i++) {
562 this->value.b[i] = false;
563 }
564 }
565
566 ir_constant::ir_constant(const ir_constant *c, unsigned i)
567 {
568 this->ir_type = ir_type_constant;
569 this->type = c->type->get_base_type();
570
571 switch (this->type->base_type) {
572 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
573 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
574 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
575 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
576 default: assert(!"Should not get here."); break;
577 }
578 }
579
580 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
581 {
582 this->ir_type = ir_type_constant;
583 this->type = type;
584
585 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
586 || type->is_record() || type->is_array());
587
588 if (type->is_array()) {
589 this->array_elements = ralloc_array(this, ir_constant *, type->length);
590 unsigned i = 0;
591 foreach_list(node, value_list) {
592 ir_constant *value = (ir_constant *) node;
593 assert(value->as_constant() != NULL);
594
595 this->array_elements[i++] = value;
596 }
597 return;
598 }
599
600 /* If the constant is a record, the types of each of the entries in
601 * value_list must be a 1-for-1 match with the structure components. Each
602 * entry must also be a constant. Just move the nodes from the value_list
603 * to the list in the ir_constant.
604 */
605 /* FINISHME: Should there be some type checking and / or assertions here? */
606 /* FINISHME: Should the new constant take ownership of the nodes from
607 * FINISHME: value_list, or should it make copies?
608 */
609 if (type->is_record()) {
610 value_list->move_nodes_to(& this->components);
611 return;
612 }
613
614 for (unsigned i = 0; i < 16; i++) {
615 this->value.u[i] = 0;
616 }
617
618 ir_constant *value = (ir_constant *) (value_list->head);
619
620 /* Constructors with exactly one scalar argument are special for vectors
621 * and matrices. For vectors, the scalar value is replicated to fill all
622 * the components. For matrices, the scalar fills the components of the
623 * diagonal while the rest is filled with 0.
624 */
625 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
626 if (type->is_matrix()) {
627 /* Matrix - fill diagonal (rest is already set to 0) */
628 assert(type->base_type == GLSL_TYPE_FLOAT);
629 for (unsigned i = 0; i < type->matrix_columns; i++)
630 this->value.f[i * type->vector_elements + i] = value->value.f[0];
631 } else {
632 /* Vector or scalar - fill all components */
633 switch (type->base_type) {
634 case GLSL_TYPE_UINT:
635 case GLSL_TYPE_INT:
636 for (unsigned i = 0; i < type->components(); i++)
637 this->value.u[i] = value->value.u[0];
638 break;
639 case GLSL_TYPE_FLOAT:
640 for (unsigned i = 0; i < type->components(); i++)
641 this->value.f[i] = value->value.f[0];
642 break;
643 case GLSL_TYPE_BOOL:
644 for (unsigned i = 0; i < type->components(); i++)
645 this->value.b[i] = value->value.b[0];
646 break;
647 default:
648 assert(!"Should not get here.");
649 break;
650 }
651 }
652 return;
653 }
654
655 if (type->is_matrix() && value->type->is_matrix()) {
656 assert(value->next->is_tail_sentinel());
657
658 /* From section 5.4.2 of the GLSL 1.20 spec:
659 * "If a matrix is constructed from a matrix, then each component
660 * (column i, row j) in the result that has a corresponding component
661 * (column i, row j) in the argument will be initialized from there."
662 */
663 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
664 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
665 for (unsigned i = 0; i < cols; i++) {
666 for (unsigned j = 0; j < rows; j++) {
667 const unsigned src = i * value->type->vector_elements + j;
668 const unsigned dst = i * type->vector_elements + j;
669 this->value.f[dst] = value->value.f[src];
670 }
671 }
672
673 /* "All other components will be initialized to the identity matrix." */
674 for (unsigned i = cols; i < type->matrix_columns; i++)
675 this->value.f[i * type->vector_elements + i] = 1.0;
676
677 return;
678 }
679
680 /* Use each component from each entry in the value_list to initialize one
681 * component of the constant being constructed.
682 */
683 for (unsigned i = 0; i < type->components(); /* empty */) {
684 assert(value->as_constant() != NULL);
685 assert(!value->is_tail_sentinel());
686
687 for (unsigned j = 0; j < value->type->components(); j++) {
688 switch (type->base_type) {
689 case GLSL_TYPE_UINT:
690 this->value.u[i] = value->get_uint_component(j);
691 break;
692 case GLSL_TYPE_INT:
693 this->value.i[i] = value->get_int_component(j);
694 break;
695 case GLSL_TYPE_FLOAT:
696 this->value.f[i] = value->get_float_component(j);
697 break;
698 case GLSL_TYPE_BOOL:
699 this->value.b[i] = value->get_bool_component(j);
700 break;
701 default:
702 /* FINISHME: What to do? Exceptions are not the answer.
703 */
704 break;
705 }
706
707 i++;
708 if (i >= type->components())
709 break;
710 }
711
712 value = (ir_constant *) value->next;
713 }
714 }
715
716 ir_constant *
717 ir_constant::zero(void *mem_ctx, const glsl_type *type)
718 {
719 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
720 || type->is_record() || type->is_array());
721
722 ir_constant *c = new(mem_ctx) ir_constant;
723 c->type = type;
724 memset(&c->value, 0, sizeof(c->value));
725
726 if (type->is_array()) {
727 c->array_elements = ralloc_array(c, ir_constant *, type->length);
728
729 for (unsigned i = 0; i < type->length; i++)
730 c->array_elements[i] = ir_constant::zero(c, type->element_type());
731 }
732
733 if (type->is_record()) {
734 for (unsigned i = 0; i < type->length; i++) {
735 ir_constant *comp = ir_constant::zero(mem_ctx, type->fields.structure[i].type);
736 c->components.push_tail(comp);
737 }
738 }
739
740 return c;
741 }
742
743 bool
744 ir_constant::get_bool_component(unsigned i) const
745 {
746 switch (this->type->base_type) {
747 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
748 case GLSL_TYPE_INT: return this->value.i[i] != 0;
749 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
750 case GLSL_TYPE_BOOL: return this->value.b[i];
751 default: assert(!"Should not get here."); break;
752 }
753
754 /* Must return something to make the compiler happy. This is clearly an
755 * error case.
756 */
757 return false;
758 }
759
760 float
761 ir_constant::get_float_component(unsigned i) const
762 {
763 switch (this->type->base_type) {
764 case GLSL_TYPE_UINT: return (float) this->value.u[i];
765 case GLSL_TYPE_INT: return (float) this->value.i[i];
766 case GLSL_TYPE_FLOAT: return this->value.f[i];
767 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
768 default: assert(!"Should not get here."); break;
769 }
770
771 /* Must return something to make the compiler happy. This is clearly an
772 * error case.
773 */
774 return 0.0;
775 }
776
777 int
778 ir_constant::get_int_component(unsigned i) const
779 {
780 switch (this->type->base_type) {
781 case GLSL_TYPE_UINT: return this->value.u[i];
782 case GLSL_TYPE_INT: return this->value.i[i];
783 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
784 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
785 default: assert(!"Should not get here."); break;
786 }
787
788 /* Must return something to make the compiler happy. This is clearly an
789 * error case.
790 */
791 return 0;
792 }
793
794 unsigned
795 ir_constant::get_uint_component(unsigned i) const
796 {
797 switch (this->type->base_type) {
798 case GLSL_TYPE_UINT: return this->value.u[i];
799 case GLSL_TYPE_INT: return this->value.i[i];
800 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
801 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
802 default: assert(!"Should not get here."); break;
803 }
804
805 /* Must return something to make the compiler happy. This is clearly an
806 * error case.
807 */
808 return 0;
809 }
810
811 ir_constant *
812 ir_constant::get_array_element(unsigned i) const
813 {
814 assert(this->type->is_array());
815
816 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
817 *
818 * "Behavior is undefined if a shader subscripts an array with an index
819 * less than 0 or greater than or equal to the size the array was
820 * declared with."
821 *
822 * Most out-of-bounds accesses are removed before things could get this far.
823 * There are cases where non-constant array index values can get constant
824 * folded.
825 */
826 if (int(i) < 0)
827 i = 0;
828 else if (i >= this->type->length)
829 i = this->type->length - 1;
830
831 return array_elements[i];
832 }
833
834 ir_constant *
835 ir_constant::get_record_field(const char *name)
836 {
837 int idx = this->type->field_index(name);
838
839 if (idx < 0)
840 return NULL;
841
842 if (this->components.is_empty())
843 return NULL;
844
845 exec_node *node = this->components.head;
846 for (int i = 0; i < idx; i++) {
847 node = node->next;
848
849 /* If the end of the list is encountered before the element matching the
850 * requested field is found, return NULL.
851 */
852 if (node->is_tail_sentinel())
853 return NULL;
854 }
855
856 return (ir_constant *) node;
857 }
858
859
860 bool
861 ir_constant::has_value(const ir_constant *c) const
862 {
863 if (this->type != c->type)
864 return false;
865
866 if (this->type->is_array()) {
867 for (unsigned i = 0; i < this->type->length; i++) {
868 if (!this->array_elements[i]->has_value(c->array_elements[i]))
869 return false;
870 }
871 return true;
872 }
873
874 if (this->type->base_type == GLSL_TYPE_STRUCT) {
875 const exec_node *a_node = this->components.head;
876 const exec_node *b_node = c->components.head;
877
878 while (!a_node->is_tail_sentinel()) {
879 assert(!b_node->is_tail_sentinel());
880
881 const ir_constant *const a_field = (ir_constant *) a_node;
882 const ir_constant *const b_field = (ir_constant *) b_node;
883
884 if (!a_field->has_value(b_field))
885 return false;
886
887 a_node = a_node->next;
888 b_node = b_node->next;
889 }
890
891 return true;
892 }
893
894 for (unsigned i = 0; i < this->type->components(); i++) {
895 switch (this->type->base_type) {
896 case GLSL_TYPE_UINT:
897 if (this->value.u[i] != c->value.u[i])
898 return false;
899 break;
900 case GLSL_TYPE_INT:
901 if (this->value.i[i] != c->value.i[i])
902 return false;
903 break;
904 case GLSL_TYPE_FLOAT:
905 if (this->value.f[i] != c->value.f[i])
906 return false;
907 break;
908 case GLSL_TYPE_BOOL:
909 if (this->value.b[i] != c->value.b[i])
910 return false;
911 break;
912 default:
913 assert(!"Should not get here.");
914 return false;
915 }
916 }
917
918 return true;
919 }
920
921 bool
922 ir_constant::is_zero() const
923 {
924 if (!this->type->is_scalar() && !this->type->is_vector())
925 return false;
926
927 for (unsigned c = 0; c < this->type->vector_elements; c++) {
928 switch (this->type->base_type) {
929 case GLSL_TYPE_FLOAT:
930 if (this->value.f[c] != 0.0)
931 return false;
932 break;
933 case GLSL_TYPE_INT:
934 if (this->value.i[c] != 0)
935 return false;
936 break;
937 case GLSL_TYPE_UINT:
938 if (this->value.u[c] != 0)
939 return false;
940 break;
941 case GLSL_TYPE_BOOL:
942 if (this->value.b[c] != false)
943 return false;
944 break;
945 default:
946 /* The only other base types are structures, arrays, and samplers.
947 * Samplers cannot be constants, and the others should have been
948 * filtered out above.
949 */
950 assert(!"Should not get here.");
951 return false;
952 }
953 }
954
955 return true;
956 }
957
958 bool
959 ir_constant::is_one() const
960 {
961 if (!this->type->is_scalar() && !this->type->is_vector())
962 return false;
963
964 for (unsigned c = 0; c < this->type->vector_elements; c++) {
965 switch (this->type->base_type) {
966 case GLSL_TYPE_FLOAT:
967 if (this->value.f[c] != 1.0)
968 return false;
969 break;
970 case GLSL_TYPE_INT:
971 if (this->value.i[c] != 1)
972 return false;
973 break;
974 case GLSL_TYPE_UINT:
975 if (this->value.u[c] != 1)
976 return false;
977 break;
978 case GLSL_TYPE_BOOL:
979 if (this->value.b[c] != true)
980 return false;
981 break;
982 default:
983 /* The only other base types are structures, arrays, and samplers.
984 * Samplers cannot be constants, and the others should have been
985 * filtered out above.
986 */
987 assert(!"Should not get here.");
988 return false;
989 }
990 }
991
992 return true;
993 }
994
995 bool
996 ir_constant::is_negative_one() const
997 {
998 if (!this->type->is_scalar() && !this->type->is_vector())
999 return false;
1000
1001 if (this->type->is_boolean())
1002 return false;
1003
1004 for (unsigned c = 0; c < this->type->vector_elements; c++) {
1005 switch (this->type->base_type) {
1006 case GLSL_TYPE_FLOAT:
1007 if (this->value.f[c] != -1.0)
1008 return false;
1009 break;
1010 case GLSL_TYPE_INT:
1011 if (this->value.i[c] != -1)
1012 return false;
1013 break;
1014 case GLSL_TYPE_UINT:
1015 if (int(this->value.u[c]) != -1)
1016 return false;
1017 break;
1018 default:
1019 /* The only other base types are structures, arrays, samplers, and
1020 * booleans. Samplers cannot be constants, and the others should
1021 * have been filtered out above.
1022 */
1023 assert(!"Should not get here.");
1024 return false;
1025 }
1026 }
1027
1028 return true;
1029 }
1030
1031 ir_loop::ir_loop()
1032 {
1033 this->ir_type = ir_type_loop;
1034 this->cmp = ir_unop_neg;
1035 this->from = NULL;
1036 this->to = NULL;
1037 this->increment = NULL;
1038 this->counter = NULL;
1039 }
1040
1041
1042 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1043 {
1044 assert(var != NULL);
1045
1046 this->ir_type = ir_type_dereference_variable;
1047 this->var = var;
1048 this->type = var->type;
1049 }
1050
1051
1052 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1053 ir_rvalue *array_index)
1054 {
1055 this->ir_type = ir_type_dereference_array;
1056 this->array_index = array_index;
1057 this->set_array(value);
1058 }
1059
1060
1061 ir_dereference_array::ir_dereference_array(ir_variable *var,
1062 ir_rvalue *array_index)
1063 {
1064 void *ctx = ralloc_parent(var);
1065
1066 this->ir_type = ir_type_dereference_array;
1067 this->array_index = array_index;
1068 this->set_array(new(ctx) ir_dereference_variable(var));
1069 }
1070
1071
1072 void
1073 ir_dereference_array::set_array(ir_rvalue *value)
1074 {
1075 assert(value != NULL);
1076
1077 this->array = value;
1078
1079 const glsl_type *const vt = this->array->type;
1080
1081 if (vt->is_array()) {
1082 type = vt->element_type();
1083 } else if (vt->is_matrix()) {
1084 type = vt->column_type();
1085 } else if (vt->is_vector()) {
1086 type = vt->get_base_type();
1087 }
1088 }
1089
1090
1091 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1092 const char *field)
1093 {
1094 assert(value != NULL);
1095
1096 this->ir_type = ir_type_dereference_record;
1097 this->record = value;
1098 this->field = ralloc_strdup(this, field);
1099 this->type = this->record->type->field_type(field);
1100 }
1101
1102
1103 ir_dereference_record::ir_dereference_record(ir_variable *var,
1104 const char *field)
1105 {
1106 void *ctx = ralloc_parent(var);
1107
1108 this->ir_type = ir_type_dereference_record;
1109 this->record = new(ctx) ir_dereference_variable(var);
1110 this->field = ralloc_strdup(this, field);
1111 this->type = this->record->type->field_type(field);
1112 }
1113
1114 bool
1115 ir_dereference::is_lvalue() const
1116 {
1117 ir_variable *var = this->variable_referenced();
1118
1119 /* Every l-value derference chain eventually ends in a variable.
1120 */
1121 if ((var == NULL) || var->read_only)
1122 return false;
1123
1124 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
1125 *
1126 * "Samplers cannot be treated as l-values; hence cannot be used
1127 * as out or inout function parameters, nor can they be
1128 * assigned into."
1129 */
1130 if (this->type->contains_sampler())
1131 return false;
1132
1133 return true;
1134 }
1135
1136
1137 const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txs" };
1138
1139 const char *ir_texture::opcode_string()
1140 {
1141 assert((unsigned int) op <=
1142 sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
1143 return tex_opcode_strs[op];
1144 }
1145
1146 ir_texture_opcode
1147 ir_texture::get_opcode(const char *str)
1148 {
1149 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1150 for (int op = 0; op < count; op++) {
1151 if (strcmp(str, tex_opcode_strs[op]) == 0)
1152 return (ir_texture_opcode) op;
1153 }
1154 return (ir_texture_opcode) -1;
1155 }
1156
1157
1158 void
1159 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1160 {
1161 assert(sampler != NULL);
1162 assert(type != NULL);
1163 this->sampler = sampler;
1164 this->type = type;
1165
1166 if (this->op == ir_txs) {
1167 assert(type->base_type == GLSL_TYPE_INT);
1168 } else {
1169 assert(sampler->type->sampler_type == (int) type->base_type);
1170 if (sampler->type->sampler_shadow)
1171 assert(type->vector_elements == 4 || type->vector_elements == 1);
1172 else
1173 assert(type->vector_elements == 4);
1174 }
1175 }
1176
1177
1178 void
1179 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1180 {
1181 assert((count >= 1) && (count <= 4));
1182
1183 memset(&this->mask, 0, sizeof(this->mask));
1184 this->mask.num_components = count;
1185
1186 unsigned dup_mask = 0;
1187 switch (count) {
1188 case 4:
1189 assert(comp[3] <= 3);
1190 dup_mask |= (1U << comp[3])
1191 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1192 this->mask.w = comp[3];
1193
1194 case 3:
1195 assert(comp[2] <= 3);
1196 dup_mask |= (1U << comp[2])
1197 & ((1U << comp[0]) | (1U << comp[1]));
1198 this->mask.z = comp[2];
1199
1200 case 2:
1201 assert(comp[1] <= 3);
1202 dup_mask |= (1U << comp[1])
1203 & ((1U << comp[0]));
1204 this->mask.y = comp[1];
1205
1206 case 1:
1207 assert(comp[0] <= 3);
1208 this->mask.x = comp[0];
1209 }
1210
1211 this->mask.has_duplicates = dup_mask != 0;
1212
1213 /* Based on the number of elements in the swizzle and the base type
1214 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1215 * generate the type of the resulting value.
1216 */
1217 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1218 }
1219
1220 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1221 unsigned w, unsigned count)
1222 : val(val)
1223 {
1224 const unsigned components[4] = { x, y, z, w };
1225 this->ir_type = ir_type_swizzle;
1226 this->init_mask(components, count);
1227 }
1228
1229 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1230 unsigned count)
1231 : val(val)
1232 {
1233 this->ir_type = ir_type_swizzle;
1234 this->init_mask(comp, count);
1235 }
1236
1237 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1238 {
1239 this->ir_type = ir_type_swizzle;
1240 this->val = val;
1241 this->mask = mask;
1242 this->type = glsl_type::get_instance(val->type->base_type,
1243 mask.num_components, 1);
1244 }
1245
1246 #define X 1
1247 #define R 5
1248 #define S 9
1249 #define I 13
1250
1251 ir_swizzle *
1252 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1253 {
1254 void *ctx = ralloc_parent(val);
1255
1256 /* For each possible swizzle character, this table encodes the value in
1257 * \c idx_map that represents the 0th element of the vector. For invalid
1258 * swizzle characters (e.g., 'k'), a special value is used that will allow
1259 * detection of errors.
1260 */
1261 static const unsigned char base_idx[26] = {
1262 /* a b c d e f g h i j k l m */
1263 R, R, I, I, I, I, R, I, I, I, I, I, I,
1264 /* n o p q r s t u v w x y z */
1265 I, I, S, S, R, S, S, I, I, X, X, X, X
1266 };
1267
1268 /* Each valid swizzle character has an entry in the previous table. This
1269 * table encodes the base index encoded in the previous table plus the actual
1270 * index of the swizzle character. When processing swizzles, the first
1271 * character in the string is indexed in the previous table. Each character
1272 * in the string is indexed in this table, and the value found there has the
1273 * value form the first table subtracted. The result must be on the range
1274 * [0,3].
1275 *
1276 * For example, the string "wzyx" will get X from the first table. Each of
1277 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1278 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1279 *
1280 * The string "wzrg" will get X from the first table. Each of the characters
1281 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1282 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1283 * [0,3], the error is detected.
1284 */
1285 static const unsigned char idx_map[26] = {
1286 /* a b c d e f g h i j k l m */
1287 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1288 /* n o p q r s t u v w x y z */
1289 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1290 };
1291
1292 int swiz_idx[4] = { 0, 0, 0, 0 };
1293 unsigned i;
1294
1295
1296 /* Validate the first character in the swizzle string and look up the base
1297 * index value as described above.
1298 */
1299 if ((str[0] < 'a') || (str[0] > 'z'))
1300 return NULL;
1301
1302 const unsigned base = base_idx[str[0] - 'a'];
1303
1304
1305 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1306 /* Validate the next character, and, as described above, convert it to a
1307 * swizzle index.
1308 */
1309 if ((str[i] < 'a') || (str[i] > 'z'))
1310 return NULL;
1311
1312 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1313 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1314 return NULL;
1315 }
1316
1317 if (str[i] != '\0')
1318 return NULL;
1319
1320 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1321 swiz_idx[3], i);
1322 }
1323
1324 #undef X
1325 #undef R
1326 #undef S
1327 #undef I
1328
1329 ir_variable *
1330 ir_swizzle::variable_referenced() const
1331 {
1332 return this->val->variable_referenced();
1333 }
1334
1335
1336 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1337 ir_variable_mode mode)
1338 : max_array_access(0), read_only(false), centroid(false), invariant(false),
1339 mode(mode), interpolation(INTERP_QUALIFIER_NONE)
1340 {
1341 this->ir_type = ir_type_variable;
1342 this->type = type;
1343 this->name = ralloc_strdup(this, name);
1344 this->explicit_location = false;
1345 this->has_initializer = false;
1346 this->location = -1;
1347 this->warn_extension = NULL;
1348 this->constant_value = NULL;
1349 this->constant_initializer = NULL;
1350 this->origin_upper_left = false;
1351 this->pixel_center_integer = false;
1352 this->depth_layout = ir_depth_layout_none;
1353 this->used = false;
1354
1355 if (type && type->base_type == GLSL_TYPE_SAMPLER)
1356 this->read_only = true;
1357 }
1358
1359
1360 const char *
1361 ir_variable::interpolation_string() const
1362 {
1363 switch (this->interpolation) {
1364 case INTERP_QUALIFIER_NONE: return "no";
1365 case INTERP_QUALIFIER_SMOOTH: return "smooth";
1366 case INTERP_QUALIFIER_FLAT: return "flat";
1367 case INTERP_QUALIFIER_NOPERSPECTIVE: return "noperspective";
1368 }
1369
1370 assert(!"Should not get here.");
1371 return "";
1372 }
1373
1374
1375 glsl_interp_qualifier
1376 ir_variable::determine_interpolation_mode(bool flat_shade)
1377 {
1378 if (this->interpolation != INTERP_QUALIFIER_NONE)
1379 return (glsl_interp_qualifier) this->interpolation;
1380 int location = this->location;
1381 bool is_gl_Color =
1382 location == FRAG_ATTRIB_COL0 || location == FRAG_ATTRIB_COL1;
1383 if (flat_shade && is_gl_Color)
1384 return INTERP_QUALIFIER_FLAT;
1385 else
1386 return INTERP_QUALIFIER_SMOOTH;
1387 }
1388
1389
1390 ir_function_signature::ir_function_signature(const glsl_type *return_type)
1391 : return_type(return_type), is_defined(false), _function(NULL)
1392 {
1393 this->ir_type = ir_type_function_signature;
1394 this->is_builtin = false;
1395 }
1396
1397
1398 static bool
1399 modes_match(unsigned a, unsigned b)
1400 {
1401 if (a == b)
1402 return true;
1403
1404 /* Accept "in" vs. "const in" */
1405 if ((a == ir_var_const_in && b == ir_var_in) ||
1406 (b == ir_var_const_in && a == ir_var_in))
1407 return true;
1408
1409 return false;
1410 }
1411
1412
1413 const char *
1414 ir_function_signature::qualifiers_match(exec_list *params)
1415 {
1416 exec_list_iterator iter_a = parameters.iterator();
1417 exec_list_iterator iter_b = params->iterator();
1418
1419 /* check that the qualifiers match. */
1420 while (iter_a.has_next()) {
1421 ir_variable *a = (ir_variable *)iter_a.get();
1422 ir_variable *b = (ir_variable *)iter_b.get();
1423
1424 if (a->read_only != b->read_only ||
1425 !modes_match(a->mode, b->mode) ||
1426 a->interpolation != b->interpolation ||
1427 a->centroid != b->centroid) {
1428
1429 /* parameter a's qualifiers don't match */
1430 return a->name;
1431 }
1432
1433 iter_a.next();
1434 iter_b.next();
1435 }
1436 return NULL;
1437 }
1438
1439
1440 void
1441 ir_function_signature::replace_parameters(exec_list *new_params)
1442 {
1443 /* Destroy all of the previous parameter information. If the previous
1444 * parameter information comes from the function prototype, it may either
1445 * specify incorrect parameter names or not have names at all.
1446 */
1447 foreach_iter(exec_list_iterator, iter, parameters) {
1448 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1449
1450 iter.remove();
1451 }
1452
1453 new_params->move_nodes_to(&parameters);
1454 }
1455
1456
1457 ir_function::ir_function(const char *name)
1458 {
1459 this->ir_type = ir_type_function;
1460 this->name = ralloc_strdup(this, name);
1461 }
1462
1463
1464 bool
1465 ir_function::has_user_signature()
1466 {
1467 foreach_list(n, &this->signatures) {
1468 ir_function_signature *const sig = (ir_function_signature *) n;
1469 if (!sig->is_builtin)
1470 return true;
1471 }
1472 return false;
1473 }
1474
1475
1476 ir_rvalue *
1477 ir_rvalue::error_value(void *mem_ctx)
1478 {
1479 ir_rvalue *v = new(mem_ctx) ir_rvalue;
1480
1481 v->type = glsl_type::error_type;
1482 return v;
1483 }
1484
1485
1486 void
1487 visit_exec_list(exec_list *list, ir_visitor *visitor)
1488 {
1489 foreach_iter(exec_list_iterator, iter, *list) {
1490 ((ir_instruction *)iter.get())->accept(visitor);
1491 }
1492 }
1493
1494
1495 static void
1496 steal_memory(ir_instruction *ir, void *new_ctx)
1497 {
1498 ir_variable *var = ir->as_variable();
1499 ir_constant *constant = ir->as_constant();
1500 if (var != NULL && var->constant_value != NULL)
1501 steal_memory(var->constant_value, ir);
1502
1503 if (var != NULL && var->constant_initializer != NULL)
1504 steal_memory(var->constant_initializer, ir);
1505
1506 /* The components of aggregate constants are not visited by the normal
1507 * visitor, so steal their values by hand.
1508 */
1509 if (constant != NULL) {
1510 if (constant->type->is_record()) {
1511 foreach_iter(exec_list_iterator, iter, constant->components) {
1512 ir_constant *field = (ir_constant *)iter.get();
1513 steal_memory(field, ir);
1514 }
1515 } else if (constant->type->is_array()) {
1516 for (unsigned int i = 0; i < constant->type->length; i++) {
1517 steal_memory(constant->array_elements[i], ir);
1518 }
1519 }
1520 }
1521
1522 ralloc_steal(new_ctx, ir);
1523 }
1524
1525
1526 void
1527 reparent_ir(exec_list *list, void *mem_ctx)
1528 {
1529 foreach_list(node, list) {
1530 visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
1531 }
1532 }
1533
1534
1535 static ir_rvalue *
1536 try_min_one(ir_rvalue *ir)
1537 {
1538 ir_expression *expr = ir->as_expression();
1539
1540 if (!expr || expr->operation != ir_binop_min)
1541 return NULL;
1542
1543 if (expr->operands[0]->is_one())
1544 return expr->operands[1];
1545
1546 if (expr->operands[1]->is_one())
1547 return expr->operands[0];
1548
1549 return NULL;
1550 }
1551
1552 static ir_rvalue *
1553 try_max_zero(ir_rvalue *ir)
1554 {
1555 ir_expression *expr = ir->as_expression();
1556
1557 if (!expr || expr->operation != ir_binop_max)
1558 return NULL;
1559
1560 if (expr->operands[0]->is_zero())
1561 return expr->operands[1];
1562
1563 if (expr->operands[1]->is_zero())
1564 return expr->operands[0];
1565
1566 return NULL;
1567 }
1568
1569 ir_rvalue *
1570 ir_rvalue::as_rvalue_to_saturate()
1571 {
1572 ir_expression *expr = this->as_expression();
1573
1574 if (!expr)
1575 return NULL;
1576
1577 ir_rvalue *max_zero = try_max_zero(expr);
1578 if (max_zero) {
1579 return try_min_one(max_zero);
1580 } else {
1581 ir_rvalue *min_one = try_min_one(expr);
1582 if (min_one) {
1583 return try_max_zero(min_one);
1584 }
1585 }
1586
1587 return NULL;
1588 }