glsl: Convert ir_call to be a statement rather than a value.
[mesa.git] / src / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "ir_visitor.h"
27 #include "glsl_types.h"
28
29 ir_rvalue::ir_rvalue()
30 {
31 this->type = glsl_type::error_type;
32 }
33
34 bool ir_rvalue::is_zero() const
35 {
36 return false;
37 }
38
39 bool ir_rvalue::is_one() const
40 {
41 return false;
42 }
43
44 bool ir_rvalue::is_negative_one() const
45 {
46 return false;
47 }
48
49 /**
50 * Modify the swizzle make to move one component to another
51 *
52 * \param m IR swizzle to be modified
53 * \param from Component in the RHS that is to be swizzled
54 * \param to Desired swizzle location of \c from
55 */
56 static void
57 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
58 {
59 switch (to) {
60 case 0: m.x = from; break;
61 case 1: m.y = from; break;
62 case 2: m.z = from; break;
63 case 3: m.w = from; break;
64 default: assert(!"Should not get here.");
65 }
66
67 m.num_components = MAX2(m.num_components, (to + 1));
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 }
99
100 this->write_mask = write_mask;
101 lhs = swiz->val;
102
103 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
104 swizzled = true;
105 }
106
107 if (swizzled) {
108 /* Now, RHS channels line up with the LHS writemask. Collapse it
109 * to just the channels that will be written.
110 */
111 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
112 int rhs_chan = 0;
113 for (int i = 0; i < 4; i++) {
114 if (write_mask & (1 << i))
115 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
116 }
117 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
118 }
119
120 assert((lhs == NULL) || lhs->as_dereference());
121
122 this->lhs = (ir_dereference *) lhs;
123 }
124
125 ir_variable *
126 ir_assignment::whole_variable_written()
127 {
128 ir_variable *v = this->lhs->whole_variable_referenced();
129
130 if (v == NULL)
131 return NULL;
132
133 if (v->type->is_scalar())
134 return v;
135
136 if (v->type->is_vector()) {
137 const unsigned mask = (1U << v->type->vector_elements) - 1;
138
139 if (mask != this->write_mask)
140 return NULL;
141 }
142
143 /* Either all the vector components are assigned or the variable is some
144 * composite type (and the whole thing is assigned.
145 */
146 return v;
147 }
148
149 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
150 ir_rvalue *condition, unsigned write_mask)
151 {
152 this->ir_type = ir_type_assignment;
153 this->condition = condition;
154 this->rhs = rhs;
155 this->lhs = lhs;
156 this->write_mask = write_mask;
157
158 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
159 int lhs_components = 0;
160 for (int i = 0; i < 4; i++) {
161 if (write_mask & (1 << i))
162 lhs_components++;
163 }
164
165 assert(lhs_components == this->rhs->type->vector_elements);
166 }
167 }
168
169 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
170 ir_rvalue *condition)
171 {
172 this->ir_type = ir_type_assignment;
173 this->condition = condition;
174 this->rhs = rhs;
175
176 /* If the RHS is a vector type, assume that all components of the vector
177 * type are being written to the LHS. The write mask comes from the RHS
178 * because we can have a case where the LHS is a vec4 and the RHS is a
179 * vec3. In that case, the assignment is:
180 *
181 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
182 */
183 if (rhs->type->is_vector())
184 this->write_mask = (1U << rhs->type->vector_elements) - 1;
185 else if (rhs->type->is_scalar())
186 this->write_mask = 1;
187 else
188 this->write_mask = 0;
189
190 this->set_lhs(lhs);
191 }
192
193
194 ir_expression::ir_expression(int op, const struct glsl_type *type,
195 ir_rvalue *op0)
196 {
197 assert(get_num_operands(ir_expression_operation(op)) == 1);
198 this->ir_type = ir_type_expression;
199 this->type = type;
200 this->operation = ir_expression_operation(op);
201 this->operands[0] = op0;
202 this->operands[1] = NULL;
203 this->operands[2] = NULL;
204 this->operands[3] = NULL;
205 }
206
207 ir_expression::ir_expression(int op, const struct glsl_type *type,
208 ir_rvalue *op0, ir_rvalue *op1)
209 {
210 assert(((op1 == NULL) && (get_num_operands(ir_expression_operation(op)) == 1))
211 || (get_num_operands(ir_expression_operation(op)) == 2));
212 this->ir_type = ir_type_expression;
213 this->type = type;
214 this->operation = ir_expression_operation(op);
215 this->operands[0] = op0;
216 this->operands[1] = op1;
217 this->operands[2] = NULL;
218 this->operands[3] = NULL;
219 }
220
221 ir_expression::ir_expression(int op, const struct glsl_type *type,
222 ir_rvalue *op0, ir_rvalue *op1,
223 ir_rvalue *op2, ir_rvalue *op3)
224 {
225 this->ir_type = ir_type_expression;
226 this->type = type;
227 this->operation = ir_expression_operation(op);
228 this->operands[0] = op0;
229 this->operands[1] = op1;
230 this->operands[2] = op2;
231 this->operands[3] = op3;
232 }
233
234 ir_expression::ir_expression(int op, ir_rvalue *op0)
235 {
236 this->ir_type = ir_type_expression;
237
238 this->operation = ir_expression_operation(op);
239 this->operands[0] = op0;
240 this->operands[1] = NULL;
241 this->operands[2] = NULL;
242 this->operands[3] = NULL;
243
244 assert(op <= ir_last_unop);
245
246 switch (this->operation) {
247 case ir_unop_bit_not:
248 case ir_unop_logic_not:
249 case ir_unop_neg:
250 case ir_unop_abs:
251 case ir_unop_sign:
252 case ir_unop_rcp:
253 case ir_unop_rsq:
254 case ir_unop_sqrt:
255 case ir_unop_exp:
256 case ir_unop_log:
257 case ir_unop_exp2:
258 case ir_unop_log2:
259 case ir_unop_trunc:
260 case ir_unop_ceil:
261 case ir_unop_floor:
262 case ir_unop_fract:
263 case ir_unop_round_even:
264 case ir_unop_sin:
265 case ir_unop_cos:
266 case ir_unop_sin_reduced:
267 case ir_unop_cos_reduced:
268 case ir_unop_dFdx:
269 case ir_unop_dFdy:
270 this->type = op0->type;
271 break;
272
273 case ir_unop_f2i:
274 case ir_unop_b2i:
275 case ir_unop_u2i:
276 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
277 op0->type->vector_elements, 1);
278 break;
279
280 case ir_unop_b2f:
281 case ir_unop_i2f:
282 case ir_unop_u2f:
283 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
284 op0->type->vector_elements, 1);
285 break;
286
287 case ir_unop_f2b:
288 case ir_unop_i2b:
289 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
290 op0->type->vector_elements, 1);
291 break;
292
293 case ir_unop_i2u:
294 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
295 op0->type->vector_elements, 1);
296 break;
297
298 case ir_unop_noise:
299 this->type = glsl_type::float_type;
300 break;
301
302 case ir_unop_any:
303 this->type = glsl_type::bool_type;
304 break;
305
306 default:
307 assert(!"not reached: missing automatic type setup for ir_expression");
308 this->type = op0->type;
309 break;
310 }
311 }
312
313 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
314 {
315 this->ir_type = ir_type_expression;
316
317 this->operation = ir_expression_operation(op);
318 this->operands[0] = op0;
319 this->operands[1] = op1;
320 this->operands[2] = NULL;
321 this->operands[3] = NULL;
322
323 assert(op > ir_last_unop);
324
325 switch (this->operation) {
326 case ir_binop_all_equal:
327 case ir_binop_any_nequal:
328 this->type = glsl_type::bool_type;
329 break;
330
331 case ir_binop_add:
332 case ir_binop_sub:
333 case ir_binop_min:
334 case ir_binop_max:
335 case ir_binop_pow:
336 case ir_binop_mul:
337 case ir_binop_div:
338 case ir_binop_mod:
339 if (op0->type->is_scalar()) {
340 this->type = op1->type;
341 } else if (op1->type->is_scalar()) {
342 this->type = op0->type;
343 } else {
344 /* FINISHME: matrix types */
345 assert(!op0->type->is_matrix() && !op1->type->is_matrix());
346 assert(op0->type == op1->type);
347 this->type = op0->type;
348 }
349 break;
350
351 case ir_binop_logic_and:
352 case ir_binop_logic_xor:
353 case ir_binop_logic_or:
354 case ir_binop_bit_and:
355 case ir_binop_bit_xor:
356 case ir_binop_bit_or:
357 if (op0->type->is_scalar()) {
358 this->type = op1->type;
359 } else if (op1->type->is_scalar()) {
360 this->type = op0->type;
361 }
362 break;
363
364 case ir_binop_equal:
365 case ir_binop_nequal:
366 case ir_binop_lequal:
367 case ir_binop_gequal:
368 case ir_binop_less:
369 case ir_binop_greater:
370 assert(op0->type == op1->type);
371 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
372 op0->type->vector_elements, 1);
373 break;
374
375 case ir_binop_dot:
376 this->type = glsl_type::float_type;
377 break;
378
379 case ir_binop_lshift:
380 case ir_binop_rshift:
381 this->type = op0->type;
382 break;
383
384 default:
385 assert(!"not reached: missing automatic type setup for ir_expression");
386 this->type = glsl_type::float_type;
387 }
388 }
389
390 unsigned int
391 ir_expression::get_num_operands(ir_expression_operation op)
392 {
393 assert(op <= ir_last_opcode);
394
395 if (op <= ir_last_unop)
396 return 1;
397
398 if (op <= ir_last_binop)
399 return 2;
400
401 if (op == ir_quadop_vector)
402 return 4;
403
404 assert(false);
405 return 0;
406 }
407
408 static const char *const operator_strs[] = {
409 "~",
410 "!",
411 "neg",
412 "abs",
413 "sign",
414 "rcp",
415 "rsq",
416 "sqrt",
417 "exp",
418 "log",
419 "exp2",
420 "log2",
421 "f2i",
422 "i2f",
423 "f2b",
424 "b2f",
425 "i2b",
426 "b2i",
427 "u2f",
428 "i2u",
429 "u2i",
430 "any",
431 "trunc",
432 "ceil",
433 "floor",
434 "fract",
435 "round_even",
436 "sin",
437 "cos",
438 "sin_reduced",
439 "cos_reduced",
440 "dFdx",
441 "dFdy",
442 "noise",
443 "+",
444 "-",
445 "*",
446 "/",
447 "%",
448 "<",
449 ">",
450 "<=",
451 ">=",
452 "==",
453 "!=",
454 "all_equal",
455 "any_nequal",
456 "<<",
457 ">>",
458 "&",
459 "^",
460 "|",
461 "&&",
462 "^^",
463 "||",
464 "dot",
465 "min",
466 "max",
467 "pow",
468 "vector",
469 };
470
471 const char *ir_expression::operator_string(ir_expression_operation op)
472 {
473 assert((unsigned int) op < Elements(operator_strs));
474 assert(Elements(operator_strs) == (ir_quadop_vector + 1));
475 return operator_strs[op];
476 }
477
478 const char *ir_expression::operator_string()
479 {
480 return operator_string(this->operation);
481 }
482
483 const char*
484 depth_layout_string(ir_depth_layout layout)
485 {
486 switch(layout) {
487 case ir_depth_layout_none: return "";
488 case ir_depth_layout_any: return "depth_any";
489 case ir_depth_layout_greater: return "depth_greater";
490 case ir_depth_layout_less: return "depth_less";
491 case ir_depth_layout_unchanged: return "depth_unchanged";
492
493 default:
494 assert(0);
495 return "";
496 }
497 }
498
499 ir_expression_operation
500 ir_expression::get_operator(const char *str)
501 {
502 const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
503 for (int op = 0; op < operator_count; op++) {
504 if (strcmp(str, operator_strs[op]) == 0)
505 return (ir_expression_operation) op;
506 }
507 return (ir_expression_operation) -1;
508 }
509
510 ir_constant::ir_constant()
511 {
512 this->ir_type = ir_type_constant;
513 }
514
515 ir_constant::ir_constant(const struct glsl_type *type,
516 const ir_constant_data *data)
517 {
518 assert((type->base_type >= GLSL_TYPE_UINT)
519 && (type->base_type <= GLSL_TYPE_BOOL));
520
521 this->ir_type = ir_type_constant;
522 this->type = type;
523 memcpy(& this->value, data, sizeof(this->value));
524 }
525
526 ir_constant::ir_constant(float f)
527 {
528 this->ir_type = ir_type_constant;
529 this->type = glsl_type::float_type;
530 this->value.f[0] = f;
531 for (int i = 1; i < 16; i++) {
532 this->value.f[i] = 0;
533 }
534 }
535
536 ir_constant::ir_constant(unsigned int u)
537 {
538 this->ir_type = ir_type_constant;
539 this->type = glsl_type::uint_type;
540 this->value.u[0] = u;
541 for (int i = 1; i < 16; i++) {
542 this->value.u[i] = 0;
543 }
544 }
545
546 ir_constant::ir_constant(int i)
547 {
548 this->ir_type = ir_type_constant;
549 this->type = glsl_type::int_type;
550 this->value.i[0] = i;
551 for (int i = 1; i < 16; i++) {
552 this->value.i[i] = 0;
553 }
554 }
555
556 ir_constant::ir_constant(bool b)
557 {
558 this->ir_type = ir_type_constant;
559 this->type = glsl_type::bool_type;
560 this->value.b[0] = b;
561 for (int i = 1; i < 16; i++) {
562 this->value.b[i] = false;
563 }
564 }
565
566 ir_constant::ir_constant(const ir_constant *c, unsigned i)
567 {
568 this->ir_type = ir_type_constant;
569 this->type = c->type->get_base_type();
570
571 switch (this->type->base_type) {
572 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
573 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
574 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
575 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
576 default: assert(!"Should not get here."); break;
577 }
578 }
579
580 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
581 {
582 this->ir_type = ir_type_constant;
583 this->type = type;
584
585 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
586 || type->is_record() || type->is_array());
587
588 if (type->is_array()) {
589 this->array_elements = ralloc_array(this, ir_constant *, type->length);
590 unsigned i = 0;
591 foreach_list(node, value_list) {
592 ir_constant *value = (ir_constant *) node;
593 assert(value->as_constant() != NULL);
594
595 this->array_elements[i++] = value;
596 }
597 return;
598 }
599
600 /* If the constant is a record, the types of each of the entries in
601 * value_list must be a 1-for-1 match with the structure components. Each
602 * entry must also be a constant. Just move the nodes from the value_list
603 * to the list in the ir_constant.
604 */
605 /* FINISHME: Should there be some type checking and / or assertions here? */
606 /* FINISHME: Should the new constant take ownership of the nodes from
607 * FINISHME: value_list, or should it make copies?
608 */
609 if (type->is_record()) {
610 value_list->move_nodes_to(& this->components);
611 return;
612 }
613
614 for (unsigned i = 0; i < 16; i++) {
615 this->value.u[i] = 0;
616 }
617
618 ir_constant *value = (ir_constant *) (value_list->head);
619
620 /* Constructors with exactly one scalar argument are special for vectors
621 * and matrices. For vectors, the scalar value is replicated to fill all
622 * the components. For matrices, the scalar fills the components of the
623 * diagonal while the rest is filled with 0.
624 */
625 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
626 if (type->is_matrix()) {
627 /* Matrix - fill diagonal (rest is already set to 0) */
628 assert(type->base_type == GLSL_TYPE_FLOAT);
629 for (unsigned i = 0; i < type->matrix_columns; i++)
630 this->value.f[i * type->vector_elements + i] = value->value.f[0];
631 } else {
632 /* Vector or scalar - fill all components */
633 switch (type->base_type) {
634 case GLSL_TYPE_UINT:
635 case GLSL_TYPE_INT:
636 for (unsigned i = 0; i < type->components(); i++)
637 this->value.u[i] = value->value.u[0];
638 break;
639 case GLSL_TYPE_FLOAT:
640 for (unsigned i = 0; i < type->components(); i++)
641 this->value.f[i] = value->value.f[0];
642 break;
643 case GLSL_TYPE_BOOL:
644 for (unsigned i = 0; i < type->components(); i++)
645 this->value.b[i] = value->value.b[0];
646 break;
647 default:
648 assert(!"Should not get here.");
649 break;
650 }
651 }
652 return;
653 }
654
655 if (type->is_matrix() && value->type->is_matrix()) {
656 assert(value->next->is_tail_sentinel());
657
658 /* From section 5.4.2 of the GLSL 1.20 spec:
659 * "If a matrix is constructed from a matrix, then each component
660 * (column i, row j) in the result that has a corresponding component
661 * (column i, row j) in the argument will be initialized from there."
662 */
663 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
664 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
665 for (unsigned i = 0; i < cols; i++) {
666 for (unsigned j = 0; j < rows; j++) {
667 const unsigned src = i * value->type->vector_elements + j;
668 const unsigned dst = i * type->vector_elements + j;
669 this->value.f[dst] = value->value.f[src];
670 }
671 }
672
673 /* "All other components will be initialized to the identity matrix." */
674 for (unsigned i = cols; i < type->matrix_columns; i++)
675 this->value.f[i * type->vector_elements + i] = 1.0;
676
677 return;
678 }
679
680 /* Use each component from each entry in the value_list to initialize one
681 * component of the constant being constructed.
682 */
683 for (unsigned i = 0; i < type->components(); /* empty */) {
684 assert(value->as_constant() != NULL);
685 assert(!value->is_tail_sentinel());
686
687 for (unsigned j = 0; j < value->type->components(); j++) {
688 switch (type->base_type) {
689 case GLSL_TYPE_UINT:
690 this->value.u[i] = value->get_uint_component(j);
691 break;
692 case GLSL_TYPE_INT:
693 this->value.i[i] = value->get_int_component(j);
694 break;
695 case GLSL_TYPE_FLOAT:
696 this->value.f[i] = value->get_float_component(j);
697 break;
698 case GLSL_TYPE_BOOL:
699 this->value.b[i] = value->get_bool_component(j);
700 break;
701 default:
702 /* FINISHME: What to do? Exceptions are not the answer.
703 */
704 break;
705 }
706
707 i++;
708 if (i >= type->components())
709 break;
710 }
711
712 value = (ir_constant *) value->next;
713 }
714 }
715
716 ir_constant *
717 ir_constant::zero(void *mem_ctx, const glsl_type *type)
718 {
719 assert(type->is_numeric() || type->is_boolean());
720
721 ir_constant *c = new(mem_ctx) ir_constant;
722 c->type = type;
723 memset(&c->value, 0, sizeof(c->value));
724
725 return c;
726 }
727
728 bool
729 ir_constant::get_bool_component(unsigned i) const
730 {
731 switch (this->type->base_type) {
732 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
733 case GLSL_TYPE_INT: return this->value.i[i] != 0;
734 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
735 case GLSL_TYPE_BOOL: return this->value.b[i];
736 default: assert(!"Should not get here."); break;
737 }
738
739 /* Must return something to make the compiler happy. This is clearly an
740 * error case.
741 */
742 return false;
743 }
744
745 float
746 ir_constant::get_float_component(unsigned i) const
747 {
748 switch (this->type->base_type) {
749 case GLSL_TYPE_UINT: return (float) this->value.u[i];
750 case GLSL_TYPE_INT: return (float) this->value.i[i];
751 case GLSL_TYPE_FLOAT: return this->value.f[i];
752 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
753 default: assert(!"Should not get here."); break;
754 }
755
756 /* Must return something to make the compiler happy. This is clearly an
757 * error case.
758 */
759 return 0.0;
760 }
761
762 int
763 ir_constant::get_int_component(unsigned i) const
764 {
765 switch (this->type->base_type) {
766 case GLSL_TYPE_UINT: return this->value.u[i];
767 case GLSL_TYPE_INT: return this->value.i[i];
768 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
769 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
770 default: assert(!"Should not get here."); break;
771 }
772
773 /* Must return something to make the compiler happy. This is clearly an
774 * error case.
775 */
776 return 0;
777 }
778
779 unsigned
780 ir_constant::get_uint_component(unsigned i) const
781 {
782 switch (this->type->base_type) {
783 case GLSL_TYPE_UINT: return this->value.u[i];
784 case GLSL_TYPE_INT: return this->value.i[i];
785 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
786 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
787 default: assert(!"Should not get here."); break;
788 }
789
790 /* Must return something to make the compiler happy. This is clearly an
791 * error case.
792 */
793 return 0;
794 }
795
796 ir_constant *
797 ir_constant::get_array_element(unsigned i) const
798 {
799 assert(this->type->is_array());
800
801 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
802 *
803 * "Behavior is undefined if a shader subscripts an array with an index
804 * less than 0 or greater than or equal to the size the array was
805 * declared with."
806 *
807 * Most out-of-bounds accesses are removed before things could get this far.
808 * There are cases where non-constant array index values can get constant
809 * folded.
810 */
811 if (int(i) < 0)
812 i = 0;
813 else if (i >= this->type->length)
814 i = this->type->length - 1;
815
816 return array_elements[i];
817 }
818
819 ir_constant *
820 ir_constant::get_record_field(const char *name)
821 {
822 int idx = this->type->field_index(name);
823
824 if (idx < 0)
825 return NULL;
826
827 if (this->components.is_empty())
828 return NULL;
829
830 exec_node *node = this->components.head;
831 for (int i = 0; i < idx; i++) {
832 node = node->next;
833
834 /* If the end of the list is encountered before the element matching the
835 * requested field is found, return NULL.
836 */
837 if (node->is_tail_sentinel())
838 return NULL;
839 }
840
841 return (ir_constant *) node;
842 }
843
844
845 bool
846 ir_constant::has_value(const ir_constant *c) const
847 {
848 if (this->type != c->type)
849 return false;
850
851 if (this->type->is_array()) {
852 for (unsigned i = 0; i < this->type->length; i++) {
853 if (!this->array_elements[i]->has_value(c->array_elements[i]))
854 return false;
855 }
856 return true;
857 }
858
859 if (this->type->base_type == GLSL_TYPE_STRUCT) {
860 const exec_node *a_node = this->components.head;
861 const exec_node *b_node = c->components.head;
862
863 while (!a_node->is_tail_sentinel()) {
864 assert(!b_node->is_tail_sentinel());
865
866 const ir_constant *const a_field = (ir_constant *) a_node;
867 const ir_constant *const b_field = (ir_constant *) b_node;
868
869 if (!a_field->has_value(b_field))
870 return false;
871
872 a_node = a_node->next;
873 b_node = b_node->next;
874 }
875
876 return true;
877 }
878
879 for (unsigned i = 0; i < this->type->components(); i++) {
880 switch (this->type->base_type) {
881 case GLSL_TYPE_UINT:
882 if (this->value.u[i] != c->value.u[i])
883 return false;
884 break;
885 case GLSL_TYPE_INT:
886 if (this->value.i[i] != c->value.i[i])
887 return false;
888 break;
889 case GLSL_TYPE_FLOAT:
890 if (this->value.f[i] != c->value.f[i])
891 return false;
892 break;
893 case GLSL_TYPE_BOOL:
894 if (this->value.b[i] != c->value.b[i])
895 return false;
896 break;
897 default:
898 assert(!"Should not get here.");
899 return false;
900 }
901 }
902
903 return true;
904 }
905
906 bool
907 ir_constant::is_zero() const
908 {
909 if (!this->type->is_scalar() && !this->type->is_vector())
910 return false;
911
912 for (unsigned c = 0; c < this->type->vector_elements; c++) {
913 switch (this->type->base_type) {
914 case GLSL_TYPE_FLOAT:
915 if (this->value.f[c] != 0.0)
916 return false;
917 break;
918 case GLSL_TYPE_INT:
919 if (this->value.i[c] != 0)
920 return false;
921 break;
922 case GLSL_TYPE_UINT:
923 if (this->value.u[c] != 0)
924 return false;
925 break;
926 case GLSL_TYPE_BOOL:
927 if (this->value.b[c] != false)
928 return false;
929 break;
930 default:
931 /* The only other base types are structures, arrays, and samplers.
932 * Samplers cannot be constants, and the others should have been
933 * filtered out above.
934 */
935 assert(!"Should not get here.");
936 return false;
937 }
938 }
939
940 return true;
941 }
942
943 bool
944 ir_constant::is_one() const
945 {
946 if (!this->type->is_scalar() && !this->type->is_vector())
947 return false;
948
949 for (unsigned c = 0; c < this->type->vector_elements; c++) {
950 switch (this->type->base_type) {
951 case GLSL_TYPE_FLOAT:
952 if (this->value.f[c] != 1.0)
953 return false;
954 break;
955 case GLSL_TYPE_INT:
956 if (this->value.i[c] != 1)
957 return false;
958 break;
959 case GLSL_TYPE_UINT:
960 if (this->value.u[c] != 1)
961 return false;
962 break;
963 case GLSL_TYPE_BOOL:
964 if (this->value.b[c] != true)
965 return false;
966 break;
967 default:
968 /* The only other base types are structures, arrays, and samplers.
969 * Samplers cannot be constants, and the others should have been
970 * filtered out above.
971 */
972 assert(!"Should not get here.");
973 return false;
974 }
975 }
976
977 return true;
978 }
979
980 bool
981 ir_constant::is_negative_one() const
982 {
983 if (!this->type->is_scalar() && !this->type->is_vector())
984 return false;
985
986 if (this->type->is_boolean())
987 return false;
988
989 for (unsigned c = 0; c < this->type->vector_elements; c++) {
990 switch (this->type->base_type) {
991 case GLSL_TYPE_FLOAT:
992 if (this->value.f[c] != -1.0)
993 return false;
994 break;
995 case GLSL_TYPE_INT:
996 if (this->value.i[c] != -1)
997 return false;
998 break;
999 case GLSL_TYPE_UINT:
1000 if (int(this->value.u[c]) != -1)
1001 return false;
1002 break;
1003 default:
1004 /* The only other base types are structures, arrays, samplers, and
1005 * booleans. Samplers cannot be constants, and the others should
1006 * have been filtered out above.
1007 */
1008 assert(!"Should not get here.");
1009 return false;
1010 }
1011 }
1012
1013 return true;
1014 }
1015
1016 ir_loop::ir_loop()
1017 {
1018 this->ir_type = ir_type_loop;
1019 this->cmp = ir_unop_neg;
1020 this->from = NULL;
1021 this->to = NULL;
1022 this->increment = NULL;
1023 this->counter = NULL;
1024 }
1025
1026
1027 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1028 {
1029 assert(var != NULL);
1030
1031 this->ir_type = ir_type_dereference_variable;
1032 this->var = var;
1033 this->type = var->type;
1034 }
1035
1036
1037 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1038 ir_rvalue *array_index)
1039 {
1040 this->ir_type = ir_type_dereference_array;
1041 this->array_index = array_index;
1042 this->set_array(value);
1043 }
1044
1045
1046 ir_dereference_array::ir_dereference_array(ir_variable *var,
1047 ir_rvalue *array_index)
1048 {
1049 void *ctx = ralloc_parent(var);
1050
1051 this->ir_type = ir_type_dereference_array;
1052 this->array_index = array_index;
1053 this->set_array(new(ctx) ir_dereference_variable(var));
1054 }
1055
1056
1057 void
1058 ir_dereference_array::set_array(ir_rvalue *value)
1059 {
1060 assert(value != NULL);
1061
1062 this->array = value;
1063
1064 const glsl_type *const vt = this->array->type;
1065
1066 if (vt->is_array()) {
1067 type = vt->element_type();
1068 } else if (vt->is_matrix()) {
1069 type = vt->column_type();
1070 } else if (vt->is_vector()) {
1071 type = vt->get_base_type();
1072 }
1073 }
1074
1075
1076 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1077 const char *field)
1078 {
1079 assert(value != NULL);
1080
1081 this->ir_type = ir_type_dereference_record;
1082 this->record = value;
1083 this->field = ralloc_strdup(this, field);
1084 this->type = this->record->type->field_type(field);
1085 }
1086
1087
1088 ir_dereference_record::ir_dereference_record(ir_variable *var,
1089 const char *field)
1090 {
1091 void *ctx = ralloc_parent(var);
1092
1093 this->ir_type = ir_type_dereference_record;
1094 this->record = new(ctx) ir_dereference_variable(var);
1095 this->field = ralloc_strdup(this, field);
1096 this->type = this->record->type->field_type(field);
1097 }
1098
1099 bool
1100 ir_dereference::is_lvalue() const
1101 {
1102 ir_variable *var = this->variable_referenced();
1103
1104 /* Every l-value derference chain eventually ends in a variable.
1105 */
1106 if ((var == NULL) || var->read_only)
1107 return false;
1108
1109 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
1110 *
1111 * "Samplers cannot be treated as l-values; hence cannot be used
1112 * as out or inout function parameters, nor can they be
1113 * assigned into."
1114 */
1115 if (this->type->contains_sampler())
1116 return false;
1117
1118 return true;
1119 }
1120
1121
1122 const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txs" };
1123
1124 const char *ir_texture::opcode_string()
1125 {
1126 assert((unsigned int) op <=
1127 sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
1128 return tex_opcode_strs[op];
1129 }
1130
1131 ir_texture_opcode
1132 ir_texture::get_opcode(const char *str)
1133 {
1134 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1135 for (int op = 0; op < count; op++) {
1136 if (strcmp(str, tex_opcode_strs[op]) == 0)
1137 return (ir_texture_opcode) op;
1138 }
1139 return (ir_texture_opcode) -1;
1140 }
1141
1142
1143 void
1144 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1145 {
1146 assert(sampler != NULL);
1147 assert(type != NULL);
1148 this->sampler = sampler;
1149 this->type = type;
1150
1151 if (this->op == ir_txs) {
1152 assert(type->base_type == GLSL_TYPE_INT);
1153 } else {
1154 assert(sampler->type->sampler_type == (int) type->base_type);
1155 if (sampler->type->sampler_shadow)
1156 assert(type->vector_elements == 4 || type->vector_elements == 1);
1157 else
1158 assert(type->vector_elements == 4);
1159 }
1160 }
1161
1162
1163 void
1164 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1165 {
1166 assert((count >= 1) && (count <= 4));
1167
1168 memset(&this->mask, 0, sizeof(this->mask));
1169 this->mask.num_components = count;
1170
1171 unsigned dup_mask = 0;
1172 switch (count) {
1173 case 4:
1174 assert(comp[3] <= 3);
1175 dup_mask |= (1U << comp[3])
1176 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1177 this->mask.w = comp[3];
1178
1179 case 3:
1180 assert(comp[2] <= 3);
1181 dup_mask |= (1U << comp[2])
1182 & ((1U << comp[0]) | (1U << comp[1]));
1183 this->mask.z = comp[2];
1184
1185 case 2:
1186 assert(comp[1] <= 3);
1187 dup_mask |= (1U << comp[1])
1188 & ((1U << comp[0]));
1189 this->mask.y = comp[1];
1190
1191 case 1:
1192 assert(comp[0] <= 3);
1193 this->mask.x = comp[0];
1194 }
1195
1196 this->mask.has_duplicates = dup_mask != 0;
1197
1198 /* Based on the number of elements in the swizzle and the base type
1199 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1200 * generate the type of the resulting value.
1201 */
1202 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1203 }
1204
1205 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1206 unsigned w, unsigned count)
1207 : val(val)
1208 {
1209 const unsigned components[4] = { x, y, z, w };
1210 this->ir_type = ir_type_swizzle;
1211 this->init_mask(components, count);
1212 }
1213
1214 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1215 unsigned count)
1216 : val(val)
1217 {
1218 this->ir_type = ir_type_swizzle;
1219 this->init_mask(comp, count);
1220 }
1221
1222 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1223 {
1224 this->ir_type = ir_type_swizzle;
1225 this->val = val;
1226 this->mask = mask;
1227 this->type = glsl_type::get_instance(val->type->base_type,
1228 mask.num_components, 1);
1229 }
1230
1231 #define X 1
1232 #define R 5
1233 #define S 9
1234 #define I 13
1235
1236 ir_swizzle *
1237 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1238 {
1239 void *ctx = ralloc_parent(val);
1240
1241 /* For each possible swizzle character, this table encodes the value in
1242 * \c idx_map that represents the 0th element of the vector. For invalid
1243 * swizzle characters (e.g., 'k'), a special value is used that will allow
1244 * detection of errors.
1245 */
1246 static const unsigned char base_idx[26] = {
1247 /* a b c d e f g h i j k l m */
1248 R, R, I, I, I, I, R, I, I, I, I, I, I,
1249 /* n o p q r s t u v w x y z */
1250 I, I, S, S, R, S, S, I, I, X, X, X, X
1251 };
1252
1253 /* Each valid swizzle character has an entry in the previous table. This
1254 * table encodes the base index encoded in the previous table plus the actual
1255 * index of the swizzle character. When processing swizzles, the first
1256 * character in the string is indexed in the previous table. Each character
1257 * in the string is indexed in this table, and the value found there has the
1258 * value form the first table subtracted. The result must be on the range
1259 * [0,3].
1260 *
1261 * For example, the string "wzyx" will get X from the first table. Each of
1262 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1263 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1264 *
1265 * The string "wzrg" will get X from the first table. Each of the characters
1266 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1267 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1268 * [0,3], the error is detected.
1269 */
1270 static const unsigned char idx_map[26] = {
1271 /* a b c d e f g h i j k l m */
1272 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1273 /* n o p q r s t u v w x y z */
1274 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1275 };
1276
1277 int swiz_idx[4] = { 0, 0, 0, 0 };
1278 unsigned i;
1279
1280
1281 /* Validate the first character in the swizzle string and look up the base
1282 * index value as described above.
1283 */
1284 if ((str[0] < 'a') || (str[0] > 'z'))
1285 return NULL;
1286
1287 const unsigned base = base_idx[str[0] - 'a'];
1288
1289
1290 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1291 /* Validate the next character, and, as described above, convert it to a
1292 * swizzle index.
1293 */
1294 if ((str[i] < 'a') || (str[i] > 'z'))
1295 return NULL;
1296
1297 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1298 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1299 return NULL;
1300 }
1301
1302 if (str[i] != '\0')
1303 return NULL;
1304
1305 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1306 swiz_idx[3], i);
1307 }
1308
1309 #undef X
1310 #undef R
1311 #undef S
1312 #undef I
1313
1314 ir_variable *
1315 ir_swizzle::variable_referenced() const
1316 {
1317 return this->val->variable_referenced();
1318 }
1319
1320
1321 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1322 ir_variable_mode mode)
1323 : max_array_access(0), read_only(false), centroid(false), invariant(false),
1324 mode(mode), interpolation(INTERP_QUALIFIER_NONE)
1325 {
1326 this->ir_type = ir_type_variable;
1327 this->type = type;
1328 this->name = ralloc_strdup(this, name);
1329 this->explicit_location = false;
1330 this->has_initializer = false;
1331 this->location = -1;
1332 this->warn_extension = NULL;
1333 this->constant_value = NULL;
1334 this->constant_initializer = NULL;
1335 this->origin_upper_left = false;
1336 this->pixel_center_integer = false;
1337 this->depth_layout = ir_depth_layout_none;
1338 this->used = false;
1339
1340 if (type && type->base_type == GLSL_TYPE_SAMPLER)
1341 this->read_only = true;
1342 }
1343
1344
1345 const char *
1346 ir_variable::interpolation_string() const
1347 {
1348 switch (this->interpolation) {
1349 case INTERP_QUALIFIER_NONE: return "no";
1350 case INTERP_QUALIFIER_SMOOTH: return "smooth";
1351 case INTERP_QUALIFIER_FLAT: return "flat";
1352 case INTERP_QUALIFIER_NOPERSPECTIVE: return "noperspective";
1353 }
1354
1355 assert(!"Should not get here.");
1356 return "";
1357 }
1358
1359
1360 glsl_interp_qualifier
1361 ir_variable::determine_interpolation_mode(bool flat_shade)
1362 {
1363 if (this->interpolation != INTERP_QUALIFIER_NONE)
1364 return (glsl_interp_qualifier) this->interpolation;
1365 int location = this->location;
1366 bool is_gl_Color =
1367 location == FRAG_ATTRIB_COL0 || location == FRAG_ATTRIB_COL1;
1368 if (flat_shade && is_gl_Color)
1369 return INTERP_QUALIFIER_FLAT;
1370 else
1371 return INTERP_QUALIFIER_SMOOTH;
1372 }
1373
1374
1375 ir_function_signature::ir_function_signature(const glsl_type *return_type)
1376 : return_type(return_type), is_defined(false), _function(NULL)
1377 {
1378 this->ir_type = ir_type_function_signature;
1379 this->is_builtin = false;
1380 }
1381
1382
1383 static bool
1384 modes_match(unsigned a, unsigned b)
1385 {
1386 if (a == b)
1387 return true;
1388
1389 /* Accept "in" vs. "const in" */
1390 if ((a == ir_var_const_in && b == ir_var_in) ||
1391 (b == ir_var_const_in && a == ir_var_in))
1392 return true;
1393
1394 return false;
1395 }
1396
1397
1398 const char *
1399 ir_function_signature::qualifiers_match(exec_list *params)
1400 {
1401 exec_list_iterator iter_a = parameters.iterator();
1402 exec_list_iterator iter_b = params->iterator();
1403
1404 /* check that the qualifiers match. */
1405 while (iter_a.has_next()) {
1406 ir_variable *a = (ir_variable *)iter_a.get();
1407 ir_variable *b = (ir_variable *)iter_b.get();
1408
1409 if (a->read_only != b->read_only ||
1410 !modes_match(a->mode, b->mode) ||
1411 a->interpolation != b->interpolation ||
1412 a->centroid != b->centroid) {
1413
1414 /* parameter a's qualifiers don't match */
1415 return a->name;
1416 }
1417
1418 iter_a.next();
1419 iter_b.next();
1420 }
1421 return NULL;
1422 }
1423
1424
1425 void
1426 ir_function_signature::replace_parameters(exec_list *new_params)
1427 {
1428 /* Destroy all of the previous parameter information. If the previous
1429 * parameter information comes from the function prototype, it may either
1430 * specify incorrect parameter names or not have names at all.
1431 */
1432 foreach_iter(exec_list_iterator, iter, parameters) {
1433 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1434
1435 iter.remove();
1436 }
1437
1438 new_params->move_nodes_to(&parameters);
1439 }
1440
1441
1442 ir_function::ir_function(const char *name)
1443 {
1444 this->ir_type = ir_type_function;
1445 this->name = ralloc_strdup(this, name);
1446 }
1447
1448
1449 bool
1450 ir_function::has_user_signature()
1451 {
1452 foreach_list(n, &this->signatures) {
1453 ir_function_signature *const sig = (ir_function_signature *) n;
1454 if (!sig->is_builtin)
1455 return true;
1456 }
1457 return false;
1458 }
1459
1460
1461 ir_rvalue *
1462 ir_rvalue::error_value(void *mem_ctx)
1463 {
1464 ir_rvalue *v = new(mem_ctx) ir_rvalue;
1465
1466 v->type = glsl_type::error_type;
1467 return v;
1468 }
1469
1470 void
1471 ir_call::set_callee(ir_function_signature *sig)
1472 {
1473 this->callee = sig;
1474 }
1475
1476 void
1477 visit_exec_list(exec_list *list, ir_visitor *visitor)
1478 {
1479 foreach_iter(exec_list_iterator, iter, *list) {
1480 ((ir_instruction *)iter.get())->accept(visitor);
1481 }
1482 }
1483
1484
1485 static void
1486 steal_memory(ir_instruction *ir, void *new_ctx)
1487 {
1488 ir_variable *var = ir->as_variable();
1489 ir_constant *constant = ir->as_constant();
1490 if (var != NULL && var->constant_value != NULL)
1491 steal_memory(var->constant_value, ir);
1492
1493 if (var != NULL && var->constant_initializer != NULL)
1494 steal_memory(var->constant_initializer, ir);
1495
1496 /* The components of aggregate constants are not visited by the normal
1497 * visitor, so steal their values by hand.
1498 */
1499 if (constant != NULL) {
1500 if (constant->type->is_record()) {
1501 foreach_iter(exec_list_iterator, iter, constant->components) {
1502 ir_constant *field = (ir_constant *)iter.get();
1503 steal_memory(field, ir);
1504 }
1505 } else if (constant->type->is_array()) {
1506 for (unsigned int i = 0; i < constant->type->length; i++) {
1507 steal_memory(constant->array_elements[i], ir);
1508 }
1509 }
1510 }
1511
1512 ralloc_steal(new_ctx, ir);
1513 }
1514
1515
1516 void
1517 reparent_ir(exec_list *list, void *mem_ctx)
1518 {
1519 foreach_list(node, list) {
1520 visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
1521 }
1522 }
1523
1524
1525 static ir_rvalue *
1526 try_min_one(ir_rvalue *ir)
1527 {
1528 ir_expression *expr = ir->as_expression();
1529
1530 if (!expr || expr->operation != ir_binop_min)
1531 return NULL;
1532
1533 if (expr->operands[0]->is_one())
1534 return expr->operands[1];
1535
1536 if (expr->operands[1]->is_one())
1537 return expr->operands[0];
1538
1539 return NULL;
1540 }
1541
1542 static ir_rvalue *
1543 try_max_zero(ir_rvalue *ir)
1544 {
1545 ir_expression *expr = ir->as_expression();
1546
1547 if (!expr || expr->operation != ir_binop_max)
1548 return NULL;
1549
1550 if (expr->operands[0]->is_zero())
1551 return expr->operands[1];
1552
1553 if (expr->operands[1]->is_zero())
1554 return expr->operands[0];
1555
1556 return NULL;
1557 }
1558
1559 ir_rvalue *
1560 ir_rvalue::as_rvalue_to_saturate()
1561 {
1562 ir_expression *expr = this->as_expression();
1563
1564 if (!expr)
1565 return NULL;
1566
1567 ir_rvalue *max_zero = try_max_zero(expr);
1568 if (max_zero) {
1569 return try_min_one(max_zero);
1570 } else {
1571 ir_rvalue *min_one = try_min_one(expr);
1572 if (min_one) {
1573 return try_max_zero(min_one);
1574 }
1575 }
1576
1577 return NULL;
1578 }