Merge branch 'master' of git://anongit.freedesktop.org/mesa/mesa
[mesa.git] / src / glsl / ir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23 #include <string.h>
24 #include "main/core.h" /* for MAX2 */
25 #include "ir.h"
26 #include "ir_visitor.h"
27 #include "glsl_types.h"
28
29 ir_rvalue::ir_rvalue()
30 {
31 this->type = glsl_type::error_type;
32 }
33
34 bool ir_rvalue::is_zero() const
35 {
36 return false;
37 }
38
39 bool ir_rvalue::is_one() const
40 {
41 return false;
42 }
43
44 bool ir_rvalue::is_negative_one() const
45 {
46 return false;
47 }
48
49 /**
50 * Modify the swizzle make to move one component to another
51 *
52 * \param m IR swizzle to be modified
53 * \param from Component in the RHS that is to be swizzled
54 * \param to Desired swizzle location of \c from
55 */
56 static void
57 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
58 {
59 switch (to) {
60 case 0: m.x = from; break;
61 case 1: m.y = from; break;
62 case 2: m.z = from; break;
63 case 3: m.w = from; break;
64 default: assert(!"Should not get here.");
65 }
66
67 m.num_components = MAX2(m.num_components, (to + 1));
68 }
69
70 void
71 ir_assignment::set_lhs(ir_rvalue *lhs)
72 {
73 void *mem_ctx = this;
74 bool swizzled = false;
75
76 while (lhs != NULL) {
77 ir_swizzle *swiz = lhs->as_swizzle();
78
79 if (swiz == NULL)
80 break;
81
82 unsigned write_mask = 0;
83 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
84
85 for (unsigned i = 0; i < swiz->mask.num_components; i++) {
86 unsigned c = 0;
87
88 switch (i) {
89 case 0: c = swiz->mask.x; break;
90 case 1: c = swiz->mask.y; break;
91 case 2: c = swiz->mask.z; break;
92 case 3: c = swiz->mask.w; break;
93 default: assert(!"Should not get here.");
94 }
95
96 write_mask |= (((this->write_mask >> i) & 1) << c);
97 update_rhs_swizzle(rhs_swiz, i, c);
98 }
99
100 this->write_mask = write_mask;
101 lhs = swiz->val;
102
103 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
104 swizzled = true;
105 }
106
107 if (swizzled) {
108 /* Now, RHS channels line up with the LHS writemask. Collapse it
109 * to just the channels that will be written.
110 */
111 ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
112 int rhs_chan = 0;
113 for (int i = 0; i < 4; i++) {
114 if (write_mask & (1 << i))
115 update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
116 }
117 this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
118 }
119
120 assert((lhs == NULL) || lhs->as_dereference());
121
122 this->lhs = (ir_dereference *) lhs;
123 }
124
125 ir_variable *
126 ir_assignment::whole_variable_written()
127 {
128 ir_variable *v = this->lhs->whole_variable_referenced();
129
130 if (v == NULL)
131 return NULL;
132
133 if (v->type->is_scalar())
134 return v;
135
136 if (v->type->is_vector()) {
137 const unsigned mask = (1U << v->type->vector_elements) - 1;
138
139 if (mask != this->write_mask)
140 return NULL;
141 }
142
143 /* Either all the vector components are assigned or the variable is some
144 * composite type (and the whole thing is assigned.
145 */
146 return v;
147 }
148
149 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
150 ir_rvalue *condition, unsigned write_mask)
151 {
152 this->ir_type = ir_type_assignment;
153 this->condition = condition;
154 this->rhs = rhs;
155 this->lhs = lhs;
156 this->write_mask = write_mask;
157
158 if (lhs->type->is_scalar() || lhs->type->is_vector()) {
159 int lhs_components = 0;
160 for (int i = 0; i < 4; i++) {
161 if (write_mask & (1 << i))
162 lhs_components++;
163 }
164
165 assert(lhs_components == this->rhs->type->vector_elements);
166 }
167 }
168
169 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
170 ir_rvalue *condition)
171 {
172 this->ir_type = ir_type_assignment;
173 this->condition = condition;
174 this->rhs = rhs;
175
176 /* If the RHS is a vector type, assume that all components of the vector
177 * type are being written to the LHS. The write mask comes from the RHS
178 * because we can have a case where the LHS is a vec4 and the RHS is a
179 * vec3. In that case, the assignment is:
180 *
181 * (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
182 */
183 if (rhs->type->is_vector())
184 this->write_mask = (1U << rhs->type->vector_elements) - 1;
185 else if (rhs->type->is_scalar())
186 this->write_mask = 1;
187 else
188 this->write_mask = 0;
189
190 this->set_lhs(lhs);
191 }
192
193
194 ir_expression::ir_expression(int op, const struct glsl_type *type,
195 ir_rvalue *op0)
196 {
197 assert(get_num_operands(ir_expression_operation(op)) == 1);
198 this->ir_type = ir_type_expression;
199 this->type = type;
200 this->operation = ir_expression_operation(op);
201 this->operands[0] = op0;
202 this->operands[1] = NULL;
203 this->operands[2] = NULL;
204 this->operands[3] = NULL;
205 }
206
207 ir_expression::ir_expression(int op, const struct glsl_type *type,
208 ir_rvalue *op0, ir_rvalue *op1)
209 {
210 assert(((op1 == NULL) && (get_num_operands(ir_expression_operation(op)) == 1))
211 || (get_num_operands(ir_expression_operation(op)) == 2));
212 this->ir_type = ir_type_expression;
213 this->type = type;
214 this->operation = ir_expression_operation(op);
215 this->operands[0] = op0;
216 this->operands[1] = op1;
217 this->operands[2] = NULL;
218 this->operands[3] = NULL;
219 }
220
221 ir_expression::ir_expression(int op, const struct glsl_type *type,
222 ir_rvalue *op0, ir_rvalue *op1,
223 ir_rvalue *op2, ir_rvalue *op3)
224 {
225 this->ir_type = ir_type_expression;
226 this->type = type;
227 this->operation = ir_expression_operation(op);
228 this->operands[0] = op0;
229 this->operands[1] = op1;
230 this->operands[2] = op2;
231 this->operands[3] = op3;
232 }
233
234 ir_expression::ir_expression(int op, ir_rvalue *op0)
235 {
236 this->ir_type = ir_type_expression;
237
238 this->operation = ir_expression_operation(op);
239 this->operands[0] = op0;
240 this->operands[1] = NULL;
241 this->operands[2] = NULL;
242 this->operands[3] = NULL;
243
244 assert(op <= ir_last_unop);
245
246 switch (this->operation) {
247 case ir_unop_bit_not:
248 case ir_unop_logic_not:
249 case ir_unop_neg:
250 case ir_unop_abs:
251 case ir_unop_sign:
252 case ir_unop_rcp:
253 case ir_unop_rsq:
254 case ir_unop_sqrt:
255 case ir_unop_exp:
256 case ir_unop_log:
257 case ir_unop_exp2:
258 case ir_unop_log2:
259 case ir_unop_trunc:
260 case ir_unop_ceil:
261 case ir_unop_floor:
262 case ir_unop_fract:
263 case ir_unop_round_even:
264 case ir_unop_sin:
265 case ir_unop_cos:
266 case ir_unop_sin_reduced:
267 case ir_unop_cos_reduced:
268 case ir_unop_dFdx:
269 case ir_unop_dFdy:
270 this->type = op0->type;
271 break;
272
273 case ir_unop_f2i:
274 case ir_unop_b2i:
275 case ir_unop_u2i:
276 this->type = glsl_type::get_instance(GLSL_TYPE_INT,
277 op0->type->vector_elements, 1);
278 break;
279
280 case ir_unop_b2f:
281 case ir_unop_i2f:
282 case ir_unop_u2f:
283 this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
284 op0->type->vector_elements, 1);
285 break;
286
287 case ir_unop_f2b:
288 case ir_unop_i2b:
289 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
290 op0->type->vector_elements, 1);
291 break;
292
293 case ir_unop_i2u:
294 this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
295 op0->type->vector_elements, 1);
296 break;
297
298 case ir_unop_noise:
299 this->type = glsl_type::float_type;
300 break;
301
302 case ir_unop_any:
303 this->type = glsl_type::bool_type;
304 break;
305
306 default:
307 assert(!"not reached: missing automatic type setup for ir_expression");
308 this->type = op0->type;
309 break;
310 }
311 }
312
313 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
314 {
315 this->ir_type = ir_type_expression;
316
317 this->operation = ir_expression_operation(op);
318 this->operands[0] = op0;
319 this->operands[1] = op1;
320 this->operands[2] = NULL;
321 this->operands[3] = NULL;
322
323 assert(op > ir_last_unop);
324
325 switch (this->operation) {
326 case ir_binop_all_equal:
327 case ir_binop_any_nequal:
328 this->type = glsl_type::bool_type;
329 break;
330
331 case ir_binop_add:
332 case ir_binop_sub:
333 case ir_binop_min:
334 case ir_binop_max:
335 case ir_binop_pow:
336 case ir_binop_mul:
337 case ir_binop_div:
338 case ir_binop_mod:
339 if (op0->type->is_scalar()) {
340 this->type = op1->type;
341 } else if (op1->type->is_scalar()) {
342 this->type = op0->type;
343 } else {
344 /* FINISHME: matrix types */
345 assert(!op0->type->is_matrix() && !op1->type->is_matrix());
346 assert(op0->type == op1->type);
347 this->type = op0->type;
348 }
349 break;
350
351 case ir_binop_logic_and:
352 case ir_binop_logic_xor:
353 case ir_binop_logic_or:
354 case ir_binop_bit_and:
355 case ir_binop_bit_xor:
356 case ir_binop_bit_or:
357 if (op0->type->is_scalar()) {
358 this->type = op1->type;
359 } else if (op1->type->is_scalar()) {
360 this->type = op0->type;
361 }
362 break;
363
364 case ir_binop_equal:
365 case ir_binop_nequal:
366 case ir_binop_lequal:
367 case ir_binop_gequal:
368 case ir_binop_less:
369 case ir_binop_greater:
370 assert(op0->type == op1->type);
371 this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
372 op0->type->vector_elements, 1);
373 break;
374
375 case ir_binop_dot:
376 this->type = glsl_type::float_type;
377 break;
378
379 case ir_binop_lshift:
380 case ir_binop_rshift:
381 this->type = op0->type;
382 break;
383
384 default:
385 assert(!"not reached: missing automatic type setup for ir_expression");
386 this->type = glsl_type::float_type;
387 }
388 }
389
390 unsigned int
391 ir_expression::get_num_operands(ir_expression_operation op)
392 {
393 assert(op <= ir_last_opcode);
394
395 if (op <= ir_last_unop)
396 return 1;
397
398 if (op <= ir_last_binop)
399 return 2;
400
401 if (op == ir_quadop_vector)
402 return 4;
403
404 assert(false);
405 return 0;
406 }
407
408 static const char *const operator_strs[] = {
409 "~",
410 "!",
411 "neg",
412 "abs",
413 "sign",
414 "rcp",
415 "rsq",
416 "sqrt",
417 "exp",
418 "log",
419 "exp2",
420 "log2",
421 "f2i",
422 "i2f",
423 "f2b",
424 "b2f",
425 "i2b",
426 "b2i",
427 "u2f",
428 "i2u",
429 "u2i",
430 "any",
431 "trunc",
432 "ceil",
433 "floor",
434 "fract",
435 "round_even",
436 "sin",
437 "cos",
438 "sin_reduced",
439 "cos_reduced",
440 "dFdx",
441 "dFdy",
442 "noise",
443 "+",
444 "-",
445 "*",
446 "/",
447 "%",
448 "<",
449 ">",
450 "<=",
451 ">=",
452 "==",
453 "!=",
454 "all_equal",
455 "any_nequal",
456 "<<",
457 ">>",
458 "&",
459 "^",
460 "|",
461 "&&",
462 "^^",
463 "||",
464 "dot",
465 "min",
466 "max",
467 "pow",
468 "vector",
469 };
470
471 const char *ir_expression::operator_string(ir_expression_operation op)
472 {
473 assert((unsigned int) op < Elements(operator_strs));
474 assert(Elements(operator_strs) == (ir_quadop_vector + 1));
475 return operator_strs[op];
476 }
477
478 const char *ir_expression::operator_string()
479 {
480 return operator_string(this->operation);
481 }
482
483 const char*
484 depth_layout_string(ir_depth_layout layout)
485 {
486 switch(layout) {
487 case ir_depth_layout_none: return "";
488 case ir_depth_layout_any: return "depth_any";
489 case ir_depth_layout_greater: return "depth_greater";
490 case ir_depth_layout_less: return "depth_less";
491 case ir_depth_layout_unchanged: return "depth_unchanged";
492
493 default:
494 assert(0);
495 return "";
496 }
497 }
498
499 ir_expression_operation
500 ir_expression::get_operator(const char *str)
501 {
502 const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
503 for (int op = 0; op < operator_count; op++) {
504 if (strcmp(str, operator_strs[op]) == 0)
505 return (ir_expression_operation) op;
506 }
507 return (ir_expression_operation) -1;
508 }
509
510 ir_constant::ir_constant()
511 {
512 this->ir_type = ir_type_constant;
513 }
514
515 ir_constant::ir_constant(const struct glsl_type *type,
516 const ir_constant_data *data)
517 {
518 assert((type->base_type >= GLSL_TYPE_UINT)
519 && (type->base_type <= GLSL_TYPE_BOOL));
520
521 this->ir_type = ir_type_constant;
522 this->type = type;
523 memcpy(& this->value, data, sizeof(this->value));
524 }
525
526 ir_constant::ir_constant(float f)
527 {
528 this->ir_type = ir_type_constant;
529 this->type = glsl_type::float_type;
530 this->value.f[0] = f;
531 for (int i = 1; i < 16; i++) {
532 this->value.f[i] = 0;
533 }
534 }
535
536 ir_constant::ir_constant(unsigned int u)
537 {
538 this->ir_type = ir_type_constant;
539 this->type = glsl_type::uint_type;
540 this->value.u[0] = u;
541 for (int i = 1; i < 16; i++) {
542 this->value.u[i] = 0;
543 }
544 }
545
546 ir_constant::ir_constant(int i)
547 {
548 this->ir_type = ir_type_constant;
549 this->type = glsl_type::int_type;
550 this->value.i[0] = i;
551 for (int i = 1; i < 16; i++) {
552 this->value.i[i] = 0;
553 }
554 }
555
556 ir_constant::ir_constant(bool b)
557 {
558 this->ir_type = ir_type_constant;
559 this->type = glsl_type::bool_type;
560 this->value.b[0] = b;
561 for (int i = 1; i < 16; i++) {
562 this->value.b[i] = false;
563 }
564 }
565
566 ir_constant::ir_constant(const ir_constant *c, unsigned i)
567 {
568 this->ir_type = ir_type_constant;
569 this->type = c->type->get_base_type();
570
571 switch (this->type->base_type) {
572 case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break;
573 case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break;
574 case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
575 case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break;
576 default: assert(!"Should not get here."); break;
577 }
578 }
579
580 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
581 {
582 this->ir_type = ir_type_constant;
583 this->type = type;
584
585 assert(type->is_scalar() || type->is_vector() || type->is_matrix()
586 || type->is_record() || type->is_array());
587
588 if (type->is_array()) {
589 this->array_elements = ralloc_array(this, ir_constant *, type->length);
590 unsigned i = 0;
591 foreach_list(node, value_list) {
592 ir_constant *value = (ir_constant *) node;
593 assert(value->as_constant() != NULL);
594
595 this->array_elements[i++] = value;
596 }
597 return;
598 }
599
600 /* If the constant is a record, the types of each of the entries in
601 * value_list must be a 1-for-1 match with the structure components. Each
602 * entry must also be a constant. Just move the nodes from the value_list
603 * to the list in the ir_constant.
604 */
605 /* FINISHME: Should there be some type checking and / or assertions here? */
606 /* FINISHME: Should the new constant take ownership of the nodes from
607 * FINISHME: value_list, or should it make copies?
608 */
609 if (type->is_record()) {
610 value_list->move_nodes_to(& this->components);
611 return;
612 }
613
614 for (unsigned i = 0; i < 16; i++) {
615 this->value.u[i] = 0;
616 }
617
618 ir_constant *value = (ir_constant *) (value_list->head);
619
620 /* Constructors with exactly one scalar argument are special for vectors
621 * and matrices. For vectors, the scalar value is replicated to fill all
622 * the components. For matrices, the scalar fills the components of the
623 * diagonal while the rest is filled with 0.
624 */
625 if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
626 if (type->is_matrix()) {
627 /* Matrix - fill diagonal (rest is already set to 0) */
628 assert(type->base_type == GLSL_TYPE_FLOAT);
629 for (unsigned i = 0; i < type->matrix_columns; i++)
630 this->value.f[i * type->vector_elements + i] = value->value.f[0];
631 } else {
632 /* Vector or scalar - fill all components */
633 switch (type->base_type) {
634 case GLSL_TYPE_UINT:
635 case GLSL_TYPE_INT:
636 for (unsigned i = 0; i < type->components(); i++)
637 this->value.u[i] = value->value.u[0];
638 break;
639 case GLSL_TYPE_FLOAT:
640 for (unsigned i = 0; i < type->components(); i++)
641 this->value.f[i] = value->value.f[0];
642 break;
643 case GLSL_TYPE_BOOL:
644 for (unsigned i = 0; i < type->components(); i++)
645 this->value.b[i] = value->value.b[0];
646 break;
647 default:
648 assert(!"Should not get here.");
649 break;
650 }
651 }
652 return;
653 }
654
655 if (type->is_matrix() && value->type->is_matrix()) {
656 assert(value->next->is_tail_sentinel());
657
658 /* From section 5.4.2 of the GLSL 1.20 spec:
659 * "If a matrix is constructed from a matrix, then each component
660 * (column i, row j) in the result that has a corresponding component
661 * (column i, row j) in the argument will be initialized from there."
662 */
663 unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
664 unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
665 for (unsigned i = 0; i < cols; i++) {
666 for (unsigned j = 0; j < rows; j++) {
667 const unsigned src = i * value->type->vector_elements + j;
668 const unsigned dst = i * type->vector_elements + j;
669 this->value.f[dst] = value->value.f[src];
670 }
671 }
672
673 /* "All other components will be initialized to the identity matrix." */
674 for (unsigned i = cols; i < type->matrix_columns; i++)
675 this->value.f[i * type->vector_elements + i] = 1.0;
676
677 return;
678 }
679
680 /* Use each component from each entry in the value_list to initialize one
681 * component of the constant being constructed.
682 */
683 for (unsigned i = 0; i < type->components(); /* empty */) {
684 assert(value->as_constant() != NULL);
685 assert(!value->is_tail_sentinel());
686
687 for (unsigned j = 0; j < value->type->components(); j++) {
688 switch (type->base_type) {
689 case GLSL_TYPE_UINT:
690 this->value.u[i] = value->get_uint_component(j);
691 break;
692 case GLSL_TYPE_INT:
693 this->value.i[i] = value->get_int_component(j);
694 break;
695 case GLSL_TYPE_FLOAT:
696 this->value.f[i] = value->get_float_component(j);
697 break;
698 case GLSL_TYPE_BOOL:
699 this->value.b[i] = value->get_bool_component(j);
700 break;
701 default:
702 /* FINISHME: What to do? Exceptions are not the answer.
703 */
704 break;
705 }
706
707 i++;
708 if (i >= type->components())
709 break;
710 }
711
712 value = (ir_constant *) value->next;
713 }
714 }
715
716 ir_constant *
717 ir_constant::zero(void *mem_ctx, const glsl_type *type)
718 {
719 assert(type->is_numeric() || type->is_boolean());
720
721 ir_constant *c = new(mem_ctx) ir_constant;
722 c->type = type;
723 memset(&c->value, 0, sizeof(c->value));
724
725 return c;
726 }
727
728 bool
729 ir_constant::get_bool_component(unsigned i) const
730 {
731 switch (this->type->base_type) {
732 case GLSL_TYPE_UINT: return this->value.u[i] != 0;
733 case GLSL_TYPE_INT: return this->value.i[i] != 0;
734 case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
735 case GLSL_TYPE_BOOL: return this->value.b[i];
736 default: assert(!"Should not get here."); break;
737 }
738
739 /* Must return something to make the compiler happy. This is clearly an
740 * error case.
741 */
742 return false;
743 }
744
745 float
746 ir_constant::get_float_component(unsigned i) const
747 {
748 switch (this->type->base_type) {
749 case GLSL_TYPE_UINT: return (float) this->value.u[i];
750 case GLSL_TYPE_INT: return (float) this->value.i[i];
751 case GLSL_TYPE_FLOAT: return this->value.f[i];
752 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0;
753 default: assert(!"Should not get here."); break;
754 }
755
756 /* Must return something to make the compiler happy. This is clearly an
757 * error case.
758 */
759 return 0.0;
760 }
761
762 int
763 ir_constant::get_int_component(unsigned i) const
764 {
765 switch (this->type->base_type) {
766 case GLSL_TYPE_UINT: return this->value.u[i];
767 case GLSL_TYPE_INT: return this->value.i[i];
768 case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
769 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
770 default: assert(!"Should not get here."); break;
771 }
772
773 /* Must return something to make the compiler happy. This is clearly an
774 * error case.
775 */
776 return 0;
777 }
778
779 unsigned
780 ir_constant::get_uint_component(unsigned i) const
781 {
782 switch (this->type->base_type) {
783 case GLSL_TYPE_UINT: return this->value.u[i];
784 case GLSL_TYPE_INT: return this->value.i[i];
785 case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
786 case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0;
787 default: assert(!"Should not get here."); break;
788 }
789
790 /* Must return something to make the compiler happy. This is clearly an
791 * error case.
792 */
793 return 0;
794 }
795
796 ir_constant *
797 ir_constant::get_array_element(unsigned i) const
798 {
799 assert(this->type->is_array());
800
801 /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
802 *
803 * "Behavior is undefined if a shader subscripts an array with an index
804 * less than 0 or greater than or equal to the size the array was
805 * declared with."
806 *
807 * Most out-of-bounds accesses are removed before things could get this far.
808 * There are cases where non-constant array index values can get constant
809 * folded.
810 */
811 if (int(i) < 0)
812 i = 0;
813 else if (i >= this->type->length)
814 i = this->type->length - 1;
815
816 return array_elements[i];
817 }
818
819 ir_constant *
820 ir_constant::get_record_field(const char *name)
821 {
822 int idx = this->type->field_index(name);
823
824 if (idx < 0)
825 return NULL;
826
827 if (this->components.is_empty())
828 return NULL;
829
830 exec_node *node = this->components.head;
831 for (int i = 0; i < idx; i++) {
832 node = node->next;
833
834 /* If the end of the list is encountered before the element matching the
835 * requested field is found, return NULL.
836 */
837 if (node->is_tail_sentinel())
838 return NULL;
839 }
840
841 return (ir_constant *) node;
842 }
843
844
845 bool
846 ir_constant::has_value(const ir_constant *c) const
847 {
848 if (this->type != c->type)
849 return false;
850
851 if (this->type->is_array()) {
852 for (unsigned i = 0; i < this->type->length; i++) {
853 if (!this->array_elements[i]->has_value(c->array_elements[i]))
854 return false;
855 }
856 return true;
857 }
858
859 if (this->type->base_type == GLSL_TYPE_STRUCT) {
860 const exec_node *a_node = this->components.head;
861 const exec_node *b_node = c->components.head;
862
863 while (!a_node->is_tail_sentinel()) {
864 assert(!b_node->is_tail_sentinel());
865
866 const ir_constant *const a_field = (ir_constant *) a_node;
867 const ir_constant *const b_field = (ir_constant *) b_node;
868
869 if (!a_field->has_value(b_field))
870 return false;
871
872 a_node = a_node->next;
873 b_node = b_node->next;
874 }
875
876 return true;
877 }
878
879 for (unsigned i = 0; i < this->type->components(); i++) {
880 switch (this->type->base_type) {
881 case GLSL_TYPE_UINT:
882 if (this->value.u[i] != c->value.u[i])
883 return false;
884 break;
885 case GLSL_TYPE_INT:
886 if (this->value.i[i] != c->value.i[i])
887 return false;
888 break;
889 case GLSL_TYPE_FLOAT:
890 if (this->value.f[i] != c->value.f[i])
891 return false;
892 break;
893 case GLSL_TYPE_BOOL:
894 if (this->value.b[i] != c->value.b[i])
895 return false;
896 break;
897 default:
898 assert(!"Should not get here.");
899 return false;
900 }
901 }
902
903 return true;
904 }
905
906 bool
907 ir_constant::is_zero() const
908 {
909 if (!this->type->is_scalar() && !this->type->is_vector())
910 return false;
911
912 for (unsigned c = 0; c < this->type->vector_elements; c++) {
913 switch (this->type->base_type) {
914 case GLSL_TYPE_FLOAT:
915 if (this->value.f[c] != 0.0)
916 return false;
917 break;
918 case GLSL_TYPE_INT:
919 if (this->value.i[c] != 0)
920 return false;
921 break;
922 case GLSL_TYPE_UINT:
923 if (this->value.u[c] != 0)
924 return false;
925 break;
926 case GLSL_TYPE_BOOL:
927 if (this->value.b[c] != false)
928 return false;
929 break;
930 default:
931 /* The only other base types are structures, arrays, and samplers.
932 * Samplers cannot be constants, and the others should have been
933 * filtered out above.
934 */
935 assert(!"Should not get here.");
936 return false;
937 }
938 }
939
940 return true;
941 }
942
943 bool
944 ir_constant::is_one() const
945 {
946 if (!this->type->is_scalar() && !this->type->is_vector())
947 return false;
948
949 for (unsigned c = 0; c < this->type->vector_elements; c++) {
950 switch (this->type->base_type) {
951 case GLSL_TYPE_FLOAT:
952 if (this->value.f[c] != 1.0)
953 return false;
954 break;
955 case GLSL_TYPE_INT:
956 if (this->value.i[c] != 1)
957 return false;
958 break;
959 case GLSL_TYPE_UINT:
960 if (this->value.u[c] != 1)
961 return false;
962 break;
963 case GLSL_TYPE_BOOL:
964 if (this->value.b[c] != true)
965 return false;
966 break;
967 default:
968 /* The only other base types are structures, arrays, and samplers.
969 * Samplers cannot be constants, and the others should have been
970 * filtered out above.
971 */
972 assert(!"Should not get here.");
973 return false;
974 }
975 }
976
977 return true;
978 }
979
980 bool
981 ir_constant::is_negative_one() const
982 {
983 if (!this->type->is_scalar() && !this->type->is_vector())
984 return false;
985
986 if (this->type->is_boolean())
987 return false;
988
989 for (unsigned c = 0; c < this->type->vector_elements; c++) {
990 switch (this->type->base_type) {
991 case GLSL_TYPE_FLOAT:
992 if (this->value.f[c] != -1.0)
993 return false;
994 break;
995 case GLSL_TYPE_INT:
996 if (this->value.i[c] != -1)
997 return false;
998 break;
999 case GLSL_TYPE_UINT:
1000 if (int(this->value.u[c]) != -1)
1001 return false;
1002 break;
1003 default:
1004 /* The only other base types are structures, arrays, samplers, and
1005 * booleans. Samplers cannot be constants, and the others should
1006 * have been filtered out above.
1007 */
1008 assert(!"Should not get here.");
1009 return false;
1010 }
1011 }
1012
1013 return true;
1014 }
1015
1016 ir_loop::ir_loop()
1017 {
1018 this->ir_type = ir_type_loop;
1019 this->cmp = ir_unop_neg;
1020 this->from = NULL;
1021 this->to = NULL;
1022 this->increment = NULL;
1023 this->counter = NULL;
1024 }
1025
1026
1027 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1028 {
1029 this->ir_type = ir_type_dereference_variable;
1030 this->var = var;
1031 this->type = (var != NULL) ? var->type : glsl_type::error_type;
1032 }
1033
1034
1035 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1036 ir_rvalue *array_index)
1037 {
1038 this->ir_type = ir_type_dereference_array;
1039 this->array_index = array_index;
1040 this->set_array(value);
1041 }
1042
1043
1044 ir_dereference_array::ir_dereference_array(ir_variable *var,
1045 ir_rvalue *array_index)
1046 {
1047 void *ctx = ralloc_parent(var);
1048
1049 this->ir_type = ir_type_dereference_array;
1050 this->array_index = array_index;
1051 this->set_array(new(ctx) ir_dereference_variable(var));
1052 }
1053
1054
1055 void
1056 ir_dereference_array::set_array(ir_rvalue *value)
1057 {
1058 this->array = value;
1059 this->type = glsl_type::error_type;
1060
1061 if (this->array != NULL) {
1062 const glsl_type *const vt = this->array->type;
1063
1064 if (vt->is_array()) {
1065 type = vt->element_type();
1066 } else if (vt->is_matrix()) {
1067 type = vt->column_type();
1068 } else if (vt->is_vector()) {
1069 type = vt->get_base_type();
1070 }
1071 }
1072 }
1073
1074
1075 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1076 const char *field)
1077 {
1078 this->ir_type = ir_type_dereference_record;
1079 this->record = value;
1080 this->field = ralloc_strdup(this, field);
1081 this->type = (this->record != NULL)
1082 ? this->record->type->field_type(field) : glsl_type::error_type;
1083 }
1084
1085
1086 ir_dereference_record::ir_dereference_record(ir_variable *var,
1087 const char *field)
1088 {
1089 void *ctx = ralloc_parent(var);
1090
1091 this->ir_type = ir_type_dereference_record;
1092 this->record = new(ctx) ir_dereference_variable(var);
1093 this->field = ralloc_strdup(this, field);
1094 this->type = (this->record != NULL)
1095 ? this->record->type->field_type(field) : glsl_type::error_type;
1096 }
1097
1098 bool
1099 ir_dereference::is_lvalue() const
1100 {
1101 ir_variable *var = this->variable_referenced();
1102
1103 /* Every l-value derference chain eventually ends in a variable.
1104 */
1105 if ((var == NULL) || var->read_only)
1106 return false;
1107
1108 if (this->type->is_array() && !var->array_lvalue)
1109 return false;
1110
1111 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
1112 *
1113 * "Samplers cannot be treated as l-values; hence cannot be used
1114 * as out or inout function parameters, nor can they be
1115 * assigned into."
1116 */
1117 if (this->type->contains_sampler())
1118 return false;
1119
1120 return true;
1121 }
1122
1123
1124 const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txs" };
1125
1126 const char *ir_texture::opcode_string()
1127 {
1128 assert((unsigned int) op <=
1129 sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
1130 return tex_opcode_strs[op];
1131 }
1132
1133 ir_texture_opcode
1134 ir_texture::get_opcode(const char *str)
1135 {
1136 const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1137 for (int op = 0; op < count; op++) {
1138 if (strcmp(str, tex_opcode_strs[op]) == 0)
1139 return (ir_texture_opcode) op;
1140 }
1141 return (ir_texture_opcode) -1;
1142 }
1143
1144
1145 void
1146 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1147 {
1148 assert(sampler != NULL);
1149 assert(type != NULL);
1150 this->sampler = sampler;
1151 this->type = type;
1152
1153 if (this->op == ir_txs) {
1154 assert(type->base_type == GLSL_TYPE_INT);
1155 } else {
1156 assert(sampler->type->sampler_type == (int) type->base_type);
1157 if (sampler->type->sampler_shadow)
1158 assert(type->vector_elements == 4 || type->vector_elements == 1);
1159 else
1160 assert(type->vector_elements == 4);
1161 }
1162 }
1163
1164
1165 void
1166 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1167 {
1168 assert((count >= 1) && (count <= 4));
1169
1170 memset(&this->mask, 0, sizeof(this->mask));
1171 this->mask.num_components = count;
1172
1173 unsigned dup_mask = 0;
1174 switch (count) {
1175 case 4:
1176 assert(comp[3] <= 3);
1177 dup_mask |= (1U << comp[3])
1178 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1179 this->mask.w = comp[3];
1180
1181 case 3:
1182 assert(comp[2] <= 3);
1183 dup_mask |= (1U << comp[2])
1184 & ((1U << comp[0]) | (1U << comp[1]));
1185 this->mask.z = comp[2];
1186
1187 case 2:
1188 assert(comp[1] <= 3);
1189 dup_mask |= (1U << comp[1])
1190 & ((1U << comp[0]));
1191 this->mask.y = comp[1];
1192
1193 case 1:
1194 assert(comp[0] <= 3);
1195 this->mask.x = comp[0];
1196 }
1197
1198 this->mask.has_duplicates = dup_mask != 0;
1199
1200 /* Based on the number of elements in the swizzle and the base type
1201 * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1202 * generate the type of the resulting value.
1203 */
1204 type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1205 }
1206
1207 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1208 unsigned w, unsigned count)
1209 : val(val)
1210 {
1211 const unsigned components[4] = { x, y, z, w };
1212 this->ir_type = ir_type_swizzle;
1213 this->init_mask(components, count);
1214 }
1215
1216 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1217 unsigned count)
1218 : val(val)
1219 {
1220 this->ir_type = ir_type_swizzle;
1221 this->init_mask(comp, count);
1222 }
1223
1224 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1225 {
1226 this->ir_type = ir_type_swizzle;
1227 this->val = val;
1228 this->mask = mask;
1229 this->type = glsl_type::get_instance(val->type->base_type,
1230 mask.num_components, 1);
1231 }
1232
1233 #define X 1
1234 #define R 5
1235 #define S 9
1236 #define I 13
1237
1238 ir_swizzle *
1239 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1240 {
1241 void *ctx = ralloc_parent(val);
1242
1243 /* For each possible swizzle character, this table encodes the value in
1244 * \c idx_map that represents the 0th element of the vector. For invalid
1245 * swizzle characters (e.g., 'k'), a special value is used that will allow
1246 * detection of errors.
1247 */
1248 static const unsigned char base_idx[26] = {
1249 /* a b c d e f g h i j k l m */
1250 R, R, I, I, I, I, R, I, I, I, I, I, I,
1251 /* n o p q r s t u v w x y z */
1252 I, I, S, S, R, S, S, I, I, X, X, X, X
1253 };
1254
1255 /* Each valid swizzle character has an entry in the previous table. This
1256 * table encodes the base index encoded in the previous table plus the actual
1257 * index of the swizzle character. When processing swizzles, the first
1258 * character in the string is indexed in the previous table. Each character
1259 * in the string is indexed in this table, and the value found there has the
1260 * value form the first table subtracted. The result must be on the range
1261 * [0,3].
1262 *
1263 * For example, the string "wzyx" will get X from the first table. Each of
1264 * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After
1265 * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1266 *
1267 * The string "wzrg" will get X from the first table. Each of the characters
1268 * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the
1269 * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range
1270 * [0,3], the error is detected.
1271 */
1272 static const unsigned char idx_map[26] = {
1273 /* a b c d e f g h i j k l m */
1274 R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0,
1275 /* n o p q r s t u v w x y z */
1276 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2
1277 };
1278
1279 int swiz_idx[4] = { 0, 0, 0, 0 };
1280 unsigned i;
1281
1282
1283 /* Validate the first character in the swizzle string and look up the base
1284 * index value as described above.
1285 */
1286 if ((str[0] < 'a') || (str[0] > 'z'))
1287 return NULL;
1288
1289 const unsigned base = base_idx[str[0] - 'a'];
1290
1291
1292 for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1293 /* Validate the next character, and, as described above, convert it to a
1294 * swizzle index.
1295 */
1296 if ((str[i] < 'a') || (str[i] > 'z'))
1297 return NULL;
1298
1299 swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1300 if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1301 return NULL;
1302 }
1303
1304 if (str[i] != '\0')
1305 return NULL;
1306
1307 return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1308 swiz_idx[3], i);
1309 }
1310
1311 #undef X
1312 #undef R
1313 #undef S
1314 #undef I
1315
1316 ir_variable *
1317 ir_swizzle::variable_referenced() const
1318 {
1319 return this->val->variable_referenced();
1320 }
1321
1322
1323 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1324 ir_variable_mode mode)
1325 : max_array_access(0), read_only(false), centroid(false), invariant(false),
1326 mode(mode), interpolation(ir_var_smooth), array_lvalue(false)
1327 {
1328 this->ir_type = ir_type_variable;
1329 this->type = type;
1330 this->name = ralloc_strdup(this, name);
1331 this->explicit_location = false;
1332 this->location = -1;
1333 this->warn_extension = NULL;
1334 this->constant_value = NULL;
1335 this->origin_upper_left = false;
1336 this->pixel_center_integer = false;
1337 this->depth_layout = ir_depth_layout_none;
1338 this->used = false;
1339
1340 if (type && type->base_type == GLSL_TYPE_SAMPLER)
1341 this->read_only = true;
1342 }
1343
1344
1345 const char *
1346 ir_variable::interpolation_string() const
1347 {
1348 switch (this->interpolation) {
1349 case ir_var_smooth: return "smooth";
1350 case ir_var_flat: return "flat";
1351 case ir_var_noperspective: return "noperspective";
1352 }
1353
1354 assert(!"Should not get here.");
1355 return "";
1356 }
1357
1358
1359 unsigned
1360 ir_variable::component_slots() const
1361 {
1362 /* FINISHME: Sparsely accessed arrays require fewer slots. */
1363 return this->type->component_slots();
1364 }
1365
1366
1367 ir_function_signature::ir_function_signature(const glsl_type *return_type)
1368 : return_type(return_type), is_defined(false), _function(NULL)
1369 {
1370 this->ir_type = ir_type_function_signature;
1371 this->is_builtin = false;
1372 }
1373
1374
1375 static bool
1376 modes_match(unsigned a, unsigned b)
1377 {
1378 if (a == b)
1379 return true;
1380
1381 /* Accept "in" vs. "const in" */
1382 if ((a == ir_var_const_in && b == ir_var_in) ||
1383 (b == ir_var_const_in && a == ir_var_in))
1384 return true;
1385
1386 return false;
1387 }
1388
1389
1390 const char *
1391 ir_function_signature::qualifiers_match(exec_list *params)
1392 {
1393 exec_list_iterator iter_a = parameters.iterator();
1394 exec_list_iterator iter_b = params->iterator();
1395
1396 /* check that the qualifiers match. */
1397 while (iter_a.has_next()) {
1398 ir_variable *a = (ir_variable *)iter_a.get();
1399 ir_variable *b = (ir_variable *)iter_b.get();
1400
1401 if (a->read_only != b->read_only ||
1402 !modes_match(a->mode, b->mode) ||
1403 a->interpolation != b->interpolation ||
1404 a->centroid != b->centroid) {
1405
1406 /* parameter a's qualifiers don't match */
1407 return a->name;
1408 }
1409
1410 iter_a.next();
1411 iter_b.next();
1412 }
1413 return NULL;
1414 }
1415
1416
1417 void
1418 ir_function_signature::replace_parameters(exec_list *new_params)
1419 {
1420 /* Destroy all of the previous parameter information. If the previous
1421 * parameter information comes from the function prototype, it may either
1422 * specify incorrect parameter names or not have names at all.
1423 */
1424 foreach_iter(exec_list_iterator, iter, parameters) {
1425 assert(((ir_instruction *) iter.get())->as_variable() != NULL);
1426
1427 iter.remove();
1428 }
1429
1430 new_params->move_nodes_to(&parameters);
1431 }
1432
1433
1434 ir_function::ir_function(const char *name)
1435 {
1436 this->ir_type = ir_type_function;
1437 this->name = ralloc_strdup(this, name);
1438 }
1439
1440
1441 bool
1442 ir_function::has_user_signature()
1443 {
1444 foreach_list(n, &this->signatures) {
1445 ir_function_signature *const sig = (ir_function_signature *) n;
1446 if (!sig->is_builtin)
1447 return true;
1448 }
1449 return false;
1450 }
1451
1452
1453 ir_call *
1454 ir_call::get_error_instruction(void *ctx)
1455 {
1456 ir_call *call = new(ctx) ir_call;
1457
1458 call->type = glsl_type::error_type;
1459 return call;
1460 }
1461
1462 void
1463 ir_call::set_callee(ir_function_signature *sig)
1464 {
1465 assert((this->type == NULL) || (this->type == sig->return_type));
1466
1467 this->callee = sig;
1468 }
1469
1470 void
1471 visit_exec_list(exec_list *list, ir_visitor *visitor)
1472 {
1473 foreach_iter(exec_list_iterator, iter, *list) {
1474 ((ir_instruction *)iter.get())->accept(visitor);
1475 }
1476 }
1477
1478
1479 static void
1480 steal_memory(ir_instruction *ir, void *new_ctx)
1481 {
1482 ir_variable *var = ir->as_variable();
1483 ir_constant *constant = ir->as_constant();
1484 if (var != NULL && var->constant_value != NULL)
1485 steal_memory(var->constant_value, ir);
1486
1487 /* The components of aggregate constants are not visited by the normal
1488 * visitor, so steal their values by hand.
1489 */
1490 if (constant != NULL) {
1491 if (constant->type->is_record()) {
1492 foreach_iter(exec_list_iterator, iter, constant->components) {
1493 ir_constant *field = (ir_constant *)iter.get();
1494 steal_memory(field, ir);
1495 }
1496 } else if (constant->type->is_array()) {
1497 for (unsigned int i = 0; i < constant->type->length; i++) {
1498 steal_memory(constant->array_elements[i], ir);
1499 }
1500 }
1501 }
1502
1503 ralloc_steal(new_ctx, ir);
1504 }
1505
1506
1507 void
1508 reparent_ir(exec_list *list, void *mem_ctx)
1509 {
1510 foreach_list(node, list) {
1511 visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
1512 }
1513 }
1514
1515
1516 static ir_rvalue *
1517 try_min_one(ir_rvalue *ir)
1518 {
1519 ir_expression *expr = ir->as_expression();
1520
1521 if (!expr || expr->operation != ir_binop_min)
1522 return NULL;
1523
1524 if (expr->operands[0]->is_one())
1525 return expr->operands[1];
1526
1527 if (expr->operands[1]->is_one())
1528 return expr->operands[0];
1529
1530 return NULL;
1531 }
1532
1533 static ir_rvalue *
1534 try_max_zero(ir_rvalue *ir)
1535 {
1536 ir_expression *expr = ir->as_expression();
1537
1538 if (!expr || expr->operation != ir_binop_max)
1539 return NULL;
1540
1541 if (expr->operands[0]->is_zero())
1542 return expr->operands[1];
1543
1544 if (expr->operands[1]->is_zero())
1545 return expr->operands[0];
1546
1547 return NULL;
1548 }
1549
1550 ir_rvalue *
1551 ir_rvalue::as_rvalue_to_saturate()
1552 {
1553 ir_expression *expr = this->as_expression();
1554
1555 if (!expr)
1556 return NULL;
1557
1558 ir_rvalue *max_zero = try_max_zero(expr);
1559 if (max_zero) {
1560 return try_min_one(max_zero);
1561 } else {
1562 ir_rvalue *min_one = try_min_one(expr);
1563 if (min_one) {
1564 return try_max_zero(min_one);
1565 }
1566 }
1567
1568 return NULL;
1569 }