nir/spirv: Use a C99-style initializer for structure fields
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine how this variable should be interpolated based on its
436 * interpolation qualifier (if present), whether it is gl_Color or
437 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
438 * state.
439 *
440 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
441 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
442 */
443 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
444
445 /**
446 * Determine whether or not a variable is part of a uniform or
447 * shader storage block.
448 */
449 inline bool is_in_buffer_block() const
450 {
451 return (this->data.mode == ir_var_uniform ||
452 this->data.mode == ir_var_shader_storage) &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is part of a shader storage block.
458 */
459 inline bool is_in_shader_storage_block() const
460 {
461 return this->data.mode == ir_var_shader_storage &&
462 this->interface_type != NULL;
463 }
464
465 /**
466 * Determine whether or not a variable is the declaration of an interface
467 * block
468 *
469 * For the first declaration below, there will be an \c ir_variable named
470 * "instance" whose type and whose instance_type will be the same
471 * \cglsl_type. For the second declaration, there will be an \c ir_variable
472 * named "f" whose type is float and whose instance_type is B2.
473 *
474 * "instance" is an interface instance variable, but "f" is not.
475 *
476 * uniform B1 {
477 * float f;
478 * } instance;
479 *
480 * uniform B2 {
481 * float f;
482 * };
483 */
484 inline bool is_interface_instance() const
485 {
486 return this->type->without_array() == this->interface_type;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 rzalloc_array(this, unsigned, type->length);
499 }
500 }
501
502 /**
503 * Change this->interface_type on a variable that previously had a
504 * different, but compatible, interface_type. This is used during linking
505 * to set the size of arrays in interface blocks.
506 */
507 void change_interface_type(const struct glsl_type *type)
508 {
509 if (this->u.max_ifc_array_access != NULL) {
510 /* max_ifc_array_access has already been allocated, so make sure the
511 * new interface has the same number of fields as the old one.
512 */
513 assert(this->interface_type->length == type->length);
514 }
515 this->interface_type = type;
516 }
517
518 /**
519 * Change this->interface_type on a variable that previously had a
520 * different, and incompatible, interface_type. This is used during
521 * compilation to handle redeclaration of the built-in gl_PerVertex
522 * interface block.
523 */
524 void reinit_interface_type(const struct glsl_type *type)
525 {
526 if (this->u.max_ifc_array_access != NULL) {
527 #ifndef NDEBUG
528 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
529 * it defines have been accessed yet; so it's safe to throw away the
530 * old max_ifc_array_access pointer, since all of its values are
531 * zero.
532 */
533 for (unsigned i = 0; i < this->interface_type->length; i++)
534 assert(this->u.max_ifc_array_access[i] == 0);
535 #endif
536 ralloc_free(this->u.max_ifc_array_access);
537 this->u.max_ifc_array_access = NULL;
538 }
539 this->interface_type = NULL;
540 init_interface_type(type);
541 }
542
543 const glsl_type *get_interface_type() const
544 {
545 return this->interface_type;
546 }
547
548 /**
549 * Get the max_ifc_array_access pointer
550 *
551 * A "set" function is not needed because the array is dynmically allocated
552 * as necessary.
553 */
554 inline unsigned *get_max_ifc_array_access()
555 {
556 assert(this->data._num_state_slots == 0);
557 return this->u.max_ifc_array_access;
558 }
559
560 inline unsigned get_num_state_slots() const
561 {
562 assert(!this->is_interface_instance()
563 || this->data._num_state_slots == 0);
564 return this->data._num_state_slots;
565 }
566
567 inline void set_num_state_slots(unsigned n)
568 {
569 assert(!this->is_interface_instance()
570 || n == 0);
571 this->data._num_state_slots = n;
572 }
573
574 inline ir_state_slot *get_state_slots()
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline const ir_state_slot *get_state_slots() const
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
584 inline ir_state_slot *allocate_state_slots(unsigned n)
585 {
586 assert(!this->is_interface_instance());
587
588 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
589 this->data._num_state_slots = 0;
590
591 if (this->u.state_slots != NULL)
592 this->data._num_state_slots = n;
593
594 return this->u.state_slots;
595 }
596
597 inline bool is_name_ralloced() const
598 {
599 return this->name != ir_variable::tmp_name;
600 }
601
602 /**
603 * Enable emitting extension warnings for this variable
604 */
605 void enable_extension_warning(const char *extension);
606
607 /**
608 * Get the extension warning string for this variable
609 *
610 * If warnings are not enabled, \c NULL is returned.
611 */
612 const char *get_extension_warning() const;
613
614 /**
615 * Declared type of the variable
616 */
617 const struct glsl_type *type;
618
619 /**
620 * Declared name of the variable
621 */
622 const char *name;
623
624 struct ir_variable_data {
625
626 /**
627 * Is the variable read-only?
628 *
629 * This is set for variables declared as \c const, shader inputs,
630 * and uniforms.
631 */
632 unsigned read_only:1;
633 unsigned centroid:1;
634 unsigned sample:1;
635 unsigned patch:1;
636 unsigned invariant:1;
637 unsigned precise:1;
638
639 /**
640 * Has this variable been used for reading or writing?
641 *
642 * Several GLSL semantic checks require knowledge of whether or not a
643 * variable has been used. For example, it is an error to redeclare a
644 * variable as invariant after it has been used.
645 *
646 * This is only maintained in the ast_to_hir.cpp path, not in
647 * Mesa's fixed function or ARB program paths.
648 */
649 unsigned used:1;
650
651 /**
652 * Has this variable been statically assigned?
653 *
654 * This answers whether the variable was assigned in any path of
655 * the shader during ast_to_hir. This doesn't answer whether it is
656 * still written after dead code removal, nor is it maintained in
657 * non-ast_to_hir.cpp (GLSL parsing) paths.
658 */
659 unsigned assigned:1;
660
661 /**
662 * When separate shader programs are enabled, only input/outputs between
663 * the stages of a multi-stage separate program can be safely removed
664 * from the shader interface. Other input/outputs must remains active.
665 */
666 unsigned always_active_io:1;
667
668 /**
669 * Enum indicating how the variable was declared. See
670 * ir_var_declaration_type.
671 *
672 * This is used to detect certain kinds of illegal variable redeclarations.
673 */
674 unsigned how_declared:2;
675
676 /**
677 * Storage class of the variable.
678 *
679 * \sa ir_variable_mode
680 */
681 unsigned mode:4;
682
683 /**
684 * Interpolation mode for shader inputs / outputs
685 *
686 * \sa ir_variable_interpolation
687 */
688 unsigned interpolation:2;
689
690 /**
691 * \name ARB_fragment_coord_conventions
692 * @{
693 */
694 unsigned origin_upper_left:1;
695 unsigned pixel_center_integer:1;
696 /*@}*/
697
698 /**
699 * Was the location explicitly set in the shader?
700 *
701 * If the location is explicitly set in the shader, it \b cannot be changed
702 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
703 * no effect).
704 */
705 unsigned explicit_location:1;
706 unsigned explicit_index:1;
707
708 /**
709 * Was an initial binding explicitly set in the shader?
710 *
711 * If so, constant_value contains an integer ir_constant representing the
712 * initial binding point.
713 */
714 unsigned explicit_binding:1;
715
716 /**
717 * Does this variable have an initializer?
718 *
719 * This is used by the linker to cross-validiate initializers of global
720 * variables.
721 */
722 unsigned has_initializer:1;
723
724 /**
725 * Is this variable a generic output or input that has not yet been matched
726 * up to a variable in another stage of the pipeline?
727 *
728 * This is used by the linker as scratch storage while assigning locations
729 * to generic inputs and outputs.
730 */
731 unsigned is_unmatched_generic_inout:1;
732
733 /**
734 * If non-zero, then this variable may be packed along with other variables
735 * into a single varying slot, so this offset should be applied when
736 * accessing components. For example, an offset of 1 means that the x
737 * component of this variable is actually stored in component y of the
738 * location specified by \c location.
739 */
740 unsigned location_frac:2;
741
742 /**
743 * Layout of the matrix. Uses glsl_matrix_layout values.
744 */
745 unsigned matrix_layout:2;
746
747 /**
748 * Non-zero if this variable was created by lowering a named interface
749 * block which was not an array.
750 *
751 * Note that this variable and \c from_named_ifc_block_array will never
752 * both be non-zero.
753 */
754 unsigned from_named_ifc_block_nonarray:1;
755
756 /**
757 * Non-zero if this variable was created by lowering a named interface
758 * block which was an array.
759 *
760 * Note that this variable and \c from_named_ifc_block_nonarray will never
761 * both be non-zero.
762 */
763 unsigned from_named_ifc_block_array:1;
764
765 /**
766 * Non-zero if the variable must be a shader input. This is useful for
767 * constraints on function parameters.
768 */
769 unsigned must_be_shader_input:1;
770
771 /**
772 * Output index for dual source blending.
773 *
774 * \note
775 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
776 * source blending.
777 */
778 unsigned index:1;
779
780 /**
781 * Precision qualifier.
782 *
783 * In desktop GLSL we do not care about precision qualifiers at all, in
784 * fact, the spec says that precision qualifiers are ignored.
785 *
786 * To make things easy, we make it so that this field is always
787 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
788 * have the same precision value and the checks we add in the compiler
789 * for this field will never break a desktop shader compile.
790 */
791 unsigned precision:2;
792
793 /**
794 * \brief Layout qualifier for gl_FragDepth.
795 *
796 * This is not equal to \c ir_depth_layout_none if and only if this
797 * variable is \c gl_FragDepth and a layout qualifier is specified.
798 */
799 ir_depth_layout depth_layout:3;
800
801 /**
802 * ARB_shader_image_load_store qualifiers.
803 */
804 unsigned image_read_only:1; /**< "readonly" qualifier. */
805 unsigned image_write_only:1; /**< "writeonly" qualifier. */
806 unsigned image_coherent:1;
807 unsigned image_volatile:1;
808 unsigned image_restrict:1;
809
810 /**
811 * ARB_shader_storage_buffer_object
812 */
813 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
814
815 /**
816 * Emit a warning if this variable is accessed.
817 */
818 private:
819 uint8_t warn_extension_index;
820
821 public:
822 /** Image internal format if specified explicitly, otherwise GL_NONE. */
823 uint16_t image_format;
824
825 private:
826 /**
827 * Number of state slots used
828 *
829 * \note
830 * This could be stored in as few as 7-bits, if necessary. If it is made
831 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
832 * be safe.
833 */
834 uint16_t _num_state_slots;
835
836 public:
837 /**
838 * Initial binding point for a sampler, atomic, or UBO.
839 *
840 * For array types, this represents the binding point for the first element.
841 */
842 int16_t binding;
843
844 /**
845 * Storage location of the base of this variable
846 *
847 * The precise meaning of this field depends on the nature of the variable.
848 *
849 * - Vertex shader input: one of the values from \c gl_vert_attrib.
850 * - Vertex shader output: one of the values from \c gl_varying_slot.
851 * - Geometry shader input: one of the values from \c gl_varying_slot.
852 * - Geometry shader output: one of the values from \c gl_varying_slot.
853 * - Fragment shader input: one of the values from \c gl_varying_slot.
854 * - Fragment shader output: one of the values from \c gl_frag_result.
855 * - Uniforms: Per-stage uniform slot number for default uniform block.
856 * - Uniforms: Index within the uniform block definition for UBO members.
857 * - Non-UBO Uniforms: explicit location until linking then reused to
858 * store uniform slot number.
859 * - Other: This field is not currently used.
860 *
861 * If the variable is a uniform, shader input, or shader output, and the
862 * slot has not been assigned, the value will be -1.
863 */
864 int location;
865
866 /**
867 * Vertex stream output identifier.
868 */
869 unsigned stream;
870
871 /**
872 * Location an atomic counter is stored at.
873 */
874 struct {
875 unsigned offset;
876 } atomic;
877
878 /**
879 * Highest element accessed with a constant expression array index
880 *
881 * Not used for non-array variables.
882 */
883 unsigned max_array_access;
884
885 /**
886 * Allow (only) ir_variable direct access private members.
887 */
888 friend class ir_variable;
889 } data;
890
891 /**
892 * Value assigned in the initializer of a variable declared "const"
893 */
894 ir_constant *constant_value;
895
896 /**
897 * Constant expression assigned in the initializer of the variable
898 *
899 * \warning
900 * This field and \c ::constant_value are distinct. Even if the two fields
901 * refer to constants with the same value, they must point to separate
902 * objects.
903 */
904 ir_constant *constant_initializer;
905
906 private:
907 static const char *const warn_extension_table[];
908
909 union {
910 /**
911 * For variables which satisfy the is_interface_instance() predicate,
912 * this points to an array of integers such that if the ith member of
913 * the interface block is an array, max_ifc_array_access[i] is the
914 * maximum array element of that member that has been accessed. If the
915 * ith member of the interface block is not an array,
916 * max_ifc_array_access[i] is unused.
917 *
918 * For variables whose type is not an interface block, this pointer is
919 * NULL.
920 */
921 unsigned *max_ifc_array_access;
922
923 /**
924 * Built-in state that backs this uniform
925 *
926 * Once set at variable creation, \c state_slots must remain invariant.
927 *
928 * If the variable is not a uniform, \c _num_state_slots will be zero
929 * and \c state_slots will be \c NULL.
930 */
931 ir_state_slot *state_slots;
932 } u;
933
934 /**
935 * For variables that are in an interface block or are an instance of an
936 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
937 *
938 * \sa ir_variable::location
939 */
940 const glsl_type *interface_type;
941
942 /**
943 * Name used for anonymous compiler temporaries
944 */
945 static const char tmp_name[];
946
947 public:
948 /**
949 * Should the construct keep names for ir_var_temporary variables?
950 *
951 * When this global is false, names passed to the constructor for
952 * \c ir_var_temporary variables will be dropped. Instead, the variable will
953 * be named "compiler_temp". This name will be in static storage.
954 *
955 * \warning
956 * \b NEVER change the mode of an \c ir_var_temporary.
957 *
958 * \warning
959 * This variable is \b not thread-safe. It is global, \b not
960 * per-context. It begins life false. A context can, at some point, make
961 * it true. From that point on, it will be true forever. This should be
962 * okay since it will only be set true while debugging.
963 */
964 static bool temporaries_allocate_names;
965 };
966
967 /**
968 * A function that returns whether a built-in function is available in the
969 * current shading language (based on version, ES or desktop, and extensions).
970 */
971 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
972
973 /*@{*/
974 /**
975 * The representation of a function instance; may be the full definition or
976 * simply a prototype.
977 */
978 class ir_function_signature : public ir_instruction {
979 /* An ir_function_signature will be part of the list of signatures in
980 * an ir_function.
981 */
982 public:
983 ir_function_signature(const glsl_type *return_type,
984 builtin_available_predicate builtin_avail = NULL);
985
986 virtual ir_function_signature *clone(void *mem_ctx,
987 struct hash_table *ht) const;
988 ir_function_signature *clone_prototype(void *mem_ctx,
989 struct hash_table *ht) const;
990
991 virtual void accept(ir_visitor *v)
992 {
993 v->visit(this);
994 }
995
996 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
997
998 /**
999 * Attempt to evaluate this function as a constant expression,
1000 * given a list of the actual parameters and the variable context.
1001 * Returns NULL for non-built-ins.
1002 */
1003 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1004
1005 /**
1006 * Get the name of the function for which this is a signature
1007 */
1008 const char *function_name() const;
1009
1010 /**
1011 * Get a handle to the function for which this is a signature
1012 *
1013 * There is no setter function, this function returns a \c const pointer,
1014 * and \c ir_function_signature::_function is private for a reason. The
1015 * only way to make a connection between a function and function signature
1016 * is via \c ir_function::add_signature. This helps ensure that certain
1017 * invariants (i.e., a function signature is in the list of signatures for
1018 * its \c _function) are met.
1019 *
1020 * \sa ir_function::add_signature
1021 */
1022 inline const class ir_function *function() const
1023 {
1024 return this->_function;
1025 }
1026
1027 /**
1028 * Check whether the qualifiers match between this signature's parameters
1029 * and the supplied parameter list. If not, returns the name of the first
1030 * parameter with mismatched qualifiers (for use in error messages).
1031 */
1032 const char *qualifiers_match(exec_list *params);
1033
1034 /**
1035 * Replace the current parameter list with the given one. This is useful
1036 * if the current information came from a prototype, and either has invalid
1037 * or missing parameter names.
1038 */
1039 void replace_parameters(exec_list *new_params);
1040
1041 /**
1042 * Function return type.
1043 *
1044 * \note This discards the optional precision qualifier.
1045 */
1046 const struct glsl_type *return_type;
1047
1048 /**
1049 * List of ir_variable of function parameters.
1050 *
1051 * This represents the storage. The paramaters passed in a particular
1052 * call will be in ir_call::actual_paramaters.
1053 */
1054 struct exec_list parameters;
1055
1056 /** Whether or not this function has a body (which may be empty). */
1057 unsigned is_defined:1;
1058
1059 /** Whether or not this function signature is a built-in. */
1060 bool is_builtin() const;
1061
1062 /**
1063 * Whether or not this function is an intrinsic to be implemented
1064 * by the driver.
1065 */
1066 bool is_intrinsic;
1067
1068 /** Whether or not a built-in is available for this shader. */
1069 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1070
1071 /** Body of instructions in the function. */
1072 struct exec_list body;
1073
1074 private:
1075 /**
1076 * A function pointer to a predicate that answers whether a built-in
1077 * function is available in the current shader. NULL if not a built-in.
1078 */
1079 builtin_available_predicate builtin_avail;
1080
1081 /** Function of which this signature is one overload. */
1082 class ir_function *_function;
1083
1084 /** Function signature of which this one is a prototype clone */
1085 const ir_function_signature *origin;
1086
1087 friend class ir_function;
1088
1089 /**
1090 * Helper function to run a list of instructions for constant
1091 * expression evaluation.
1092 *
1093 * The hash table represents the values of the visible variables.
1094 * There are no scoping issues because the table is indexed on
1095 * ir_variable pointers, not variable names.
1096 *
1097 * Returns false if the expression is not constant, true otherwise,
1098 * and the value in *result if result is non-NULL.
1099 */
1100 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1101 struct hash_table *variable_context,
1102 ir_constant **result);
1103 };
1104
1105
1106 /**
1107 * Header for tracking multiple overloaded functions with the same name.
1108 * Contains a list of ir_function_signatures representing each of the
1109 * actual functions.
1110 */
1111 class ir_function : public ir_instruction {
1112 public:
1113 ir_function(const char *name);
1114
1115 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1116
1117 virtual void accept(ir_visitor *v)
1118 {
1119 v->visit(this);
1120 }
1121
1122 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1123
1124 void add_signature(ir_function_signature *sig)
1125 {
1126 sig->_function = this;
1127 this->signatures.push_tail(sig);
1128 }
1129
1130 /**
1131 * Find a signature that matches a set of actual parameters, taking implicit
1132 * conversions into account. Also flags whether the match was exact.
1133 */
1134 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1135 const exec_list *actual_param,
1136 bool allow_builtins,
1137 bool *match_is_exact);
1138
1139 /**
1140 * Find a signature that matches a set of actual parameters, taking implicit
1141 * conversions into account.
1142 */
1143 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1144 const exec_list *actual_param,
1145 bool allow_builtins);
1146
1147 /**
1148 * Find a signature that exactly matches a set of actual parameters without
1149 * any implicit type conversions.
1150 */
1151 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1152 const exec_list *actual_ps);
1153
1154 /**
1155 * Name of the function.
1156 */
1157 const char *name;
1158
1159 /** Whether or not this function has a signature that isn't a built-in. */
1160 bool has_user_signature();
1161
1162 /**
1163 * List of ir_function_signature for each overloaded function with this name.
1164 */
1165 struct exec_list signatures;
1166
1167 /**
1168 * is this function a subroutine type declaration
1169 * e.g. subroutine void type1(float arg1);
1170 */
1171 bool is_subroutine;
1172
1173 /**
1174 * is this function associated to a subroutine type
1175 * e.g. subroutine (type1, type2) function_name { function_body };
1176 * would have num_subroutine_types 2,
1177 * and pointers to the type1 and type2 types.
1178 */
1179 int num_subroutine_types;
1180 const struct glsl_type **subroutine_types;
1181
1182 int subroutine_index;
1183 };
1184
1185 inline const char *ir_function_signature::function_name() const
1186 {
1187 return this->_function->name;
1188 }
1189 /*@}*/
1190
1191
1192 /**
1193 * IR instruction representing high-level if-statements
1194 */
1195 class ir_if : public ir_instruction {
1196 public:
1197 ir_if(ir_rvalue *condition)
1198 : ir_instruction(ir_type_if), condition(condition)
1199 {
1200 }
1201
1202 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1203
1204 virtual void accept(ir_visitor *v)
1205 {
1206 v->visit(this);
1207 }
1208
1209 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1210
1211 ir_rvalue *condition;
1212 /** List of ir_instruction for the body of the then branch */
1213 exec_list then_instructions;
1214 /** List of ir_instruction for the body of the else branch */
1215 exec_list else_instructions;
1216 };
1217
1218
1219 /**
1220 * IR instruction representing a high-level loop structure.
1221 */
1222 class ir_loop : public ir_instruction {
1223 public:
1224 ir_loop();
1225
1226 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1227
1228 virtual void accept(ir_visitor *v)
1229 {
1230 v->visit(this);
1231 }
1232
1233 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1234
1235 /** List of ir_instruction that make up the body of the loop. */
1236 exec_list body_instructions;
1237 };
1238
1239
1240 class ir_assignment : public ir_instruction {
1241 public:
1242 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1243
1244 /**
1245 * Construct an assignment with an explicit write mask
1246 *
1247 * \note
1248 * Since a write mask is supplied, the LHS must already be a bare
1249 * \c ir_dereference. The cannot be any swizzles in the LHS.
1250 */
1251 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1252 unsigned write_mask);
1253
1254 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1255
1256 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1257
1258 virtual void accept(ir_visitor *v)
1259 {
1260 v->visit(this);
1261 }
1262
1263 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1264
1265 /**
1266 * Get a whole variable written by an assignment
1267 *
1268 * If the LHS of the assignment writes a whole variable, the variable is
1269 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1270 * assignment are:
1271 *
1272 * - Assigning to a scalar
1273 * - Assigning to all components of a vector
1274 * - Whole array (or matrix) assignment
1275 * - Whole structure assignment
1276 */
1277 ir_variable *whole_variable_written();
1278
1279 /**
1280 * Set the LHS of an assignment
1281 */
1282 void set_lhs(ir_rvalue *lhs);
1283
1284 /**
1285 * Left-hand side of the assignment.
1286 *
1287 * This should be treated as read only. If you need to set the LHS of an
1288 * assignment, use \c ir_assignment::set_lhs.
1289 */
1290 ir_dereference *lhs;
1291
1292 /**
1293 * Value being assigned
1294 */
1295 ir_rvalue *rhs;
1296
1297 /**
1298 * Optional condition for the assignment.
1299 */
1300 ir_rvalue *condition;
1301
1302
1303 /**
1304 * Component mask written
1305 *
1306 * For non-vector types in the LHS, this field will be zero. For vector
1307 * types, a bit will be set for each component that is written. Note that
1308 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1309 *
1310 * A partially-set write mask means that each enabled channel gets
1311 * the value from a consecutive channel of the rhs. For example,
1312 * to write just .xyw of gl_FrontColor with color:
1313 *
1314 * (assign (constant bool (1)) (xyw)
1315 * (var_ref gl_FragColor)
1316 * (swiz xyw (var_ref color)))
1317 */
1318 unsigned write_mask:4;
1319 };
1320
1321 /* Update ir_expression::get_num_operands() and operator_strs when
1322 * updating this list.
1323 */
1324 enum ir_expression_operation {
1325 ir_unop_bit_not,
1326 ir_unop_logic_not,
1327 ir_unop_neg,
1328 ir_unop_abs,
1329 ir_unop_sign,
1330 ir_unop_rcp,
1331 ir_unop_rsq,
1332 ir_unop_sqrt,
1333 ir_unop_exp, /**< Log base e on gentype */
1334 ir_unop_log, /**< Natural log on gentype */
1335 ir_unop_exp2,
1336 ir_unop_log2,
1337 ir_unop_f2i, /**< Float-to-integer conversion. */
1338 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1339 ir_unop_i2f, /**< Integer-to-float conversion. */
1340 ir_unop_f2b, /**< Float-to-boolean conversion */
1341 ir_unop_b2f, /**< Boolean-to-float conversion */
1342 ir_unop_i2b, /**< int-to-boolean conversion */
1343 ir_unop_b2i, /**< Boolean-to-int conversion */
1344 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1345 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1346 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1347 ir_unop_d2f, /**< Double-to-float conversion. */
1348 ir_unop_f2d, /**< Float-to-double conversion. */
1349 ir_unop_d2i, /**< Double-to-integer conversion. */
1350 ir_unop_i2d, /**< Integer-to-double conversion. */
1351 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1352 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1353 ir_unop_d2b, /**< Double-to-boolean conversion. */
1354 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1355 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1356 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1357 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1358
1359 /**
1360 * \name Unary floating-point rounding operations.
1361 */
1362 /*@{*/
1363 ir_unop_trunc,
1364 ir_unop_ceil,
1365 ir_unop_floor,
1366 ir_unop_fract,
1367 ir_unop_round_even,
1368 /*@}*/
1369
1370 /**
1371 * \name Trigonometric operations.
1372 */
1373 /*@{*/
1374 ir_unop_sin,
1375 ir_unop_cos,
1376 /*@}*/
1377
1378 /**
1379 * \name Partial derivatives.
1380 */
1381 /*@{*/
1382 ir_unop_dFdx,
1383 ir_unop_dFdx_coarse,
1384 ir_unop_dFdx_fine,
1385 ir_unop_dFdy,
1386 ir_unop_dFdy_coarse,
1387 ir_unop_dFdy_fine,
1388 /*@}*/
1389
1390 /**
1391 * \name Floating point pack and unpack operations.
1392 */
1393 /*@{*/
1394 ir_unop_pack_snorm_2x16,
1395 ir_unop_pack_snorm_4x8,
1396 ir_unop_pack_unorm_2x16,
1397 ir_unop_pack_unorm_4x8,
1398 ir_unop_pack_half_2x16,
1399 ir_unop_unpack_snorm_2x16,
1400 ir_unop_unpack_snorm_4x8,
1401 ir_unop_unpack_unorm_2x16,
1402 ir_unop_unpack_unorm_4x8,
1403 ir_unop_unpack_half_2x16,
1404 /*@}*/
1405
1406 /**
1407 * \name Lowered floating point unpacking operations.
1408 *
1409 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1410 */
1411 /*@{*/
1412 ir_unop_unpack_half_2x16_split_x,
1413 ir_unop_unpack_half_2x16_split_y,
1414 /*@}*/
1415
1416 /**
1417 * \name Bit operations, part of ARB_gpu_shader5.
1418 */
1419 /*@{*/
1420 ir_unop_bitfield_reverse,
1421 ir_unop_bit_count,
1422 ir_unop_find_msb,
1423 ir_unop_find_lsb,
1424 /*@}*/
1425
1426 ir_unop_saturate,
1427
1428 /**
1429 * \name Double packing, part of ARB_gpu_shader_fp64.
1430 */
1431 /*@{*/
1432 ir_unop_pack_double_2x32,
1433 ir_unop_unpack_double_2x32,
1434 /*@}*/
1435
1436 ir_unop_frexp_sig,
1437 ir_unop_frexp_exp,
1438
1439 ir_unop_noise,
1440
1441 ir_unop_subroutine_to_int,
1442 /**
1443 * Interpolate fs input at centroid
1444 *
1445 * operand0 is the fs input.
1446 */
1447 ir_unop_interpolate_at_centroid,
1448
1449 /**
1450 * Ask the driver for the total size of a buffer block.
1451 *
1452 * operand0 is the ir_constant buffer block index in the linked shader.
1453 */
1454 ir_unop_get_buffer_size,
1455
1456 /**
1457 * Calculate length of an unsized array inside a buffer block.
1458 * This opcode is going to be replaced in a lowering pass inside
1459 * the linker.
1460 *
1461 * operand0 is the unsized array's ir_value for the calculation
1462 * of its length.
1463 */
1464 ir_unop_ssbo_unsized_array_length,
1465
1466 /**
1467 * A sentinel marking the last of the unary operations.
1468 */
1469 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1470
1471 ir_binop_add,
1472 ir_binop_sub,
1473 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1474 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1475 ir_binop_div,
1476
1477 /**
1478 * Returns the carry resulting from the addition of the two arguments.
1479 */
1480 /*@{*/
1481 ir_binop_carry,
1482 /*@}*/
1483
1484 /**
1485 * Returns the borrow resulting from the subtraction of the second argument
1486 * from the first argument.
1487 */
1488 /*@{*/
1489 ir_binop_borrow,
1490 /*@}*/
1491
1492 /**
1493 * Takes one of two combinations of arguments:
1494 *
1495 * - mod(vecN, vecN)
1496 * - mod(vecN, float)
1497 *
1498 * Does not take integer types.
1499 */
1500 ir_binop_mod,
1501
1502 /**
1503 * \name Binary comparison operators which return a boolean vector.
1504 * The type of both operands must be equal.
1505 */
1506 /*@{*/
1507 ir_binop_less,
1508 ir_binop_greater,
1509 ir_binop_lequal,
1510 ir_binop_gequal,
1511 ir_binop_equal,
1512 ir_binop_nequal,
1513 /**
1514 * Returns single boolean for whether all components of operands[0]
1515 * equal the components of operands[1].
1516 */
1517 ir_binop_all_equal,
1518 /**
1519 * Returns single boolean for whether any component of operands[0]
1520 * is not equal to the corresponding component of operands[1].
1521 */
1522 ir_binop_any_nequal,
1523 /*@}*/
1524
1525 /**
1526 * \name Bit-wise binary operations.
1527 */
1528 /*@{*/
1529 ir_binop_lshift,
1530 ir_binop_rshift,
1531 ir_binop_bit_and,
1532 ir_binop_bit_xor,
1533 ir_binop_bit_or,
1534 /*@}*/
1535
1536 ir_binop_logic_and,
1537 ir_binop_logic_xor,
1538 ir_binop_logic_or,
1539
1540 ir_binop_dot,
1541 ir_binop_min,
1542 ir_binop_max,
1543
1544 ir_binop_pow,
1545
1546 /**
1547 * \name Lowered floating point packing operations.
1548 *
1549 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1550 */
1551 /*@{*/
1552 ir_binop_pack_half_2x16_split,
1553 /*@}*/
1554
1555 /**
1556 * \name First half of a lowered bitfieldInsert() operation.
1557 *
1558 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1559 */
1560 /*@{*/
1561 ir_binop_bfm,
1562 /*@}*/
1563
1564 /**
1565 * Load a value the size of a given GLSL type from a uniform block.
1566 *
1567 * operand0 is the ir_constant uniform block index in the linked shader.
1568 * operand1 is a byte offset within the uniform block.
1569 */
1570 ir_binop_ubo_load,
1571
1572 /**
1573 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1574 */
1575 /*@{*/
1576 ir_binop_ldexp,
1577 /*@}*/
1578
1579 /**
1580 * Extract a scalar from a vector
1581 *
1582 * operand0 is the vector
1583 * operand1 is the index of the field to read from operand0
1584 */
1585 ir_binop_vector_extract,
1586
1587 /**
1588 * Interpolate fs input at offset
1589 *
1590 * operand0 is the fs input
1591 * operand1 is the offset from the pixel center
1592 */
1593 ir_binop_interpolate_at_offset,
1594
1595 /**
1596 * Interpolate fs input at sample position
1597 *
1598 * operand0 is the fs input
1599 * operand1 is the sample ID
1600 */
1601 ir_binop_interpolate_at_sample,
1602
1603 /**
1604 * A sentinel marking the last of the binary operations.
1605 */
1606 ir_last_binop = ir_binop_interpolate_at_sample,
1607
1608 /**
1609 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1610 */
1611 /*@{*/
1612 ir_triop_fma,
1613 /*@}*/
1614
1615 ir_triop_lrp,
1616
1617 /**
1618 * \name Conditional Select
1619 *
1620 * A vector conditional select instruction (like ?:, but operating per-
1621 * component on vectors).
1622 *
1623 * \see lower_instructions_visitor::ldexp_to_arith
1624 */
1625 /*@{*/
1626 ir_triop_csel,
1627 /*@}*/
1628
1629 /**
1630 * \name Second half of a lowered bitfieldInsert() operation.
1631 *
1632 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1633 */
1634 /*@{*/
1635 ir_triop_bfi,
1636 /*@}*/
1637
1638 ir_triop_bitfield_extract,
1639
1640 /**
1641 * Generate a value with one field of a vector changed
1642 *
1643 * operand0 is the vector
1644 * operand1 is the value to write into the vector result
1645 * operand2 is the index in operand0 to be modified
1646 */
1647 ir_triop_vector_insert,
1648
1649 /**
1650 * A sentinel marking the last of the ternary operations.
1651 */
1652 ir_last_triop = ir_triop_vector_insert,
1653
1654 ir_quadop_bitfield_insert,
1655
1656 ir_quadop_vector,
1657
1658 /**
1659 * A sentinel marking the last of the ternary operations.
1660 */
1661 ir_last_quadop = ir_quadop_vector,
1662
1663 /**
1664 * A sentinel marking the last of all operations.
1665 */
1666 ir_last_opcode = ir_quadop_vector
1667 };
1668
1669 class ir_expression : public ir_rvalue {
1670 public:
1671 ir_expression(int op, const struct glsl_type *type,
1672 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1673 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1674
1675 /**
1676 * Constructor for unary operation expressions
1677 */
1678 ir_expression(int op, ir_rvalue *);
1679
1680 /**
1681 * Constructor for binary operation expressions
1682 */
1683 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1684
1685 /**
1686 * Constructor for ternary operation expressions
1687 */
1688 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1689
1690 virtual bool equals(const ir_instruction *ir,
1691 enum ir_node_type ignore = ir_type_unset) const;
1692
1693 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1694
1695 /**
1696 * Attempt to constant-fold the expression
1697 *
1698 * The "variable_context" hash table links ir_variable * to ir_constant *
1699 * that represent the variables' values. \c NULL represents an empty
1700 * context.
1701 *
1702 * If the expression cannot be constant folded, this method will return
1703 * \c NULL.
1704 */
1705 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1706
1707 /**
1708 * Determine the number of operands used by an expression
1709 */
1710 static unsigned int get_num_operands(ir_expression_operation);
1711
1712 /**
1713 * Determine the number of operands used by an expression
1714 */
1715 unsigned int get_num_operands() const
1716 {
1717 return (this->operation == ir_quadop_vector)
1718 ? this->type->vector_elements : get_num_operands(operation);
1719 }
1720
1721 /**
1722 * Return whether the expression operates on vectors horizontally.
1723 */
1724 bool is_horizontal() const
1725 {
1726 return operation == ir_binop_all_equal ||
1727 operation == ir_binop_any_nequal ||
1728 operation == ir_binop_dot ||
1729 operation == ir_quadop_vector;
1730 }
1731
1732 /**
1733 * Return a string representing this expression's operator.
1734 */
1735 const char *operator_string();
1736
1737 /**
1738 * Return a string representing this expression's operator.
1739 */
1740 static const char *operator_string(ir_expression_operation);
1741
1742
1743 /**
1744 * Do a reverse-lookup to translate the given string into an operator.
1745 */
1746 static ir_expression_operation get_operator(const char *);
1747
1748 virtual void accept(ir_visitor *v)
1749 {
1750 v->visit(this);
1751 }
1752
1753 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1754
1755 virtual ir_variable *variable_referenced() const;
1756
1757 ir_expression_operation operation;
1758 ir_rvalue *operands[4];
1759 };
1760
1761
1762 /**
1763 * HIR instruction representing a high-level function call, containing a list
1764 * of parameters and returning a value in the supplied temporary.
1765 */
1766 class ir_call : public ir_instruction {
1767 public:
1768 ir_call(ir_function_signature *callee,
1769 ir_dereference_variable *return_deref,
1770 exec_list *actual_parameters)
1771 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1772 {
1773 assert(callee->return_type != NULL);
1774 actual_parameters->move_nodes_to(& this->actual_parameters);
1775 this->use_builtin = callee->is_builtin();
1776 }
1777
1778 ir_call(ir_function_signature *callee,
1779 ir_dereference_variable *return_deref,
1780 exec_list *actual_parameters,
1781 ir_variable *var, ir_rvalue *array_idx)
1782 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1783 {
1784 assert(callee->return_type != NULL);
1785 actual_parameters->move_nodes_to(& this->actual_parameters);
1786 this->use_builtin = callee->is_builtin();
1787 }
1788
1789 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1790
1791 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1792
1793 virtual void accept(ir_visitor *v)
1794 {
1795 v->visit(this);
1796 }
1797
1798 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1799
1800 /**
1801 * Get the name of the function being called.
1802 */
1803 const char *callee_name() const
1804 {
1805 return callee->function_name();
1806 }
1807
1808 /**
1809 * Generates an inline version of the function before @ir,
1810 * storing the return value in return_deref.
1811 */
1812 void generate_inline(ir_instruction *ir);
1813
1814 /**
1815 * Storage for the function's return value.
1816 * This must be NULL if the return type is void.
1817 */
1818 ir_dereference_variable *return_deref;
1819
1820 /**
1821 * The specific function signature being called.
1822 */
1823 ir_function_signature *callee;
1824
1825 /* List of ir_rvalue of paramaters passed in this call. */
1826 exec_list actual_parameters;
1827
1828 /** Should this call only bind to a built-in function? */
1829 bool use_builtin;
1830
1831 /*
1832 * ARB_shader_subroutine support -
1833 * the subroutine uniform variable and array index
1834 * rvalue to be used in the lowering pass later.
1835 */
1836 ir_variable *sub_var;
1837 ir_rvalue *array_idx;
1838 };
1839
1840
1841 /**
1842 * \name Jump-like IR instructions.
1843 *
1844 * These include \c break, \c continue, \c return, and \c discard.
1845 */
1846 /*@{*/
1847 class ir_jump : public ir_instruction {
1848 protected:
1849 ir_jump(enum ir_node_type t)
1850 : ir_instruction(t)
1851 {
1852 }
1853 };
1854
1855 class ir_return : public ir_jump {
1856 public:
1857 ir_return()
1858 : ir_jump(ir_type_return), value(NULL)
1859 {
1860 }
1861
1862 ir_return(ir_rvalue *value)
1863 : ir_jump(ir_type_return), value(value)
1864 {
1865 }
1866
1867 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1868
1869 ir_rvalue *get_value() const
1870 {
1871 return value;
1872 }
1873
1874 virtual void accept(ir_visitor *v)
1875 {
1876 v->visit(this);
1877 }
1878
1879 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1880
1881 ir_rvalue *value;
1882 };
1883
1884
1885 /**
1886 * Jump instructions used inside loops
1887 *
1888 * These include \c break and \c continue. The \c break within a loop is
1889 * different from the \c break within a switch-statement.
1890 *
1891 * \sa ir_switch_jump
1892 */
1893 class ir_loop_jump : public ir_jump {
1894 public:
1895 enum jump_mode {
1896 jump_break,
1897 jump_continue
1898 };
1899
1900 ir_loop_jump(jump_mode mode)
1901 : ir_jump(ir_type_loop_jump)
1902 {
1903 this->mode = mode;
1904 }
1905
1906 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1907
1908 virtual void accept(ir_visitor *v)
1909 {
1910 v->visit(this);
1911 }
1912
1913 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1914
1915 bool is_break() const
1916 {
1917 return mode == jump_break;
1918 }
1919
1920 bool is_continue() const
1921 {
1922 return mode == jump_continue;
1923 }
1924
1925 /** Mode selector for the jump instruction. */
1926 enum jump_mode mode;
1927 };
1928
1929 /**
1930 * IR instruction representing discard statements.
1931 */
1932 class ir_discard : public ir_jump {
1933 public:
1934 ir_discard()
1935 : ir_jump(ir_type_discard)
1936 {
1937 this->condition = NULL;
1938 }
1939
1940 ir_discard(ir_rvalue *cond)
1941 : ir_jump(ir_type_discard)
1942 {
1943 this->condition = cond;
1944 }
1945
1946 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1947
1948 virtual void accept(ir_visitor *v)
1949 {
1950 v->visit(this);
1951 }
1952
1953 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1954
1955 ir_rvalue *condition;
1956 };
1957 /*@}*/
1958
1959
1960 /**
1961 * Texture sampling opcodes used in ir_texture
1962 */
1963 enum ir_texture_opcode {
1964 ir_tex, /**< Regular texture look-up */
1965 ir_txb, /**< Texture look-up with LOD bias */
1966 ir_txl, /**< Texture look-up with explicit LOD */
1967 ir_txd, /**< Texture look-up with partial derivatvies */
1968 ir_txf, /**< Texel fetch with explicit LOD */
1969 ir_txf_ms, /**< Multisample texture fetch */
1970 ir_txs, /**< Texture size */
1971 ir_lod, /**< Texture lod query */
1972 ir_tg4, /**< Texture gather */
1973 ir_query_levels, /**< Texture levels query */
1974 ir_texture_samples, /**< Texture samples query */
1975 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1976 };
1977
1978
1979 /**
1980 * IR instruction to sample a texture
1981 *
1982 * The specific form of the IR instruction depends on the \c mode value
1983 * selected from \c ir_texture_opcodes. In the printed IR, these will
1984 * appear as:
1985 *
1986 * Texel offset (0 or an expression)
1987 * | Projection divisor
1988 * | | Shadow comparitor
1989 * | | |
1990 * v v v
1991 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1992 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1993 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1994 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1995 * (txf <type> <sampler> <coordinate> 0 <lod>)
1996 * (txf_ms
1997 * <type> <sampler> <coordinate> <sample_index>)
1998 * (txs <type> <sampler> <lod>)
1999 * (lod <type> <sampler> <coordinate>)
2000 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
2001 * (query_levels <type> <sampler>)
2002 * (samples_identical <sampler> <coordinate>)
2003 */
2004 class ir_texture : public ir_rvalue {
2005 public:
2006 ir_texture(enum ir_texture_opcode op)
2007 : ir_rvalue(ir_type_texture),
2008 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2009 shadow_comparitor(NULL), offset(NULL)
2010 {
2011 memset(&lod_info, 0, sizeof(lod_info));
2012 }
2013
2014 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2015
2016 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2017
2018 virtual void accept(ir_visitor *v)
2019 {
2020 v->visit(this);
2021 }
2022
2023 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2024
2025 virtual bool equals(const ir_instruction *ir,
2026 enum ir_node_type ignore = ir_type_unset) const;
2027
2028 /**
2029 * Return a string representing the ir_texture_opcode.
2030 */
2031 const char *opcode_string();
2032
2033 /** Set the sampler and type. */
2034 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2035
2036 /**
2037 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2038 */
2039 static ir_texture_opcode get_opcode(const char *);
2040
2041 enum ir_texture_opcode op;
2042
2043 /** Sampler to use for the texture access. */
2044 ir_dereference *sampler;
2045
2046 /** Texture coordinate to sample */
2047 ir_rvalue *coordinate;
2048
2049 /**
2050 * Value used for projective divide.
2051 *
2052 * If there is no projective divide (the common case), this will be
2053 * \c NULL. Optimization passes should check for this to point to a constant
2054 * of 1.0 and replace that with \c NULL.
2055 */
2056 ir_rvalue *projector;
2057
2058 /**
2059 * Coordinate used for comparison on shadow look-ups.
2060 *
2061 * If there is no shadow comparison, this will be \c NULL. For the
2062 * \c ir_txf opcode, this *must* be \c NULL.
2063 */
2064 ir_rvalue *shadow_comparitor;
2065
2066 /** Texel offset. */
2067 ir_rvalue *offset;
2068
2069 union {
2070 ir_rvalue *lod; /**< Floating point LOD */
2071 ir_rvalue *bias; /**< Floating point LOD bias */
2072 ir_rvalue *sample_index; /**< MSAA sample index */
2073 ir_rvalue *component; /**< Gather component selector */
2074 struct {
2075 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2076 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2077 } grad;
2078 } lod_info;
2079 };
2080
2081
2082 struct ir_swizzle_mask {
2083 unsigned x:2;
2084 unsigned y:2;
2085 unsigned z:2;
2086 unsigned w:2;
2087
2088 /**
2089 * Number of components in the swizzle.
2090 */
2091 unsigned num_components:3;
2092
2093 /**
2094 * Does the swizzle contain duplicate components?
2095 *
2096 * L-value swizzles cannot contain duplicate components.
2097 */
2098 unsigned has_duplicates:1;
2099 };
2100
2101
2102 class ir_swizzle : public ir_rvalue {
2103 public:
2104 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2105 unsigned count);
2106
2107 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2108
2109 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2110
2111 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2112
2113 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2114
2115 /**
2116 * Construct an ir_swizzle from the textual representation. Can fail.
2117 */
2118 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2119
2120 virtual void accept(ir_visitor *v)
2121 {
2122 v->visit(this);
2123 }
2124
2125 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2126
2127 virtual bool equals(const ir_instruction *ir,
2128 enum ir_node_type ignore = ir_type_unset) const;
2129
2130 bool is_lvalue() const
2131 {
2132 return val->is_lvalue() && !mask.has_duplicates;
2133 }
2134
2135 /**
2136 * Get the variable that is ultimately referenced by an r-value
2137 */
2138 virtual ir_variable *variable_referenced() const;
2139
2140 ir_rvalue *val;
2141 ir_swizzle_mask mask;
2142
2143 private:
2144 /**
2145 * Initialize the mask component of a swizzle
2146 *
2147 * This is used by the \c ir_swizzle constructors.
2148 */
2149 void init_mask(const unsigned *components, unsigned count);
2150 };
2151
2152
2153 class ir_dereference : public ir_rvalue {
2154 public:
2155 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2156
2157 bool is_lvalue() const;
2158
2159 /**
2160 * Get the variable that is ultimately referenced by an r-value
2161 */
2162 virtual ir_variable *variable_referenced() const = 0;
2163
2164 protected:
2165 ir_dereference(enum ir_node_type t)
2166 : ir_rvalue(t)
2167 {
2168 }
2169 };
2170
2171
2172 class ir_dereference_variable : public ir_dereference {
2173 public:
2174 ir_dereference_variable(ir_variable *var);
2175
2176 virtual ir_dereference_variable *clone(void *mem_ctx,
2177 struct hash_table *) const;
2178
2179 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2180
2181 virtual bool equals(const ir_instruction *ir,
2182 enum ir_node_type ignore = ir_type_unset) const;
2183
2184 /**
2185 * Get the variable that is ultimately referenced by an r-value
2186 */
2187 virtual ir_variable *variable_referenced() const
2188 {
2189 return this->var;
2190 }
2191
2192 virtual ir_variable *whole_variable_referenced()
2193 {
2194 /* ir_dereference_variable objects always dereference the entire
2195 * variable. However, if this dereference is dereferenced by anything
2196 * else, the complete deferefernce chain is not a whole-variable
2197 * dereference. This method should only be called on the top most
2198 * ir_rvalue in a dereference chain.
2199 */
2200 return this->var;
2201 }
2202
2203 virtual void accept(ir_visitor *v)
2204 {
2205 v->visit(this);
2206 }
2207
2208 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2209
2210 /**
2211 * Object being dereferenced.
2212 */
2213 ir_variable *var;
2214 };
2215
2216
2217 class ir_dereference_array : public ir_dereference {
2218 public:
2219 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2220
2221 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2222
2223 virtual ir_dereference_array *clone(void *mem_ctx,
2224 struct hash_table *) const;
2225
2226 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2227
2228 virtual bool equals(const ir_instruction *ir,
2229 enum ir_node_type ignore = ir_type_unset) const;
2230
2231 /**
2232 * Get the variable that is ultimately referenced by an r-value
2233 */
2234 virtual ir_variable *variable_referenced() const
2235 {
2236 return this->array->variable_referenced();
2237 }
2238
2239 virtual void accept(ir_visitor *v)
2240 {
2241 v->visit(this);
2242 }
2243
2244 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2245
2246 ir_rvalue *array;
2247 ir_rvalue *array_index;
2248
2249 private:
2250 void set_array(ir_rvalue *value);
2251 };
2252
2253
2254 class ir_dereference_record : public ir_dereference {
2255 public:
2256 ir_dereference_record(ir_rvalue *value, const char *field);
2257
2258 ir_dereference_record(ir_variable *var, const char *field);
2259
2260 virtual ir_dereference_record *clone(void *mem_ctx,
2261 struct hash_table *) const;
2262
2263 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2264
2265 /**
2266 * Get the variable that is ultimately referenced by an r-value
2267 */
2268 virtual ir_variable *variable_referenced() const
2269 {
2270 return this->record->variable_referenced();
2271 }
2272
2273 virtual void accept(ir_visitor *v)
2274 {
2275 v->visit(this);
2276 }
2277
2278 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2279
2280 ir_rvalue *record;
2281 const char *field;
2282 };
2283
2284
2285 /**
2286 * Data stored in an ir_constant
2287 */
2288 union ir_constant_data {
2289 unsigned u[16];
2290 int i[16];
2291 float f[16];
2292 bool b[16];
2293 double d[16];
2294 };
2295
2296
2297 class ir_constant : public ir_rvalue {
2298 public:
2299 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2300 ir_constant(bool b, unsigned vector_elements=1);
2301 ir_constant(unsigned int u, unsigned vector_elements=1);
2302 ir_constant(int i, unsigned vector_elements=1);
2303 ir_constant(float f, unsigned vector_elements=1);
2304 ir_constant(double d, unsigned vector_elements=1);
2305
2306 /**
2307 * Construct an ir_constant from a list of ir_constant values
2308 */
2309 ir_constant(const struct glsl_type *type, exec_list *values);
2310
2311 /**
2312 * Construct an ir_constant from a scalar component of another ir_constant
2313 *
2314 * The new \c ir_constant inherits the type of the component from the
2315 * source constant.
2316 *
2317 * \note
2318 * In the case of a matrix constant, the new constant is a scalar, \b not
2319 * a vector.
2320 */
2321 ir_constant(const ir_constant *c, unsigned i);
2322
2323 /**
2324 * Return a new ir_constant of the specified type containing all zeros.
2325 */
2326 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2327
2328 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2329
2330 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2331
2332 virtual void accept(ir_visitor *v)
2333 {
2334 v->visit(this);
2335 }
2336
2337 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2338
2339 virtual bool equals(const ir_instruction *ir,
2340 enum ir_node_type ignore = ir_type_unset) const;
2341
2342 /**
2343 * Get a particular component of a constant as a specific type
2344 *
2345 * This is useful, for example, to get a value from an integer constant
2346 * as a float or bool. This appears frequently when constructors are
2347 * called with all constant parameters.
2348 */
2349 /*@{*/
2350 bool get_bool_component(unsigned i) const;
2351 float get_float_component(unsigned i) const;
2352 double get_double_component(unsigned i) const;
2353 int get_int_component(unsigned i) const;
2354 unsigned get_uint_component(unsigned i) const;
2355 /*@}*/
2356
2357 ir_constant *get_array_element(unsigned i) const;
2358
2359 ir_constant *get_record_field(const char *name);
2360
2361 /**
2362 * Copy the values on another constant at a given offset.
2363 *
2364 * The offset is ignored for array or struct copies, it's only for
2365 * scalars or vectors into vectors or matrices.
2366 *
2367 * With identical types on both sides and zero offset it's clone()
2368 * without creating a new object.
2369 */
2370
2371 void copy_offset(ir_constant *src, int offset);
2372
2373 /**
2374 * Copy the values on another constant at a given offset and
2375 * following an assign-like mask.
2376 *
2377 * The mask is ignored for scalars.
2378 *
2379 * Note that this function only handles what assign can handle,
2380 * i.e. at most a vector as source and a column of a matrix as
2381 * destination.
2382 */
2383
2384 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2385
2386 /**
2387 * Determine whether a constant has the same value as another constant
2388 *
2389 * \sa ir_constant::is_zero, ir_constant::is_one,
2390 * ir_constant::is_negative_one
2391 */
2392 bool has_value(const ir_constant *) const;
2393
2394 /**
2395 * Return true if this ir_constant represents the given value.
2396 *
2397 * For vectors, this checks that each component is the given value.
2398 */
2399 virtual bool is_value(float f, int i) const;
2400 virtual bool is_zero() const;
2401 virtual bool is_one() const;
2402 virtual bool is_negative_one() const;
2403
2404 /**
2405 * Return true for constants that could be stored as 16-bit unsigned values.
2406 *
2407 * Note that this will return true even for signed integer ir_constants, as
2408 * long as the value is non-negative and fits in 16-bits.
2409 */
2410 virtual bool is_uint16_constant() const;
2411
2412 /**
2413 * Value of the constant.
2414 *
2415 * The field used to back the values supplied by the constant is determined
2416 * by the type associated with the \c ir_instruction. Constants may be
2417 * scalars, vectors, or matrices.
2418 */
2419 union ir_constant_data value;
2420
2421 /* Array elements */
2422 ir_constant **array_elements;
2423
2424 /* Structure fields */
2425 exec_list components;
2426
2427 private:
2428 /**
2429 * Parameterless constructor only used by the clone method
2430 */
2431 ir_constant(void);
2432 };
2433
2434 /**
2435 * IR instruction to emit a vertex in a geometry shader.
2436 */
2437 class ir_emit_vertex : public ir_instruction {
2438 public:
2439 ir_emit_vertex(ir_rvalue *stream)
2440 : ir_instruction(ir_type_emit_vertex),
2441 stream(stream)
2442 {
2443 assert(stream);
2444 }
2445
2446 virtual void accept(ir_visitor *v)
2447 {
2448 v->visit(this);
2449 }
2450
2451 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2452 {
2453 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2454 }
2455
2456 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2457
2458 int stream_id() const
2459 {
2460 return stream->as_constant()->value.i[0];
2461 }
2462
2463 ir_rvalue *stream;
2464 };
2465
2466 /**
2467 * IR instruction to complete the current primitive and start a new one in a
2468 * geometry shader.
2469 */
2470 class ir_end_primitive : public ir_instruction {
2471 public:
2472 ir_end_primitive(ir_rvalue *stream)
2473 : ir_instruction(ir_type_end_primitive),
2474 stream(stream)
2475 {
2476 assert(stream);
2477 }
2478
2479 virtual void accept(ir_visitor *v)
2480 {
2481 v->visit(this);
2482 }
2483
2484 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2485 {
2486 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2487 }
2488
2489 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2490
2491 int stream_id() const
2492 {
2493 return stream->as_constant()->value.i[0];
2494 }
2495
2496 ir_rvalue *stream;
2497 };
2498
2499 /**
2500 * IR instruction for tessellation control and compute shader barrier.
2501 */
2502 class ir_barrier : public ir_instruction {
2503 public:
2504 ir_barrier()
2505 : ir_instruction(ir_type_barrier)
2506 {
2507 }
2508
2509 virtual void accept(ir_visitor *v)
2510 {
2511 v->visit(this);
2512 }
2513
2514 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2515 {
2516 return new(mem_ctx) ir_barrier();
2517 }
2518
2519 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2520 };
2521
2522 /*@}*/
2523
2524 /**
2525 * Apply a visitor to each IR node in a list
2526 */
2527 void
2528 visit_exec_list(exec_list *list, ir_visitor *visitor);
2529
2530 /**
2531 * Validate invariants on each IR node in a list
2532 */
2533 void validate_ir_tree(exec_list *instructions);
2534
2535 struct _mesa_glsl_parse_state;
2536 struct gl_shader_program;
2537
2538 /**
2539 * Detect whether an unlinked shader contains static recursion
2540 *
2541 * If the list of instructions is determined to contain static recursion,
2542 * \c _mesa_glsl_error will be called to emit error messages for each function
2543 * that is in the recursion cycle.
2544 */
2545 void
2546 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2547 exec_list *instructions);
2548
2549 /**
2550 * Detect whether a linked shader contains static recursion
2551 *
2552 * If the list of instructions is determined to contain static recursion,
2553 * \c link_error_printf will be called to emit error messages for each function
2554 * that is in the recursion cycle. In addition,
2555 * \c gl_shader_program::LinkStatus will be set to false.
2556 */
2557 void
2558 detect_recursion_linked(struct gl_shader_program *prog,
2559 exec_list *instructions);
2560
2561 /**
2562 * Make a clone of each IR instruction in a list
2563 *
2564 * \param in List of IR instructions that are to be cloned
2565 * \param out List to hold the cloned instructions
2566 */
2567 void
2568 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2569
2570 extern void
2571 _mesa_glsl_initialize_variables(exec_list *instructions,
2572 struct _mesa_glsl_parse_state *state);
2573
2574 extern void
2575 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2576
2577 extern void
2578 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2579
2580 extern void
2581 _mesa_glsl_initialize_builtin_functions();
2582
2583 extern ir_function_signature *
2584 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2585 const char *name, exec_list *actual_parameters);
2586
2587 extern ir_function *
2588 _mesa_glsl_find_builtin_function_by_name(const char *name);
2589
2590 extern gl_shader *
2591 _mesa_glsl_get_builtin_function_shader(void);
2592
2593 extern ir_function_signature *
2594 _mesa_get_main_function_signature(gl_shader *sh);
2595
2596 extern void
2597 _mesa_glsl_release_functions(void);
2598
2599 extern void
2600 _mesa_glsl_release_builtin_functions(void);
2601
2602 extern void
2603 reparent_ir(exec_list *list, void *mem_ctx);
2604
2605 struct glsl_symbol_table;
2606
2607 extern void
2608 import_prototypes(const exec_list *source, exec_list *dest,
2609 struct glsl_symbol_table *symbols, void *mem_ctx);
2610
2611 extern bool
2612 ir_has_call(ir_instruction *ir);
2613
2614 extern void
2615 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2616 gl_shader_stage shader_stage);
2617
2618 extern char *
2619 prototype_string(const glsl_type *return_type, const char *name,
2620 exec_list *parameters);
2621
2622 const char *
2623 mode_string(const ir_variable *var);
2624
2625 /**
2626 * Built-in / reserved GL variables names start with "gl_"
2627 */
2628 static inline bool
2629 is_gl_identifier(const char *s)
2630 {
2631 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2632 }
2633
2634 extern "C" {
2635 #endif /* __cplusplus */
2636
2637 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2638 struct _mesa_glsl_parse_state *state);
2639
2640 extern void
2641 fprint_ir(FILE *f, const void *instruction);
2642
2643 #ifdef __cplusplus
2644 } /* extern "C" */
2645 #endif
2646
2647 unsigned
2648 vertices_per_prim(GLenum prim);
2649
2650 #endif /* IR_H */