glsl: add ARB_derivative control support
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 /**
113 * \name IR instruction downcast functions
114 *
115 * These functions either cast the object to a derived class or return
116 * \c NULL if the object's type does not match the specified derived class.
117 * Additional downcast functions will be added as needed.
118 */
119 /*@{*/
120 class ir_rvalue *as_rvalue()
121 {
122 if (ir_type == ir_type_dereference_array ||
123 ir_type == ir_type_dereference_record ||
124 ir_type == ir_type_dereference_variable ||
125 ir_type == ir_type_constant ||
126 ir_type == ir_type_expression ||
127 ir_type == ir_type_swizzle ||
128 ir_type == ir_type_texture)
129 return (class ir_rvalue *) this;
130 return NULL;
131 }
132
133 class ir_dereference *as_dereference()
134 {
135 if (ir_type == ir_type_dereference_array ||
136 ir_type == ir_type_dereference_record ||
137 ir_type == ir_type_dereference_variable)
138 return (class ir_dereference *) this;
139 return NULL;
140 }
141
142 class ir_jump *as_jump()
143 {
144 if (ir_type == ir_type_loop_jump ||
145 ir_type == ir_type_return ||
146 ir_type == ir_type_discard)
147 return (class ir_jump *) this;
148 return NULL;
149 }
150
151 #define AS_CHILD(TYPE) \
152 class ir_##TYPE * as_##TYPE() \
153 { \
154 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
155 }
156 AS_CHILD(variable)
157 AS_CHILD(function)
158 AS_CHILD(dereference_array)
159 AS_CHILD(dereference_variable)
160 AS_CHILD(dereference_record)
161 AS_CHILD(expression)
162 AS_CHILD(loop)
163 AS_CHILD(assignment)
164 AS_CHILD(call)
165 AS_CHILD(return)
166 AS_CHILD(if)
167 AS_CHILD(swizzle)
168 AS_CHILD(texture)
169 AS_CHILD(constant)
170 AS_CHILD(discard)
171 #undef AS_CHILD
172 /*@}*/
173
174 /**
175 * IR equality method: Return true if the referenced instruction would
176 * return the same value as this one.
177 *
178 * This intended to be used for CSE and algebraic optimizations, on rvalues
179 * in particular. No support for other instruction types (assignments,
180 * jumps, calls, etc.) is planned.
181 */
182 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
183
184 protected:
185 ir_instruction(enum ir_node_type t)
186 : ir_type(t)
187 {
188 }
189
190 private:
191 ir_instruction()
192 {
193 assert(!"Should not get here.");
194 }
195 };
196
197
198 /**
199 * The base class for all "values"/expression trees.
200 */
201 class ir_rvalue : public ir_instruction {
202 public:
203 const struct glsl_type *type;
204
205 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
206
207 virtual void accept(ir_visitor *v)
208 {
209 v->visit(this);
210 }
211
212 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
213
214 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
215
216 ir_rvalue *as_rvalue_to_saturate();
217
218 virtual bool is_lvalue() const
219 {
220 return false;
221 }
222
223 /**
224 * Get the variable that is ultimately referenced by an r-value
225 */
226 virtual ir_variable *variable_referenced() const
227 {
228 return NULL;
229 }
230
231
232 /**
233 * If an r-value is a reference to a whole variable, get that variable
234 *
235 * \return
236 * Pointer to a variable that is completely dereferenced by the r-value. If
237 * the r-value is not a dereference or the dereference does not access the
238 * entire variable (i.e., it's just one array element, struct field), \c NULL
239 * is returned.
240 */
241 virtual ir_variable *whole_variable_referenced()
242 {
243 return NULL;
244 }
245
246 /**
247 * Determine if an r-value has the value zero
248 *
249 * The base implementation of this function always returns \c false. The
250 * \c ir_constant class over-rides this function to return \c true \b only
251 * for vector and scalar types that have all elements set to the value
252 * zero (or \c false for booleans).
253 *
254 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
255 * ir_constant::is_basis
256 */
257 virtual bool is_zero() const;
258
259 /**
260 * Determine if an r-value has the value one
261 *
262 * The base implementation of this function always returns \c false. The
263 * \c ir_constant class over-rides this function to return \c true \b only
264 * for vector and scalar types that have all elements set to the value
265 * one (or \c true for booleans).
266 *
267 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
268 * ir_constant::is_basis
269 */
270 virtual bool is_one() const;
271
272 /**
273 * Determine if an r-value has the value negative one
274 *
275 * The base implementation of this function always returns \c false. The
276 * \c ir_constant class over-rides this function to return \c true \b only
277 * for vector and scalar types that have all elements set to the value
278 * negative one. For boolean types, the result is always \c false.
279 *
280 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
281 * ir_constant::is_basis
282 */
283 virtual bool is_negative_one() const;
284
285 /**
286 * Determine if an r-value is a basis vector
287 *
288 * The base implementation of this function always returns \c false. The
289 * \c ir_constant class over-rides this function to return \c true \b only
290 * for vector and scalar types that have one element set to the value one,
291 * and the other elements set to the value zero. For boolean types, the
292 * result is always \c false.
293 *
294 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
295 * is_constant::is_negative_one
296 */
297 virtual bool is_basis() const;
298
299 /**
300 * Determine if an r-value is an unsigned integer constant which can be
301 * stored in 16 bits.
302 *
303 * \sa ir_constant::is_uint16_constant.
304 */
305 virtual bool is_uint16_constant() const { return false; }
306
307 /**
308 * Return a generic value of error_type.
309 *
310 * Allocation will be performed with 'mem_ctx' as ralloc owner.
311 */
312 static ir_rvalue *error_value(void *mem_ctx);
313
314 protected:
315 ir_rvalue(enum ir_node_type t);
316 };
317
318
319 /**
320 * Variable storage classes
321 */
322 enum ir_variable_mode {
323 ir_var_auto = 0, /**< Function local variables and globals. */
324 ir_var_uniform, /**< Variable declared as a uniform. */
325 ir_var_shader_in,
326 ir_var_shader_out,
327 ir_var_function_in,
328 ir_var_function_out,
329 ir_var_function_inout,
330 ir_var_const_in, /**< "in" param that must be a constant expression */
331 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
332 ir_var_temporary, /**< Temporary variable generated during compilation. */
333 ir_var_mode_count /**< Number of variable modes */
334 };
335
336 /**
337 * Enum keeping track of how a variable was declared. For error checking of
338 * the gl_PerVertex redeclaration rules.
339 */
340 enum ir_var_declaration_type {
341 /**
342 * Normal declaration (for most variables, this means an explicit
343 * declaration. Exception: temporaries are always implicitly declared, but
344 * they still use ir_var_declared_normally).
345 *
346 * Note: an ir_variable that represents a named interface block uses
347 * ir_var_declared_normally.
348 */
349 ir_var_declared_normally = 0,
350
351 /**
352 * Variable was explicitly declared (or re-declared) in an unnamed
353 * interface block.
354 */
355 ir_var_declared_in_block,
356
357 /**
358 * Variable is an implicitly declared built-in that has not been explicitly
359 * re-declared by the shader.
360 */
361 ir_var_declared_implicitly,
362 };
363
364 /**
365 * \brief Layout qualifiers for gl_FragDepth.
366 *
367 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
368 * with a layout qualifier.
369 */
370 enum ir_depth_layout {
371 ir_depth_layout_none, /**< No depth layout is specified. */
372 ir_depth_layout_any,
373 ir_depth_layout_greater,
374 ir_depth_layout_less,
375 ir_depth_layout_unchanged
376 };
377
378 /**
379 * \brief Convert depth layout qualifier to string.
380 */
381 const char*
382 depth_layout_string(ir_depth_layout layout);
383
384 /**
385 * Description of built-in state associated with a uniform
386 *
387 * \sa ir_variable::state_slots
388 */
389 struct ir_state_slot {
390 int tokens[5];
391 int swizzle;
392 };
393
394
395 /**
396 * Get the string value for an interpolation qualifier
397 *
398 * \return The string that would be used in a shader to specify \c
399 * mode will be returned.
400 *
401 * This function is used to generate error messages of the form "shader
402 * uses %s interpolation qualifier", so in the case where there is no
403 * interpolation qualifier, it returns "no".
404 *
405 * This function should only be used on a shader input or output variable.
406 */
407 const char *interpolation_string(unsigned interpolation);
408
409
410 class ir_variable : public ir_instruction {
411 public:
412 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
413
414 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
415
416 virtual void accept(ir_visitor *v)
417 {
418 v->visit(this);
419 }
420
421 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
422
423
424 /**
425 * Determine how this variable should be interpolated based on its
426 * interpolation qualifier (if present), whether it is gl_Color or
427 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
428 * state.
429 *
430 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
431 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
432 */
433 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
434
435 /**
436 * Determine whether or not a variable is part of a uniform block.
437 */
438 inline bool is_in_uniform_block() const
439 {
440 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
441 }
442
443 /**
444 * Determine whether or not a variable is the declaration of an interface
445 * block
446 *
447 * For the first declaration below, there will be an \c ir_variable named
448 * "instance" whose type and whose instance_type will be the same
449 * \cglsl_type. For the second declaration, there will be an \c ir_variable
450 * named "f" whose type is float and whose instance_type is B2.
451 *
452 * "instance" is an interface instance variable, but "f" is not.
453 *
454 * uniform B1 {
455 * float f;
456 * } instance;
457 *
458 * uniform B2 {
459 * float f;
460 * };
461 */
462 inline bool is_interface_instance() const
463 {
464 const glsl_type *const t = this->type;
465
466 return (t == this->interface_type)
467 || (t->is_array() && t->fields.array == this->interface_type);
468 }
469
470 /**
471 * Set this->interface_type on a newly created variable.
472 */
473 void init_interface_type(const struct glsl_type *type)
474 {
475 assert(this->interface_type == NULL);
476 this->interface_type = type;
477 if (this->is_interface_instance()) {
478 this->max_ifc_array_access =
479 rzalloc_array(this, unsigned, type->length);
480 }
481 }
482
483 /**
484 * Change this->interface_type on a variable that previously had a
485 * different, but compatible, interface_type. This is used during linking
486 * to set the size of arrays in interface blocks.
487 */
488 void change_interface_type(const struct glsl_type *type)
489 {
490 if (this->max_ifc_array_access != NULL) {
491 /* max_ifc_array_access has already been allocated, so make sure the
492 * new interface has the same number of fields as the old one.
493 */
494 assert(this->interface_type->length == type->length);
495 }
496 this->interface_type = type;
497 }
498
499 /**
500 * Change this->interface_type on a variable that previously had a
501 * different, and incompatible, interface_type. This is used during
502 * compilation to handle redeclaration of the built-in gl_PerVertex
503 * interface block.
504 */
505 void reinit_interface_type(const struct glsl_type *type)
506 {
507 if (this->max_ifc_array_access != NULL) {
508 #ifndef NDEBUG
509 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
510 * it defines have been accessed yet; so it's safe to throw away the
511 * old max_ifc_array_access pointer, since all of its values are
512 * zero.
513 */
514 for (unsigned i = 0; i < this->interface_type->length; i++)
515 assert(this->max_ifc_array_access[i] == 0);
516 #endif
517 ralloc_free(this->max_ifc_array_access);
518 this->max_ifc_array_access = NULL;
519 }
520 this->interface_type = NULL;
521 init_interface_type(type);
522 }
523
524 const glsl_type *get_interface_type() const
525 {
526 return this->interface_type;
527 }
528
529 /**
530 * Declared type of the variable
531 */
532 const struct glsl_type *type;
533
534 /**
535 * Declared name of the variable
536 */
537 const char *name;
538
539 /**
540 * For variables which satisfy the is_interface_instance() predicate, this
541 * points to an array of integers such that if the ith member of the
542 * interface block is an array, max_ifc_array_access[i] is the maximum
543 * array element of that member that has been accessed. If the ith member
544 * of the interface block is not an array, max_ifc_array_access[i] is
545 * unused.
546 *
547 * For variables whose type is not an interface block, this pointer is
548 * NULL.
549 */
550 unsigned *max_ifc_array_access;
551
552 struct ir_variable_data {
553
554 /**
555 * Is the variable read-only?
556 *
557 * This is set for variables declared as \c const, shader inputs,
558 * and uniforms.
559 */
560 unsigned read_only:1;
561 unsigned centroid:1;
562 unsigned sample:1;
563 unsigned invariant:1;
564 unsigned precise:1;
565
566 /**
567 * Has this variable been used for reading or writing?
568 *
569 * Several GLSL semantic checks require knowledge of whether or not a
570 * variable has been used. For example, it is an error to redeclare a
571 * variable as invariant after it has been used.
572 *
573 * This is only maintained in the ast_to_hir.cpp path, not in
574 * Mesa's fixed function or ARB program paths.
575 */
576 unsigned used:1;
577
578 /**
579 * Has this variable been statically assigned?
580 *
581 * This answers whether the variable was assigned in any path of
582 * the shader during ast_to_hir. This doesn't answer whether it is
583 * still written after dead code removal, nor is it maintained in
584 * non-ast_to_hir.cpp (GLSL parsing) paths.
585 */
586 unsigned assigned:1;
587
588 /**
589 * Enum indicating how the variable was declared. See
590 * ir_var_declaration_type.
591 *
592 * This is used to detect certain kinds of illegal variable redeclarations.
593 */
594 unsigned how_declared:2;
595
596 /**
597 * Storage class of the variable.
598 *
599 * \sa ir_variable_mode
600 */
601 unsigned mode:4;
602
603 /**
604 * Interpolation mode for shader inputs / outputs
605 *
606 * \sa ir_variable_interpolation
607 */
608 unsigned interpolation:2;
609
610 /**
611 * \name ARB_fragment_coord_conventions
612 * @{
613 */
614 unsigned origin_upper_left:1;
615 unsigned pixel_center_integer:1;
616 /*@}*/
617
618 /**
619 * Was the location explicitly set in the shader?
620 *
621 * If the location is explicitly set in the shader, it \b cannot be changed
622 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
623 * no effect).
624 */
625 unsigned explicit_location:1;
626 unsigned explicit_index:1;
627
628 /**
629 * Was an initial binding explicitly set in the shader?
630 *
631 * If so, constant_value contains an integer ir_constant representing the
632 * initial binding point.
633 */
634 unsigned explicit_binding:1;
635
636 /**
637 * Does this variable have an initializer?
638 *
639 * This is used by the linker to cross-validiate initializers of global
640 * variables.
641 */
642 unsigned has_initializer:1;
643
644 /**
645 * Is this variable a generic output or input that has not yet been matched
646 * up to a variable in another stage of the pipeline?
647 *
648 * This is used by the linker as scratch storage while assigning locations
649 * to generic inputs and outputs.
650 */
651 unsigned is_unmatched_generic_inout:1;
652
653 /**
654 * If non-zero, then this variable may be packed along with other variables
655 * into a single varying slot, so this offset should be applied when
656 * accessing components. For example, an offset of 1 means that the x
657 * component of this variable is actually stored in component y of the
658 * location specified by \c location.
659 */
660 unsigned location_frac:2;
661
662 /**
663 * Layout of the matrix. Uses glsl_matrix_layout values.
664 */
665 unsigned matrix_layout:2;
666
667 /**
668 * Non-zero if this variable was created by lowering a named interface
669 * block which was not an array.
670 *
671 * Note that this variable and \c from_named_ifc_block_array will never
672 * both be non-zero.
673 */
674 unsigned from_named_ifc_block_nonarray:1;
675
676 /**
677 * Non-zero if this variable was created by lowering a named interface
678 * block which was an array.
679 *
680 * Note that this variable and \c from_named_ifc_block_nonarray will never
681 * both be non-zero.
682 */
683 unsigned from_named_ifc_block_array:1;
684
685 /**
686 * Non-zero if the variable must be a shader input. This is useful for
687 * constraints on function parameters.
688 */
689 unsigned must_be_shader_input:1;
690
691 /**
692 * \brief Layout qualifier for gl_FragDepth.
693 *
694 * This is not equal to \c ir_depth_layout_none if and only if this
695 * variable is \c gl_FragDepth and a layout qualifier is specified.
696 */
697 ir_depth_layout depth_layout;
698
699 /**
700 * Storage location of the base of this variable
701 *
702 * The precise meaning of this field depends on the nature of the variable.
703 *
704 * - Vertex shader input: one of the values from \c gl_vert_attrib.
705 * - Vertex shader output: one of the values from \c gl_varying_slot.
706 * - Geometry shader input: one of the values from \c gl_varying_slot.
707 * - Geometry shader output: one of the values from \c gl_varying_slot.
708 * - Fragment shader input: one of the values from \c gl_varying_slot.
709 * - Fragment shader output: one of the values from \c gl_frag_result.
710 * - Uniforms: Per-stage uniform slot number for default uniform block.
711 * - Uniforms: Index within the uniform block definition for UBO members.
712 * - Other: This field is not currently used.
713 *
714 * If the variable is a uniform, shader input, or shader output, and the
715 * slot has not been assigned, the value will be -1.
716 */
717 int location;
718
719 /**
720 * Vertex stream output identifier.
721 */
722 unsigned stream;
723
724 /**
725 * output index for dual source blending.
726 */
727 int index;
728
729 /**
730 * Initial binding point for a sampler or UBO.
731 *
732 * For array types, this represents the binding point for the first element.
733 */
734 int binding;
735
736 /**
737 * Location an atomic counter is stored at.
738 */
739 struct {
740 unsigned buffer_index;
741 unsigned offset;
742 } atomic;
743
744 /**
745 * ARB_shader_image_load_store qualifiers.
746 */
747 struct {
748 bool read_only; /**< "readonly" qualifier. */
749 bool write_only; /**< "writeonly" qualifier. */
750 bool coherent;
751 bool _volatile;
752 bool restrict_flag;
753
754 /** Image internal format if specified explicitly, otherwise GL_NONE. */
755 GLenum format;
756 } image;
757
758 /**
759 * Highest element accessed with a constant expression array index
760 *
761 * Not used for non-array variables.
762 */
763 unsigned max_array_access;
764
765 } data;
766
767 /**
768 * Built-in state that backs this uniform
769 *
770 * Once set at variable creation, \c state_slots must remain invariant.
771 * This is because, ideally, this array would be shared by all clones of
772 * this variable in the IR tree. In other words, we'd really like for it
773 * to be a fly-weight.
774 *
775 * If the variable is not a uniform, \c num_state_slots will be zero and
776 * \c state_slots will be \c NULL.
777 */
778 /*@{*/
779 unsigned num_state_slots; /**< Number of state slots used */
780 ir_state_slot *state_slots; /**< State descriptors. */
781 /*@}*/
782
783 /**
784 * Emit a warning if this variable is accessed.
785 */
786 const char *warn_extension;
787
788 /**
789 * Value assigned in the initializer of a variable declared "const"
790 */
791 ir_constant *constant_value;
792
793 /**
794 * Constant expression assigned in the initializer of the variable
795 *
796 * \warning
797 * This field and \c ::constant_value are distinct. Even if the two fields
798 * refer to constants with the same value, they must point to separate
799 * objects.
800 */
801 ir_constant *constant_initializer;
802
803 private:
804 /**
805 * For variables that are in an interface block or are an instance of an
806 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
807 *
808 * \sa ir_variable::location
809 */
810 const glsl_type *interface_type;
811 };
812
813 /**
814 * A function that returns whether a built-in function is available in the
815 * current shading language (based on version, ES or desktop, and extensions).
816 */
817 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
818
819 /*@{*/
820 /**
821 * The representation of a function instance; may be the full definition or
822 * simply a prototype.
823 */
824 class ir_function_signature : public ir_instruction {
825 /* An ir_function_signature will be part of the list of signatures in
826 * an ir_function.
827 */
828 public:
829 ir_function_signature(const glsl_type *return_type,
830 builtin_available_predicate builtin_avail = NULL);
831
832 virtual ir_function_signature *clone(void *mem_ctx,
833 struct hash_table *ht) const;
834 ir_function_signature *clone_prototype(void *mem_ctx,
835 struct hash_table *ht) const;
836
837 virtual void accept(ir_visitor *v)
838 {
839 v->visit(this);
840 }
841
842 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
843
844 /**
845 * Attempt to evaluate this function as a constant expression,
846 * given a list of the actual parameters and the variable context.
847 * Returns NULL for non-built-ins.
848 */
849 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
850
851 /**
852 * Get the name of the function for which this is a signature
853 */
854 const char *function_name() const;
855
856 /**
857 * Get a handle to the function for which this is a signature
858 *
859 * There is no setter function, this function returns a \c const pointer,
860 * and \c ir_function_signature::_function is private for a reason. The
861 * only way to make a connection between a function and function signature
862 * is via \c ir_function::add_signature. This helps ensure that certain
863 * invariants (i.e., a function signature is in the list of signatures for
864 * its \c _function) are met.
865 *
866 * \sa ir_function::add_signature
867 */
868 inline const class ir_function *function() const
869 {
870 return this->_function;
871 }
872
873 /**
874 * Check whether the qualifiers match between this signature's parameters
875 * and the supplied parameter list. If not, returns the name of the first
876 * parameter with mismatched qualifiers (for use in error messages).
877 */
878 const char *qualifiers_match(exec_list *params);
879
880 /**
881 * Replace the current parameter list with the given one. This is useful
882 * if the current information came from a prototype, and either has invalid
883 * or missing parameter names.
884 */
885 void replace_parameters(exec_list *new_params);
886
887 /**
888 * Function return type.
889 *
890 * \note This discards the optional precision qualifier.
891 */
892 const struct glsl_type *return_type;
893
894 /**
895 * List of ir_variable of function parameters.
896 *
897 * This represents the storage. The paramaters passed in a particular
898 * call will be in ir_call::actual_paramaters.
899 */
900 struct exec_list parameters;
901
902 /** Whether or not this function has a body (which may be empty). */
903 unsigned is_defined:1;
904
905 /** Whether or not this function signature is a built-in. */
906 bool is_builtin() const;
907
908 /**
909 * Whether or not this function is an intrinsic to be implemented
910 * by the driver.
911 */
912 bool is_intrinsic;
913
914 /** Whether or not a built-in is available for this shader. */
915 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
916
917 /** Body of instructions in the function. */
918 struct exec_list body;
919
920 private:
921 /**
922 * A function pointer to a predicate that answers whether a built-in
923 * function is available in the current shader. NULL if not a built-in.
924 */
925 builtin_available_predicate builtin_avail;
926
927 /** Function of which this signature is one overload. */
928 class ir_function *_function;
929
930 /** Function signature of which this one is a prototype clone */
931 const ir_function_signature *origin;
932
933 friend class ir_function;
934
935 /**
936 * Helper function to run a list of instructions for constant
937 * expression evaluation.
938 *
939 * The hash table represents the values of the visible variables.
940 * There are no scoping issues because the table is indexed on
941 * ir_variable pointers, not variable names.
942 *
943 * Returns false if the expression is not constant, true otherwise,
944 * and the value in *result if result is non-NULL.
945 */
946 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
947 struct hash_table *variable_context,
948 ir_constant **result);
949 };
950
951
952 /**
953 * Header for tracking multiple overloaded functions with the same name.
954 * Contains a list of ir_function_signatures representing each of the
955 * actual functions.
956 */
957 class ir_function : public ir_instruction {
958 public:
959 ir_function(const char *name);
960
961 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
962
963 virtual void accept(ir_visitor *v)
964 {
965 v->visit(this);
966 }
967
968 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
969
970 void add_signature(ir_function_signature *sig)
971 {
972 sig->_function = this;
973 this->signatures.push_tail(sig);
974 }
975
976 /**
977 * Find a signature that matches a set of actual parameters, taking implicit
978 * conversions into account. Also flags whether the match was exact.
979 */
980 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
981 const exec_list *actual_param,
982 bool allow_builtins,
983 bool *match_is_exact);
984
985 /**
986 * Find a signature that matches a set of actual parameters, taking implicit
987 * conversions into account.
988 */
989 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
990 const exec_list *actual_param,
991 bool allow_builtins);
992
993 /**
994 * Find a signature that exactly matches a set of actual parameters without
995 * any implicit type conversions.
996 */
997 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
998 const exec_list *actual_ps);
999
1000 /**
1001 * Name of the function.
1002 */
1003 const char *name;
1004
1005 /** Whether or not this function has a signature that isn't a built-in. */
1006 bool has_user_signature();
1007
1008 /**
1009 * List of ir_function_signature for each overloaded function with this name.
1010 */
1011 struct exec_list signatures;
1012 };
1013
1014 inline const char *ir_function_signature::function_name() const
1015 {
1016 return this->_function->name;
1017 }
1018 /*@}*/
1019
1020
1021 /**
1022 * IR instruction representing high-level if-statements
1023 */
1024 class ir_if : public ir_instruction {
1025 public:
1026 ir_if(ir_rvalue *condition)
1027 : ir_instruction(ir_type_if), condition(condition)
1028 {
1029 }
1030
1031 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1032
1033 virtual void accept(ir_visitor *v)
1034 {
1035 v->visit(this);
1036 }
1037
1038 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1039
1040 ir_rvalue *condition;
1041 /** List of ir_instruction for the body of the then branch */
1042 exec_list then_instructions;
1043 /** List of ir_instruction for the body of the else branch */
1044 exec_list else_instructions;
1045 };
1046
1047
1048 /**
1049 * IR instruction representing a high-level loop structure.
1050 */
1051 class ir_loop : public ir_instruction {
1052 public:
1053 ir_loop();
1054
1055 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1056
1057 virtual void accept(ir_visitor *v)
1058 {
1059 v->visit(this);
1060 }
1061
1062 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1063
1064 /** List of ir_instruction that make up the body of the loop. */
1065 exec_list body_instructions;
1066 };
1067
1068
1069 class ir_assignment : public ir_instruction {
1070 public:
1071 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1072
1073 /**
1074 * Construct an assignment with an explicit write mask
1075 *
1076 * \note
1077 * Since a write mask is supplied, the LHS must already be a bare
1078 * \c ir_dereference. The cannot be any swizzles in the LHS.
1079 */
1080 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1081 unsigned write_mask);
1082
1083 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1084
1085 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1086
1087 virtual void accept(ir_visitor *v)
1088 {
1089 v->visit(this);
1090 }
1091
1092 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1093
1094 /**
1095 * Get a whole variable written by an assignment
1096 *
1097 * If the LHS of the assignment writes a whole variable, the variable is
1098 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1099 * assignment are:
1100 *
1101 * - Assigning to a scalar
1102 * - Assigning to all components of a vector
1103 * - Whole array (or matrix) assignment
1104 * - Whole structure assignment
1105 */
1106 ir_variable *whole_variable_written();
1107
1108 /**
1109 * Set the LHS of an assignment
1110 */
1111 void set_lhs(ir_rvalue *lhs);
1112
1113 /**
1114 * Left-hand side of the assignment.
1115 *
1116 * This should be treated as read only. If you need to set the LHS of an
1117 * assignment, use \c ir_assignment::set_lhs.
1118 */
1119 ir_dereference *lhs;
1120
1121 /**
1122 * Value being assigned
1123 */
1124 ir_rvalue *rhs;
1125
1126 /**
1127 * Optional condition for the assignment.
1128 */
1129 ir_rvalue *condition;
1130
1131
1132 /**
1133 * Component mask written
1134 *
1135 * For non-vector types in the LHS, this field will be zero. For vector
1136 * types, a bit will be set for each component that is written. Note that
1137 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1138 *
1139 * A partially-set write mask means that each enabled channel gets
1140 * the value from a consecutive channel of the rhs. For example,
1141 * to write just .xyw of gl_FrontColor with color:
1142 *
1143 * (assign (constant bool (1)) (xyw)
1144 * (var_ref gl_FragColor)
1145 * (swiz xyw (var_ref color)))
1146 */
1147 unsigned write_mask:4;
1148 };
1149
1150 /* Update ir_expression::get_num_operands() and operator_strs when
1151 * updating this list.
1152 */
1153 enum ir_expression_operation {
1154 ir_unop_bit_not,
1155 ir_unop_logic_not,
1156 ir_unop_neg,
1157 ir_unop_abs,
1158 ir_unop_sign,
1159 ir_unop_rcp,
1160 ir_unop_rsq,
1161 ir_unop_sqrt,
1162 ir_unop_exp, /**< Log base e on gentype */
1163 ir_unop_log, /**< Natural log on gentype */
1164 ir_unop_exp2,
1165 ir_unop_log2,
1166 ir_unop_f2i, /**< Float-to-integer conversion. */
1167 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1168 ir_unop_i2f, /**< Integer-to-float conversion. */
1169 ir_unop_f2b, /**< Float-to-boolean conversion */
1170 ir_unop_b2f, /**< Boolean-to-float conversion */
1171 ir_unop_i2b, /**< int-to-boolean conversion */
1172 ir_unop_b2i, /**< Boolean-to-int conversion */
1173 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1174 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1175 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1176 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1177 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1178 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1179 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1180 ir_unop_any,
1181
1182 /**
1183 * \name Unary floating-point rounding operations.
1184 */
1185 /*@{*/
1186 ir_unop_trunc,
1187 ir_unop_ceil,
1188 ir_unop_floor,
1189 ir_unop_fract,
1190 ir_unop_round_even,
1191 /*@}*/
1192
1193 /**
1194 * \name Trigonometric operations.
1195 */
1196 /*@{*/
1197 ir_unop_sin,
1198 ir_unop_cos,
1199 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1200 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1201 /*@}*/
1202
1203 /**
1204 * \name Partial derivatives.
1205 */
1206 /*@{*/
1207 ir_unop_dFdx,
1208 ir_unop_dFdx_coarse,
1209 ir_unop_dFdx_fine,
1210 ir_unop_dFdy,
1211 ir_unop_dFdy_coarse,
1212 ir_unop_dFdy_fine,
1213 /*@}*/
1214
1215 /**
1216 * \name Floating point pack and unpack operations.
1217 */
1218 /*@{*/
1219 ir_unop_pack_snorm_2x16,
1220 ir_unop_pack_snorm_4x8,
1221 ir_unop_pack_unorm_2x16,
1222 ir_unop_pack_unorm_4x8,
1223 ir_unop_pack_half_2x16,
1224 ir_unop_unpack_snorm_2x16,
1225 ir_unop_unpack_snorm_4x8,
1226 ir_unop_unpack_unorm_2x16,
1227 ir_unop_unpack_unorm_4x8,
1228 ir_unop_unpack_half_2x16,
1229 /*@}*/
1230
1231 /**
1232 * \name Lowered floating point unpacking operations.
1233 *
1234 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1235 */
1236 /*@{*/
1237 ir_unop_unpack_half_2x16_split_x,
1238 ir_unop_unpack_half_2x16_split_y,
1239 /*@}*/
1240
1241 /**
1242 * \name Bit operations, part of ARB_gpu_shader5.
1243 */
1244 /*@{*/
1245 ir_unop_bitfield_reverse,
1246 ir_unop_bit_count,
1247 ir_unop_find_msb,
1248 ir_unop_find_lsb,
1249 /*@}*/
1250
1251 ir_unop_noise,
1252
1253 /**
1254 * Interpolate fs input at centroid
1255 *
1256 * operand0 is the fs input.
1257 */
1258 ir_unop_interpolate_at_centroid,
1259
1260 /**
1261 * A sentinel marking the last of the unary operations.
1262 */
1263 ir_last_unop = ir_unop_interpolate_at_centroid,
1264
1265 ir_binop_add,
1266 ir_binop_sub,
1267 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1268 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1269 ir_binop_div,
1270
1271 /**
1272 * Returns the carry resulting from the addition of the two arguments.
1273 */
1274 /*@{*/
1275 ir_binop_carry,
1276 /*@}*/
1277
1278 /**
1279 * Returns the borrow resulting from the subtraction of the second argument
1280 * from the first argument.
1281 */
1282 /*@{*/
1283 ir_binop_borrow,
1284 /*@}*/
1285
1286 /**
1287 * Takes one of two combinations of arguments:
1288 *
1289 * - mod(vecN, vecN)
1290 * - mod(vecN, float)
1291 *
1292 * Does not take integer types.
1293 */
1294 ir_binop_mod,
1295
1296 /**
1297 * \name Binary comparison operators which return a boolean vector.
1298 * The type of both operands must be equal.
1299 */
1300 /*@{*/
1301 ir_binop_less,
1302 ir_binop_greater,
1303 ir_binop_lequal,
1304 ir_binop_gequal,
1305 ir_binop_equal,
1306 ir_binop_nequal,
1307 /**
1308 * Returns single boolean for whether all components of operands[0]
1309 * equal the components of operands[1].
1310 */
1311 ir_binop_all_equal,
1312 /**
1313 * Returns single boolean for whether any component of operands[0]
1314 * is not equal to the corresponding component of operands[1].
1315 */
1316 ir_binop_any_nequal,
1317 /*@}*/
1318
1319 /**
1320 * \name Bit-wise binary operations.
1321 */
1322 /*@{*/
1323 ir_binop_lshift,
1324 ir_binop_rshift,
1325 ir_binop_bit_and,
1326 ir_binop_bit_xor,
1327 ir_binop_bit_or,
1328 /*@}*/
1329
1330 ir_binop_logic_and,
1331 ir_binop_logic_xor,
1332 ir_binop_logic_or,
1333
1334 ir_binop_dot,
1335 ir_binop_min,
1336 ir_binop_max,
1337
1338 ir_binop_pow,
1339
1340 /**
1341 * \name Lowered floating point packing operations.
1342 *
1343 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1344 */
1345 /*@{*/
1346 ir_binop_pack_half_2x16_split,
1347 /*@}*/
1348
1349 /**
1350 * \name First half of a lowered bitfieldInsert() operation.
1351 *
1352 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1353 */
1354 /*@{*/
1355 ir_binop_bfm,
1356 /*@}*/
1357
1358 /**
1359 * Load a value the size of a given GLSL type from a uniform block.
1360 *
1361 * operand0 is the ir_constant uniform block index in the linked shader.
1362 * operand1 is a byte offset within the uniform block.
1363 */
1364 ir_binop_ubo_load,
1365
1366 /**
1367 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1368 */
1369 /*@{*/
1370 ir_binop_ldexp,
1371 /*@}*/
1372
1373 /**
1374 * Extract a scalar from a vector
1375 *
1376 * operand0 is the vector
1377 * operand1 is the index of the field to read from operand0
1378 */
1379 ir_binop_vector_extract,
1380
1381 /**
1382 * Interpolate fs input at offset
1383 *
1384 * operand0 is the fs input
1385 * operand1 is the offset from the pixel center
1386 */
1387 ir_binop_interpolate_at_offset,
1388
1389 /**
1390 * Interpolate fs input at sample position
1391 *
1392 * operand0 is the fs input
1393 * operand1 is the sample ID
1394 */
1395 ir_binop_interpolate_at_sample,
1396
1397 /**
1398 * A sentinel marking the last of the binary operations.
1399 */
1400 ir_last_binop = ir_binop_interpolate_at_sample,
1401
1402 /**
1403 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1404 */
1405 /*@{*/
1406 ir_triop_fma,
1407 /*@}*/
1408
1409 ir_triop_lrp,
1410
1411 /**
1412 * \name Conditional Select
1413 *
1414 * A vector conditional select instruction (like ?:, but operating per-
1415 * component on vectors).
1416 *
1417 * \see lower_instructions_visitor::ldexp_to_arith
1418 */
1419 /*@{*/
1420 ir_triop_csel,
1421 /*@}*/
1422
1423 /**
1424 * \name Second half of a lowered bitfieldInsert() operation.
1425 *
1426 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1427 */
1428 /*@{*/
1429 ir_triop_bfi,
1430 /*@}*/
1431
1432 ir_triop_bitfield_extract,
1433
1434 /**
1435 * Generate a value with one field of a vector changed
1436 *
1437 * operand0 is the vector
1438 * operand1 is the value to write into the vector result
1439 * operand2 is the index in operand0 to be modified
1440 */
1441 ir_triop_vector_insert,
1442
1443 /**
1444 * A sentinel marking the last of the ternary operations.
1445 */
1446 ir_last_triop = ir_triop_vector_insert,
1447
1448 ir_quadop_bitfield_insert,
1449
1450 ir_quadop_vector,
1451
1452 /**
1453 * A sentinel marking the last of the ternary operations.
1454 */
1455 ir_last_quadop = ir_quadop_vector,
1456
1457 /**
1458 * A sentinel marking the last of all operations.
1459 */
1460 ir_last_opcode = ir_quadop_vector
1461 };
1462
1463 class ir_expression : public ir_rvalue {
1464 public:
1465 ir_expression(int op, const struct glsl_type *type,
1466 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1467 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1468
1469 /**
1470 * Constructor for unary operation expressions
1471 */
1472 ir_expression(int op, ir_rvalue *);
1473
1474 /**
1475 * Constructor for binary operation expressions
1476 */
1477 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1478
1479 /**
1480 * Constructor for ternary operation expressions
1481 */
1482 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1483
1484 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1485
1486 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1487
1488 /**
1489 * Attempt to constant-fold the expression
1490 *
1491 * The "variable_context" hash table links ir_variable * to ir_constant *
1492 * that represent the variables' values. \c NULL represents an empty
1493 * context.
1494 *
1495 * If the expression cannot be constant folded, this method will return
1496 * \c NULL.
1497 */
1498 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1499
1500 /**
1501 * Determine the number of operands used by an expression
1502 */
1503 static unsigned int get_num_operands(ir_expression_operation);
1504
1505 /**
1506 * Determine the number of operands used by an expression
1507 */
1508 unsigned int get_num_operands() const
1509 {
1510 return (this->operation == ir_quadop_vector)
1511 ? this->type->vector_elements : get_num_operands(operation);
1512 }
1513
1514 /**
1515 * Return whether the expression operates on vectors horizontally.
1516 */
1517 bool is_horizontal() const
1518 {
1519 return operation == ir_binop_all_equal ||
1520 operation == ir_binop_any_nequal ||
1521 operation == ir_unop_any ||
1522 operation == ir_binop_dot ||
1523 operation == ir_quadop_vector;
1524 }
1525
1526 /**
1527 * Return a string representing this expression's operator.
1528 */
1529 const char *operator_string();
1530
1531 /**
1532 * Return a string representing this expression's operator.
1533 */
1534 static const char *operator_string(ir_expression_operation);
1535
1536
1537 /**
1538 * Do a reverse-lookup to translate the given string into an operator.
1539 */
1540 static ir_expression_operation get_operator(const char *);
1541
1542 virtual void accept(ir_visitor *v)
1543 {
1544 v->visit(this);
1545 }
1546
1547 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1548
1549 ir_expression_operation operation;
1550 ir_rvalue *operands[4];
1551 };
1552
1553
1554 /**
1555 * HIR instruction representing a high-level function call, containing a list
1556 * of parameters and returning a value in the supplied temporary.
1557 */
1558 class ir_call : public ir_instruction {
1559 public:
1560 ir_call(ir_function_signature *callee,
1561 ir_dereference_variable *return_deref,
1562 exec_list *actual_parameters)
1563 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1564 {
1565 assert(callee->return_type != NULL);
1566 actual_parameters->move_nodes_to(& this->actual_parameters);
1567 this->use_builtin = callee->is_builtin();
1568 }
1569
1570 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1571
1572 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1573
1574 virtual void accept(ir_visitor *v)
1575 {
1576 v->visit(this);
1577 }
1578
1579 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1580
1581 /**
1582 * Get the name of the function being called.
1583 */
1584 const char *callee_name() const
1585 {
1586 return callee->function_name();
1587 }
1588
1589 /**
1590 * Generates an inline version of the function before @ir,
1591 * storing the return value in return_deref.
1592 */
1593 void generate_inline(ir_instruction *ir);
1594
1595 /**
1596 * Storage for the function's return value.
1597 * This must be NULL if the return type is void.
1598 */
1599 ir_dereference_variable *return_deref;
1600
1601 /**
1602 * The specific function signature being called.
1603 */
1604 ir_function_signature *callee;
1605
1606 /* List of ir_rvalue of paramaters passed in this call. */
1607 exec_list actual_parameters;
1608
1609 /** Should this call only bind to a built-in function? */
1610 bool use_builtin;
1611 };
1612
1613
1614 /**
1615 * \name Jump-like IR instructions.
1616 *
1617 * These include \c break, \c continue, \c return, and \c discard.
1618 */
1619 /*@{*/
1620 class ir_jump : public ir_instruction {
1621 protected:
1622 ir_jump(enum ir_node_type t)
1623 : ir_instruction(t)
1624 {
1625 }
1626 };
1627
1628 class ir_return : public ir_jump {
1629 public:
1630 ir_return()
1631 : ir_jump(ir_type_return), value(NULL)
1632 {
1633 }
1634
1635 ir_return(ir_rvalue *value)
1636 : ir_jump(ir_type_return), value(value)
1637 {
1638 }
1639
1640 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1641
1642 ir_rvalue *get_value() const
1643 {
1644 return value;
1645 }
1646
1647 virtual void accept(ir_visitor *v)
1648 {
1649 v->visit(this);
1650 }
1651
1652 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1653
1654 ir_rvalue *value;
1655 };
1656
1657
1658 /**
1659 * Jump instructions used inside loops
1660 *
1661 * These include \c break and \c continue. The \c break within a loop is
1662 * different from the \c break within a switch-statement.
1663 *
1664 * \sa ir_switch_jump
1665 */
1666 class ir_loop_jump : public ir_jump {
1667 public:
1668 enum jump_mode {
1669 jump_break,
1670 jump_continue
1671 };
1672
1673 ir_loop_jump(jump_mode mode)
1674 : ir_jump(ir_type_loop_jump)
1675 {
1676 this->mode = mode;
1677 }
1678
1679 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1680
1681 virtual void accept(ir_visitor *v)
1682 {
1683 v->visit(this);
1684 }
1685
1686 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1687
1688 bool is_break() const
1689 {
1690 return mode == jump_break;
1691 }
1692
1693 bool is_continue() const
1694 {
1695 return mode == jump_continue;
1696 }
1697
1698 /** Mode selector for the jump instruction. */
1699 enum jump_mode mode;
1700 };
1701
1702 /**
1703 * IR instruction representing discard statements.
1704 */
1705 class ir_discard : public ir_jump {
1706 public:
1707 ir_discard()
1708 : ir_jump(ir_type_discard)
1709 {
1710 this->condition = NULL;
1711 }
1712
1713 ir_discard(ir_rvalue *cond)
1714 : ir_jump(ir_type_discard)
1715 {
1716 this->condition = cond;
1717 }
1718
1719 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1720
1721 virtual void accept(ir_visitor *v)
1722 {
1723 v->visit(this);
1724 }
1725
1726 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1727
1728 ir_rvalue *condition;
1729 };
1730 /*@}*/
1731
1732
1733 /**
1734 * Texture sampling opcodes used in ir_texture
1735 */
1736 enum ir_texture_opcode {
1737 ir_tex, /**< Regular texture look-up */
1738 ir_txb, /**< Texture look-up with LOD bias */
1739 ir_txl, /**< Texture look-up with explicit LOD */
1740 ir_txd, /**< Texture look-up with partial derivatvies */
1741 ir_txf, /**< Texel fetch with explicit LOD */
1742 ir_txf_ms, /**< Multisample texture fetch */
1743 ir_txs, /**< Texture size */
1744 ir_lod, /**< Texture lod query */
1745 ir_tg4, /**< Texture gather */
1746 ir_query_levels /**< Texture levels query */
1747 };
1748
1749
1750 /**
1751 * IR instruction to sample a texture
1752 *
1753 * The specific form of the IR instruction depends on the \c mode value
1754 * selected from \c ir_texture_opcodes. In the printed IR, these will
1755 * appear as:
1756 *
1757 * Texel offset (0 or an expression)
1758 * | Projection divisor
1759 * | | Shadow comparitor
1760 * | | |
1761 * v v v
1762 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1763 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1764 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1765 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1766 * (txf <type> <sampler> <coordinate> 0 <lod>)
1767 * (txf_ms
1768 * <type> <sampler> <coordinate> <sample_index>)
1769 * (txs <type> <sampler> <lod>)
1770 * (lod <type> <sampler> <coordinate>)
1771 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1772 * (query_levels <type> <sampler>)
1773 */
1774 class ir_texture : public ir_rvalue {
1775 public:
1776 ir_texture(enum ir_texture_opcode op)
1777 : ir_rvalue(ir_type_texture),
1778 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1779 shadow_comparitor(NULL), offset(NULL)
1780 {
1781 memset(&lod_info, 0, sizeof(lod_info));
1782 }
1783
1784 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1785
1786 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1787
1788 virtual void accept(ir_visitor *v)
1789 {
1790 v->visit(this);
1791 }
1792
1793 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1794
1795 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1796
1797 /**
1798 * Return a string representing the ir_texture_opcode.
1799 */
1800 const char *opcode_string();
1801
1802 /** Set the sampler and type. */
1803 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1804
1805 /**
1806 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1807 */
1808 static ir_texture_opcode get_opcode(const char *);
1809
1810 enum ir_texture_opcode op;
1811
1812 /** Sampler to use for the texture access. */
1813 ir_dereference *sampler;
1814
1815 /** Texture coordinate to sample */
1816 ir_rvalue *coordinate;
1817
1818 /**
1819 * Value used for projective divide.
1820 *
1821 * If there is no projective divide (the common case), this will be
1822 * \c NULL. Optimization passes should check for this to point to a constant
1823 * of 1.0 and replace that with \c NULL.
1824 */
1825 ir_rvalue *projector;
1826
1827 /**
1828 * Coordinate used for comparison on shadow look-ups.
1829 *
1830 * If there is no shadow comparison, this will be \c NULL. For the
1831 * \c ir_txf opcode, this *must* be \c NULL.
1832 */
1833 ir_rvalue *shadow_comparitor;
1834
1835 /** Texel offset. */
1836 ir_rvalue *offset;
1837
1838 union {
1839 ir_rvalue *lod; /**< Floating point LOD */
1840 ir_rvalue *bias; /**< Floating point LOD bias */
1841 ir_rvalue *sample_index; /**< MSAA sample index */
1842 ir_rvalue *component; /**< Gather component selector */
1843 struct {
1844 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1845 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1846 } grad;
1847 } lod_info;
1848 };
1849
1850
1851 struct ir_swizzle_mask {
1852 unsigned x:2;
1853 unsigned y:2;
1854 unsigned z:2;
1855 unsigned w:2;
1856
1857 /**
1858 * Number of components in the swizzle.
1859 */
1860 unsigned num_components:3;
1861
1862 /**
1863 * Does the swizzle contain duplicate components?
1864 *
1865 * L-value swizzles cannot contain duplicate components.
1866 */
1867 unsigned has_duplicates:1;
1868 };
1869
1870
1871 class ir_swizzle : public ir_rvalue {
1872 public:
1873 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1874 unsigned count);
1875
1876 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1877
1878 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1879
1880 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1881
1882 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1883
1884 /**
1885 * Construct an ir_swizzle from the textual representation. Can fail.
1886 */
1887 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1888
1889 virtual void accept(ir_visitor *v)
1890 {
1891 v->visit(this);
1892 }
1893
1894 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1895
1896 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1897
1898 bool is_lvalue() const
1899 {
1900 return val->is_lvalue() && !mask.has_duplicates;
1901 }
1902
1903 /**
1904 * Get the variable that is ultimately referenced by an r-value
1905 */
1906 virtual ir_variable *variable_referenced() const;
1907
1908 ir_rvalue *val;
1909 ir_swizzle_mask mask;
1910
1911 private:
1912 /**
1913 * Initialize the mask component of a swizzle
1914 *
1915 * This is used by the \c ir_swizzle constructors.
1916 */
1917 void init_mask(const unsigned *components, unsigned count);
1918 };
1919
1920
1921 class ir_dereference : public ir_rvalue {
1922 public:
1923 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1924
1925 bool is_lvalue() const;
1926
1927 /**
1928 * Get the variable that is ultimately referenced by an r-value
1929 */
1930 virtual ir_variable *variable_referenced() const = 0;
1931
1932 protected:
1933 ir_dereference(enum ir_node_type t)
1934 : ir_rvalue(t)
1935 {
1936 }
1937 };
1938
1939
1940 class ir_dereference_variable : public ir_dereference {
1941 public:
1942 ir_dereference_variable(ir_variable *var);
1943
1944 virtual ir_dereference_variable *clone(void *mem_ctx,
1945 struct hash_table *) const;
1946
1947 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1948
1949 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1950
1951 /**
1952 * Get the variable that is ultimately referenced by an r-value
1953 */
1954 virtual ir_variable *variable_referenced() const
1955 {
1956 return this->var;
1957 }
1958
1959 virtual ir_variable *whole_variable_referenced()
1960 {
1961 /* ir_dereference_variable objects always dereference the entire
1962 * variable. However, if this dereference is dereferenced by anything
1963 * else, the complete deferefernce chain is not a whole-variable
1964 * dereference. This method should only be called on the top most
1965 * ir_rvalue in a dereference chain.
1966 */
1967 return this->var;
1968 }
1969
1970 virtual void accept(ir_visitor *v)
1971 {
1972 v->visit(this);
1973 }
1974
1975 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1976
1977 /**
1978 * Object being dereferenced.
1979 */
1980 ir_variable *var;
1981 };
1982
1983
1984 class ir_dereference_array : public ir_dereference {
1985 public:
1986 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1987
1988 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1989
1990 virtual ir_dereference_array *clone(void *mem_ctx,
1991 struct hash_table *) const;
1992
1993 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1994
1995 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1996
1997 /**
1998 * Get the variable that is ultimately referenced by an r-value
1999 */
2000 virtual ir_variable *variable_referenced() const
2001 {
2002 return this->array->variable_referenced();
2003 }
2004
2005 virtual void accept(ir_visitor *v)
2006 {
2007 v->visit(this);
2008 }
2009
2010 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2011
2012 ir_rvalue *array;
2013 ir_rvalue *array_index;
2014
2015 private:
2016 void set_array(ir_rvalue *value);
2017 };
2018
2019
2020 class ir_dereference_record : public ir_dereference {
2021 public:
2022 ir_dereference_record(ir_rvalue *value, const char *field);
2023
2024 ir_dereference_record(ir_variable *var, const char *field);
2025
2026 virtual ir_dereference_record *clone(void *mem_ctx,
2027 struct hash_table *) const;
2028
2029 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2030
2031 /**
2032 * Get the variable that is ultimately referenced by an r-value
2033 */
2034 virtual ir_variable *variable_referenced() const
2035 {
2036 return this->record->variable_referenced();
2037 }
2038
2039 virtual void accept(ir_visitor *v)
2040 {
2041 v->visit(this);
2042 }
2043
2044 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2045
2046 ir_rvalue *record;
2047 const char *field;
2048 };
2049
2050
2051 /**
2052 * Data stored in an ir_constant
2053 */
2054 union ir_constant_data {
2055 unsigned u[16];
2056 int i[16];
2057 float f[16];
2058 bool b[16];
2059 };
2060
2061
2062 class ir_constant : public ir_rvalue {
2063 public:
2064 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2065 ir_constant(bool b, unsigned vector_elements=1);
2066 ir_constant(unsigned int u, unsigned vector_elements=1);
2067 ir_constant(int i, unsigned vector_elements=1);
2068 ir_constant(float f, unsigned vector_elements=1);
2069
2070 /**
2071 * Construct an ir_constant from a list of ir_constant values
2072 */
2073 ir_constant(const struct glsl_type *type, exec_list *values);
2074
2075 /**
2076 * Construct an ir_constant from a scalar component of another ir_constant
2077 *
2078 * The new \c ir_constant inherits the type of the component from the
2079 * source constant.
2080 *
2081 * \note
2082 * In the case of a matrix constant, the new constant is a scalar, \b not
2083 * a vector.
2084 */
2085 ir_constant(const ir_constant *c, unsigned i);
2086
2087 /**
2088 * Return a new ir_constant of the specified type containing all zeros.
2089 */
2090 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2091
2092 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2093
2094 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2095
2096 virtual void accept(ir_visitor *v)
2097 {
2098 v->visit(this);
2099 }
2100
2101 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2102
2103 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2104
2105 /**
2106 * Get a particular component of a constant as a specific type
2107 *
2108 * This is useful, for example, to get a value from an integer constant
2109 * as a float or bool. This appears frequently when constructors are
2110 * called with all constant parameters.
2111 */
2112 /*@{*/
2113 bool get_bool_component(unsigned i) const;
2114 float get_float_component(unsigned i) const;
2115 int get_int_component(unsigned i) const;
2116 unsigned get_uint_component(unsigned i) const;
2117 /*@}*/
2118
2119 ir_constant *get_array_element(unsigned i) const;
2120
2121 ir_constant *get_record_field(const char *name);
2122
2123 /**
2124 * Copy the values on another constant at a given offset.
2125 *
2126 * The offset is ignored for array or struct copies, it's only for
2127 * scalars or vectors into vectors or matrices.
2128 *
2129 * With identical types on both sides and zero offset it's clone()
2130 * without creating a new object.
2131 */
2132
2133 void copy_offset(ir_constant *src, int offset);
2134
2135 /**
2136 * Copy the values on another constant at a given offset and
2137 * following an assign-like mask.
2138 *
2139 * The mask is ignored for scalars.
2140 *
2141 * Note that this function only handles what assign can handle,
2142 * i.e. at most a vector as source and a column of a matrix as
2143 * destination.
2144 */
2145
2146 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2147
2148 /**
2149 * Determine whether a constant has the same value as another constant
2150 *
2151 * \sa ir_constant::is_zero, ir_constant::is_one,
2152 * ir_constant::is_negative_one, ir_constant::is_basis
2153 */
2154 bool has_value(const ir_constant *) const;
2155
2156 /**
2157 * Return true if this ir_constant represents the given value.
2158 *
2159 * For vectors, this checks that each component is the given value.
2160 */
2161 virtual bool is_value(float f, int i) const;
2162 virtual bool is_zero() const;
2163 virtual bool is_one() const;
2164 virtual bool is_negative_one() const;
2165 virtual bool is_basis() const;
2166
2167 /**
2168 * Return true for constants that could be stored as 16-bit unsigned values.
2169 *
2170 * Note that this will return true even for signed integer ir_constants, as
2171 * long as the value is non-negative and fits in 16-bits.
2172 */
2173 virtual bool is_uint16_constant() const;
2174
2175 /**
2176 * Value of the constant.
2177 *
2178 * The field used to back the values supplied by the constant is determined
2179 * by the type associated with the \c ir_instruction. Constants may be
2180 * scalars, vectors, or matrices.
2181 */
2182 union ir_constant_data value;
2183
2184 /* Array elements */
2185 ir_constant **array_elements;
2186
2187 /* Structure fields */
2188 exec_list components;
2189
2190 private:
2191 /**
2192 * Parameterless constructor only used by the clone method
2193 */
2194 ir_constant(void);
2195 };
2196
2197 /**
2198 * IR instruction to emit a vertex in a geometry shader.
2199 */
2200 class ir_emit_vertex : public ir_instruction {
2201 public:
2202 ir_emit_vertex(ir_rvalue *stream)
2203 : ir_instruction(ir_type_emit_vertex),
2204 stream(stream)
2205 {
2206 assert(stream);
2207 }
2208
2209 virtual void accept(ir_visitor *v)
2210 {
2211 v->visit(this);
2212 }
2213
2214 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2215 {
2216 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2217 }
2218
2219 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2220
2221 int stream_id() const
2222 {
2223 return stream->as_constant()->value.i[0];
2224 }
2225
2226 ir_rvalue *stream;
2227 };
2228
2229 /**
2230 * IR instruction to complete the current primitive and start a new one in a
2231 * geometry shader.
2232 */
2233 class ir_end_primitive : public ir_instruction {
2234 public:
2235 ir_end_primitive(ir_rvalue *stream)
2236 : ir_instruction(ir_type_end_primitive),
2237 stream(stream)
2238 {
2239 assert(stream);
2240 }
2241
2242 virtual void accept(ir_visitor *v)
2243 {
2244 v->visit(this);
2245 }
2246
2247 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2248 {
2249 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2250 }
2251
2252 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2253
2254 int stream_id() const
2255 {
2256 return stream->as_constant()->value.i[0];
2257 }
2258
2259 ir_rvalue *stream;
2260 };
2261
2262 /*@}*/
2263
2264 /**
2265 * Apply a visitor to each IR node in a list
2266 */
2267 void
2268 visit_exec_list(exec_list *list, ir_visitor *visitor);
2269
2270 /**
2271 * Validate invariants on each IR node in a list
2272 */
2273 void validate_ir_tree(exec_list *instructions);
2274
2275 struct _mesa_glsl_parse_state;
2276 struct gl_shader_program;
2277
2278 /**
2279 * Detect whether an unlinked shader contains static recursion
2280 *
2281 * If the list of instructions is determined to contain static recursion,
2282 * \c _mesa_glsl_error will be called to emit error messages for each function
2283 * that is in the recursion cycle.
2284 */
2285 void
2286 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2287 exec_list *instructions);
2288
2289 /**
2290 * Detect whether a linked shader contains static recursion
2291 *
2292 * If the list of instructions is determined to contain static recursion,
2293 * \c link_error_printf will be called to emit error messages for each function
2294 * that is in the recursion cycle. In addition,
2295 * \c gl_shader_program::LinkStatus will be set to false.
2296 */
2297 void
2298 detect_recursion_linked(struct gl_shader_program *prog,
2299 exec_list *instructions);
2300
2301 /**
2302 * Make a clone of each IR instruction in a list
2303 *
2304 * \param in List of IR instructions that are to be cloned
2305 * \param out List to hold the cloned instructions
2306 */
2307 void
2308 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2309
2310 extern void
2311 _mesa_glsl_initialize_variables(exec_list *instructions,
2312 struct _mesa_glsl_parse_state *state);
2313
2314 extern void
2315 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2316
2317 extern void
2318 _mesa_glsl_initialize_builtin_functions();
2319
2320 extern ir_function_signature *
2321 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2322 const char *name, exec_list *actual_parameters);
2323
2324 extern gl_shader *
2325 _mesa_glsl_get_builtin_function_shader(void);
2326
2327 extern void
2328 _mesa_glsl_release_functions(void);
2329
2330 extern void
2331 _mesa_glsl_release_builtin_functions(void);
2332
2333 extern void
2334 reparent_ir(exec_list *list, void *mem_ctx);
2335
2336 struct glsl_symbol_table;
2337
2338 extern void
2339 import_prototypes(const exec_list *source, exec_list *dest,
2340 struct glsl_symbol_table *symbols, void *mem_ctx);
2341
2342 extern bool
2343 ir_has_call(ir_instruction *ir);
2344
2345 extern void
2346 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2347 gl_shader_stage shader_stage);
2348
2349 extern char *
2350 prototype_string(const glsl_type *return_type, const char *name,
2351 exec_list *parameters);
2352
2353 const char *
2354 mode_string(const ir_variable *var);
2355
2356 /**
2357 * Built-in / reserved GL variables names start with "gl_"
2358 */
2359 static inline bool
2360 is_gl_identifier(const char *s)
2361 {
2362 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2363 }
2364
2365 extern "C" {
2366 #endif /* __cplusplus */
2367
2368 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2369 struct _mesa_glsl_parse_state *state);
2370
2371 extern void
2372 fprint_ir(FILE *f, const void *instruction);
2373
2374 #ifdef __cplusplus
2375 } /* extern "C" */
2376 #endif
2377
2378 unsigned
2379 vertices_per_prim(GLenum prim);
2380
2381 #endif /* IR_H */