st/mesa: implement EXT_transform_feedback and ARB_transform_feedback2
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91 const struct glsl_type *type;
92
93 /** ir_print_visitor helper for debugging. */
94 void print(void) const;
95
96 virtual void accept(ir_visitor *) = 0;
97 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
98 virtual ir_instruction *clone(void *mem_ctx,
99 struct hash_table *ht) const = 0;
100
101 /**
102 * \name IR instruction downcast functions
103 *
104 * These functions either cast the object to a derived class or return
105 * \c NULL if the object's type does not match the specified derived class.
106 * Additional downcast functions will be added as needed.
107 */
108 /*@{*/
109 virtual class ir_variable * as_variable() { return NULL; }
110 virtual class ir_function * as_function() { return NULL; }
111 virtual class ir_dereference * as_dereference() { return NULL; }
112 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
113 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
114 virtual class ir_expression * as_expression() { return NULL; }
115 virtual class ir_rvalue * as_rvalue() { return NULL; }
116 virtual class ir_loop * as_loop() { return NULL; }
117 virtual class ir_assignment * as_assignment() { return NULL; }
118 virtual class ir_call * as_call() { return NULL; }
119 virtual class ir_return * as_return() { return NULL; }
120 virtual class ir_if * as_if() { return NULL; }
121 virtual class ir_swizzle * as_swizzle() { return NULL; }
122 virtual class ir_constant * as_constant() { return NULL; }
123 virtual class ir_discard * as_discard() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 class ir_rvalue : public ir_instruction {
136 public:
137 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
138
139 virtual ir_constant *constant_expression_value() = 0;
140
141 virtual ir_rvalue * as_rvalue()
142 {
143 return this;
144 }
145
146 ir_rvalue *as_rvalue_to_saturate();
147
148 virtual bool is_lvalue() const
149 {
150 return false;
151 }
152
153 /**
154 * Get the variable that is ultimately referenced by an r-value
155 */
156 virtual ir_variable *variable_referenced() const
157 {
158 return NULL;
159 }
160
161
162 /**
163 * If an r-value is a reference to a whole variable, get that variable
164 *
165 * \return
166 * Pointer to a variable that is completely dereferenced by the r-value. If
167 * the r-value is not a dereference or the dereference does not access the
168 * entire variable (i.e., it's just one array element, struct field), \c NULL
169 * is returned.
170 */
171 virtual ir_variable *whole_variable_referenced()
172 {
173 return NULL;
174 }
175
176 /**
177 * Determine if an r-value has the value zero
178 *
179 * The base implementation of this function always returns \c false. The
180 * \c ir_constant class over-rides this function to return \c true \b only
181 * for vector and scalar types that have all elements set to the value
182 * zero (or \c false for booleans).
183 *
184 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
185 */
186 virtual bool is_zero() const;
187
188 /**
189 * Determine if an r-value has the value one
190 *
191 * The base implementation of this function always returns \c false. The
192 * \c ir_constant class over-rides this function to return \c true \b only
193 * for vector and scalar types that have all elements set to the value
194 * one (or \c true for booleans).
195 *
196 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
197 */
198 virtual bool is_one() const;
199
200 /**
201 * Determine if an r-value has the value negative one
202 *
203 * The base implementation of this function always returns \c false. The
204 * \c ir_constant class over-rides this function to return \c true \b only
205 * for vector and scalar types that have all elements set to the value
206 * negative one. For boolean times, the result is always \c false.
207 *
208 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
209 */
210 virtual bool is_negative_one() const;
211
212 protected:
213 ir_rvalue();
214 };
215
216
217 /**
218 * Variable storage classes
219 */
220 enum ir_variable_mode {
221 ir_var_auto = 0, /**< Function local variables and globals. */
222 ir_var_uniform, /**< Variable declared as a uniform. */
223 ir_var_in,
224 ir_var_out,
225 ir_var_inout,
226 ir_var_const_in, /**< "in" param that must be a constant expression */
227 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 /**
232 * \brief Layout qualifiers for gl_FragDepth.
233 *
234 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
235 * with a layout qualifier.
236 */
237 enum ir_depth_layout {
238 ir_depth_layout_none, /**< No depth layout is specified. */
239 ir_depth_layout_any,
240 ir_depth_layout_greater,
241 ir_depth_layout_less,
242 ir_depth_layout_unchanged
243 };
244
245 /**
246 * \brief Convert depth layout qualifier to string.
247 */
248 const char*
249 depth_layout_string(ir_depth_layout layout);
250
251 /**
252 * Description of built-in state associated with a uniform
253 *
254 * \sa ir_variable::state_slots
255 */
256 struct ir_state_slot {
257 int tokens[5];
258 int swizzle;
259 };
260
261 class ir_variable : public ir_instruction {
262 public:
263 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
264
265 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
266
267 virtual ir_variable *as_variable()
268 {
269 return this;
270 }
271
272 virtual void accept(ir_visitor *v)
273 {
274 v->visit(this);
275 }
276
277 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
278
279
280 /**
281 * Get the string value for the interpolation qualifier
282 *
283 * \return The string that would be used in a shader to specify \c
284 * mode will be returned.
285 *
286 * This function is used to generate error messages of the form "shader
287 * uses %s interpolation qualifier", so in the case where there is no
288 * interpolation qualifier, it returns "no".
289 *
290 * This function should only be used on a shader input or output variable.
291 */
292 const char *interpolation_string() const;
293
294 /**
295 * Determine how this variable should be interpolated based on its
296 * interpolation qualifier (if present), whether it is gl_Color or
297 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
298 * state.
299 *
300 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
301 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
302 */
303 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
304
305 /**
306 * Delcared name of the variable
307 */
308 const char *name;
309
310 /**
311 * Highest element accessed with a constant expression array index
312 *
313 * Not used for non-array variables.
314 */
315 unsigned max_array_access;
316
317 /**
318 * Is the variable read-only?
319 *
320 * This is set for variables declared as \c const, shader inputs,
321 * and uniforms.
322 */
323 unsigned read_only:1;
324 unsigned centroid:1;
325 unsigned invariant:1;
326
327 /**
328 * Has this variable been used for reading or writing?
329 *
330 * Several GLSL semantic checks require knowledge of whether or not a
331 * variable has been used. For example, it is an error to redeclare a
332 * variable as invariant after it has been used.
333 */
334 unsigned used:1;
335
336 /**
337 * Storage class of the variable.
338 *
339 * \sa ir_variable_mode
340 */
341 unsigned mode:3;
342
343 /**
344 * Interpolation mode for shader inputs / outputs
345 *
346 * \sa ir_variable_interpolation
347 */
348 unsigned interpolation:2;
349
350 /**
351 * \name ARB_fragment_coord_conventions
352 * @{
353 */
354 unsigned origin_upper_left:1;
355 unsigned pixel_center_integer:1;
356 /*@}*/
357
358 /**
359 * Was the location explicitly set in the shader?
360 *
361 * If the location is explicitly set in the shader, it \b cannot be changed
362 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
363 * no effect).
364 */
365 unsigned explicit_location:1;
366
367 /**
368 * Does this variable have an initializer?
369 *
370 * This is used by the linker to cross-validiate initializers of global
371 * variables.
372 */
373 unsigned has_initializer:1;
374
375 /**
376 * \brief Layout qualifier for gl_FragDepth.
377 *
378 * This is not equal to \c ir_depth_layout_none if and only if this
379 * variable is \c gl_FragDepth and a layout qualifier is specified.
380 */
381 ir_depth_layout depth_layout;
382
383 /**
384 * Storage location of the base of this variable
385 *
386 * The precise meaning of this field depends on the nature of the variable.
387 *
388 * - Vertex shader input: one of the values from \c gl_vert_attrib.
389 * - Vertex shader output: one of the values from \c gl_vert_result.
390 * - Fragment shader input: one of the values from \c gl_frag_attrib.
391 * - Fragment shader output: one of the values from \c gl_frag_result.
392 * - Uniforms: Per-stage uniform slot number.
393 * - Other: This field is not currently used.
394 *
395 * If the variable is a uniform, shader input, or shader output, and the
396 * slot has not been assigned, the value will be -1.
397 */
398 int location;
399
400 /**
401 * Built-in state that backs this uniform
402 *
403 * Once set at variable creation, \c state_slots must remain invariant.
404 * This is because, ideally, this array would be shared by all clones of
405 * this variable in the IR tree. In other words, we'd really like for it
406 * to be a fly-weight.
407 *
408 * If the variable is not a uniform, \c num_state_slots will be zero and
409 * \c state_slots will be \c NULL.
410 */
411 /*@{*/
412 unsigned num_state_slots; /**< Number of state slots used */
413 ir_state_slot *state_slots; /**< State descriptors. */
414 /*@}*/
415
416 /**
417 * Emit a warning if this variable is accessed.
418 */
419 const char *warn_extension;
420
421 /**
422 * Value assigned in the initializer of a variable declared "const"
423 */
424 ir_constant *constant_value;
425
426 /**
427 * Constant expression assigned in the initializer of the variable
428 *
429 * \warning
430 * This field and \c ::constant_value are distinct. Even if the two fields
431 * refer to constants with the same value, they must point to separate
432 * objects.
433 */
434 ir_constant *constant_initializer;
435 };
436
437
438 /*@{*/
439 /**
440 * The representation of a function instance; may be the full definition or
441 * simply a prototype.
442 */
443 class ir_function_signature : public ir_instruction {
444 /* An ir_function_signature will be part of the list of signatures in
445 * an ir_function.
446 */
447 public:
448 ir_function_signature(const glsl_type *return_type);
449
450 virtual ir_function_signature *clone(void *mem_ctx,
451 struct hash_table *ht) const;
452 ir_function_signature *clone_prototype(void *mem_ctx,
453 struct hash_table *ht) const;
454
455 virtual void accept(ir_visitor *v)
456 {
457 v->visit(this);
458 }
459
460 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
461
462 /**
463 * Get the name of the function for which this is a signature
464 */
465 const char *function_name() const;
466
467 /**
468 * Get a handle to the function for which this is a signature
469 *
470 * There is no setter function, this function returns a \c const pointer,
471 * and \c ir_function_signature::_function is private for a reason. The
472 * only way to make a connection between a function and function signature
473 * is via \c ir_function::add_signature. This helps ensure that certain
474 * invariants (i.e., a function signature is in the list of signatures for
475 * its \c _function) are met.
476 *
477 * \sa ir_function::add_signature
478 */
479 inline const class ir_function *function() const
480 {
481 return this->_function;
482 }
483
484 /**
485 * Check whether the qualifiers match between this signature's parameters
486 * and the supplied parameter list. If not, returns the name of the first
487 * parameter with mismatched qualifiers (for use in error messages).
488 */
489 const char *qualifiers_match(exec_list *params);
490
491 /**
492 * Replace the current parameter list with the given one. This is useful
493 * if the current information came from a prototype, and either has invalid
494 * or missing parameter names.
495 */
496 void replace_parameters(exec_list *new_params);
497
498 /**
499 * Function return type.
500 *
501 * \note This discards the optional precision qualifier.
502 */
503 const struct glsl_type *return_type;
504
505 /**
506 * List of ir_variable of function parameters.
507 *
508 * This represents the storage. The paramaters passed in a particular
509 * call will be in ir_call::actual_paramaters.
510 */
511 struct exec_list parameters;
512
513 /** Whether or not this function has a body (which may be empty). */
514 unsigned is_defined:1;
515
516 /** Whether or not this function signature is a built-in. */
517 unsigned is_builtin:1;
518
519 /** Body of instructions in the function. */
520 struct exec_list body;
521
522 private:
523 /** Function of which this signature is one overload. */
524 class ir_function *_function;
525
526 friend class ir_function;
527 };
528
529
530 /**
531 * Header for tracking multiple overloaded functions with the same name.
532 * Contains a list of ir_function_signatures representing each of the
533 * actual functions.
534 */
535 class ir_function : public ir_instruction {
536 public:
537 ir_function(const char *name);
538
539 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
540
541 virtual ir_function *as_function()
542 {
543 return this;
544 }
545
546 virtual void accept(ir_visitor *v)
547 {
548 v->visit(this);
549 }
550
551 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
552
553 void add_signature(ir_function_signature *sig)
554 {
555 sig->_function = this;
556 this->signatures.push_tail(sig);
557 }
558
559 /**
560 * Get an iterator for the set of function signatures
561 */
562 exec_list_iterator iterator()
563 {
564 return signatures.iterator();
565 }
566
567 /**
568 * Find a signature that matches a set of actual parameters, taking implicit
569 * conversions into account. Also flags whether the match was exact.
570 */
571 ir_function_signature *matching_signature(const exec_list *actual_param,
572 bool *match_is_exact);
573
574 /**
575 * Find a signature that matches a set of actual parameters, taking implicit
576 * conversions into account.
577 */
578 ir_function_signature *matching_signature(const exec_list *actual_param);
579
580 /**
581 * Find a signature that exactly matches a set of actual parameters without
582 * any implicit type conversions.
583 */
584 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
585
586 /**
587 * Name of the function.
588 */
589 const char *name;
590
591 /** Whether or not this function has a signature that isn't a built-in. */
592 bool has_user_signature();
593
594 /**
595 * List of ir_function_signature for each overloaded function with this name.
596 */
597 struct exec_list signatures;
598 };
599
600 inline const char *ir_function_signature::function_name() const
601 {
602 return this->_function->name;
603 }
604 /*@}*/
605
606
607 /**
608 * IR instruction representing high-level if-statements
609 */
610 class ir_if : public ir_instruction {
611 public:
612 ir_if(ir_rvalue *condition)
613 : condition(condition)
614 {
615 ir_type = ir_type_if;
616 }
617
618 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
619
620 virtual ir_if *as_if()
621 {
622 return this;
623 }
624
625 virtual void accept(ir_visitor *v)
626 {
627 v->visit(this);
628 }
629
630 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
631
632 ir_rvalue *condition;
633 /** List of ir_instruction for the body of the then branch */
634 exec_list then_instructions;
635 /** List of ir_instruction for the body of the else branch */
636 exec_list else_instructions;
637 };
638
639
640 /**
641 * IR instruction representing a high-level loop structure.
642 */
643 class ir_loop : public ir_instruction {
644 public:
645 ir_loop();
646
647 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
648
649 virtual void accept(ir_visitor *v)
650 {
651 v->visit(this);
652 }
653
654 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
655
656 virtual ir_loop *as_loop()
657 {
658 return this;
659 }
660
661 /**
662 * Get an iterator for the instructions of the loop body
663 */
664 exec_list_iterator iterator()
665 {
666 return body_instructions.iterator();
667 }
668
669 /** List of ir_instruction that make up the body of the loop. */
670 exec_list body_instructions;
671
672 /**
673 * \name Loop counter and controls
674 *
675 * Represents a loop like a FORTRAN \c do-loop.
676 *
677 * \note
678 * If \c from and \c to are the same value, the loop will execute once.
679 */
680 /*@{*/
681 ir_rvalue *from; /** Value of the loop counter on the first
682 * iteration of the loop.
683 */
684 ir_rvalue *to; /** Value of the loop counter on the last
685 * iteration of the loop.
686 */
687 ir_rvalue *increment;
688 ir_variable *counter;
689
690 /**
691 * Comparison operation in the loop terminator.
692 *
693 * If any of the loop control fields are non-\c NULL, this field must be
694 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
695 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
696 */
697 int cmp;
698 /*@}*/
699 };
700
701
702 class ir_assignment : public ir_instruction {
703 public:
704 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
705
706 /**
707 * Construct an assignment with an explicit write mask
708 *
709 * \note
710 * Since a write mask is supplied, the LHS must already be a bare
711 * \c ir_dereference. The cannot be any swizzles in the LHS.
712 */
713 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
714 unsigned write_mask);
715
716 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
717
718 virtual ir_constant *constant_expression_value();
719
720 virtual void accept(ir_visitor *v)
721 {
722 v->visit(this);
723 }
724
725 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
726
727 virtual ir_assignment * as_assignment()
728 {
729 return this;
730 }
731
732 /**
733 * Get a whole variable written by an assignment
734 *
735 * If the LHS of the assignment writes a whole variable, the variable is
736 * returned. Otherwise \c NULL is returned. Examples of whole-variable
737 * assignment are:
738 *
739 * - Assigning to a scalar
740 * - Assigning to all components of a vector
741 * - Whole array (or matrix) assignment
742 * - Whole structure assignment
743 */
744 ir_variable *whole_variable_written();
745
746 /**
747 * Set the LHS of an assignment
748 */
749 void set_lhs(ir_rvalue *lhs);
750
751 /**
752 * Left-hand side of the assignment.
753 *
754 * This should be treated as read only. If you need to set the LHS of an
755 * assignment, use \c ir_assignment::set_lhs.
756 */
757 ir_dereference *lhs;
758
759 /**
760 * Value being assigned
761 */
762 ir_rvalue *rhs;
763
764 /**
765 * Optional condition for the assignment.
766 */
767 ir_rvalue *condition;
768
769
770 /**
771 * Component mask written
772 *
773 * For non-vector types in the LHS, this field will be zero. For vector
774 * types, a bit will be set for each component that is written. Note that
775 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
776 *
777 * A partially-set write mask means that each enabled channel gets
778 * the value from a consecutive channel of the rhs. For example,
779 * to write just .xyw of gl_FrontColor with color:
780 *
781 * (assign (constant bool (1)) (xyw)
782 * (var_ref gl_FragColor)
783 * (swiz xyw (var_ref color)))
784 */
785 unsigned write_mask:4;
786 };
787
788 /* Update ir_expression::num_operands() and operator_strs when
789 * updating this list.
790 */
791 enum ir_expression_operation {
792 ir_unop_bit_not,
793 ir_unop_logic_not,
794 ir_unop_neg,
795 ir_unop_abs,
796 ir_unop_sign,
797 ir_unop_rcp,
798 ir_unop_rsq,
799 ir_unop_sqrt,
800 ir_unop_exp, /**< Log base e on gentype */
801 ir_unop_log, /**< Natural log on gentype */
802 ir_unop_exp2,
803 ir_unop_log2,
804 ir_unop_f2i, /**< Float-to-integer conversion. */
805 ir_unop_i2f, /**< Integer-to-float conversion. */
806 ir_unop_f2b, /**< Float-to-boolean conversion */
807 ir_unop_b2f, /**< Boolean-to-float conversion */
808 ir_unop_i2b, /**< int-to-boolean conversion */
809 ir_unop_b2i, /**< Boolean-to-int conversion */
810 ir_unop_u2f, /**< Unsigned-to-float conversion. */
811 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
812 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
813 ir_unop_any,
814
815 /**
816 * \name Unary floating-point rounding operations.
817 */
818 /*@{*/
819 ir_unop_trunc,
820 ir_unop_ceil,
821 ir_unop_floor,
822 ir_unop_fract,
823 ir_unop_round_even,
824 /*@}*/
825
826 /**
827 * \name Trigonometric operations.
828 */
829 /*@{*/
830 ir_unop_sin,
831 ir_unop_cos,
832 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
833 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
834 /*@}*/
835
836 /**
837 * \name Partial derivatives.
838 */
839 /*@{*/
840 ir_unop_dFdx,
841 ir_unop_dFdy,
842 /*@}*/
843
844 ir_unop_noise,
845
846 /**
847 * A sentinel marking the last of the unary operations.
848 */
849 ir_last_unop = ir_unop_noise,
850
851 ir_binop_add,
852 ir_binop_sub,
853 ir_binop_mul,
854 ir_binop_div,
855
856 /**
857 * Takes one of two combinations of arguments:
858 *
859 * - mod(vecN, vecN)
860 * - mod(vecN, float)
861 *
862 * Does not take integer types.
863 */
864 ir_binop_mod,
865
866 /**
867 * \name Binary comparison operators which return a boolean vector.
868 * The type of both operands must be equal.
869 */
870 /*@{*/
871 ir_binop_less,
872 ir_binop_greater,
873 ir_binop_lequal,
874 ir_binop_gequal,
875 ir_binop_equal,
876 ir_binop_nequal,
877 /**
878 * Returns single boolean for whether all components of operands[0]
879 * equal the components of operands[1].
880 */
881 ir_binop_all_equal,
882 /**
883 * Returns single boolean for whether any component of operands[0]
884 * is not equal to the corresponding component of operands[1].
885 */
886 ir_binop_any_nequal,
887 /*@}*/
888
889 /**
890 * \name Bit-wise binary operations.
891 */
892 /*@{*/
893 ir_binop_lshift,
894 ir_binop_rshift,
895 ir_binop_bit_and,
896 ir_binop_bit_xor,
897 ir_binop_bit_or,
898 /*@}*/
899
900 ir_binop_logic_and,
901 ir_binop_logic_xor,
902 ir_binop_logic_or,
903
904 ir_binop_dot,
905 ir_binop_min,
906 ir_binop_max,
907
908 ir_binop_pow,
909
910 /**
911 * A sentinel marking the last of the binary operations.
912 */
913 ir_last_binop = ir_binop_pow,
914
915 ir_quadop_vector,
916
917 /**
918 * A sentinel marking the last of all operations.
919 */
920 ir_last_opcode = ir_last_binop
921 };
922
923 class ir_expression : public ir_rvalue {
924 public:
925 /**
926 * Constructor for unary operation expressions
927 */
928 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
929 ir_expression(int op, ir_rvalue *);
930
931 /**
932 * Constructor for binary operation expressions
933 */
934 ir_expression(int op, const struct glsl_type *type,
935 ir_rvalue *, ir_rvalue *);
936 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
937
938 /**
939 * Constructor for quad operator expressions
940 */
941 ir_expression(int op, const struct glsl_type *type,
942 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
943
944 virtual ir_expression *as_expression()
945 {
946 return this;
947 }
948
949 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
950
951 /**
952 * Attempt to constant-fold the expression
953 *
954 * If the expression cannot be constant folded, this method will return
955 * \c NULL.
956 */
957 virtual ir_constant *constant_expression_value();
958
959 /**
960 * Determine the number of operands used by an expression
961 */
962 static unsigned int get_num_operands(ir_expression_operation);
963
964 /**
965 * Determine the number of operands used by an expression
966 */
967 unsigned int get_num_operands() const
968 {
969 return (this->operation == ir_quadop_vector)
970 ? this->type->vector_elements : get_num_operands(operation);
971 }
972
973 /**
974 * Return a string representing this expression's operator.
975 */
976 const char *operator_string();
977
978 /**
979 * Return a string representing this expression's operator.
980 */
981 static const char *operator_string(ir_expression_operation);
982
983
984 /**
985 * Do a reverse-lookup to translate the given string into an operator.
986 */
987 static ir_expression_operation get_operator(const char *);
988
989 virtual void accept(ir_visitor *v)
990 {
991 v->visit(this);
992 }
993
994 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
995
996 ir_expression_operation operation;
997 ir_rvalue *operands[4];
998 };
999
1000
1001 /**
1002 * IR instruction representing a function call
1003 */
1004 class ir_call : public ir_rvalue {
1005 public:
1006 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
1007 : callee(callee)
1008 {
1009 ir_type = ir_type_call;
1010 assert(callee->return_type != NULL);
1011 type = callee->return_type;
1012 actual_parameters->move_nodes_to(& this->actual_parameters);
1013 this->use_builtin = callee->is_builtin;
1014 }
1015
1016 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1017
1018 virtual ir_constant *constant_expression_value();
1019
1020 virtual ir_call *as_call()
1021 {
1022 return this;
1023 }
1024
1025 virtual void accept(ir_visitor *v)
1026 {
1027 v->visit(this);
1028 }
1029
1030 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1031
1032 /**
1033 * Get a generic ir_call object when an error occurs
1034 *
1035 * Any allocation will be performed with 'ctx' as ralloc owner.
1036 */
1037 static ir_call *get_error_instruction(void *ctx);
1038
1039 /**
1040 * Get an iterator for the set of acutal parameters
1041 */
1042 exec_list_iterator iterator()
1043 {
1044 return actual_parameters.iterator();
1045 }
1046
1047 /**
1048 * Get the name of the function being called.
1049 */
1050 const char *callee_name() const
1051 {
1052 return callee->function_name();
1053 }
1054
1055 /**
1056 * Get the function signature bound to this function call
1057 */
1058 ir_function_signature *get_callee()
1059 {
1060 return callee;
1061 }
1062
1063 /**
1064 * Set the function call target
1065 */
1066 void set_callee(ir_function_signature *sig);
1067
1068 /**
1069 * Generates an inline version of the function before @ir,
1070 * returning the return value of the function.
1071 */
1072 ir_rvalue *generate_inline(ir_instruction *ir);
1073
1074 /* List of ir_rvalue of paramaters passed in this call. */
1075 exec_list actual_parameters;
1076
1077 /** Should this call only bind to a built-in function? */
1078 bool use_builtin;
1079
1080 private:
1081 ir_call()
1082 : callee(NULL)
1083 {
1084 this->ir_type = ir_type_call;
1085 }
1086
1087 ir_function_signature *callee;
1088 };
1089
1090
1091 /**
1092 * \name Jump-like IR instructions.
1093 *
1094 * These include \c break, \c continue, \c return, and \c discard.
1095 */
1096 /*@{*/
1097 class ir_jump : public ir_instruction {
1098 protected:
1099 ir_jump()
1100 {
1101 ir_type = ir_type_unset;
1102 }
1103 };
1104
1105 class ir_return : public ir_jump {
1106 public:
1107 ir_return()
1108 : value(NULL)
1109 {
1110 this->ir_type = ir_type_return;
1111 }
1112
1113 ir_return(ir_rvalue *value)
1114 : value(value)
1115 {
1116 this->ir_type = ir_type_return;
1117 }
1118
1119 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1120
1121 virtual ir_return *as_return()
1122 {
1123 return this;
1124 }
1125
1126 ir_rvalue *get_value() const
1127 {
1128 return value;
1129 }
1130
1131 virtual void accept(ir_visitor *v)
1132 {
1133 v->visit(this);
1134 }
1135
1136 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1137
1138 ir_rvalue *value;
1139 };
1140
1141
1142 /**
1143 * Jump instructions used inside loops
1144 *
1145 * These include \c break and \c continue. The \c break within a loop is
1146 * different from the \c break within a switch-statement.
1147 *
1148 * \sa ir_switch_jump
1149 */
1150 class ir_loop_jump : public ir_jump {
1151 public:
1152 enum jump_mode {
1153 jump_break,
1154 jump_continue
1155 };
1156
1157 ir_loop_jump(jump_mode mode)
1158 {
1159 this->ir_type = ir_type_loop_jump;
1160 this->mode = mode;
1161 this->loop = loop;
1162 }
1163
1164 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1165
1166 virtual void accept(ir_visitor *v)
1167 {
1168 v->visit(this);
1169 }
1170
1171 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1172
1173 bool is_break() const
1174 {
1175 return mode == jump_break;
1176 }
1177
1178 bool is_continue() const
1179 {
1180 return mode == jump_continue;
1181 }
1182
1183 /** Mode selector for the jump instruction. */
1184 enum jump_mode mode;
1185 private:
1186 /** Loop containing this break instruction. */
1187 ir_loop *loop;
1188 };
1189
1190 /**
1191 * IR instruction representing discard statements.
1192 */
1193 class ir_discard : public ir_jump {
1194 public:
1195 ir_discard()
1196 {
1197 this->ir_type = ir_type_discard;
1198 this->condition = NULL;
1199 }
1200
1201 ir_discard(ir_rvalue *cond)
1202 {
1203 this->ir_type = ir_type_discard;
1204 this->condition = cond;
1205 }
1206
1207 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1208
1209 virtual void accept(ir_visitor *v)
1210 {
1211 v->visit(this);
1212 }
1213
1214 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1215
1216 virtual ir_discard *as_discard()
1217 {
1218 return this;
1219 }
1220
1221 ir_rvalue *condition;
1222 };
1223 /*@}*/
1224
1225
1226 /**
1227 * Texture sampling opcodes used in ir_texture
1228 */
1229 enum ir_texture_opcode {
1230 ir_tex, /**< Regular texture look-up */
1231 ir_txb, /**< Texture look-up with LOD bias */
1232 ir_txl, /**< Texture look-up with explicit LOD */
1233 ir_txd, /**< Texture look-up with partial derivatvies */
1234 ir_txf, /**< Texel fetch with explicit LOD */
1235 ir_txs /**< Texture size */
1236 };
1237
1238
1239 /**
1240 * IR instruction to sample a texture
1241 *
1242 * The specific form of the IR instruction depends on the \c mode value
1243 * selected from \c ir_texture_opcodes. In the printed IR, these will
1244 * appear as:
1245 *
1246 * Texel offset (0 or an expression)
1247 * | Projection divisor
1248 * | | Shadow comparitor
1249 * | | |
1250 * v v v
1251 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1252 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1253 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1254 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1255 * (txf <type> <sampler> <coordinate> 0 <lod>)
1256 * (txs <type> <sampler> <lod>)
1257 */
1258 class ir_texture : public ir_rvalue {
1259 public:
1260 ir_texture(enum ir_texture_opcode op)
1261 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1262 {
1263 this->ir_type = ir_type_texture;
1264 }
1265
1266 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1267
1268 virtual ir_constant *constant_expression_value();
1269
1270 virtual void accept(ir_visitor *v)
1271 {
1272 v->visit(this);
1273 }
1274
1275 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1276
1277 /**
1278 * Return a string representing the ir_texture_opcode.
1279 */
1280 const char *opcode_string();
1281
1282 /** Set the sampler and type. */
1283 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1284
1285 /**
1286 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1287 */
1288 static ir_texture_opcode get_opcode(const char *);
1289
1290 enum ir_texture_opcode op;
1291
1292 /** Sampler to use for the texture access. */
1293 ir_dereference *sampler;
1294
1295 /** Texture coordinate to sample */
1296 ir_rvalue *coordinate;
1297
1298 /**
1299 * Value used for projective divide.
1300 *
1301 * If there is no projective divide (the common case), this will be
1302 * \c NULL. Optimization passes should check for this to point to a constant
1303 * of 1.0 and replace that with \c NULL.
1304 */
1305 ir_rvalue *projector;
1306
1307 /**
1308 * Coordinate used for comparison on shadow look-ups.
1309 *
1310 * If there is no shadow comparison, this will be \c NULL. For the
1311 * \c ir_txf opcode, this *must* be \c NULL.
1312 */
1313 ir_rvalue *shadow_comparitor;
1314
1315 /** Texel offset. */
1316 ir_rvalue *offset;
1317
1318 union {
1319 ir_rvalue *lod; /**< Floating point LOD */
1320 ir_rvalue *bias; /**< Floating point LOD bias */
1321 struct {
1322 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1323 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1324 } grad;
1325 } lod_info;
1326 };
1327
1328
1329 struct ir_swizzle_mask {
1330 unsigned x:2;
1331 unsigned y:2;
1332 unsigned z:2;
1333 unsigned w:2;
1334
1335 /**
1336 * Number of components in the swizzle.
1337 */
1338 unsigned num_components:3;
1339
1340 /**
1341 * Does the swizzle contain duplicate components?
1342 *
1343 * L-value swizzles cannot contain duplicate components.
1344 */
1345 unsigned has_duplicates:1;
1346 };
1347
1348
1349 class ir_swizzle : public ir_rvalue {
1350 public:
1351 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1352 unsigned count);
1353
1354 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1355
1356 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1357
1358 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1359
1360 virtual ir_constant *constant_expression_value();
1361
1362 virtual ir_swizzle *as_swizzle()
1363 {
1364 return this;
1365 }
1366
1367 /**
1368 * Construct an ir_swizzle from the textual representation. Can fail.
1369 */
1370 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1371
1372 virtual void accept(ir_visitor *v)
1373 {
1374 v->visit(this);
1375 }
1376
1377 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1378
1379 bool is_lvalue() const
1380 {
1381 return val->is_lvalue() && !mask.has_duplicates;
1382 }
1383
1384 /**
1385 * Get the variable that is ultimately referenced by an r-value
1386 */
1387 virtual ir_variable *variable_referenced() const;
1388
1389 ir_rvalue *val;
1390 ir_swizzle_mask mask;
1391
1392 private:
1393 /**
1394 * Initialize the mask component of a swizzle
1395 *
1396 * This is used by the \c ir_swizzle constructors.
1397 */
1398 void init_mask(const unsigned *components, unsigned count);
1399 };
1400
1401
1402 class ir_dereference : public ir_rvalue {
1403 public:
1404 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1405
1406 virtual ir_dereference *as_dereference()
1407 {
1408 return this;
1409 }
1410
1411 bool is_lvalue() const;
1412
1413 /**
1414 * Get the variable that is ultimately referenced by an r-value
1415 */
1416 virtual ir_variable *variable_referenced() const = 0;
1417 };
1418
1419
1420 class ir_dereference_variable : public ir_dereference {
1421 public:
1422 ir_dereference_variable(ir_variable *var);
1423
1424 virtual ir_dereference_variable *clone(void *mem_ctx,
1425 struct hash_table *) const;
1426
1427 virtual ir_constant *constant_expression_value();
1428
1429 virtual ir_dereference_variable *as_dereference_variable()
1430 {
1431 return this;
1432 }
1433
1434 /**
1435 * Get the variable that is ultimately referenced by an r-value
1436 */
1437 virtual ir_variable *variable_referenced() const
1438 {
1439 return this->var;
1440 }
1441
1442 virtual ir_variable *whole_variable_referenced()
1443 {
1444 /* ir_dereference_variable objects always dereference the entire
1445 * variable. However, if this dereference is dereferenced by anything
1446 * else, the complete deferefernce chain is not a whole-variable
1447 * dereference. This method should only be called on the top most
1448 * ir_rvalue in a dereference chain.
1449 */
1450 return this->var;
1451 }
1452
1453 virtual void accept(ir_visitor *v)
1454 {
1455 v->visit(this);
1456 }
1457
1458 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1459
1460 /**
1461 * Object being dereferenced.
1462 */
1463 ir_variable *var;
1464 };
1465
1466
1467 class ir_dereference_array : public ir_dereference {
1468 public:
1469 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1470
1471 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1472
1473 virtual ir_dereference_array *clone(void *mem_ctx,
1474 struct hash_table *) const;
1475
1476 virtual ir_constant *constant_expression_value();
1477
1478 virtual ir_dereference_array *as_dereference_array()
1479 {
1480 return this;
1481 }
1482
1483 /**
1484 * Get the variable that is ultimately referenced by an r-value
1485 */
1486 virtual ir_variable *variable_referenced() const
1487 {
1488 return this->array->variable_referenced();
1489 }
1490
1491 virtual void accept(ir_visitor *v)
1492 {
1493 v->visit(this);
1494 }
1495
1496 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1497
1498 ir_rvalue *array;
1499 ir_rvalue *array_index;
1500
1501 private:
1502 void set_array(ir_rvalue *value);
1503 };
1504
1505
1506 class ir_dereference_record : public ir_dereference {
1507 public:
1508 ir_dereference_record(ir_rvalue *value, const char *field);
1509
1510 ir_dereference_record(ir_variable *var, const char *field);
1511
1512 virtual ir_dereference_record *clone(void *mem_ctx,
1513 struct hash_table *) const;
1514
1515 virtual ir_constant *constant_expression_value();
1516
1517 /**
1518 * Get the variable that is ultimately referenced by an r-value
1519 */
1520 virtual ir_variable *variable_referenced() const
1521 {
1522 return this->record->variable_referenced();
1523 }
1524
1525 virtual void accept(ir_visitor *v)
1526 {
1527 v->visit(this);
1528 }
1529
1530 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1531
1532 ir_rvalue *record;
1533 const char *field;
1534 };
1535
1536
1537 /**
1538 * Data stored in an ir_constant
1539 */
1540 union ir_constant_data {
1541 unsigned u[16];
1542 int i[16];
1543 float f[16];
1544 bool b[16];
1545 };
1546
1547
1548 class ir_constant : public ir_rvalue {
1549 public:
1550 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1551 ir_constant(bool b);
1552 ir_constant(unsigned int u);
1553 ir_constant(int i);
1554 ir_constant(float f);
1555
1556 /**
1557 * Construct an ir_constant from a list of ir_constant values
1558 */
1559 ir_constant(const struct glsl_type *type, exec_list *values);
1560
1561 /**
1562 * Construct an ir_constant from a scalar component of another ir_constant
1563 *
1564 * The new \c ir_constant inherits the type of the component from the
1565 * source constant.
1566 *
1567 * \note
1568 * In the case of a matrix constant, the new constant is a scalar, \b not
1569 * a vector.
1570 */
1571 ir_constant(const ir_constant *c, unsigned i);
1572
1573 /**
1574 * Return a new ir_constant of the specified type containing all zeros.
1575 */
1576 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1577
1578 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1579
1580 virtual ir_constant *constant_expression_value();
1581
1582 virtual ir_constant *as_constant()
1583 {
1584 return this;
1585 }
1586
1587 virtual void accept(ir_visitor *v)
1588 {
1589 v->visit(this);
1590 }
1591
1592 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1593
1594 /**
1595 * Get a particular component of a constant as a specific type
1596 *
1597 * This is useful, for example, to get a value from an integer constant
1598 * as a float or bool. This appears frequently when constructors are
1599 * called with all constant parameters.
1600 */
1601 /*@{*/
1602 bool get_bool_component(unsigned i) const;
1603 float get_float_component(unsigned i) const;
1604 int get_int_component(unsigned i) const;
1605 unsigned get_uint_component(unsigned i) const;
1606 /*@}*/
1607
1608 ir_constant *get_array_element(unsigned i) const;
1609
1610 ir_constant *get_record_field(const char *name);
1611
1612 /**
1613 * Determine whether a constant has the same value as another constant
1614 *
1615 * \sa ir_constant::is_zero, ir_constant::is_one,
1616 * ir_constant::is_negative_one
1617 */
1618 bool has_value(const ir_constant *) const;
1619
1620 virtual bool is_zero() const;
1621 virtual bool is_one() const;
1622 virtual bool is_negative_one() const;
1623
1624 /**
1625 * Value of the constant.
1626 *
1627 * The field used to back the values supplied by the constant is determined
1628 * by the type associated with the \c ir_instruction. Constants may be
1629 * scalars, vectors, or matrices.
1630 */
1631 union ir_constant_data value;
1632
1633 /* Array elements */
1634 ir_constant **array_elements;
1635
1636 /* Structure fields */
1637 exec_list components;
1638
1639 private:
1640 /**
1641 * Parameterless constructor only used by the clone method
1642 */
1643 ir_constant(void);
1644 };
1645
1646 /*@}*/
1647
1648 /**
1649 * Apply a visitor to each IR node in a list
1650 */
1651 void
1652 visit_exec_list(exec_list *list, ir_visitor *visitor);
1653
1654 /**
1655 * Validate invariants on each IR node in a list
1656 */
1657 void validate_ir_tree(exec_list *instructions);
1658
1659 struct _mesa_glsl_parse_state;
1660 struct gl_shader_program;
1661
1662 /**
1663 * Detect whether an unlinked shader contains static recursion
1664 *
1665 * If the list of instructions is determined to contain static recursion,
1666 * \c _mesa_glsl_error will be called to emit error messages for each function
1667 * that is in the recursion cycle.
1668 */
1669 void
1670 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1671 exec_list *instructions);
1672
1673 /**
1674 * Detect whether a linked shader contains static recursion
1675 *
1676 * If the list of instructions is determined to contain static recursion,
1677 * \c link_error_printf will be called to emit error messages for each function
1678 * that is in the recursion cycle. In addition,
1679 * \c gl_shader_program::LinkStatus will be set to false.
1680 */
1681 void
1682 detect_recursion_linked(struct gl_shader_program *prog,
1683 exec_list *instructions);
1684
1685 /**
1686 * Make a clone of each IR instruction in a list
1687 *
1688 * \param in List of IR instructions that are to be cloned
1689 * \param out List to hold the cloned instructions
1690 */
1691 void
1692 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1693
1694 extern void
1695 _mesa_glsl_initialize_variables(exec_list *instructions,
1696 struct _mesa_glsl_parse_state *state);
1697
1698 extern void
1699 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1700
1701 extern void
1702 _mesa_glsl_release_functions(void);
1703
1704 extern void
1705 reparent_ir(exec_list *list, void *mem_ctx);
1706
1707 struct glsl_symbol_table;
1708
1709 extern void
1710 import_prototypes(const exec_list *source, exec_list *dest,
1711 struct glsl_symbol_table *symbols, void *mem_ctx);
1712
1713 extern bool
1714 ir_has_call(ir_instruction *ir);
1715
1716 extern void
1717 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1718 bool is_fragment_shader);
1719
1720 extern char *
1721 prototype_string(const glsl_type *return_type, const char *name,
1722 exec_list *parameters);
1723
1724 #endif /* IR_H */