glsl: Track explicit location in AST to IR translation
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 /**
45 * \defgroup IR Intermediate representation nodes
46 *
47 * @{
48 */
49
50 /**
51 * Class tags
52 *
53 * Each concrete class derived from \c ir_instruction has a value in this
54 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
55 * by the constructor. While using type tags is not very C++, it is extremely
56 * convenient. For example, during debugging you can simply inspect
57 * \c ir_instruction::ir_type to find out the actual type of the object.
58 *
59 * In addition, it is possible to use a switch-statement based on \c
60 * \c ir_instruction::ir_type to select different behavior for different object
61 * types. For functions that have only slight differences for several object
62 * types, this allows writing very straightforward, readable code.
63 */
64 enum ir_node_type {
65 /**
66 * Zero is unused so that the IR validator can detect cases where
67 * \c ir_instruction::ir_type has not been initialized.
68 */
69 ir_type_unset,
70 ir_type_variable,
71 ir_type_assignment,
72 ir_type_call,
73 ir_type_constant,
74 ir_type_dereference_array,
75 ir_type_dereference_record,
76 ir_type_dereference_variable,
77 ir_type_discard,
78 ir_type_expression,
79 ir_type_function,
80 ir_type_function_signature,
81 ir_type_if,
82 ir_type_loop,
83 ir_type_loop_jump,
84 ir_type_return,
85 ir_type_swizzle,
86 ir_type_texture,
87 ir_type_max /**< maximum ir_type enum number, for validation */
88 };
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96 const struct glsl_type *type;
97
98 /** ir_print_visitor helper for debugging. */
99 void print(void) const;
100
101 virtual void accept(ir_visitor *) = 0;
102 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
103 virtual ir_instruction *clone(void *mem_ctx,
104 struct hash_table *ht) const = 0;
105
106 /**
107 * \name IR instruction downcast functions
108 *
109 * These functions either cast the object to a derived class or return
110 * \c NULL if the object's type does not match the specified derived class.
111 * Additional downcast functions will be added as needed.
112 */
113 /*@{*/
114 virtual class ir_variable * as_variable() { return NULL; }
115 virtual class ir_function * as_function() { return NULL; }
116 virtual class ir_dereference * as_dereference() { return NULL; }
117 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
118 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
119 virtual class ir_expression * as_expression() { return NULL; }
120 virtual class ir_rvalue * as_rvalue() { return NULL; }
121 virtual class ir_loop * as_loop() { return NULL; }
122 virtual class ir_assignment * as_assignment() { return NULL; }
123 virtual class ir_call * as_call() { return NULL; }
124 virtual class ir_return * as_return() { return NULL; }
125 virtual class ir_if * as_if() { return NULL; }
126 virtual class ir_swizzle * as_swizzle() { return NULL; }
127 virtual class ir_constant * as_constant() { return NULL; }
128 /*@}*/
129
130 protected:
131 ir_instruction()
132 {
133 ir_type = ir_type_unset;
134 type = NULL;
135 }
136 };
137
138
139 class ir_rvalue : public ir_instruction {
140 public:
141 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
142
143 virtual ir_constant *constant_expression_value() = 0;
144
145 virtual ir_rvalue * as_rvalue()
146 {
147 return this;
148 }
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 protected:
179 ir_rvalue();
180 };
181
182
183 /**
184 * Variable storage classes
185 */
186 enum ir_variable_mode {
187 ir_var_auto = 0, /**< Function local variables and globals. */
188 ir_var_uniform, /**< Variable declared as a uniform. */
189 ir_var_in,
190 ir_var_out,
191 ir_var_inout,
192 ir_var_temporary /**< Temporary variable generated during compilation. */
193 };
194
195 enum ir_variable_interpolation {
196 ir_var_smooth = 0,
197 ir_var_flat,
198 ir_var_noperspective
199 };
200
201
202 class ir_variable : public ir_instruction {
203 public:
204 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
205
206 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
207
208 virtual ir_variable *as_variable()
209 {
210 return this;
211 }
212
213 virtual void accept(ir_visitor *v)
214 {
215 v->visit(this);
216 }
217
218 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
219
220
221 /**
222 * Get the string value for the interpolation qualifier
223 *
224 * \return The string that would be used in a shader to specify \c
225 * mode will be returned.
226 *
227 * This function should only be used on a shader input or output variable.
228 */
229 const char *interpolation_string() const;
230
231 /**
232 * Calculate the number of slots required to hold this variable
233 *
234 * This is used to determine how many uniform or varying locations a variable
235 * occupies. The count is in units of floating point components.
236 */
237 unsigned component_slots() const;
238
239 /**
240 * Delcared name of the variable
241 */
242 const char *name;
243
244 /**
245 * Highest element accessed with a constant expression array index
246 *
247 * Not used for non-array variables.
248 */
249 unsigned max_array_access;
250
251 /**
252 * Is the variable read-only?
253 *
254 * This is set for variables declared as \c const, shader inputs,
255 * and uniforms.
256 */
257 unsigned read_only:1;
258 unsigned centroid:1;
259 unsigned invariant:1;
260
261 /**
262 * Storage class of the variable.
263 *
264 * \sa ir_variable_mode
265 */
266 unsigned mode:3;
267
268 /**
269 * Interpolation mode for shader inputs / outputs
270 *
271 * \sa ir_variable_interpolation
272 */
273 unsigned interpolation:2;
274
275 /**
276 * Flag that the whole array is assignable
277 *
278 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
279 * equality). This flag enables this behavior.
280 */
281 unsigned array_lvalue:1;
282
283 /**
284 * \name ARB_fragment_coord_conventions
285 * @{
286 */
287 unsigned origin_upper_left:1;
288 unsigned pixel_center_integer:1;
289 /*@}*/
290
291 /**
292 * Was the location explicitly set in the shader?
293 *
294 * If the location is explicitly set in the shader, it \b cannot be changed
295 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
296 * no effect).
297 */
298 unsigned explicit_location:1;
299
300 /**
301 * Storage location of the base of this variable
302 *
303 * The precise meaning of this field depends on the nature of the variable.
304 *
305 * - Vertex shader input: one of the values from \c gl_vert_attrib.
306 * - Vertex shader output: one of the values from \c gl_vert_result.
307 * - Fragment shader input: one of the values from \c gl_frag_attrib.
308 * - Fragment shader output: one of the values from \c gl_frag_result.
309 * - Uniforms: Per-stage uniform slot number.
310 * - Other: This field is not currently used.
311 *
312 * If the variable is a uniform, shader input, or shader output, and the
313 * slot has not been assigned, the value will be -1.
314 */
315 int location;
316
317 /**
318 * Emit a warning if this variable is accessed.
319 */
320 const char *warn_extension;
321
322 /**
323 * Value assigned in the initializer of a variable declared "const"
324 */
325 ir_constant *constant_value;
326 };
327
328
329 /*@{*/
330 /**
331 * The representation of a function instance; may be the full definition or
332 * simply a prototype.
333 */
334 class ir_function_signature : public ir_instruction {
335 /* An ir_function_signature will be part of the list of signatures in
336 * an ir_function.
337 */
338 public:
339 ir_function_signature(const glsl_type *return_type);
340
341 virtual ir_function_signature *clone(void *mem_ctx,
342 struct hash_table *ht) const;
343
344 virtual void accept(ir_visitor *v)
345 {
346 v->visit(this);
347 }
348
349 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
350
351 /**
352 * Get the name of the function for which this is a signature
353 */
354 const char *function_name() const;
355
356 /**
357 * Get a handle to the function for which this is a signature
358 *
359 * There is no setter function, this function returns a \c const pointer,
360 * and \c ir_function_signature::_function is private for a reason. The
361 * only way to make a connection between a function and function signature
362 * is via \c ir_function::add_signature. This helps ensure that certain
363 * invariants (i.e., a function signature is in the list of signatures for
364 * its \c _function) are met.
365 *
366 * \sa ir_function::add_signature
367 */
368 inline const class ir_function *function() const
369 {
370 return this->_function;
371 }
372
373 /**
374 * Check whether the qualifiers match between this signature's parameters
375 * and the supplied parameter list. If not, returns the name of the first
376 * parameter with mismatched qualifiers (for use in error messages).
377 */
378 const char *qualifiers_match(exec_list *params);
379
380 /**
381 * Replace the current parameter list with the given one. This is useful
382 * if the current information came from a prototype, and either has invalid
383 * or missing parameter names.
384 */
385 void replace_parameters(exec_list *new_params);
386
387 /**
388 * Function return type.
389 *
390 * \note This discards the optional precision qualifier.
391 */
392 const struct glsl_type *return_type;
393
394 /**
395 * List of ir_variable of function parameters.
396 *
397 * This represents the storage. The paramaters passed in a particular
398 * call will be in ir_call::actual_paramaters.
399 */
400 struct exec_list parameters;
401
402 /** Whether or not this function has a body (which may be empty). */
403 unsigned is_defined:1;
404
405 /** Whether or not this function signature is a built-in. */
406 unsigned is_builtin:1;
407
408 /** Body of instructions in the function. */
409 struct exec_list body;
410
411 private:
412 /** Function of which this signature is one overload. */
413 class ir_function *_function;
414
415 friend class ir_function;
416 };
417
418
419 /**
420 * Header for tracking multiple overloaded functions with the same name.
421 * Contains a list of ir_function_signatures representing each of the
422 * actual functions.
423 */
424 class ir_function : public ir_instruction {
425 public:
426 ir_function(const char *name);
427
428 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
429
430 virtual ir_function *as_function()
431 {
432 return this;
433 }
434
435 virtual void accept(ir_visitor *v)
436 {
437 v->visit(this);
438 }
439
440 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
441
442 void add_signature(ir_function_signature *sig)
443 {
444 sig->_function = this;
445 this->signatures.push_tail(sig);
446 }
447
448 /**
449 * Get an iterator for the set of function signatures
450 */
451 exec_list_iterator iterator()
452 {
453 return signatures.iterator();
454 }
455
456 /**
457 * Find a signature that matches a set of actual parameters, taking implicit
458 * conversions into account.
459 */
460 ir_function_signature *matching_signature(const exec_list *actual_param);
461
462 /**
463 * Find a signature that exactly matches a set of actual parameters without
464 * any implicit type conversions.
465 */
466 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
467
468 /**
469 * Name of the function.
470 */
471 const char *name;
472
473 /** Whether or not this function has a signature that isn't a built-in. */
474 bool has_user_signature();
475
476 /**
477 * List of ir_function_signature for each overloaded function with this name.
478 */
479 struct exec_list signatures;
480 };
481
482 inline const char *ir_function_signature::function_name() const
483 {
484 return this->_function->name;
485 }
486 /*@}*/
487
488
489 /**
490 * IR instruction representing high-level if-statements
491 */
492 class ir_if : public ir_instruction {
493 public:
494 ir_if(ir_rvalue *condition)
495 : condition(condition)
496 {
497 ir_type = ir_type_if;
498 }
499
500 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
501
502 virtual ir_if *as_if()
503 {
504 return this;
505 }
506
507 virtual void accept(ir_visitor *v)
508 {
509 v->visit(this);
510 }
511
512 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
513
514 ir_rvalue *condition;
515 /** List of ir_instruction for the body of the then branch */
516 exec_list then_instructions;
517 /** List of ir_instruction for the body of the else branch */
518 exec_list else_instructions;
519 };
520
521
522 /**
523 * IR instruction representing a high-level loop structure.
524 */
525 class ir_loop : public ir_instruction {
526 public:
527 ir_loop();
528
529 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
530
531 virtual void accept(ir_visitor *v)
532 {
533 v->visit(this);
534 }
535
536 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
537
538 virtual ir_loop *as_loop()
539 {
540 return this;
541 }
542
543 /**
544 * Get an iterator for the instructions of the loop body
545 */
546 exec_list_iterator iterator()
547 {
548 return body_instructions.iterator();
549 }
550
551 /** List of ir_instruction that make up the body of the loop. */
552 exec_list body_instructions;
553
554 /**
555 * \name Loop counter and controls
556 *
557 * Represents a loop like a FORTRAN \c do-loop.
558 *
559 * \note
560 * If \c from and \c to are the same value, the loop will execute once.
561 */
562 /*@{*/
563 ir_rvalue *from; /** Value of the loop counter on the first
564 * iteration of the loop.
565 */
566 ir_rvalue *to; /** Value of the loop counter on the last
567 * iteration of the loop.
568 */
569 ir_rvalue *increment;
570 ir_variable *counter;
571
572 /**
573 * Comparison operation in the loop terminator.
574 *
575 * If any of the loop control fields are non-\c NULL, this field must be
576 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
577 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
578 */
579 int cmp;
580 /*@}*/
581 };
582
583
584 class ir_assignment : public ir_instruction {
585 public:
586 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
587
588 /**
589 * Construct an assignment with an explicit write mask
590 *
591 * \note
592 * Since a write mask is supplied, the LHS must already be a bare
593 * \c ir_dereference. The cannot be any swizzles in the LHS.
594 */
595 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
596 unsigned write_mask);
597
598 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
599
600 virtual ir_constant *constant_expression_value();
601
602 virtual void accept(ir_visitor *v)
603 {
604 v->visit(this);
605 }
606
607 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
608
609 virtual ir_assignment * as_assignment()
610 {
611 return this;
612 }
613
614 /**
615 * Get a whole variable written by an assignment
616 *
617 * If the LHS of the assignment writes a whole variable, the variable is
618 * returned. Otherwise \c NULL is returned. Examples of whole-variable
619 * assignment are:
620 *
621 * - Assigning to a scalar
622 * - Assigning to all components of a vector
623 * - Whole array (or matrix) assignment
624 * - Whole structure assignment
625 */
626 ir_variable *whole_variable_written();
627
628 /**
629 * Set the LHS of an assignment
630 */
631 void set_lhs(ir_rvalue *lhs);
632
633 /**
634 * Left-hand side of the assignment.
635 *
636 * This should be treated as read only. If you need to set the LHS of an
637 * assignment, use \c ir_assignment::set_lhs.
638 */
639 ir_dereference *lhs;
640
641 /**
642 * Value being assigned
643 */
644 ir_rvalue *rhs;
645
646 /**
647 * Optional condition for the assignment.
648 */
649 ir_rvalue *condition;
650
651
652 /**
653 * Component mask written
654 *
655 * For non-vector types in the LHS, this field will be zero. For vector
656 * types, a bit will be set for each component that is written. Note that
657 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
658 *
659 * A partially-set write mask means that each enabled channel gets
660 * the value from a consecutive channel of the rhs. For example,
661 * to write just .xyw of gl_FrontColor with color:
662 *
663 * (assign (constant bool (1)) (xyw)
664 * (var_ref gl_FragColor)
665 * (swiz xyw (var_ref color)))
666 */
667 unsigned write_mask:4;
668 };
669
670 /* Update ir_expression::num_operands() and operator_strs when
671 * updating this list.
672 */
673 enum ir_expression_operation {
674 ir_unop_bit_not,
675 ir_unop_logic_not,
676 ir_unop_neg,
677 ir_unop_abs,
678 ir_unop_sign,
679 ir_unop_rcp,
680 ir_unop_rsq,
681 ir_unop_sqrt,
682 ir_unop_exp, /**< Log base e on gentype */
683 ir_unop_log, /**< Natural log on gentype */
684 ir_unop_exp2,
685 ir_unop_log2,
686 ir_unop_f2i, /**< Float-to-integer conversion. */
687 ir_unop_i2f, /**< Integer-to-float conversion. */
688 ir_unop_f2b, /**< Float-to-boolean conversion */
689 ir_unop_b2f, /**< Boolean-to-float conversion */
690 ir_unop_i2b, /**< int-to-boolean conversion */
691 ir_unop_b2i, /**< Boolean-to-int conversion */
692 ir_unop_u2f, /**< Unsigned-to-float conversion. */
693 ir_unop_any,
694
695 /**
696 * \name Unary floating-point rounding operations.
697 */
698 /*@{*/
699 ir_unop_trunc,
700 ir_unop_ceil,
701 ir_unop_floor,
702 ir_unop_fract,
703 /*@}*/
704
705 /**
706 * \name Trigonometric operations.
707 */
708 /*@{*/
709 ir_unop_sin,
710 ir_unop_cos,
711 /*@}*/
712
713 /**
714 * \name Partial derivatives.
715 */
716 /*@{*/
717 ir_unop_dFdx,
718 ir_unop_dFdy,
719 /*@}*/
720
721 ir_unop_noise,
722
723 ir_binop_add,
724 ir_binop_sub,
725 ir_binop_mul,
726 ir_binop_div,
727
728 /**
729 * Takes one of two combinations of arguments:
730 *
731 * - mod(vecN, vecN)
732 * - mod(vecN, float)
733 *
734 * Does not take integer types.
735 */
736 ir_binop_mod,
737
738 /**
739 * \name Binary comparison operators which return a boolean vector.
740 * The type of both operands must be equal.
741 */
742 /*@{*/
743 ir_binop_less,
744 ir_binop_greater,
745 ir_binop_lequal,
746 ir_binop_gequal,
747 ir_binop_equal,
748 ir_binop_nequal,
749 /**
750 * Returns single boolean for whether all components of operands[0]
751 * equal the components of operands[1].
752 */
753 ir_binop_all_equal,
754 /**
755 * Returns single boolean for whether any component of operands[0]
756 * is not equal to the corresponding component of operands[1].
757 */
758 ir_binop_any_nequal,
759 /*@}*/
760
761 /**
762 * \name Bit-wise binary operations.
763 */
764 /*@{*/
765 ir_binop_lshift,
766 ir_binop_rshift,
767 ir_binop_bit_and,
768 ir_binop_bit_xor,
769 ir_binop_bit_or,
770 /*@}*/
771
772 ir_binop_logic_and,
773 ir_binop_logic_xor,
774 ir_binop_logic_or,
775
776 ir_binop_dot,
777 ir_binop_cross,
778 ir_binop_min,
779 ir_binop_max,
780
781 ir_binop_pow
782 };
783
784 class ir_expression : public ir_rvalue {
785 public:
786 ir_expression(int op, const struct glsl_type *type,
787 ir_rvalue *, ir_rvalue *);
788
789 virtual ir_expression *as_expression()
790 {
791 return this;
792 }
793
794 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
795
796 /**
797 * Attempt to constant-fold the expression
798 *
799 * If the expression cannot be constant folded, this method will return
800 * \c NULL.
801 */
802 virtual ir_constant *constant_expression_value();
803
804 /**
805 * Determine the number of operands used by an expression
806 */
807 static unsigned int get_num_operands(ir_expression_operation);
808
809 /**
810 * Determine the number of operands used by an expression
811 */
812 unsigned int get_num_operands() const
813 {
814 return get_num_operands(operation);
815 }
816
817 /**
818 * Return a string representing this expression's operator.
819 */
820 const char *operator_string();
821
822 /**
823 * Return a string representing this expression's operator.
824 */
825 static const char *operator_string(ir_expression_operation);
826
827
828 /**
829 * Do a reverse-lookup to translate the given string into an operator.
830 */
831 static ir_expression_operation get_operator(const char *);
832
833 virtual void accept(ir_visitor *v)
834 {
835 v->visit(this);
836 }
837
838 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
839
840 ir_expression_operation operation;
841 ir_rvalue *operands[2];
842 };
843
844
845 /**
846 * IR instruction representing a function call
847 */
848 class ir_call : public ir_rvalue {
849 public:
850 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
851 : callee(callee)
852 {
853 ir_type = ir_type_call;
854 assert(callee->return_type != NULL);
855 type = callee->return_type;
856 actual_parameters->move_nodes_to(& this->actual_parameters);
857 }
858
859 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
860
861 virtual ir_constant *constant_expression_value();
862
863 virtual ir_call *as_call()
864 {
865 return this;
866 }
867
868 virtual void accept(ir_visitor *v)
869 {
870 v->visit(this);
871 }
872
873 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
874
875 /**
876 * Get a generic ir_call object when an error occurs
877 *
878 * Any allocation will be performed with 'ctx' as talloc owner.
879 */
880 static ir_call *get_error_instruction(void *ctx);
881
882 /**
883 * Get an iterator for the set of acutal parameters
884 */
885 exec_list_iterator iterator()
886 {
887 return actual_parameters.iterator();
888 }
889
890 /**
891 * Get the name of the function being called.
892 */
893 const char *callee_name() const
894 {
895 return callee->function_name();
896 }
897
898 /**
899 * Get the function signature bound to this function call
900 */
901 ir_function_signature *get_callee()
902 {
903 return callee;
904 }
905
906 /**
907 * Set the function call target
908 */
909 void set_callee(ir_function_signature *sig);
910
911 /**
912 * Generates an inline version of the function before @ir,
913 * returning the return value of the function.
914 */
915 ir_rvalue *generate_inline(ir_instruction *ir);
916
917 /* List of ir_rvalue of paramaters passed in this call. */
918 exec_list actual_parameters;
919
920 private:
921 ir_call()
922 : callee(NULL)
923 {
924 this->ir_type = ir_type_call;
925 }
926
927 ir_function_signature *callee;
928 };
929
930
931 /**
932 * \name Jump-like IR instructions.
933 *
934 * These include \c break, \c continue, \c return, and \c discard.
935 */
936 /*@{*/
937 class ir_jump : public ir_instruction {
938 protected:
939 ir_jump()
940 {
941 ir_type = ir_type_unset;
942 }
943 };
944
945 class ir_return : public ir_jump {
946 public:
947 ir_return()
948 : value(NULL)
949 {
950 this->ir_type = ir_type_return;
951 }
952
953 ir_return(ir_rvalue *value)
954 : value(value)
955 {
956 this->ir_type = ir_type_return;
957 }
958
959 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
960
961 virtual ir_return *as_return()
962 {
963 return this;
964 }
965
966 ir_rvalue *get_value() const
967 {
968 return value;
969 }
970
971 virtual void accept(ir_visitor *v)
972 {
973 v->visit(this);
974 }
975
976 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
977
978 ir_rvalue *value;
979 };
980
981
982 /**
983 * Jump instructions used inside loops
984 *
985 * These include \c break and \c continue. The \c break within a loop is
986 * different from the \c break within a switch-statement.
987 *
988 * \sa ir_switch_jump
989 */
990 class ir_loop_jump : public ir_jump {
991 public:
992 enum jump_mode {
993 jump_break,
994 jump_continue
995 };
996
997 ir_loop_jump(jump_mode mode)
998 {
999 this->ir_type = ir_type_loop_jump;
1000 this->mode = mode;
1001 this->loop = loop;
1002 }
1003
1004 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1005
1006 virtual void accept(ir_visitor *v)
1007 {
1008 v->visit(this);
1009 }
1010
1011 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1012
1013 bool is_break() const
1014 {
1015 return mode == jump_break;
1016 }
1017
1018 bool is_continue() const
1019 {
1020 return mode == jump_continue;
1021 }
1022
1023 /** Mode selector for the jump instruction. */
1024 enum jump_mode mode;
1025 private:
1026 /** Loop containing this break instruction. */
1027 ir_loop *loop;
1028 };
1029
1030 /**
1031 * IR instruction representing discard statements.
1032 */
1033 class ir_discard : public ir_jump {
1034 public:
1035 ir_discard()
1036 {
1037 this->ir_type = ir_type_discard;
1038 this->condition = NULL;
1039 }
1040
1041 ir_discard(ir_rvalue *cond)
1042 {
1043 this->ir_type = ir_type_discard;
1044 this->condition = cond;
1045 }
1046
1047 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1048
1049 virtual void accept(ir_visitor *v)
1050 {
1051 v->visit(this);
1052 }
1053
1054 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1055
1056 ir_rvalue *condition;
1057 };
1058 /*@}*/
1059
1060
1061 /**
1062 * Texture sampling opcodes used in ir_texture
1063 */
1064 enum ir_texture_opcode {
1065 ir_tex, /**< Regular texture look-up */
1066 ir_txb, /**< Texture look-up with LOD bias */
1067 ir_txl, /**< Texture look-up with explicit LOD */
1068 ir_txd, /**< Texture look-up with partial derivatvies */
1069 ir_txf /**< Texel fetch with explicit LOD */
1070 };
1071
1072
1073 /**
1074 * IR instruction to sample a texture
1075 *
1076 * The specific form of the IR instruction depends on the \c mode value
1077 * selected from \c ir_texture_opcodes. In the printed IR, these will
1078 * appear as:
1079 *
1080 * Texel offset
1081 * | Projection divisor
1082 * | | Shadow comparitor
1083 * | | |
1084 * v v v
1085 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1086 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1087 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1088 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1089 * (txf (sampler) (coordinate) (0 0 0) (lod))
1090 */
1091 class ir_texture : public ir_rvalue {
1092 public:
1093 ir_texture(enum ir_texture_opcode op)
1094 : op(op), projector(NULL), shadow_comparitor(NULL)
1095 {
1096 this->ir_type = ir_type_texture;
1097 }
1098
1099 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1100
1101 virtual ir_constant *constant_expression_value();
1102
1103 virtual void accept(ir_visitor *v)
1104 {
1105 v->visit(this);
1106 }
1107
1108 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1109
1110 /**
1111 * Return a string representing the ir_texture_opcode.
1112 */
1113 const char *opcode_string();
1114
1115 /** Set the sampler and infer the type. */
1116 void set_sampler(ir_dereference *sampler);
1117
1118 /**
1119 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1120 */
1121 static ir_texture_opcode get_opcode(const char *);
1122
1123 enum ir_texture_opcode op;
1124
1125 /** Sampler to use for the texture access. */
1126 ir_dereference *sampler;
1127
1128 /** Texture coordinate to sample */
1129 ir_rvalue *coordinate;
1130
1131 /**
1132 * Value used for projective divide.
1133 *
1134 * If there is no projective divide (the common case), this will be
1135 * \c NULL. Optimization passes should check for this to point to a constant
1136 * of 1.0 and replace that with \c NULL.
1137 */
1138 ir_rvalue *projector;
1139
1140 /**
1141 * Coordinate used for comparison on shadow look-ups.
1142 *
1143 * If there is no shadow comparison, this will be \c NULL. For the
1144 * \c ir_txf opcode, this *must* be \c NULL.
1145 */
1146 ir_rvalue *shadow_comparitor;
1147
1148 /** Explicit texel offsets. */
1149 signed char offsets[3];
1150
1151 union {
1152 ir_rvalue *lod; /**< Floating point LOD */
1153 ir_rvalue *bias; /**< Floating point LOD bias */
1154 struct {
1155 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1156 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1157 } grad;
1158 } lod_info;
1159 };
1160
1161
1162 struct ir_swizzle_mask {
1163 unsigned x:2;
1164 unsigned y:2;
1165 unsigned z:2;
1166 unsigned w:2;
1167
1168 /**
1169 * Number of components in the swizzle.
1170 */
1171 unsigned num_components:3;
1172
1173 /**
1174 * Does the swizzle contain duplicate components?
1175 *
1176 * L-value swizzles cannot contain duplicate components.
1177 */
1178 unsigned has_duplicates:1;
1179 };
1180
1181
1182 class ir_swizzle : public ir_rvalue {
1183 public:
1184 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1185 unsigned count);
1186
1187 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1188
1189 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1190
1191 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1192
1193 virtual ir_constant *constant_expression_value();
1194
1195 virtual ir_swizzle *as_swizzle()
1196 {
1197 return this;
1198 }
1199
1200 /**
1201 * Construct an ir_swizzle from the textual representation. Can fail.
1202 */
1203 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1204
1205 virtual void accept(ir_visitor *v)
1206 {
1207 v->visit(this);
1208 }
1209
1210 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1211
1212 bool is_lvalue()
1213 {
1214 return val->is_lvalue() && !mask.has_duplicates;
1215 }
1216
1217 /**
1218 * Get the variable that is ultimately referenced by an r-value
1219 */
1220 virtual ir_variable *variable_referenced();
1221
1222 ir_rvalue *val;
1223 ir_swizzle_mask mask;
1224
1225 private:
1226 /**
1227 * Initialize the mask component of a swizzle
1228 *
1229 * This is used by the \c ir_swizzle constructors.
1230 */
1231 void init_mask(const unsigned *components, unsigned count);
1232 };
1233
1234
1235 class ir_dereference : public ir_rvalue {
1236 public:
1237 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1238
1239 virtual ir_dereference *as_dereference()
1240 {
1241 return this;
1242 }
1243
1244 bool is_lvalue();
1245
1246 /**
1247 * Get the variable that is ultimately referenced by an r-value
1248 */
1249 virtual ir_variable *variable_referenced() = 0;
1250 };
1251
1252
1253 class ir_dereference_variable : public ir_dereference {
1254 public:
1255 ir_dereference_variable(ir_variable *var);
1256
1257 virtual ir_dereference_variable *clone(void *mem_ctx,
1258 struct hash_table *) const;
1259
1260 virtual ir_constant *constant_expression_value();
1261
1262 virtual ir_dereference_variable *as_dereference_variable()
1263 {
1264 return this;
1265 }
1266
1267 /**
1268 * Get the variable that is ultimately referenced by an r-value
1269 */
1270 virtual ir_variable *variable_referenced()
1271 {
1272 return this->var;
1273 }
1274
1275 virtual ir_variable *whole_variable_referenced()
1276 {
1277 /* ir_dereference_variable objects always dereference the entire
1278 * variable. However, if this dereference is dereferenced by anything
1279 * else, the complete deferefernce chain is not a whole-variable
1280 * dereference. This method should only be called on the top most
1281 * ir_rvalue in a dereference chain.
1282 */
1283 return this->var;
1284 }
1285
1286 virtual void accept(ir_visitor *v)
1287 {
1288 v->visit(this);
1289 }
1290
1291 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1292
1293 /**
1294 * Object being dereferenced.
1295 */
1296 ir_variable *var;
1297 };
1298
1299
1300 class ir_dereference_array : public ir_dereference {
1301 public:
1302 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1303
1304 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1305
1306 virtual ir_dereference_array *clone(void *mem_ctx,
1307 struct hash_table *) const;
1308
1309 virtual ir_constant *constant_expression_value();
1310
1311 virtual ir_dereference_array *as_dereference_array()
1312 {
1313 return this;
1314 }
1315
1316 /**
1317 * Get the variable that is ultimately referenced by an r-value
1318 */
1319 virtual ir_variable *variable_referenced()
1320 {
1321 return this->array->variable_referenced();
1322 }
1323
1324 virtual void accept(ir_visitor *v)
1325 {
1326 v->visit(this);
1327 }
1328
1329 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1330
1331 ir_rvalue *array;
1332 ir_rvalue *array_index;
1333
1334 private:
1335 void set_array(ir_rvalue *value);
1336 };
1337
1338
1339 class ir_dereference_record : public ir_dereference {
1340 public:
1341 ir_dereference_record(ir_rvalue *value, const char *field);
1342
1343 ir_dereference_record(ir_variable *var, const char *field);
1344
1345 virtual ir_dereference_record *clone(void *mem_ctx,
1346 struct hash_table *) const;
1347
1348 virtual ir_constant *constant_expression_value();
1349
1350 /**
1351 * Get the variable that is ultimately referenced by an r-value
1352 */
1353 virtual ir_variable *variable_referenced()
1354 {
1355 return this->record->variable_referenced();
1356 }
1357
1358 virtual void accept(ir_visitor *v)
1359 {
1360 v->visit(this);
1361 }
1362
1363 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1364
1365 ir_rvalue *record;
1366 const char *field;
1367 };
1368
1369
1370 /**
1371 * Data stored in an ir_constant
1372 */
1373 union ir_constant_data {
1374 unsigned u[16];
1375 int i[16];
1376 float f[16];
1377 bool b[16];
1378 };
1379
1380
1381 class ir_constant : public ir_rvalue {
1382 public:
1383 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1384 ir_constant(bool b);
1385 ir_constant(unsigned int u);
1386 ir_constant(int i);
1387 ir_constant(float f);
1388
1389 /**
1390 * Construct an ir_constant from a list of ir_constant values
1391 */
1392 ir_constant(const struct glsl_type *type, exec_list *values);
1393
1394 /**
1395 * Construct an ir_constant from a scalar component of another ir_constant
1396 *
1397 * The new \c ir_constant inherits the type of the component from the
1398 * source constant.
1399 *
1400 * \note
1401 * In the case of a matrix constant, the new constant is a scalar, \b not
1402 * a vector.
1403 */
1404 ir_constant(const ir_constant *c, unsigned i);
1405
1406 /**
1407 * Return a new ir_constant of the specified type containing all zeros.
1408 */
1409 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1410
1411 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1412
1413 virtual ir_constant *constant_expression_value();
1414
1415 virtual ir_constant *as_constant()
1416 {
1417 return this;
1418 }
1419
1420 virtual void accept(ir_visitor *v)
1421 {
1422 v->visit(this);
1423 }
1424
1425 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1426
1427 /**
1428 * Get a particular component of a constant as a specific type
1429 *
1430 * This is useful, for example, to get a value from an integer constant
1431 * as a float or bool. This appears frequently when constructors are
1432 * called with all constant parameters.
1433 */
1434 /*@{*/
1435 bool get_bool_component(unsigned i) const;
1436 float get_float_component(unsigned i) const;
1437 int get_int_component(unsigned i) const;
1438 unsigned get_uint_component(unsigned i) const;
1439 /*@}*/
1440
1441 ir_constant *get_array_element(unsigned i) const;
1442
1443 ir_constant *get_record_field(const char *name);
1444
1445 /**
1446 * Determine whether a constant has the same value as another constant
1447 */
1448 bool has_value(const ir_constant *) const;
1449
1450 /**
1451 * Value of the constant.
1452 *
1453 * The field used to back the values supplied by the constant is determined
1454 * by the type associated with the \c ir_instruction. Constants may be
1455 * scalars, vectors, or matrices.
1456 */
1457 union ir_constant_data value;
1458
1459 /* Array elements */
1460 ir_constant **array_elements;
1461
1462 /* Structure fields */
1463 exec_list components;
1464
1465 private:
1466 /**
1467 * Parameterless constructor only used by the clone method
1468 */
1469 ir_constant(void);
1470 };
1471
1472 /*@}*/
1473
1474 /**
1475 * Apply a visitor to each IR node in a list
1476 */
1477 void
1478 visit_exec_list(exec_list *list, ir_visitor *visitor);
1479
1480 /**
1481 * Validate invariants on each IR node in a list
1482 */
1483 void validate_ir_tree(exec_list *instructions);
1484
1485 /**
1486 * Make a clone of each IR instruction in a list
1487 *
1488 * \param in List of IR instructions that are to be cloned
1489 * \param out List to hold the cloned instructions
1490 */
1491 void
1492 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1493
1494 extern void
1495 _mesa_glsl_initialize_variables(exec_list *instructions,
1496 struct _mesa_glsl_parse_state *state);
1497
1498 extern void
1499 _mesa_glsl_initialize_functions(exec_list *instructions,
1500 struct _mesa_glsl_parse_state *state);
1501
1502 extern void
1503 _mesa_glsl_release_functions(void);
1504
1505 extern void
1506 reparent_ir(exec_list *list, void *mem_ctx);
1507
1508 struct glsl_symbol_table;
1509
1510 extern void
1511 import_prototypes(const exec_list *source, exec_list *dest,
1512 struct glsl_symbol_table *symbols, void *mem_ctx);
1513
1514 extern bool
1515 ir_has_call(ir_instruction *ir);
1516
1517 extern void
1518 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1519
1520 #endif /* IR_H */