nir/spirv: add a vtn_type struct
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_in,
328 ir_var_shader_out,
329 ir_var_function_in,
330 ir_var_function_out,
331 ir_var_function_inout,
332 ir_var_const_in, /**< "in" param that must be a constant expression */
333 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
334 ir_var_temporary, /**< Temporary variable generated during compilation. */
335 ir_var_mode_count /**< Number of variable modes */
336 };
337
338 /**
339 * Enum keeping track of how a variable was declared. For error checking of
340 * the gl_PerVertex redeclaration rules.
341 */
342 enum ir_var_declaration_type {
343 /**
344 * Normal declaration (for most variables, this means an explicit
345 * declaration. Exception: temporaries are always implicitly declared, but
346 * they still use ir_var_declared_normally).
347 *
348 * Note: an ir_variable that represents a named interface block uses
349 * ir_var_declared_normally.
350 */
351 ir_var_declared_normally = 0,
352
353 /**
354 * Variable was explicitly declared (or re-declared) in an unnamed
355 * interface block.
356 */
357 ir_var_declared_in_block,
358
359 /**
360 * Variable is an implicitly declared built-in that has not been explicitly
361 * re-declared by the shader.
362 */
363 ir_var_declared_implicitly,
364
365 /**
366 * Variable is implicitly generated by the compiler and should not be
367 * visible via the API.
368 */
369 ir_var_hidden,
370 };
371
372 /**
373 * \brief Layout qualifiers for gl_FragDepth.
374 *
375 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
376 * with a layout qualifier.
377 */
378 enum ir_depth_layout {
379 ir_depth_layout_none, /**< No depth layout is specified. */
380 ir_depth_layout_any,
381 ir_depth_layout_greater,
382 ir_depth_layout_less,
383 ir_depth_layout_unchanged
384 };
385
386 /**
387 * \brief Convert depth layout qualifier to string.
388 */
389 const char*
390 depth_layout_string(ir_depth_layout layout);
391
392 /**
393 * Description of built-in state associated with a uniform
394 *
395 * \sa ir_variable::state_slots
396 */
397 struct ir_state_slot {
398 int tokens[5];
399 int swizzle;
400 };
401
402
403 /**
404 * Get the string value for an interpolation qualifier
405 *
406 * \return The string that would be used in a shader to specify \c
407 * mode will be returned.
408 *
409 * This function is used to generate error messages of the form "shader
410 * uses %s interpolation qualifier", so in the case where there is no
411 * interpolation qualifier, it returns "no".
412 *
413 * This function should only be used on a shader input or output variable.
414 */
415 const char *interpolation_string(unsigned interpolation);
416
417
418 class ir_variable : public ir_instruction {
419 public:
420 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
421
422 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
423
424 virtual void accept(ir_visitor *v)
425 {
426 v->visit(this);
427 }
428
429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
430
431
432 /**
433 * Determine how this variable should be interpolated based on its
434 * interpolation qualifier (if present), whether it is gl_Color or
435 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
436 * state.
437 *
438 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
439 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
440 */
441 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
442
443 /**
444 * Determine whether or not a variable is part of a uniform block.
445 */
446 inline bool is_in_uniform_block() const
447 {
448 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
449 }
450
451 /**
452 * Determine whether or not a variable is the declaration of an interface
453 * block
454 *
455 * For the first declaration below, there will be an \c ir_variable named
456 * "instance" whose type and whose instance_type will be the same
457 * \cglsl_type. For the second declaration, there will be an \c ir_variable
458 * named "f" whose type is float and whose instance_type is B2.
459 *
460 * "instance" is an interface instance variable, but "f" is not.
461 *
462 * uniform B1 {
463 * float f;
464 * } instance;
465 *
466 * uniform B2 {
467 * float f;
468 * };
469 */
470 inline bool is_interface_instance() const
471 {
472 return this->type->without_array() == this->interface_type;
473 }
474
475 /**
476 * Set this->interface_type on a newly created variable.
477 */
478 void init_interface_type(const struct glsl_type *type)
479 {
480 assert(this->interface_type == NULL);
481 this->interface_type = type;
482 if (this->is_interface_instance()) {
483 this->u.max_ifc_array_access =
484 rzalloc_array(this, unsigned, type->length);
485 }
486 }
487
488 /**
489 * Change this->interface_type on a variable that previously had a
490 * different, but compatible, interface_type. This is used during linking
491 * to set the size of arrays in interface blocks.
492 */
493 void change_interface_type(const struct glsl_type *type)
494 {
495 if (this->u.max_ifc_array_access != NULL) {
496 /* max_ifc_array_access has already been allocated, so make sure the
497 * new interface has the same number of fields as the old one.
498 */
499 assert(this->interface_type->length == type->length);
500 }
501 this->interface_type = type;
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, and incompatible, interface_type. This is used during
507 * compilation to handle redeclaration of the built-in gl_PerVertex
508 * interface block.
509 */
510 void reinit_interface_type(const struct glsl_type *type)
511 {
512 if (this->u.max_ifc_array_access != NULL) {
513 #ifndef NDEBUG
514 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
515 * it defines have been accessed yet; so it's safe to throw away the
516 * old max_ifc_array_access pointer, since all of its values are
517 * zero.
518 */
519 for (unsigned i = 0; i < this->interface_type->length; i++)
520 assert(this->u.max_ifc_array_access[i] == 0);
521 #endif
522 ralloc_free(this->u.max_ifc_array_access);
523 this->u.max_ifc_array_access = NULL;
524 }
525 this->interface_type = NULL;
526 init_interface_type(type);
527 }
528
529 const glsl_type *get_interface_type() const
530 {
531 return this->interface_type;
532 }
533
534 /**
535 * Get the max_ifc_array_access pointer
536 *
537 * A "set" function is not needed because the array is dynmically allocated
538 * as necessary.
539 */
540 inline unsigned *get_max_ifc_array_access()
541 {
542 assert(this->data._num_state_slots == 0);
543 return this->u.max_ifc_array_access;
544 }
545
546 inline unsigned get_num_state_slots() const
547 {
548 assert(!this->is_interface_instance()
549 || this->data._num_state_slots == 0);
550 return this->data._num_state_slots;
551 }
552
553 inline void set_num_state_slots(unsigned n)
554 {
555 assert(!this->is_interface_instance()
556 || n == 0);
557 this->data._num_state_slots = n;
558 }
559
560 inline ir_state_slot *get_state_slots()
561 {
562 return this->is_interface_instance() ? NULL : this->u.state_slots;
563 }
564
565 inline const ir_state_slot *get_state_slots() const
566 {
567 return this->is_interface_instance() ? NULL : this->u.state_slots;
568 }
569
570 inline ir_state_slot *allocate_state_slots(unsigned n)
571 {
572 assert(!this->is_interface_instance());
573
574 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
575 this->data._num_state_slots = 0;
576
577 if (this->u.state_slots != NULL)
578 this->data._num_state_slots = n;
579
580 return this->u.state_slots;
581 }
582
583 inline bool is_name_ralloced() const
584 {
585 return this->name != ir_variable::tmp_name;
586 }
587
588 /**
589 * Enable emitting extension warnings for this variable
590 */
591 void enable_extension_warning(const char *extension);
592
593 /**
594 * Get the extension warning string for this variable
595 *
596 * If warnings are not enabled, \c NULL is returned.
597 */
598 const char *get_extension_warning() const;
599
600 /**
601 * Declared type of the variable
602 */
603 const struct glsl_type *type;
604
605 /**
606 * Declared name of the variable
607 */
608 const char *name;
609
610 struct ir_variable_data {
611
612 /**
613 * Is the variable read-only?
614 *
615 * This is set for variables declared as \c const, shader inputs,
616 * and uniforms.
617 */
618 unsigned read_only:1;
619 unsigned centroid:1;
620 unsigned sample:1;
621 unsigned invariant:1;
622 unsigned precise:1;
623
624 /**
625 * Has this variable been used for reading or writing?
626 *
627 * Several GLSL semantic checks require knowledge of whether or not a
628 * variable has been used. For example, it is an error to redeclare a
629 * variable as invariant after it has been used.
630 *
631 * This is only maintained in the ast_to_hir.cpp path, not in
632 * Mesa's fixed function or ARB program paths.
633 */
634 unsigned used:1;
635
636 /**
637 * Has this variable been statically assigned?
638 *
639 * This answers whether the variable was assigned in any path of
640 * the shader during ast_to_hir. This doesn't answer whether it is
641 * still written after dead code removal, nor is it maintained in
642 * non-ast_to_hir.cpp (GLSL parsing) paths.
643 */
644 unsigned assigned:1;
645
646 /**
647 * Enum indicating how the variable was declared. See
648 * ir_var_declaration_type.
649 *
650 * This is used to detect certain kinds of illegal variable redeclarations.
651 */
652 unsigned how_declared:2;
653
654 /**
655 * Storage class of the variable.
656 *
657 * \sa ir_variable_mode
658 */
659 unsigned mode:4;
660
661 /**
662 * Interpolation mode for shader inputs / outputs
663 *
664 * \sa ir_variable_interpolation
665 */
666 unsigned interpolation:2;
667
668 /**
669 * \name ARB_fragment_coord_conventions
670 * @{
671 */
672 unsigned origin_upper_left:1;
673 unsigned pixel_center_integer:1;
674 /*@}*/
675
676 /**
677 * Was the location explicitly set in the shader?
678 *
679 * If the location is explicitly set in the shader, it \b cannot be changed
680 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
681 * no effect).
682 */
683 unsigned explicit_location:1;
684 unsigned explicit_index:1;
685
686 /**
687 * Do we have a Vulkan (group, index) qualifier for this variable?
688 */
689 unsigned vk_set:1;
690
691 /**
692 * Was an initial binding explicitly set in the shader?
693 *
694 * If so, constant_value contains an integer ir_constant representing the
695 * initial binding point.
696 */
697 unsigned explicit_binding:1;
698
699 /**
700 * Does this variable have an initializer?
701 *
702 * This is used by the linker to cross-validiate initializers of global
703 * variables.
704 */
705 unsigned has_initializer:1;
706
707 /**
708 * Is this variable a generic output or input that has not yet been matched
709 * up to a variable in another stage of the pipeline?
710 *
711 * This is used by the linker as scratch storage while assigning locations
712 * to generic inputs and outputs.
713 */
714 unsigned is_unmatched_generic_inout:1;
715
716 /**
717 * If non-zero, then this variable may be packed along with other variables
718 * into a single varying slot, so this offset should be applied when
719 * accessing components. For example, an offset of 1 means that the x
720 * component of this variable is actually stored in component y of the
721 * location specified by \c location.
722 */
723 unsigned location_frac:2;
724
725 /**
726 * Layout of the matrix. Uses glsl_matrix_layout values.
727 */
728 unsigned matrix_layout:2;
729
730 /**
731 * Non-zero if this variable was created by lowering a named interface
732 * block which was not an array.
733 *
734 * Note that this variable and \c from_named_ifc_block_array will never
735 * both be non-zero.
736 */
737 unsigned from_named_ifc_block_nonarray:1;
738
739 /**
740 * Non-zero if this variable was created by lowering a named interface
741 * block which was an array.
742 *
743 * Note that this variable and \c from_named_ifc_block_nonarray will never
744 * both be non-zero.
745 */
746 unsigned from_named_ifc_block_array:1;
747
748 /**
749 * Non-zero if the variable must be a shader input. This is useful for
750 * constraints on function parameters.
751 */
752 unsigned must_be_shader_input:1;
753
754 /**
755 * Output index for dual source blending.
756 *
757 * \note
758 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
759 * source blending.
760 *
761 * This is now also used for the Vulkan descriptor set index.
762 */
763 int16_t index;
764
765 /**
766 * \brief Layout qualifier for gl_FragDepth.
767 *
768 * This is not equal to \c ir_depth_layout_none if and only if this
769 * variable is \c gl_FragDepth and a layout qualifier is specified.
770 */
771 ir_depth_layout depth_layout:3;
772
773 /**
774 * ARB_shader_image_load_store qualifiers.
775 */
776 unsigned image_read_only:1; /**< "readonly" qualifier. */
777 unsigned image_write_only:1; /**< "writeonly" qualifier. */
778 unsigned image_coherent:1;
779 unsigned image_volatile:1;
780 unsigned image_restrict:1;
781
782 /**
783 * Emit a warning if this variable is accessed.
784 */
785 private:
786 uint8_t warn_extension_index;
787
788 public:
789 /** Image internal format if specified explicitly, otherwise GL_NONE. */
790 uint16_t image_format;
791
792 private:
793 /**
794 * Number of state slots used
795 *
796 * \note
797 * This could be stored in as few as 7-bits, if necessary. If it is made
798 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
799 * be safe.
800 */
801 uint16_t _num_state_slots;
802
803 public:
804 /**
805 * Initial binding point for a sampler, atomic, or UBO.
806 *
807 * For array types, this represents the binding point for the first element.
808 */
809 int16_t binding;
810
811 /**
812 * Vulkan descriptor set for the resource.
813 */
814 int16_t set;
815
816 /**
817 * Storage location of the base of this variable
818 *
819 * The precise meaning of this field depends on the nature of the variable.
820 *
821 * - Vertex shader input: one of the values from \c gl_vert_attrib.
822 * - Vertex shader output: one of the values from \c gl_varying_slot.
823 * - Geometry shader input: one of the values from \c gl_varying_slot.
824 * - Geometry shader output: one of the values from \c gl_varying_slot.
825 * - Fragment shader input: one of the values from \c gl_varying_slot.
826 * - Fragment shader output: one of the values from \c gl_frag_result.
827 * - Uniforms: Per-stage uniform slot number for default uniform block.
828 * - Uniforms: Index within the uniform block definition for UBO members.
829 * - Other: This field is not currently used.
830 *
831 * If the variable is a uniform, shader input, or shader output, and the
832 * slot has not been assigned, the value will be -1.
833 */
834 int location;
835
836 /**
837 * Vertex stream output identifier.
838 */
839 unsigned stream;
840
841 /**
842 * Location an atomic counter is stored at.
843 */
844 struct {
845 unsigned offset;
846 } atomic;
847
848 /**
849 * Highest element accessed with a constant expression array index
850 *
851 * Not used for non-array variables.
852 */
853 unsigned max_array_access;
854
855 /**
856 * Allow (only) ir_variable direct access private members.
857 */
858 friend class ir_variable;
859 } data;
860
861 /**
862 * Value assigned in the initializer of a variable declared "const"
863 */
864 ir_constant *constant_value;
865
866 /**
867 * Constant expression assigned in the initializer of the variable
868 *
869 * \warning
870 * This field and \c ::constant_value are distinct. Even if the two fields
871 * refer to constants with the same value, they must point to separate
872 * objects.
873 */
874 ir_constant *constant_initializer;
875
876 private:
877 static const char *const warn_extension_table[];
878
879 union {
880 /**
881 * For variables which satisfy the is_interface_instance() predicate,
882 * this points to an array of integers such that if the ith member of
883 * the interface block is an array, max_ifc_array_access[i] is the
884 * maximum array element of that member that has been accessed. If the
885 * ith member of the interface block is not an array,
886 * max_ifc_array_access[i] is unused.
887 *
888 * For variables whose type is not an interface block, this pointer is
889 * NULL.
890 */
891 unsigned *max_ifc_array_access;
892
893 /**
894 * Built-in state that backs this uniform
895 *
896 * Once set at variable creation, \c state_slots must remain invariant.
897 *
898 * If the variable is not a uniform, \c _num_state_slots will be zero
899 * and \c state_slots will be \c NULL.
900 */
901 ir_state_slot *state_slots;
902 } u;
903
904 /**
905 * For variables that are in an interface block or are an instance of an
906 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
907 *
908 * \sa ir_variable::location
909 */
910 const glsl_type *interface_type;
911
912 /**
913 * Name used for anonymous compiler temporaries
914 */
915 static const char tmp_name[];
916
917 public:
918 /**
919 * Should the construct keep names for ir_var_temporary variables?
920 *
921 * When this global is false, names passed to the constructor for
922 * \c ir_var_temporary variables will be dropped. Instead, the variable will
923 * be named "compiler_temp". This name will be in static storage.
924 *
925 * \warning
926 * \b NEVER change the mode of an \c ir_var_temporary.
927 *
928 * \warning
929 * This variable is \b not thread-safe. It is global, \b not
930 * per-context. It begins life false. A context can, at some point, make
931 * it true. From that point on, it will be true forever. This should be
932 * okay since it will only be set true while debugging.
933 */
934 static bool temporaries_allocate_names;
935 };
936
937 /**
938 * A function that returns whether a built-in function is available in the
939 * current shading language (based on version, ES or desktop, and extensions).
940 */
941 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
942
943 /*@{*/
944 /**
945 * The representation of a function instance; may be the full definition or
946 * simply a prototype.
947 */
948 class ir_function_signature : public ir_instruction {
949 /* An ir_function_signature will be part of the list of signatures in
950 * an ir_function.
951 */
952 public:
953 ir_function_signature(const glsl_type *return_type,
954 builtin_available_predicate builtin_avail = NULL);
955
956 virtual ir_function_signature *clone(void *mem_ctx,
957 struct hash_table *ht) const;
958 ir_function_signature *clone_prototype(void *mem_ctx,
959 struct hash_table *ht) const;
960
961 virtual void accept(ir_visitor *v)
962 {
963 v->visit(this);
964 }
965
966 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
967
968 /**
969 * Attempt to evaluate this function as a constant expression,
970 * given a list of the actual parameters and the variable context.
971 * Returns NULL for non-built-ins.
972 */
973 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
974
975 /**
976 * Get the name of the function for which this is a signature
977 */
978 const char *function_name() const;
979
980 /**
981 * Get a handle to the function for which this is a signature
982 *
983 * There is no setter function, this function returns a \c const pointer,
984 * and \c ir_function_signature::_function is private for a reason. The
985 * only way to make a connection between a function and function signature
986 * is via \c ir_function::add_signature. This helps ensure that certain
987 * invariants (i.e., a function signature is in the list of signatures for
988 * its \c _function) are met.
989 *
990 * \sa ir_function::add_signature
991 */
992 inline const class ir_function *function() const
993 {
994 return this->_function;
995 }
996
997 /**
998 * Check whether the qualifiers match between this signature's parameters
999 * and the supplied parameter list. If not, returns the name of the first
1000 * parameter with mismatched qualifiers (for use in error messages).
1001 */
1002 const char *qualifiers_match(exec_list *params);
1003
1004 /**
1005 * Replace the current parameter list with the given one. This is useful
1006 * if the current information came from a prototype, and either has invalid
1007 * or missing parameter names.
1008 */
1009 void replace_parameters(exec_list *new_params);
1010
1011 /**
1012 * Function return type.
1013 *
1014 * \note This discards the optional precision qualifier.
1015 */
1016 const struct glsl_type *return_type;
1017
1018 /**
1019 * List of ir_variable of function parameters.
1020 *
1021 * This represents the storage. The paramaters passed in a particular
1022 * call will be in ir_call::actual_paramaters.
1023 */
1024 struct exec_list parameters;
1025
1026 /** Whether or not this function has a body (which may be empty). */
1027 unsigned is_defined:1;
1028
1029 /** Whether or not this function signature is a built-in. */
1030 bool is_builtin() const;
1031
1032 /**
1033 * Whether or not this function is an intrinsic to be implemented
1034 * by the driver.
1035 */
1036 bool is_intrinsic;
1037
1038 /** Whether or not a built-in is available for this shader. */
1039 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1040
1041 /** Body of instructions in the function. */
1042 struct exec_list body;
1043
1044 private:
1045 /**
1046 * A function pointer to a predicate that answers whether a built-in
1047 * function is available in the current shader. NULL if not a built-in.
1048 */
1049 builtin_available_predicate builtin_avail;
1050
1051 /** Function of which this signature is one overload. */
1052 class ir_function *_function;
1053
1054 /** Function signature of which this one is a prototype clone */
1055 const ir_function_signature *origin;
1056
1057 friend class ir_function;
1058
1059 /**
1060 * Helper function to run a list of instructions for constant
1061 * expression evaluation.
1062 *
1063 * The hash table represents the values of the visible variables.
1064 * There are no scoping issues because the table is indexed on
1065 * ir_variable pointers, not variable names.
1066 *
1067 * Returns false if the expression is not constant, true otherwise,
1068 * and the value in *result if result is non-NULL.
1069 */
1070 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1071 struct hash_table *variable_context,
1072 ir_constant **result);
1073 };
1074
1075
1076 /**
1077 * Header for tracking multiple overloaded functions with the same name.
1078 * Contains a list of ir_function_signatures representing each of the
1079 * actual functions.
1080 */
1081 class ir_function : public ir_instruction {
1082 public:
1083 ir_function(const char *name);
1084
1085 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1086
1087 virtual void accept(ir_visitor *v)
1088 {
1089 v->visit(this);
1090 }
1091
1092 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1093
1094 void add_signature(ir_function_signature *sig)
1095 {
1096 sig->_function = this;
1097 this->signatures.push_tail(sig);
1098 }
1099
1100 /**
1101 * Find a signature that matches a set of actual parameters, taking implicit
1102 * conversions into account. Also flags whether the match was exact.
1103 */
1104 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1105 const exec_list *actual_param,
1106 bool allow_builtins,
1107 bool *match_is_exact);
1108
1109 /**
1110 * Find a signature that matches a set of actual parameters, taking implicit
1111 * conversions into account.
1112 */
1113 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1114 const exec_list *actual_param,
1115 bool allow_builtins);
1116
1117 /**
1118 * Find a signature that exactly matches a set of actual parameters without
1119 * any implicit type conversions.
1120 */
1121 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1122 const exec_list *actual_ps);
1123
1124 /**
1125 * Name of the function.
1126 */
1127 const char *name;
1128
1129 /** Whether or not this function has a signature that isn't a built-in. */
1130 bool has_user_signature();
1131
1132 /**
1133 * List of ir_function_signature for each overloaded function with this name.
1134 */
1135 struct exec_list signatures;
1136 };
1137
1138 inline const char *ir_function_signature::function_name() const
1139 {
1140 return this->_function->name;
1141 }
1142 /*@}*/
1143
1144
1145 /**
1146 * IR instruction representing high-level if-statements
1147 */
1148 class ir_if : public ir_instruction {
1149 public:
1150 ir_if(ir_rvalue *condition)
1151 : ir_instruction(ir_type_if), condition(condition)
1152 {
1153 }
1154
1155 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1156
1157 virtual void accept(ir_visitor *v)
1158 {
1159 v->visit(this);
1160 }
1161
1162 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1163
1164 ir_rvalue *condition;
1165 /** List of ir_instruction for the body of the then branch */
1166 exec_list then_instructions;
1167 /** List of ir_instruction for the body of the else branch */
1168 exec_list else_instructions;
1169 };
1170
1171
1172 /**
1173 * IR instruction representing a high-level loop structure.
1174 */
1175 class ir_loop : public ir_instruction {
1176 public:
1177 ir_loop();
1178
1179 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1180
1181 virtual void accept(ir_visitor *v)
1182 {
1183 v->visit(this);
1184 }
1185
1186 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1187
1188 /** List of ir_instruction that make up the body of the loop. */
1189 exec_list body_instructions;
1190 };
1191
1192
1193 class ir_assignment : public ir_instruction {
1194 public:
1195 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1196
1197 /**
1198 * Construct an assignment with an explicit write mask
1199 *
1200 * \note
1201 * Since a write mask is supplied, the LHS must already be a bare
1202 * \c ir_dereference. The cannot be any swizzles in the LHS.
1203 */
1204 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1205 unsigned write_mask);
1206
1207 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1208
1209 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1210
1211 virtual void accept(ir_visitor *v)
1212 {
1213 v->visit(this);
1214 }
1215
1216 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1217
1218 /**
1219 * Get a whole variable written by an assignment
1220 *
1221 * If the LHS of the assignment writes a whole variable, the variable is
1222 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1223 * assignment are:
1224 *
1225 * - Assigning to a scalar
1226 * - Assigning to all components of a vector
1227 * - Whole array (or matrix) assignment
1228 * - Whole structure assignment
1229 */
1230 ir_variable *whole_variable_written();
1231
1232 /**
1233 * Set the LHS of an assignment
1234 */
1235 void set_lhs(ir_rvalue *lhs);
1236
1237 /**
1238 * Left-hand side of the assignment.
1239 *
1240 * This should be treated as read only. If you need to set the LHS of an
1241 * assignment, use \c ir_assignment::set_lhs.
1242 */
1243 ir_dereference *lhs;
1244
1245 /**
1246 * Value being assigned
1247 */
1248 ir_rvalue *rhs;
1249
1250 /**
1251 * Optional condition for the assignment.
1252 */
1253 ir_rvalue *condition;
1254
1255
1256 /**
1257 * Component mask written
1258 *
1259 * For non-vector types in the LHS, this field will be zero. For vector
1260 * types, a bit will be set for each component that is written. Note that
1261 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1262 *
1263 * A partially-set write mask means that each enabled channel gets
1264 * the value from a consecutive channel of the rhs. For example,
1265 * to write just .xyw of gl_FrontColor with color:
1266 *
1267 * (assign (constant bool (1)) (xyw)
1268 * (var_ref gl_FragColor)
1269 * (swiz xyw (var_ref color)))
1270 */
1271 unsigned write_mask:4;
1272 };
1273
1274 /* Update ir_expression::get_num_operands() and operator_strs when
1275 * updating this list.
1276 */
1277 enum ir_expression_operation {
1278 ir_unop_bit_not,
1279 ir_unop_logic_not,
1280 ir_unop_neg,
1281 ir_unop_abs,
1282 ir_unop_sign,
1283 ir_unop_rcp,
1284 ir_unop_rsq,
1285 ir_unop_sqrt,
1286 ir_unop_exp, /**< Log base e on gentype */
1287 ir_unop_log, /**< Natural log on gentype */
1288 ir_unop_exp2,
1289 ir_unop_log2,
1290 ir_unop_f2i, /**< Float-to-integer conversion. */
1291 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1292 ir_unop_i2f, /**< Integer-to-float conversion. */
1293 ir_unop_f2b, /**< Float-to-boolean conversion */
1294 ir_unop_b2f, /**< Boolean-to-float conversion */
1295 ir_unop_i2b, /**< int-to-boolean conversion */
1296 ir_unop_b2i, /**< Boolean-to-int conversion */
1297 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1298 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1299 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1300 ir_unop_d2f, /**< Double-to-float conversion. */
1301 ir_unop_f2d, /**< Float-to-double conversion. */
1302 ir_unop_d2i, /**< Double-to-integer conversion. */
1303 ir_unop_i2d, /**< Integer-to-double conversion. */
1304 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1305 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1306 ir_unop_d2b, /**< Double-to-boolean conversion. */
1307 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1308 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1309 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1310 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1311 ir_unop_any,
1312
1313 /**
1314 * \name Unary floating-point rounding operations.
1315 */
1316 /*@{*/
1317 ir_unop_trunc,
1318 ir_unop_ceil,
1319 ir_unop_floor,
1320 ir_unop_fract,
1321 ir_unop_round_even,
1322 /*@}*/
1323
1324 /**
1325 * \name Trigonometric operations.
1326 */
1327 /*@{*/
1328 ir_unop_sin,
1329 ir_unop_cos,
1330 /*@}*/
1331
1332 /**
1333 * \name Partial derivatives.
1334 */
1335 /*@{*/
1336 ir_unop_dFdx,
1337 ir_unop_dFdx_coarse,
1338 ir_unop_dFdx_fine,
1339 ir_unop_dFdy,
1340 ir_unop_dFdy_coarse,
1341 ir_unop_dFdy_fine,
1342 /*@}*/
1343
1344 /**
1345 * \name Floating point pack and unpack operations.
1346 */
1347 /*@{*/
1348 ir_unop_pack_snorm_2x16,
1349 ir_unop_pack_snorm_4x8,
1350 ir_unop_pack_unorm_2x16,
1351 ir_unop_pack_unorm_4x8,
1352 ir_unop_pack_half_2x16,
1353 ir_unop_unpack_snorm_2x16,
1354 ir_unop_unpack_snorm_4x8,
1355 ir_unop_unpack_unorm_2x16,
1356 ir_unop_unpack_unorm_4x8,
1357 ir_unop_unpack_half_2x16,
1358 /*@}*/
1359
1360 /**
1361 * \name Lowered floating point unpacking operations.
1362 *
1363 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1364 */
1365 /*@{*/
1366 ir_unop_unpack_half_2x16_split_x,
1367 ir_unop_unpack_half_2x16_split_y,
1368 /*@}*/
1369
1370 /**
1371 * \name Bit operations, part of ARB_gpu_shader5.
1372 */
1373 /*@{*/
1374 ir_unop_bitfield_reverse,
1375 ir_unop_bit_count,
1376 ir_unop_find_msb,
1377 ir_unop_find_lsb,
1378 /*@}*/
1379
1380 ir_unop_saturate,
1381
1382 /**
1383 * \name Double packing, part of ARB_gpu_shader_fp64.
1384 */
1385 /*@{*/
1386 ir_unop_pack_double_2x32,
1387 ir_unop_unpack_double_2x32,
1388 /*@}*/
1389
1390 ir_unop_frexp_sig,
1391 ir_unop_frexp_exp,
1392
1393 ir_unop_noise,
1394
1395 /**
1396 * Interpolate fs input at centroid
1397 *
1398 * operand0 is the fs input.
1399 */
1400 ir_unop_interpolate_at_centroid,
1401
1402 /**
1403 * A sentinel marking the last of the unary operations.
1404 */
1405 ir_last_unop = ir_unop_interpolate_at_centroid,
1406
1407 ir_binop_add,
1408 ir_binop_sub,
1409 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1410 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1411 ir_binop_div,
1412
1413 /**
1414 * Returns the carry resulting from the addition of the two arguments.
1415 */
1416 /*@{*/
1417 ir_binop_carry,
1418 /*@}*/
1419
1420 /**
1421 * Returns the borrow resulting from the subtraction of the second argument
1422 * from the first argument.
1423 */
1424 /*@{*/
1425 ir_binop_borrow,
1426 /*@}*/
1427
1428 /**
1429 * Takes one of two combinations of arguments:
1430 *
1431 * - mod(vecN, vecN)
1432 * - mod(vecN, float)
1433 *
1434 * Does not take integer types.
1435 */
1436 ir_binop_mod,
1437
1438 /**
1439 * \name Binary comparison operators which return a boolean vector.
1440 * The type of both operands must be equal.
1441 */
1442 /*@{*/
1443 ir_binop_less,
1444 ir_binop_greater,
1445 ir_binop_lequal,
1446 ir_binop_gequal,
1447 ir_binop_equal,
1448 ir_binop_nequal,
1449 /**
1450 * Returns single boolean for whether all components of operands[0]
1451 * equal the components of operands[1].
1452 */
1453 ir_binop_all_equal,
1454 /**
1455 * Returns single boolean for whether any component of operands[0]
1456 * is not equal to the corresponding component of operands[1].
1457 */
1458 ir_binop_any_nequal,
1459 /*@}*/
1460
1461 /**
1462 * \name Bit-wise binary operations.
1463 */
1464 /*@{*/
1465 ir_binop_lshift,
1466 ir_binop_rshift,
1467 ir_binop_bit_and,
1468 ir_binop_bit_xor,
1469 ir_binop_bit_or,
1470 /*@}*/
1471
1472 ir_binop_logic_and,
1473 ir_binop_logic_xor,
1474 ir_binop_logic_or,
1475
1476 ir_binop_dot,
1477 ir_binop_min,
1478 ir_binop_max,
1479
1480 ir_binop_pow,
1481
1482 /**
1483 * \name Lowered floating point packing operations.
1484 *
1485 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1486 */
1487 /*@{*/
1488 ir_binop_pack_half_2x16_split,
1489 /*@}*/
1490
1491 /**
1492 * \name First half of a lowered bitfieldInsert() operation.
1493 *
1494 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1495 */
1496 /*@{*/
1497 ir_binop_bfm,
1498 /*@}*/
1499
1500 /**
1501 * Load a value the size of a given GLSL type from a uniform block.
1502 *
1503 * operand0 is the ir_constant uniform block index in the linked shader.
1504 * operand1 is a byte offset within the uniform block.
1505 */
1506 ir_binop_ubo_load,
1507
1508 /**
1509 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1510 */
1511 /*@{*/
1512 ir_binop_ldexp,
1513 /*@}*/
1514
1515 /**
1516 * Extract a scalar from a vector
1517 *
1518 * operand0 is the vector
1519 * operand1 is the index of the field to read from operand0
1520 */
1521 ir_binop_vector_extract,
1522
1523 /**
1524 * Interpolate fs input at offset
1525 *
1526 * operand0 is the fs input
1527 * operand1 is the offset from the pixel center
1528 */
1529 ir_binop_interpolate_at_offset,
1530
1531 /**
1532 * Interpolate fs input at sample position
1533 *
1534 * operand0 is the fs input
1535 * operand1 is the sample ID
1536 */
1537 ir_binop_interpolate_at_sample,
1538
1539 /**
1540 * A sentinel marking the last of the binary operations.
1541 */
1542 ir_last_binop = ir_binop_interpolate_at_sample,
1543
1544 /**
1545 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1546 */
1547 /*@{*/
1548 ir_triop_fma,
1549 /*@}*/
1550
1551 ir_triop_lrp,
1552
1553 /**
1554 * \name Conditional Select
1555 *
1556 * A vector conditional select instruction (like ?:, but operating per-
1557 * component on vectors).
1558 *
1559 * \see lower_instructions_visitor::ldexp_to_arith
1560 */
1561 /*@{*/
1562 ir_triop_csel,
1563 /*@}*/
1564
1565 /**
1566 * \name Second half of a lowered bitfieldInsert() operation.
1567 *
1568 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1569 */
1570 /*@{*/
1571 ir_triop_bfi,
1572 /*@}*/
1573
1574 ir_triop_bitfield_extract,
1575
1576 /**
1577 * Generate a value with one field of a vector changed
1578 *
1579 * operand0 is the vector
1580 * operand1 is the value to write into the vector result
1581 * operand2 is the index in operand0 to be modified
1582 */
1583 ir_triop_vector_insert,
1584
1585 /**
1586 * A sentinel marking the last of the ternary operations.
1587 */
1588 ir_last_triop = ir_triop_vector_insert,
1589
1590 ir_quadop_bitfield_insert,
1591
1592 ir_quadop_vector,
1593
1594 /**
1595 * A sentinel marking the last of the ternary operations.
1596 */
1597 ir_last_quadop = ir_quadop_vector,
1598
1599 /**
1600 * A sentinel marking the last of all operations.
1601 */
1602 ir_last_opcode = ir_quadop_vector
1603 };
1604
1605 class ir_expression : public ir_rvalue {
1606 public:
1607 ir_expression(int op, const struct glsl_type *type,
1608 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1609 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1610
1611 /**
1612 * Constructor for unary operation expressions
1613 */
1614 ir_expression(int op, ir_rvalue *);
1615
1616 /**
1617 * Constructor for binary operation expressions
1618 */
1619 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1620
1621 /**
1622 * Constructor for ternary operation expressions
1623 */
1624 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1625
1626 virtual bool equals(const ir_instruction *ir,
1627 enum ir_node_type ignore = ir_type_unset) const;
1628
1629 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1630
1631 /**
1632 * Attempt to constant-fold the expression
1633 *
1634 * The "variable_context" hash table links ir_variable * to ir_constant *
1635 * that represent the variables' values. \c NULL represents an empty
1636 * context.
1637 *
1638 * If the expression cannot be constant folded, this method will return
1639 * \c NULL.
1640 */
1641 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1642
1643 /**
1644 * Determine the number of operands used by an expression
1645 */
1646 static unsigned int get_num_operands(ir_expression_operation);
1647
1648 /**
1649 * Determine the number of operands used by an expression
1650 */
1651 unsigned int get_num_operands() const
1652 {
1653 return (this->operation == ir_quadop_vector)
1654 ? this->type->vector_elements : get_num_operands(operation);
1655 }
1656
1657 /**
1658 * Return whether the expression operates on vectors horizontally.
1659 */
1660 bool is_horizontal() const
1661 {
1662 return operation == ir_binop_all_equal ||
1663 operation == ir_binop_any_nequal ||
1664 operation == ir_unop_any ||
1665 operation == ir_binop_dot ||
1666 operation == ir_quadop_vector;
1667 }
1668
1669 /**
1670 * Return a string representing this expression's operator.
1671 */
1672 const char *operator_string();
1673
1674 /**
1675 * Return a string representing this expression's operator.
1676 */
1677 static const char *operator_string(ir_expression_operation);
1678
1679
1680 /**
1681 * Do a reverse-lookup to translate the given string into an operator.
1682 */
1683 static ir_expression_operation get_operator(const char *);
1684
1685 virtual void accept(ir_visitor *v)
1686 {
1687 v->visit(this);
1688 }
1689
1690 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1691
1692 ir_expression_operation operation;
1693 ir_rvalue *operands[4];
1694 };
1695
1696
1697 /**
1698 * HIR instruction representing a high-level function call, containing a list
1699 * of parameters and returning a value in the supplied temporary.
1700 */
1701 class ir_call : public ir_instruction {
1702 public:
1703 ir_call(ir_function_signature *callee,
1704 ir_dereference_variable *return_deref,
1705 exec_list *actual_parameters)
1706 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1707 {
1708 assert(callee->return_type != NULL);
1709 actual_parameters->move_nodes_to(& this->actual_parameters);
1710 this->use_builtin = callee->is_builtin();
1711 }
1712
1713 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1714
1715 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1716
1717 virtual void accept(ir_visitor *v)
1718 {
1719 v->visit(this);
1720 }
1721
1722 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1723
1724 /**
1725 * Get the name of the function being called.
1726 */
1727 const char *callee_name() const
1728 {
1729 return callee->function_name();
1730 }
1731
1732 /**
1733 * Generates an inline version of the function before @ir,
1734 * storing the return value in return_deref.
1735 */
1736 void generate_inline(ir_instruction *ir);
1737
1738 /**
1739 * Storage for the function's return value.
1740 * This must be NULL if the return type is void.
1741 */
1742 ir_dereference_variable *return_deref;
1743
1744 /**
1745 * The specific function signature being called.
1746 */
1747 ir_function_signature *callee;
1748
1749 /* List of ir_rvalue of paramaters passed in this call. */
1750 exec_list actual_parameters;
1751
1752 /** Should this call only bind to a built-in function? */
1753 bool use_builtin;
1754 };
1755
1756
1757 /**
1758 * \name Jump-like IR instructions.
1759 *
1760 * These include \c break, \c continue, \c return, and \c discard.
1761 */
1762 /*@{*/
1763 class ir_jump : public ir_instruction {
1764 protected:
1765 ir_jump(enum ir_node_type t)
1766 : ir_instruction(t)
1767 {
1768 }
1769 };
1770
1771 class ir_return : public ir_jump {
1772 public:
1773 ir_return()
1774 : ir_jump(ir_type_return), value(NULL)
1775 {
1776 }
1777
1778 ir_return(ir_rvalue *value)
1779 : ir_jump(ir_type_return), value(value)
1780 {
1781 }
1782
1783 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1784
1785 ir_rvalue *get_value() const
1786 {
1787 return value;
1788 }
1789
1790 virtual void accept(ir_visitor *v)
1791 {
1792 v->visit(this);
1793 }
1794
1795 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1796
1797 ir_rvalue *value;
1798 };
1799
1800
1801 /**
1802 * Jump instructions used inside loops
1803 *
1804 * These include \c break and \c continue. The \c break within a loop is
1805 * different from the \c break within a switch-statement.
1806 *
1807 * \sa ir_switch_jump
1808 */
1809 class ir_loop_jump : public ir_jump {
1810 public:
1811 enum jump_mode {
1812 jump_break,
1813 jump_continue
1814 };
1815
1816 ir_loop_jump(jump_mode mode)
1817 : ir_jump(ir_type_loop_jump)
1818 {
1819 this->mode = mode;
1820 }
1821
1822 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1823
1824 virtual void accept(ir_visitor *v)
1825 {
1826 v->visit(this);
1827 }
1828
1829 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1830
1831 bool is_break() const
1832 {
1833 return mode == jump_break;
1834 }
1835
1836 bool is_continue() const
1837 {
1838 return mode == jump_continue;
1839 }
1840
1841 /** Mode selector for the jump instruction. */
1842 enum jump_mode mode;
1843 };
1844
1845 /**
1846 * IR instruction representing discard statements.
1847 */
1848 class ir_discard : public ir_jump {
1849 public:
1850 ir_discard()
1851 : ir_jump(ir_type_discard)
1852 {
1853 this->condition = NULL;
1854 }
1855
1856 ir_discard(ir_rvalue *cond)
1857 : ir_jump(ir_type_discard)
1858 {
1859 this->condition = cond;
1860 }
1861
1862 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1863
1864 virtual void accept(ir_visitor *v)
1865 {
1866 v->visit(this);
1867 }
1868
1869 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1870
1871 ir_rvalue *condition;
1872 };
1873 /*@}*/
1874
1875
1876 /**
1877 * Texture sampling opcodes used in ir_texture
1878 */
1879 enum ir_texture_opcode {
1880 ir_tex, /**< Regular texture look-up */
1881 ir_txb, /**< Texture look-up with LOD bias */
1882 ir_txl, /**< Texture look-up with explicit LOD */
1883 ir_txd, /**< Texture look-up with partial derivatvies */
1884 ir_txf, /**< Texel fetch with explicit LOD */
1885 ir_txf_ms, /**< Multisample texture fetch */
1886 ir_txs, /**< Texture size */
1887 ir_lod, /**< Texture lod query */
1888 ir_tg4, /**< Texture gather */
1889 ir_query_levels /**< Texture levels query */
1890 };
1891
1892
1893 /**
1894 * IR instruction to sample a texture
1895 *
1896 * The specific form of the IR instruction depends on the \c mode value
1897 * selected from \c ir_texture_opcodes. In the printed IR, these will
1898 * appear as:
1899 *
1900 * Texel offset (0 or an expression)
1901 * | Projection divisor
1902 * | | Shadow comparitor
1903 * | | |
1904 * v v v
1905 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1906 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1907 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1908 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1909 * (txf <type> <sampler> <coordinate> 0 <lod>)
1910 * (txf_ms
1911 * <type> <sampler> <coordinate> <sample_index>)
1912 * (txs <type> <sampler> <lod>)
1913 * (lod <type> <sampler> <coordinate>)
1914 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1915 * (query_levels <type> <sampler>)
1916 */
1917 class ir_texture : public ir_rvalue {
1918 public:
1919 ir_texture(enum ir_texture_opcode op)
1920 : ir_rvalue(ir_type_texture),
1921 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1922 shadow_comparitor(NULL), offset(NULL)
1923 {
1924 memset(&lod_info, 0, sizeof(lod_info));
1925 }
1926
1927 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1928
1929 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1930
1931 virtual void accept(ir_visitor *v)
1932 {
1933 v->visit(this);
1934 }
1935
1936 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1937
1938 virtual bool equals(const ir_instruction *ir,
1939 enum ir_node_type ignore = ir_type_unset) const;
1940
1941 /**
1942 * Return a string representing the ir_texture_opcode.
1943 */
1944 const char *opcode_string();
1945
1946 /** Set the sampler and type. */
1947 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1948
1949 /**
1950 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1951 */
1952 static ir_texture_opcode get_opcode(const char *);
1953
1954 enum ir_texture_opcode op;
1955
1956 /** Sampler to use for the texture access. */
1957 ir_dereference *sampler;
1958
1959 /** Texture coordinate to sample */
1960 ir_rvalue *coordinate;
1961
1962 /**
1963 * Value used for projective divide.
1964 *
1965 * If there is no projective divide (the common case), this will be
1966 * \c NULL. Optimization passes should check for this to point to a constant
1967 * of 1.0 and replace that with \c NULL.
1968 */
1969 ir_rvalue *projector;
1970
1971 /**
1972 * Coordinate used for comparison on shadow look-ups.
1973 *
1974 * If there is no shadow comparison, this will be \c NULL. For the
1975 * \c ir_txf opcode, this *must* be \c NULL.
1976 */
1977 ir_rvalue *shadow_comparitor;
1978
1979 /** Texel offset. */
1980 ir_rvalue *offset;
1981
1982 union {
1983 ir_rvalue *lod; /**< Floating point LOD */
1984 ir_rvalue *bias; /**< Floating point LOD bias */
1985 ir_rvalue *sample_index; /**< MSAA sample index */
1986 ir_rvalue *component; /**< Gather component selector */
1987 struct {
1988 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1989 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1990 } grad;
1991 } lod_info;
1992 };
1993
1994
1995 struct ir_swizzle_mask {
1996 unsigned x:2;
1997 unsigned y:2;
1998 unsigned z:2;
1999 unsigned w:2;
2000
2001 /**
2002 * Number of components in the swizzle.
2003 */
2004 unsigned num_components:3;
2005
2006 /**
2007 * Does the swizzle contain duplicate components?
2008 *
2009 * L-value swizzles cannot contain duplicate components.
2010 */
2011 unsigned has_duplicates:1;
2012 };
2013
2014
2015 class ir_swizzle : public ir_rvalue {
2016 public:
2017 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2018 unsigned count);
2019
2020 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2021
2022 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2023
2024 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2025
2026 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2027
2028 /**
2029 * Construct an ir_swizzle from the textual representation. Can fail.
2030 */
2031 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2032
2033 virtual void accept(ir_visitor *v)
2034 {
2035 v->visit(this);
2036 }
2037
2038 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2039
2040 virtual bool equals(const ir_instruction *ir,
2041 enum ir_node_type ignore = ir_type_unset) const;
2042
2043 bool is_lvalue() const
2044 {
2045 return val->is_lvalue() && !mask.has_duplicates;
2046 }
2047
2048 /**
2049 * Get the variable that is ultimately referenced by an r-value
2050 */
2051 virtual ir_variable *variable_referenced() const;
2052
2053 ir_rvalue *val;
2054 ir_swizzle_mask mask;
2055
2056 private:
2057 /**
2058 * Initialize the mask component of a swizzle
2059 *
2060 * This is used by the \c ir_swizzle constructors.
2061 */
2062 void init_mask(const unsigned *components, unsigned count);
2063 };
2064
2065
2066 class ir_dereference : public ir_rvalue {
2067 public:
2068 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2069
2070 bool is_lvalue() const;
2071
2072 /**
2073 * Get the variable that is ultimately referenced by an r-value
2074 */
2075 virtual ir_variable *variable_referenced() const = 0;
2076
2077 protected:
2078 ir_dereference(enum ir_node_type t)
2079 : ir_rvalue(t)
2080 {
2081 }
2082 };
2083
2084
2085 class ir_dereference_variable : public ir_dereference {
2086 public:
2087 ir_dereference_variable(ir_variable *var);
2088
2089 virtual ir_dereference_variable *clone(void *mem_ctx,
2090 struct hash_table *) const;
2091
2092 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2093
2094 virtual bool equals(const ir_instruction *ir,
2095 enum ir_node_type ignore = ir_type_unset) const;
2096
2097 /**
2098 * Get the variable that is ultimately referenced by an r-value
2099 */
2100 virtual ir_variable *variable_referenced() const
2101 {
2102 return this->var;
2103 }
2104
2105 virtual ir_variable *whole_variable_referenced()
2106 {
2107 /* ir_dereference_variable objects always dereference the entire
2108 * variable. However, if this dereference is dereferenced by anything
2109 * else, the complete deferefernce chain is not a whole-variable
2110 * dereference. This method should only be called on the top most
2111 * ir_rvalue in a dereference chain.
2112 */
2113 return this->var;
2114 }
2115
2116 virtual void accept(ir_visitor *v)
2117 {
2118 v->visit(this);
2119 }
2120
2121 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2122
2123 /**
2124 * Object being dereferenced.
2125 */
2126 ir_variable *var;
2127 };
2128
2129
2130 class ir_dereference_array : public ir_dereference {
2131 public:
2132 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2133
2134 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2135
2136 virtual ir_dereference_array *clone(void *mem_ctx,
2137 struct hash_table *) const;
2138
2139 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2140
2141 virtual bool equals(const ir_instruction *ir,
2142 enum ir_node_type ignore = ir_type_unset) const;
2143
2144 /**
2145 * Get the variable that is ultimately referenced by an r-value
2146 */
2147 virtual ir_variable *variable_referenced() const
2148 {
2149 return this->array->variable_referenced();
2150 }
2151
2152 virtual void accept(ir_visitor *v)
2153 {
2154 v->visit(this);
2155 }
2156
2157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2158
2159 ir_rvalue *array;
2160 ir_rvalue *array_index;
2161
2162 private:
2163 void set_array(ir_rvalue *value);
2164 };
2165
2166
2167 class ir_dereference_record : public ir_dereference {
2168 public:
2169 ir_dereference_record(ir_rvalue *value, const char *field);
2170
2171 ir_dereference_record(ir_variable *var, const char *field);
2172
2173 virtual ir_dereference_record *clone(void *mem_ctx,
2174 struct hash_table *) const;
2175
2176 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2177
2178 /**
2179 * Get the variable that is ultimately referenced by an r-value
2180 */
2181 virtual ir_variable *variable_referenced() const
2182 {
2183 return this->record->variable_referenced();
2184 }
2185
2186 virtual void accept(ir_visitor *v)
2187 {
2188 v->visit(this);
2189 }
2190
2191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2192
2193 ir_rvalue *record;
2194 const char *field;
2195 };
2196
2197
2198 /**
2199 * Data stored in an ir_constant
2200 */
2201 union ir_constant_data {
2202 unsigned u[16];
2203 int i[16];
2204 float f[16];
2205 bool b[16];
2206 double d[16];
2207 };
2208
2209
2210 class ir_constant : public ir_rvalue {
2211 public:
2212 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2213 ir_constant(bool b, unsigned vector_elements=1);
2214 ir_constant(unsigned int u, unsigned vector_elements=1);
2215 ir_constant(int i, unsigned vector_elements=1);
2216 ir_constant(float f, unsigned vector_elements=1);
2217 ir_constant(double d, unsigned vector_elements=1);
2218
2219 /**
2220 * Construct an ir_constant from a list of ir_constant values
2221 */
2222 ir_constant(const struct glsl_type *type, exec_list *values);
2223
2224 /**
2225 * Construct an ir_constant from a scalar component of another ir_constant
2226 *
2227 * The new \c ir_constant inherits the type of the component from the
2228 * source constant.
2229 *
2230 * \note
2231 * In the case of a matrix constant, the new constant is a scalar, \b not
2232 * a vector.
2233 */
2234 ir_constant(const ir_constant *c, unsigned i);
2235
2236 /**
2237 * Return a new ir_constant of the specified type containing all zeros.
2238 */
2239 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2240
2241 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2242
2243 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2244
2245 virtual void accept(ir_visitor *v)
2246 {
2247 v->visit(this);
2248 }
2249
2250 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2251
2252 virtual bool equals(const ir_instruction *ir,
2253 enum ir_node_type ignore = ir_type_unset) const;
2254
2255 /**
2256 * Get a particular component of a constant as a specific type
2257 *
2258 * This is useful, for example, to get a value from an integer constant
2259 * as a float or bool. This appears frequently when constructors are
2260 * called with all constant parameters.
2261 */
2262 /*@{*/
2263 bool get_bool_component(unsigned i) const;
2264 float get_float_component(unsigned i) const;
2265 double get_double_component(unsigned i) const;
2266 int get_int_component(unsigned i) const;
2267 unsigned get_uint_component(unsigned i) const;
2268 /*@}*/
2269
2270 ir_constant *get_array_element(unsigned i) const;
2271
2272 ir_constant *get_record_field(const char *name);
2273
2274 /**
2275 * Copy the values on another constant at a given offset.
2276 *
2277 * The offset is ignored for array or struct copies, it's only for
2278 * scalars or vectors into vectors or matrices.
2279 *
2280 * With identical types on both sides and zero offset it's clone()
2281 * without creating a new object.
2282 */
2283
2284 void copy_offset(ir_constant *src, int offset);
2285
2286 /**
2287 * Copy the values on another constant at a given offset and
2288 * following an assign-like mask.
2289 *
2290 * The mask is ignored for scalars.
2291 *
2292 * Note that this function only handles what assign can handle,
2293 * i.e. at most a vector as source and a column of a matrix as
2294 * destination.
2295 */
2296
2297 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2298
2299 /**
2300 * Determine whether a constant has the same value as another constant
2301 *
2302 * \sa ir_constant::is_zero, ir_constant::is_one,
2303 * ir_constant::is_negative_one
2304 */
2305 bool has_value(const ir_constant *) const;
2306
2307 /**
2308 * Return true if this ir_constant represents the given value.
2309 *
2310 * For vectors, this checks that each component is the given value.
2311 */
2312 virtual bool is_value(float f, int i) const;
2313 virtual bool is_zero() const;
2314 virtual bool is_one() const;
2315 virtual bool is_negative_one() const;
2316
2317 /**
2318 * Return true for constants that could be stored as 16-bit unsigned values.
2319 *
2320 * Note that this will return true even for signed integer ir_constants, as
2321 * long as the value is non-negative and fits in 16-bits.
2322 */
2323 virtual bool is_uint16_constant() const;
2324
2325 /**
2326 * Value of the constant.
2327 *
2328 * The field used to back the values supplied by the constant is determined
2329 * by the type associated with the \c ir_instruction. Constants may be
2330 * scalars, vectors, or matrices.
2331 */
2332 union ir_constant_data value;
2333
2334 /* Array elements */
2335 ir_constant **array_elements;
2336
2337 /* Structure fields */
2338 exec_list components;
2339
2340 private:
2341 /**
2342 * Parameterless constructor only used by the clone method
2343 */
2344 ir_constant(void);
2345 };
2346
2347 /**
2348 * IR instruction to emit a vertex in a geometry shader.
2349 */
2350 class ir_emit_vertex : public ir_instruction {
2351 public:
2352 ir_emit_vertex(ir_rvalue *stream)
2353 : ir_instruction(ir_type_emit_vertex),
2354 stream(stream)
2355 {
2356 assert(stream);
2357 }
2358
2359 virtual void accept(ir_visitor *v)
2360 {
2361 v->visit(this);
2362 }
2363
2364 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2365 {
2366 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2367 }
2368
2369 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2370
2371 int stream_id() const
2372 {
2373 return stream->as_constant()->value.i[0];
2374 }
2375
2376 ir_rvalue *stream;
2377 };
2378
2379 /**
2380 * IR instruction to complete the current primitive and start a new one in a
2381 * geometry shader.
2382 */
2383 class ir_end_primitive : public ir_instruction {
2384 public:
2385 ir_end_primitive(ir_rvalue *stream)
2386 : ir_instruction(ir_type_end_primitive),
2387 stream(stream)
2388 {
2389 assert(stream);
2390 }
2391
2392 virtual void accept(ir_visitor *v)
2393 {
2394 v->visit(this);
2395 }
2396
2397 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2398 {
2399 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2400 }
2401
2402 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2403
2404 int stream_id() const
2405 {
2406 return stream->as_constant()->value.i[0];
2407 }
2408
2409 ir_rvalue *stream;
2410 };
2411
2412 /**
2413 * IR instruction for tessellation control and compute shader barrier.
2414 */
2415 class ir_barrier : public ir_instruction {
2416 public:
2417 ir_barrier()
2418 : ir_instruction(ir_type_barrier)
2419 {
2420 }
2421
2422 virtual void accept(ir_visitor *v)
2423 {
2424 v->visit(this);
2425 }
2426
2427 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2428 {
2429 return new(mem_ctx) ir_barrier();
2430 }
2431
2432 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2433 };
2434
2435 /*@}*/
2436
2437 /**
2438 * Apply a visitor to each IR node in a list
2439 */
2440 void
2441 visit_exec_list(exec_list *list, ir_visitor *visitor);
2442
2443 /**
2444 * Validate invariants on each IR node in a list
2445 */
2446 void validate_ir_tree(exec_list *instructions);
2447
2448 struct _mesa_glsl_parse_state;
2449 struct gl_shader_program;
2450
2451 /**
2452 * Detect whether an unlinked shader contains static recursion
2453 *
2454 * If the list of instructions is determined to contain static recursion,
2455 * \c _mesa_glsl_error will be called to emit error messages for each function
2456 * that is in the recursion cycle.
2457 */
2458 void
2459 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2460 exec_list *instructions);
2461
2462 /**
2463 * Detect whether a linked shader contains static recursion
2464 *
2465 * If the list of instructions is determined to contain static recursion,
2466 * \c link_error_printf will be called to emit error messages for each function
2467 * that is in the recursion cycle. In addition,
2468 * \c gl_shader_program::LinkStatus will be set to false.
2469 */
2470 void
2471 detect_recursion_linked(struct gl_shader_program *prog,
2472 exec_list *instructions);
2473
2474 /**
2475 * Make a clone of each IR instruction in a list
2476 *
2477 * \param in List of IR instructions that are to be cloned
2478 * \param out List to hold the cloned instructions
2479 */
2480 void
2481 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2482
2483 extern void
2484 _mesa_glsl_initialize_variables(exec_list *instructions,
2485 struct _mesa_glsl_parse_state *state);
2486
2487 extern void
2488 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2489
2490 extern void
2491 _mesa_glsl_initialize_builtin_functions();
2492
2493 extern ir_function_signature *
2494 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2495 const char *name, exec_list *actual_parameters);
2496
2497 extern ir_function *
2498 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2499 const char *name);
2500
2501 extern gl_shader *
2502 _mesa_glsl_get_builtin_function_shader(void);
2503
2504 extern void
2505 _mesa_glsl_release_functions(void);
2506
2507 extern void
2508 _mesa_glsl_release_builtin_functions(void);
2509
2510 extern void
2511 reparent_ir(exec_list *list, void *mem_ctx);
2512
2513 struct glsl_symbol_table;
2514
2515 extern void
2516 import_prototypes(const exec_list *source, exec_list *dest,
2517 struct glsl_symbol_table *symbols, void *mem_ctx);
2518
2519 extern bool
2520 ir_has_call(ir_instruction *ir);
2521
2522 extern void
2523 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2524 gl_shader_stage shader_stage);
2525
2526 extern char *
2527 prototype_string(const glsl_type *return_type, const char *name,
2528 exec_list *parameters);
2529
2530 const char *
2531 mode_string(const ir_variable *var);
2532
2533 /**
2534 * Built-in / reserved GL variables names start with "gl_"
2535 */
2536 static inline bool
2537 is_gl_identifier(const char *s)
2538 {
2539 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2540 }
2541
2542 extern "C" {
2543 #endif /* __cplusplus */
2544
2545 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2546 struct _mesa_glsl_parse_state *state);
2547
2548 extern void
2549 fprint_ir(FILE *f, const void *instruction);
2550
2551 #ifdef __cplusplus
2552 } /* extern "C" */
2553 #endif
2554
2555 unsigned
2556 vertices_per_prim(GLenum prim);
2557
2558 #endif /* IR_H */