62bb0fd70964aba751e12ba6bad6fd2e9691a7ea
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 enum ir_variable_interpolation {
232 ir_var_smooth = 0,
233 ir_var_flat,
234 ir_var_noperspective
235 };
236
237
238 class ir_variable : public ir_instruction {
239 public:
240 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
241
242 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
243
244 virtual ir_variable *as_variable()
245 {
246 return this;
247 }
248
249 virtual void accept(ir_visitor *v)
250 {
251 v->visit(this);
252 }
253
254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
255
256
257 /**
258 * Get the string value for the interpolation qualifier
259 *
260 * \return The string that would be used in a shader to specify \c
261 * mode will be returned.
262 *
263 * This function should only be used on a shader input or output variable.
264 */
265 const char *interpolation_string() const;
266
267 /**
268 * Calculate the number of slots required to hold this variable
269 *
270 * This is used to determine how many uniform or varying locations a variable
271 * occupies. The count is in units of floating point components.
272 */
273 unsigned component_slots() const;
274
275 /**
276 * Delcared name of the variable
277 */
278 const char *name;
279
280 /**
281 * Highest element accessed with a constant expression array index
282 *
283 * Not used for non-array variables.
284 */
285 unsigned max_array_access;
286
287 /**
288 * Is the variable read-only?
289 *
290 * This is set for variables declared as \c const, shader inputs,
291 * and uniforms.
292 */
293 unsigned read_only:1;
294 unsigned centroid:1;
295 unsigned invariant:1;
296
297 /**
298 * Storage class of the variable.
299 *
300 * \sa ir_variable_mode
301 */
302 unsigned mode:3;
303
304 /**
305 * Interpolation mode for shader inputs / outputs
306 *
307 * \sa ir_variable_interpolation
308 */
309 unsigned interpolation:2;
310
311 /**
312 * Flag that the whole array is assignable
313 *
314 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
315 * equality). This flag enables this behavior.
316 */
317 unsigned array_lvalue:1;
318
319 /**
320 * \name ARB_fragment_coord_conventions
321 * @{
322 */
323 unsigned origin_upper_left:1;
324 unsigned pixel_center_integer:1;
325 /*@}*/
326
327 /**
328 * Was the location explicitly set in the shader?
329 *
330 * If the location is explicitly set in the shader, it \b cannot be changed
331 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
332 * no effect).
333 */
334 unsigned explicit_location:1;
335
336 /**
337 * Storage location of the base of this variable
338 *
339 * The precise meaning of this field depends on the nature of the variable.
340 *
341 * - Vertex shader input: one of the values from \c gl_vert_attrib.
342 * - Vertex shader output: one of the values from \c gl_vert_result.
343 * - Fragment shader input: one of the values from \c gl_frag_attrib.
344 * - Fragment shader output: one of the values from \c gl_frag_result.
345 * - Uniforms: Per-stage uniform slot number.
346 * - Other: This field is not currently used.
347 *
348 * If the variable is a uniform, shader input, or shader output, and the
349 * slot has not been assigned, the value will be -1.
350 */
351 int location;
352
353 /**
354 * Emit a warning if this variable is accessed.
355 */
356 const char *warn_extension;
357
358 /**
359 * Value assigned in the initializer of a variable declared "const"
360 */
361 ir_constant *constant_value;
362 };
363
364
365 /*@{*/
366 /**
367 * The representation of a function instance; may be the full definition or
368 * simply a prototype.
369 */
370 class ir_function_signature : public ir_instruction {
371 /* An ir_function_signature will be part of the list of signatures in
372 * an ir_function.
373 */
374 public:
375 ir_function_signature(const glsl_type *return_type);
376
377 virtual ir_function_signature *clone(void *mem_ctx,
378 struct hash_table *ht) const;
379
380 virtual void accept(ir_visitor *v)
381 {
382 v->visit(this);
383 }
384
385 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
386
387 /**
388 * Get the name of the function for which this is a signature
389 */
390 const char *function_name() const;
391
392 /**
393 * Get a handle to the function for which this is a signature
394 *
395 * There is no setter function, this function returns a \c const pointer,
396 * and \c ir_function_signature::_function is private for a reason. The
397 * only way to make a connection between a function and function signature
398 * is via \c ir_function::add_signature. This helps ensure that certain
399 * invariants (i.e., a function signature is in the list of signatures for
400 * its \c _function) are met.
401 *
402 * \sa ir_function::add_signature
403 */
404 inline const class ir_function *function() const
405 {
406 return this->_function;
407 }
408
409 /**
410 * Check whether the qualifiers match between this signature's parameters
411 * and the supplied parameter list. If not, returns the name of the first
412 * parameter with mismatched qualifiers (for use in error messages).
413 */
414 const char *qualifiers_match(exec_list *params);
415
416 /**
417 * Replace the current parameter list with the given one. This is useful
418 * if the current information came from a prototype, and either has invalid
419 * or missing parameter names.
420 */
421 void replace_parameters(exec_list *new_params);
422
423 /**
424 * Function return type.
425 *
426 * \note This discards the optional precision qualifier.
427 */
428 const struct glsl_type *return_type;
429
430 /**
431 * List of ir_variable of function parameters.
432 *
433 * This represents the storage. The paramaters passed in a particular
434 * call will be in ir_call::actual_paramaters.
435 */
436 struct exec_list parameters;
437
438 /** Whether or not this function has a body (which may be empty). */
439 unsigned is_defined:1;
440
441 /** Whether or not this function signature is a built-in. */
442 unsigned is_builtin:1;
443
444 /** Body of instructions in the function. */
445 struct exec_list body;
446
447 private:
448 /** Function of which this signature is one overload. */
449 class ir_function *_function;
450
451 friend class ir_function;
452 };
453
454
455 /**
456 * Header for tracking multiple overloaded functions with the same name.
457 * Contains a list of ir_function_signatures representing each of the
458 * actual functions.
459 */
460 class ir_function : public ir_instruction {
461 public:
462 ir_function(const char *name);
463
464 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
465
466 virtual ir_function *as_function()
467 {
468 return this;
469 }
470
471 virtual void accept(ir_visitor *v)
472 {
473 v->visit(this);
474 }
475
476 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478 void add_signature(ir_function_signature *sig)
479 {
480 sig->_function = this;
481 this->signatures.push_tail(sig);
482 }
483
484 /**
485 * Get an iterator for the set of function signatures
486 */
487 exec_list_iterator iterator()
488 {
489 return signatures.iterator();
490 }
491
492 /**
493 * Find a signature that matches a set of actual parameters, taking implicit
494 * conversions into account.
495 */
496 ir_function_signature *matching_signature(const exec_list *actual_param);
497
498 /**
499 * Find a signature that exactly matches a set of actual parameters without
500 * any implicit type conversions.
501 */
502 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
503
504 /**
505 * Name of the function.
506 */
507 const char *name;
508
509 /** Whether or not this function has a signature that isn't a built-in. */
510 bool has_user_signature();
511
512 /**
513 * List of ir_function_signature for each overloaded function with this name.
514 */
515 struct exec_list signatures;
516 };
517
518 inline const char *ir_function_signature::function_name() const
519 {
520 return this->_function->name;
521 }
522 /*@}*/
523
524
525 /**
526 * IR instruction representing high-level if-statements
527 */
528 class ir_if : public ir_instruction {
529 public:
530 ir_if(ir_rvalue *condition)
531 : condition(condition)
532 {
533 ir_type = ir_type_if;
534 }
535
536 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
537
538 virtual ir_if *as_if()
539 {
540 return this;
541 }
542
543 virtual void accept(ir_visitor *v)
544 {
545 v->visit(this);
546 }
547
548 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
549
550 ir_rvalue *condition;
551 /** List of ir_instruction for the body of the then branch */
552 exec_list then_instructions;
553 /** List of ir_instruction for the body of the else branch */
554 exec_list else_instructions;
555 };
556
557
558 /**
559 * IR instruction representing a high-level loop structure.
560 */
561 class ir_loop : public ir_instruction {
562 public:
563 ir_loop();
564
565 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
566
567 virtual void accept(ir_visitor *v)
568 {
569 v->visit(this);
570 }
571
572 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
573
574 virtual ir_loop *as_loop()
575 {
576 return this;
577 }
578
579 /**
580 * Get an iterator for the instructions of the loop body
581 */
582 exec_list_iterator iterator()
583 {
584 return body_instructions.iterator();
585 }
586
587 /** List of ir_instruction that make up the body of the loop. */
588 exec_list body_instructions;
589
590 /**
591 * \name Loop counter and controls
592 *
593 * Represents a loop like a FORTRAN \c do-loop.
594 *
595 * \note
596 * If \c from and \c to are the same value, the loop will execute once.
597 */
598 /*@{*/
599 ir_rvalue *from; /** Value of the loop counter on the first
600 * iteration of the loop.
601 */
602 ir_rvalue *to; /** Value of the loop counter on the last
603 * iteration of the loop.
604 */
605 ir_rvalue *increment;
606 ir_variable *counter;
607
608 /**
609 * Comparison operation in the loop terminator.
610 *
611 * If any of the loop control fields are non-\c NULL, this field must be
612 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
613 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
614 */
615 int cmp;
616 /*@}*/
617 };
618
619
620 class ir_assignment : public ir_instruction {
621 public:
622 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
623
624 /**
625 * Construct an assignment with an explicit write mask
626 *
627 * \note
628 * Since a write mask is supplied, the LHS must already be a bare
629 * \c ir_dereference. The cannot be any swizzles in the LHS.
630 */
631 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
632 unsigned write_mask);
633
634 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
635
636 virtual ir_constant *constant_expression_value();
637
638 virtual void accept(ir_visitor *v)
639 {
640 v->visit(this);
641 }
642
643 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
644
645 virtual ir_assignment * as_assignment()
646 {
647 return this;
648 }
649
650 /**
651 * Get a whole variable written by an assignment
652 *
653 * If the LHS of the assignment writes a whole variable, the variable is
654 * returned. Otherwise \c NULL is returned. Examples of whole-variable
655 * assignment are:
656 *
657 * - Assigning to a scalar
658 * - Assigning to all components of a vector
659 * - Whole array (or matrix) assignment
660 * - Whole structure assignment
661 */
662 ir_variable *whole_variable_written();
663
664 /**
665 * Set the LHS of an assignment
666 */
667 void set_lhs(ir_rvalue *lhs);
668
669 /**
670 * Left-hand side of the assignment.
671 *
672 * This should be treated as read only. If you need to set the LHS of an
673 * assignment, use \c ir_assignment::set_lhs.
674 */
675 ir_dereference *lhs;
676
677 /**
678 * Value being assigned
679 */
680 ir_rvalue *rhs;
681
682 /**
683 * Optional condition for the assignment.
684 */
685 ir_rvalue *condition;
686
687
688 /**
689 * Component mask written
690 *
691 * For non-vector types in the LHS, this field will be zero. For vector
692 * types, a bit will be set for each component that is written. Note that
693 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
694 *
695 * A partially-set write mask means that each enabled channel gets
696 * the value from a consecutive channel of the rhs. For example,
697 * to write just .xyw of gl_FrontColor with color:
698 *
699 * (assign (constant bool (1)) (xyw)
700 * (var_ref gl_FragColor)
701 * (swiz xyw (var_ref color)))
702 */
703 unsigned write_mask:4;
704 };
705
706 /* Update ir_expression::num_operands() and operator_strs when
707 * updating this list.
708 */
709 enum ir_expression_operation {
710 ir_unop_bit_not,
711 ir_unop_logic_not,
712 ir_unop_neg,
713 ir_unop_abs,
714 ir_unop_sign,
715 ir_unop_rcp,
716 ir_unop_rsq,
717 ir_unop_sqrt,
718 ir_unop_exp, /**< Log base e on gentype */
719 ir_unop_log, /**< Natural log on gentype */
720 ir_unop_exp2,
721 ir_unop_log2,
722 ir_unop_f2i, /**< Float-to-integer conversion. */
723 ir_unop_i2f, /**< Integer-to-float conversion. */
724 ir_unop_f2b, /**< Float-to-boolean conversion */
725 ir_unop_b2f, /**< Boolean-to-float conversion */
726 ir_unop_i2b, /**< int-to-boolean conversion */
727 ir_unop_b2i, /**< Boolean-to-int conversion */
728 ir_unop_u2f, /**< Unsigned-to-float conversion. */
729 ir_unop_any,
730
731 /**
732 * \name Unary floating-point rounding operations.
733 */
734 /*@{*/
735 ir_unop_trunc,
736 ir_unop_ceil,
737 ir_unop_floor,
738 ir_unop_fract,
739 ir_unop_round_even,
740 /*@}*/
741
742 /**
743 * \name Trigonometric operations.
744 */
745 /*@{*/
746 ir_unop_sin,
747 ir_unop_cos,
748 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
749 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
750 /*@}*/
751
752 /**
753 * \name Partial derivatives.
754 */
755 /*@{*/
756 ir_unop_dFdx,
757 ir_unop_dFdy,
758 /*@}*/
759
760 ir_unop_noise,
761
762 /**
763 * A sentinel marking the last of the unary operations.
764 */
765 ir_last_unop = ir_unop_noise,
766
767 ir_binop_add,
768 ir_binop_sub,
769 ir_binop_mul,
770 ir_binop_div,
771
772 /**
773 * Takes one of two combinations of arguments:
774 *
775 * - mod(vecN, vecN)
776 * - mod(vecN, float)
777 *
778 * Does not take integer types.
779 */
780 ir_binop_mod,
781
782 /**
783 * \name Binary comparison operators which return a boolean vector.
784 * The type of both operands must be equal.
785 */
786 /*@{*/
787 ir_binop_less,
788 ir_binop_greater,
789 ir_binop_lequal,
790 ir_binop_gequal,
791 ir_binop_equal,
792 ir_binop_nequal,
793 /**
794 * Returns single boolean for whether all components of operands[0]
795 * equal the components of operands[1].
796 */
797 ir_binop_all_equal,
798 /**
799 * Returns single boolean for whether any component of operands[0]
800 * is not equal to the corresponding component of operands[1].
801 */
802 ir_binop_any_nequal,
803 /*@}*/
804
805 /**
806 * \name Bit-wise binary operations.
807 */
808 /*@{*/
809 ir_binop_lshift,
810 ir_binop_rshift,
811 ir_binop_bit_and,
812 ir_binop_bit_xor,
813 ir_binop_bit_or,
814 /*@}*/
815
816 ir_binop_logic_and,
817 ir_binop_logic_xor,
818 ir_binop_logic_or,
819
820 ir_binop_dot,
821 ir_binop_min,
822 ir_binop_max,
823
824 ir_binop_pow,
825
826 /**
827 * A sentinel marking the last of the binary operations.
828 */
829 ir_last_binop = ir_binop_pow,
830
831 ir_quadop_vector,
832
833 /**
834 * A sentinel marking the last of all operations.
835 */
836 ir_last_opcode = ir_last_binop
837 };
838
839 class ir_expression : public ir_rvalue {
840 public:
841 /**
842 * Constructor for unary operation expressions
843 */
844 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
845
846 /**
847 * Constructor for binary operation expressions
848 */
849 ir_expression(int op, const struct glsl_type *type,
850 ir_rvalue *, ir_rvalue *);
851
852 /**
853 * Constructor for quad operator expressions
854 */
855 ir_expression(int op, const struct glsl_type *type,
856 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
857
858 virtual ir_expression *as_expression()
859 {
860 return this;
861 }
862
863 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
864
865 /**
866 * Attempt to constant-fold the expression
867 *
868 * If the expression cannot be constant folded, this method will return
869 * \c NULL.
870 */
871 virtual ir_constant *constant_expression_value();
872
873 /**
874 * Determine the number of operands used by an expression
875 */
876 static unsigned int get_num_operands(ir_expression_operation);
877
878 /**
879 * Determine the number of operands used by an expression
880 */
881 unsigned int get_num_operands() const
882 {
883 return (this->operation == ir_quadop_vector)
884 ? this->type->vector_elements : get_num_operands(operation);
885 }
886
887 /**
888 * Return a string representing this expression's operator.
889 */
890 const char *operator_string();
891
892 /**
893 * Return a string representing this expression's operator.
894 */
895 static const char *operator_string(ir_expression_operation);
896
897
898 /**
899 * Do a reverse-lookup to translate the given string into an operator.
900 */
901 static ir_expression_operation get_operator(const char *);
902
903 virtual void accept(ir_visitor *v)
904 {
905 v->visit(this);
906 }
907
908 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
909
910 ir_expression_operation operation;
911 ir_rvalue *operands[4];
912 };
913
914
915 /**
916 * IR instruction representing a function call
917 */
918 class ir_call : public ir_rvalue {
919 public:
920 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
921 : callee(callee)
922 {
923 ir_type = ir_type_call;
924 assert(callee->return_type != NULL);
925 type = callee->return_type;
926 actual_parameters->move_nodes_to(& this->actual_parameters);
927 }
928
929 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
930
931 virtual ir_constant *constant_expression_value();
932
933 virtual ir_call *as_call()
934 {
935 return this;
936 }
937
938 virtual void accept(ir_visitor *v)
939 {
940 v->visit(this);
941 }
942
943 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
944
945 /**
946 * Get a generic ir_call object when an error occurs
947 *
948 * Any allocation will be performed with 'ctx' as talloc owner.
949 */
950 static ir_call *get_error_instruction(void *ctx);
951
952 /**
953 * Get an iterator for the set of acutal parameters
954 */
955 exec_list_iterator iterator()
956 {
957 return actual_parameters.iterator();
958 }
959
960 /**
961 * Get the name of the function being called.
962 */
963 const char *callee_name() const
964 {
965 return callee->function_name();
966 }
967
968 /**
969 * Get the function signature bound to this function call
970 */
971 ir_function_signature *get_callee()
972 {
973 return callee;
974 }
975
976 /**
977 * Set the function call target
978 */
979 void set_callee(ir_function_signature *sig);
980
981 /**
982 * Generates an inline version of the function before @ir,
983 * returning the return value of the function.
984 */
985 ir_rvalue *generate_inline(ir_instruction *ir);
986
987 /* List of ir_rvalue of paramaters passed in this call. */
988 exec_list actual_parameters;
989
990 private:
991 ir_call()
992 : callee(NULL)
993 {
994 this->ir_type = ir_type_call;
995 }
996
997 ir_function_signature *callee;
998 };
999
1000
1001 /**
1002 * \name Jump-like IR instructions.
1003 *
1004 * These include \c break, \c continue, \c return, and \c discard.
1005 */
1006 /*@{*/
1007 class ir_jump : public ir_instruction {
1008 protected:
1009 ir_jump()
1010 {
1011 ir_type = ir_type_unset;
1012 }
1013 };
1014
1015 class ir_return : public ir_jump {
1016 public:
1017 ir_return()
1018 : value(NULL)
1019 {
1020 this->ir_type = ir_type_return;
1021 }
1022
1023 ir_return(ir_rvalue *value)
1024 : value(value)
1025 {
1026 this->ir_type = ir_type_return;
1027 }
1028
1029 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1030
1031 virtual ir_return *as_return()
1032 {
1033 return this;
1034 }
1035
1036 ir_rvalue *get_value() const
1037 {
1038 return value;
1039 }
1040
1041 virtual void accept(ir_visitor *v)
1042 {
1043 v->visit(this);
1044 }
1045
1046 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1047
1048 ir_rvalue *value;
1049 };
1050
1051
1052 /**
1053 * Jump instructions used inside loops
1054 *
1055 * These include \c break and \c continue. The \c break within a loop is
1056 * different from the \c break within a switch-statement.
1057 *
1058 * \sa ir_switch_jump
1059 */
1060 class ir_loop_jump : public ir_jump {
1061 public:
1062 enum jump_mode {
1063 jump_break,
1064 jump_continue
1065 };
1066
1067 ir_loop_jump(jump_mode mode)
1068 {
1069 this->ir_type = ir_type_loop_jump;
1070 this->mode = mode;
1071 this->loop = loop;
1072 }
1073
1074 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1075
1076 virtual void accept(ir_visitor *v)
1077 {
1078 v->visit(this);
1079 }
1080
1081 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1082
1083 bool is_break() const
1084 {
1085 return mode == jump_break;
1086 }
1087
1088 bool is_continue() const
1089 {
1090 return mode == jump_continue;
1091 }
1092
1093 /** Mode selector for the jump instruction. */
1094 enum jump_mode mode;
1095 private:
1096 /** Loop containing this break instruction. */
1097 ir_loop *loop;
1098 };
1099
1100 /**
1101 * IR instruction representing discard statements.
1102 */
1103 class ir_discard : public ir_jump {
1104 public:
1105 ir_discard()
1106 {
1107 this->ir_type = ir_type_discard;
1108 this->condition = NULL;
1109 }
1110
1111 ir_discard(ir_rvalue *cond)
1112 {
1113 this->ir_type = ir_type_discard;
1114 this->condition = cond;
1115 }
1116
1117 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1118
1119 virtual void accept(ir_visitor *v)
1120 {
1121 v->visit(this);
1122 }
1123
1124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1125
1126 virtual ir_discard *as_discard()
1127 {
1128 return this;
1129 }
1130
1131 ir_rvalue *condition;
1132 };
1133 /*@}*/
1134
1135
1136 /**
1137 * Texture sampling opcodes used in ir_texture
1138 */
1139 enum ir_texture_opcode {
1140 ir_tex, /**< Regular texture look-up */
1141 ir_txb, /**< Texture look-up with LOD bias */
1142 ir_txl, /**< Texture look-up with explicit LOD */
1143 ir_txd, /**< Texture look-up with partial derivatvies */
1144 ir_txf /**< Texel fetch with explicit LOD */
1145 };
1146
1147
1148 /**
1149 * IR instruction to sample a texture
1150 *
1151 * The specific form of the IR instruction depends on the \c mode value
1152 * selected from \c ir_texture_opcodes. In the printed IR, these will
1153 * appear as:
1154 *
1155 * Texel offset
1156 * | Projection divisor
1157 * | | Shadow comparitor
1158 * | | |
1159 * v v v
1160 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1161 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1162 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1163 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1164 * (txf (sampler) (coordinate) (0 0 0) (lod))
1165 */
1166 class ir_texture : public ir_rvalue {
1167 public:
1168 ir_texture(enum ir_texture_opcode op)
1169 : op(op), projector(NULL), shadow_comparitor(NULL)
1170 {
1171 this->ir_type = ir_type_texture;
1172 }
1173
1174 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1175
1176 virtual ir_constant *constant_expression_value();
1177
1178 virtual void accept(ir_visitor *v)
1179 {
1180 v->visit(this);
1181 }
1182
1183 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1184
1185 /**
1186 * Return a string representing the ir_texture_opcode.
1187 */
1188 const char *opcode_string();
1189
1190 /** Set the sampler and infer the type. */
1191 void set_sampler(ir_dereference *sampler);
1192
1193 /**
1194 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1195 */
1196 static ir_texture_opcode get_opcode(const char *);
1197
1198 enum ir_texture_opcode op;
1199
1200 /** Sampler to use for the texture access. */
1201 ir_dereference *sampler;
1202
1203 /** Texture coordinate to sample */
1204 ir_rvalue *coordinate;
1205
1206 /**
1207 * Value used for projective divide.
1208 *
1209 * If there is no projective divide (the common case), this will be
1210 * \c NULL. Optimization passes should check for this to point to a constant
1211 * of 1.0 and replace that with \c NULL.
1212 */
1213 ir_rvalue *projector;
1214
1215 /**
1216 * Coordinate used for comparison on shadow look-ups.
1217 *
1218 * If there is no shadow comparison, this will be \c NULL. For the
1219 * \c ir_txf opcode, this *must* be \c NULL.
1220 */
1221 ir_rvalue *shadow_comparitor;
1222
1223 /** Explicit texel offsets. */
1224 signed char offsets[3];
1225
1226 union {
1227 ir_rvalue *lod; /**< Floating point LOD */
1228 ir_rvalue *bias; /**< Floating point LOD bias */
1229 struct {
1230 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1231 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1232 } grad;
1233 } lod_info;
1234 };
1235
1236
1237 struct ir_swizzle_mask {
1238 unsigned x:2;
1239 unsigned y:2;
1240 unsigned z:2;
1241 unsigned w:2;
1242
1243 /**
1244 * Number of components in the swizzle.
1245 */
1246 unsigned num_components:3;
1247
1248 /**
1249 * Does the swizzle contain duplicate components?
1250 *
1251 * L-value swizzles cannot contain duplicate components.
1252 */
1253 unsigned has_duplicates:1;
1254 };
1255
1256
1257 class ir_swizzle : public ir_rvalue {
1258 public:
1259 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1260 unsigned count);
1261
1262 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1263
1264 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1265
1266 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1267
1268 virtual ir_constant *constant_expression_value();
1269
1270 virtual ir_swizzle *as_swizzle()
1271 {
1272 return this;
1273 }
1274
1275 /**
1276 * Construct an ir_swizzle from the textual representation. Can fail.
1277 */
1278 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1279
1280 virtual void accept(ir_visitor *v)
1281 {
1282 v->visit(this);
1283 }
1284
1285 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1286
1287 bool is_lvalue()
1288 {
1289 return val->is_lvalue() && !mask.has_duplicates;
1290 }
1291
1292 /**
1293 * Get the variable that is ultimately referenced by an r-value
1294 */
1295 virtual ir_variable *variable_referenced();
1296
1297 ir_rvalue *val;
1298 ir_swizzle_mask mask;
1299
1300 private:
1301 /**
1302 * Initialize the mask component of a swizzle
1303 *
1304 * This is used by the \c ir_swizzle constructors.
1305 */
1306 void init_mask(const unsigned *components, unsigned count);
1307 };
1308
1309
1310 class ir_dereference : public ir_rvalue {
1311 public:
1312 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1313
1314 virtual ir_dereference *as_dereference()
1315 {
1316 return this;
1317 }
1318
1319 bool is_lvalue();
1320
1321 /**
1322 * Get the variable that is ultimately referenced by an r-value
1323 */
1324 virtual ir_variable *variable_referenced() = 0;
1325 };
1326
1327
1328 class ir_dereference_variable : public ir_dereference {
1329 public:
1330 ir_dereference_variable(ir_variable *var);
1331
1332 virtual ir_dereference_variable *clone(void *mem_ctx,
1333 struct hash_table *) const;
1334
1335 virtual ir_constant *constant_expression_value();
1336
1337 virtual ir_dereference_variable *as_dereference_variable()
1338 {
1339 return this;
1340 }
1341
1342 /**
1343 * Get the variable that is ultimately referenced by an r-value
1344 */
1345 virtual ir_variable *variable_referenced()
1346 {
1347 return this->var;
1348 }
1349
1350 virtual ir_variable *whole_variable_referenced()
1351 {
1352 /* ir_dereference_variable objects always dereference the entire
1353 * variable. However, if this dereference is dereferenced by anything
1354 * else, the complete deferefernce chain is not a whole-variable
1355 * dereference. This method should only be called on the top most
1356 * ir_rvalue in a dereference chain.
1357 */
1358 return this->var;
1359 }
1360
1361 virtual void accept(ir_visitor *v)
1362 {
1363 v->visit(this);
1364 }
1365
1366 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1367
1368 /**
1369 * Object being dereferenced.
1370 */
1371 ir_variable *var;
1372 };
1373
1374
1375 class ir_dereference_array : public ir_dereference {
1376 public:
1377 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1378
1379 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1380
1381 virtual ir_dereference_array *clone(void *mem_ctx,
1382 struct hash_table *) const;
1383
1384 virtual ir_constant *constant_expression_value();
1385
1386 virtual ir_dereference_array *as_dereference_array()
1387 {
1388 return this;
1389 }
1390
1391 /**
1392 * Get the variable that is ultimately referenced by an r-value
1393 */
1394 virtual ir_variable *variable_referenced()
1395 {
1396 return this->array->variable_referenced();
1397 }
1398
1399 virtual void accept(ir_visitor *v)
1400 {
1401 v->visit(this);
1402 }
1403
1404 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1405
1406 ir_rvalue *array;
1407 ir_rvalue *array_index;
1408
1409 private:
1410 void set_array(ir_rvalue *value);
1411 };
1412
1413
1414 class ir_dereference_record : public ir_dereference {
1415 public:
1416 ir_dereference_record(ir_rvalue *value, const char *field);
1417
1418 ir_dereference_record(ir_variable *var, const char *field);
1419
1420 virtual ir_dereference_record *clone(void *mem_ctx,
1421 struct hash_table *) const;
1422
1423 virtual ir_constant *constant_expression_value();
1424
1425 /**
1426 * Get the variable that is ultimately referenced by an r-value
1427 */
1428 virtual ir_variable *variable_referenced()
1429 {
1430 return this->record->variable_referenced();
1431 }
1432
1433 virtual void accept(ir_visitor *v)
1434 {
1435 v->visit(this);
1436 }
1437
1438 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1439
1440 ir_rvalue *record;
1441 const char *field;
1442 };
1443
1444
1445 /**
1446 * Data stored in an ir_constant
1447 */
1448 union ir_constant_data {
1449 unsigned u[16];
1450 int i[16];
1451 float f[16];
1452 bool b[16];
1453 };
1454
1455
1456 class ir_constant : public ir_rvalue {
1457 public:
1458 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1459 ir_constant(bool b);
1460 ir_constant(unsigned int u);
1461 ir_constant(int i);
1462 ir_constant(float f);
1463
1464 /**
1465 * Construct an ir_constant from a list of ir_constant values
1466 */
1467 ir_constant(const struct glsl_type *type, exec_list *values);
1468
1469 /**
1470 * Construct an ir_constant from a scalar component of another ir_constant
1471 *
1472 * The new \c ir_constant inherits the type of the component from the
1473 * source constant.
1474 *
1475 * \note
1476 * In the case of a matrix constant, the new constant is a scalar, \b not
1477 * a vector.
1478 */
1479 ir_constant(const ir_constant *c, unsigned i);
1480
1481 /**
1482 * Return a new ir_constant of the specified type containing all zeros.
1483 */
1484 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1485
1486 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1487
1488 virtual ir_constant *constant_expression_value();
1489
1490 virtual ir_constant *as_constant()
1491 {
1492 return this;
1493 }
1494
1495 virtual void accept(ir_visitor *v)
1496 {
1497 v->visit(this);
1498 }
1499
1500 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1501
1502 /**
1503 * Get a particular component of a constant as a specific type
1504 *
1505 * This is useful, for example, to get a value from an integer constant
1506 * as a float or bool. This appears frequently when constructors are
1507 * called with all constant parameters.
1508 */
1509 /*@{*/
1510 bool get_bool_component(unsigned i) const;
1511 float get_float_component(unsigned i) const;
1512 int get_int_component(unsigned i) const;
1513 unsigned get_uint_component(unsigned i) const;
1514 /*@}*/
1515
1516 ir_constant *get_array_element(unsigned i) const;
1517
1518 ir_constant *get_record_field(const char *name);
1519
1520 /**
1521 * Determine whether a constant has the same value as another constant
1522 *
1523 * \sa ir_constant::is_zero, ir_constant::is_one,
1524 * ir_constant::is_negative_one
1525 */
1526 bool has_value(const ir_constant *) const;
1527
1528 virtual bool is_zero() const;
1529 virtual bool is_one() const;
1530 virtual bool is_negative_one() const;
1531
1532 /**
1533 * Value of the constant.
1534 *
1535 * The field used to back the values supplied by the constant is determined
1536 * by the type associated with the \c ir_instruction. Constants may be
1537 * scalars, vectors, or matrices.
1538 */
1539 union ir_constant_data value;
1540
1541 /* Array elements */
1542 ir_constant **array_elements;
1543
1544 /* Structure fields */
1545 exec_list components;
1546
1547 private:
1548 /**
1549 * Parameterless constructor only used by the clone method
1550 */
1551 ir_constant(void);
1552 };
1553
1554 /*@}*/
1555
1556 /**
1557 * Apply a visitor to each IR node in a list
1558 */
1559 void
1560 visit_exec_list(exec_list *list, ir_visitor *visitor);
1561
1562 /**
1563 * Validate invariants on each IR node in a list
1564 */
1565 void validate_ir_tree(exec_list *instructions);
1566
1567 /**
1568 * Make a clone of each IR instruction in a list
1569 *
1570 * \param in List of IR instructions that are to be cloned
1571 * \param out List to hold the cloned instructions
1572 */
1573 void
1574 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1575
1576 extern void
1577 _mesa_glsl_initialize_variables(exec_list *instructions,
1578 struct _mesa_glsl_parse_state *state);
1579
1580 extern void
1581 _mesa_glsl_initialize_functions(exec_list *instructions,
1582 struct _mesa_glsl_parse_state *state);
1583
1584 extern void
1585 _mesa_glsl_release_functions(void);
1586
1587 extern void
1588 reparent_ir(exec_list *list, void *mem_ctx);
1589
1590 struct glsl_symbol_table;
1591
1592 extern void
1593 import_prototypes(const exec_list *source, exec_list *dest,
1594 struct glsl_symbol_table *symbols, void *mem_ctx);
1595
1596 extern bool
1597 ir_has_call(ir_instruction *ir);
1598
1599 extern void
1600 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1601
1602 #endif /* IR_H */