glsl: Make a local variable to avoid restating this array lookup.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
124 virtual class ir_expression * as_expression() { return NULL; }
125 virtual class ir_rvalue * as_rvalue() { return NULL; }
126 virtual class ir_loop * as_loop() { return NULL; }
127 virtual class ir_assignment * as_assignment() { return NULL; }
128 virtual class ir_call * as_call() { return NULL; }
129 virtual class ir_return * as_return() { return NULL; }
130 virtual class ir_if * as_if() { return NULL; }
131 virtual class ir_swizzle * as_swizzle() { return NULL; }
132 virtual class ir_constant * as_constant() { return NULL; }
133 virtual class ir_discard * as_discard() { return NULL; }
134 virtual class ir_jump * as_jump() { return NULL; }
135 /*@}*/
136
137 protected:
138 ir_instruction()
139 {
140 ir_type = ir_type_unset;
141 }
142 };
143
144
145 /**
146 * The base class for all "values"/expression trees.
147 */
148 class ir_rvalue : public ir_instruction {
149 public:
150 const struct glsl_type *type;
151
152 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
153
154 virtual void accept(ir_visitor *v)
155 {
156 v->visit(this);
157 }
158
159 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
160
161 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
162
163 virtual ir_rvalue * as_rvalue()
164 {
165 return this;
166 }
167
168 ir_rvalue *as_rvalue_to_saturate();
169
170 virtual bool is_lvalue() const
171 {
172 return false;
173 }
174
175 /**
176 * Get the variable that is ultimately referenced by an r-value
177 */
178 virtual ir_variable *variable_referenced() const
179 {
180 return NULL;
181 }
182
183
184 /**
185 * If an r-value is a reference to a whole variable, get that variable
186 *
187 * \return
188 * Pointer to a variable that is completely dereferenced by the r-value. If
189 * the r-value is not a dereference or the dereference does not access the
190 * entire variable (i.e., it's just one array element, struct field), \c NULL
191 * is returned.
192 */
193 virtual ir_variable *whole_variable_referenced()
194 {
195 return NULL;
196 }
197
198 /**
199 * Determine if an r-value has the value zero
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * zero (or \c false for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
207 * ir_constant::is_basis
208 */
209 virtual bool is_zero() const;
210
211 /**
212 * Determine if an r-value has the value one
213 *
214 * The base implementation of this function always returns \c false. The
215 * \c ir_constant class over-rides this function to return \c true \b only
216 * for vector and scalar types that have all elements set to the value
217 * one (or \c true for booleans).
218 *
219 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
220 * ir_constant::is_basis
221 */
222 virtual bool is_one() const;
223
224 /**
225 * Determine if an r-value has the value negative one
226 *
227 * The base implementation of this function always returns \c false. The
228 * \c ir_constant class over-rides this function to return \c true \b only
229 * for vector and scalar types that have all elements set to the value
230 * negative one. For boolean types, the result is always \c false.
231 *
232 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
233 * ir_constant::is_basis
234 */
235 virtual bool is_negative_one() const;
236
237 /**
238 * Determine if an r-value is a basis vector
239 *
240 * The base implementation of this function always returns \c false. The
241 * \c ir_constant class over-rides this function to return \c true \b only
242 * for vector and scalar types that have one element set to the value one,
243 * and the other elements set to the value zero. For boolean types, the
244 * result is always \c false.
245 *
246 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
247 * is_constant::is_negative_one
248 */
249 virtual bool is_basis() const;
250
251
252 /**
253 * Return a generic value of error_type.
254 *
255 * Allocation will be performed with 'mem_ctx' as ralloc owner.
256 */
257 static ir_rvalue *error_value(void *mem_ctx);
258
259 protected:
260 ir_rvalue();
261 };
262
263
264 /**
265 * Variable storage classes
266 */
267 enum ir_variable_mode {
268 ir_var_auto = 0, /**< Function local variables and globals. */
269 ir_var_uniform, /**< Variable declared as a uniform. */
270 ir_var_shader_in,
271 ir_var_shader_out,
272 ir_var_function_in,
273 ir_var_function_out,
274 ir_var_function_inout,
275 ir_var_const_in, /**< "in" param that must be a constant expression */
276 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
277 ir_var_temporary, /**< Temporary variable generated during compilation. */
278 ir_var_mode_count /**< Number of variable modes */
279 };
280
281 /**
282 * \brief Layout qualifiers for gl_FragDepth.
283 *
284 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
285 * with a layout qualifier.
286 */
287 enum ir_depth_layout {
288 ir_depth_layout_none, /**< No depth layout is specified. */
289 ir_depth_layout_any,
290 ir_depth_layout_greater,
291 ir_depth_layout_less,
292 ir_depth_layout_unchanged
293 };
294
295 /**
296 * \brief Convert depth layout qualifier to string.
297 */
298 const char*
299 depth_layout_string(ir_depth_layout layout);
300
301 /**
302 * Description of built-in state associated with a uniform
303 *
304 * \sa ir_variable::state_slots
305 */
306 struct ir_state_slot {
307 int tokens[5];
308 int swizzle;
309 };
310
311 class ir_variable : public ir_instruction {
312 public:
313 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
314
315 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
316
317 virtual ir_variable *as_variable()
318 {
319 return this;
320 }
321
322 virtual void accept(ir_visitor *v)
323 {
324 v->visit(this);
325 }
326
327 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
328
329
330 /**
331 * Get the string value for the interpolation qualifier
332 *
333 * \return The string that would be used in a shader to specify \c
334 * mode will be returned.
335 *
336 * This function is used to generate error messages of the form "shader
337 * uses %s interpolation qualifier", so in the case where there is no
338 * interpolation qualifier, it returns "no".
339 *
340 * This function should only be used on a shader input or output variable.
341 */
342 const char *interpolation_string() const;
343
344 /**
345 * Determine how this variable should be interpolated based on its
346 * interpolation qualifier (if present), whether it is gl_Color or
347 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
348 * state.
349 *
350 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
351 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
352 */
353 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
354
355 /**
356 * Determine whether or not a variable is part of a uniform block.
357 */
358 inline bool is_in_uniform_block() const
359 {
360 return this->mode == ir_var_uniform && this->interface_type != NULL;
361 }
362
363 /**
364 * Determine whether or not a variable is the declaration of an interface
365 * block
366 *
367 * For the first declaration below, there will be an \c ir_variable named
368 * "instance" whose type and whose instance_type will be the same
369 * \cglsl_type. For the second declaration, there will be an \c ir_variable
370 * named "f" whose type is float and whose instance_type is B2.
371 *
372 * "instance" is an interface instance variable, but "f" is not.
373 *
374 * uniform B1 {
375 * float f;
376 * } instance;
377 *
378 * uniform B2 {
379 * float f;
380 * };
381 */
382 inline bool is_interface_instance() const
383 {
384 const glsl_type *const t = this->type;
385
386 return (t == this->interface_type)
387 || (t->is_array() && t->fields.array == this->interface_type);
388 }
389
390 /**
391 * Declared type of the variable
392 */
393 const struct glsl_type *type;
394
395 /**
396 * Declared name of the variable
397 */
398 const char *name;
399
400 /**
401 * Highest element accessed with a constant expression array index
402 *
403 * Not used for non-array variables.
404 */
405 unsigned max_array_access;
406
407 /**
408 * Is the variable read-only?
409 *
410 * This is set for variables declared as \c const, shader inputs,
411 * and uniforms.
412 */
413 unsigned read_only:1;
414 unsigned centroid:1;
415 unsigned invariant:1;
416
417 /**
418 * Has this variable been used for reading or writing?
419 *
420 * Several GLSL semantic checks require knowledge of whether or not a
421 * variable has been used. For example, it is an error to redeclare a
422 * variable as invariant after it has been used.
423 *
424 * This is only maintained in the ast_to_hir.cpp path, not in
425 * Mesa's fixed function or ARB program paths.
426 */
427 unsigned used:1;
428
429 /**
430 * Has this variable been statically assigned?
431 *
432 * This answers whether the variable was assigned in any path of
433 * the shader during ast_to_hir. This doesn't answer whether it is
434 * still written after dead code removal, nor is it maintained in
435 * non-ast_to_hir.cpp (GLSL parsing) paths.
436 */
437 unsigned assigned:1;
438
439 /**
440 * Storage class of the variable.
441 *
442 * \sa ir_variable_mode
443 */
444 unsigned mode:4;
445
446 /**
447 * Interpolation mode for shader inputs / outputs
448 *
449 * \sa ir_variable_interpolation
450 */
451 unsigned interpolation:2;
452
453 /**
454 * \name ARB_fragment_coord_conventions
455 * @{
456 */
457 unsigned origin_upper_left:1;
458 unsigned pixel_center_integer:1;
459 /*@}*/
460
461 /**
462 * Was the location explicitly set in the shader?
463 *
464 * If the location is explicitly set in the shader, it \b cannot be changed
465 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
466 * no effect).
467 */
468 unsigned explicit_location:1;
469 unsigned explicit_index:1;
470
471 /**
472 * Does this variable have an initializer?
473 *
474 * This is used by the linker to cross-validiate initializers of global
475 * variables.
476 */
477 unsigned has_initializer:1;
478
479 /**
480 * Is this variable a generic output or input that has not yet been matched
481 * up to a variable in another stage of the pipeline?
482 *
483 * This is used by the linker as scratch storage while assigning locations
484 * to generic inputs and outputs.
485 */
486 unsigned is_unmatched_generic_inout:1;
487
488 /**
489 * If non-zero, then this variable may be packed along with other variables
490 * into a single varying slot, so this offset should be applied when
491 * accessing components. For example, an offset of 1 means that the x
492 * component of this variable is actually stored in component y of the
493 * location specified by \c location.
494 */
495 unsigned location_frac:2;
496
497 /**
498 * \brief Layout qualifier for gl_FragDepth.
499 *
500 * This is not equal to \c ir_depth_layout_none if and only if this
501 * variable is \c gl_FragDepth and a layout qualifier is specified.
502 */
503 ir_depth_layout depth_layout;
504
505 /**
506 * Storage location of the base of this variable
507 *
508 * The precise meaning of this field depends on the nature of the variable.
509 *
510 * - Vertex shader input: one of the values from \c gl_vert_attrib.
511 * - Vertex shader output: one of the values from \c gl_varying_slot.
512 * - Fragment shader input: one of the values from \c gl_varying_slot.
513 * - Fragment shader output: one of the values from \c gl_frag_result.
514 * - Uniforms: Per-stage uniform slot number for default uniform block.
515 * - Uniforms: Index within the uniform block definition for UBO members.
516 * - Other: This field is not currently used.
517 *
518 * If the variable is a uniform, shader input, or shader output, and the
519 * slot has not been assigned, the value will be -1.
520 */
521 int location;
522
523 /**
524 * output index for dual source blending.
525 */
526 int index;
527
528 /**
529 * Built-in state that backs this uniform
530 *
531 * Once set at variable creation, \c state_slots must remain invariant.
532 * This is because, ideally, this array would be shared by all clones of
533 * this variable in the IR tree. In other words, we'd really like for it
534 * to be a fly-weight.
535 *
536 * If the variable is not a uniform, \c num_state_slots will be zero and
537 * \c state_slots will be \c NULL.
538 */
539 /*@{*/
540 unsigned num_state_slots; /**< Number of state slots used */
541 ir_state_slot *state_slots; /**< State descriptors. */
542 /*@}*/
543
544 /**
545 * Emit a warning if this variable is accessed.
546 */
547 const char *warn_extension;
548
549 /**
550 * Value assigned in the initializer of a variable declared "const"
551 */
552 ir_constant *constant_value;
553
554 /**
555 * Constant expression assigned in the initializer of the variable
556 *
557 * \warning
558 * This field and \c ::constant_value are distinct. Even if the two fields
559 * refer to constants with the same value, they must point to separate
560 * objects.
561 */
562 ir_constant *constant_initializer;
563
564 /**
565 * For variables that are in an interface block or are an instance of an
566 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
567 *
568 * \sa ir_variable::location
569 */
570 const glsl_type *interface_type;
571 };
572
573
574 /*@{*/
575 /**
576 * The representation of a function instance; may be the full definition or
577 * simply a prototype.
578 */
579 class ir_function_signature : public ir_instruction {
580 /* An ir_function_signature will be part of the list of signatures in
581 * an ir_function.
582 */
583 public:
584 ir_function_signature(const glsl_type *return_type);
585
586 virtual ir_function_signature *clone(void *mem_ctx,
587 struct hash_table *ht) const;
588 ir_function_signature *clone_prototype(void *mem_ctx,
589 struct hash_table *ht) const;
590
591 virtual void accept(ir_visitor *v)
592 {
593 v->visit(this);
594 }
595
596 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
597
598 /**
599 * Attempt to evaluate this function as a constant expression,
600 * given a list of the actual parameters and the variable context.
601 * Returns NULL for non-built-ins.
602 */
603 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
604
605 /**
606 * Get the name of the function for which this is a signature
607 */
608 const char *function_name() const;
609
610 /**
611 * Get a handle to the function for which this is a signature
612 *
613 * There is no setter function, this function returns a \c const pointer,
614 * and \c ir_function_signature::_function is private for a reason. The
615 * only way to make a connection between a function and function signature
616 * is via \c ir_function::add_signature. This helps ensure that certain
617 * invariants (i.e., a function signature is in the list of signatures for
618 * its \c _function) are met.
619 *
620 * \sa ir_function::add_signature
621 */
622 inline const class ir_function *function() const
623 {
624 return this->_function;
625 }
626
627 /**
628 * Check whether the qualifiers match between this signature's parameters
629 * and the supplied parameter list. If not, returns the name of the first
630 * parameter with mismatched qualifiers (for use in error messages).
631 */
632 const char *qualifiers_match(exec_list *params);
633
634 /**
635 * Replace the current parameter list with the given one. This is useful
636 * if the current information came from a prototype, and either has invalid
637 * or missing parameter names.
638 */
639 void replace_parameters(exec_list *new_params);
640
641 /**
642 * Function return type.
643 *
644 * \note This discards the optional precision qualifier.
645 */
646 const struct glsl_type *return_type;
647
648 /**
649 * List of ir_variable of function parameters.
650 *
651 * This represents the storage. The paramaters passed in a particular
652 * call will be in ir_call::actual_paramaters.
653 */
654 struct exec_list parameters;
655
656 /** Whether or not this function has a body (which may be empty). */
657 unsigned is_defined:1;
658
659 /** Whether or not this function signature is a built-in. */
660 unsigned is_builtin:1;
661
662 /** Body of instructions in the function. */
663 struct exec_list body;
664
665 private:
666 /** Function of which this signature is one overload. */
667 class ir_function *_function;
668
669 /** Function signature of which this one is a prototype clone */
670 const ir_function_signature *origin;
671
672 friend class ir_function;
673
674 /**
675 * Helper function to run a list of instructions for constant
676 * expression evaluation.
677 *
678 * The hash table represents the values of the visible variables.
679 * There are no scoping issues because the table is indexed on
680 * ir_variable pointers, not variable names.
681 *
682 * Returns false if the expression is not constant, true otherwise,
683 * and the value in *result if result is non-NULL.
684 */
685 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
686 struct hash_table *variable_context,
687 ir_constant **result);
688 };
689
690
691 /**
692 * Header for tracking multiple overloaded functions with the same name.
693 * Contains a list of ir_function_signatures representing each of the
694 * actual functions.
695 */
696 class ir_function : public ir_instruction {
697 public:
698 ir_function(const char *name);
699
700 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
701
702 virtual ir_function *as_function()
703 {
704 return this;
705 }
706
707 virtual void accept(ir_visitor *v)
708 {
709 v->visit(this);
710 }
711
712 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
713
714 void add_signature(ir_function_signature *sig)
715 {
716 sig->_function = this;
717 this->signatures.push_tail(sig);
718 }
719
720 /**
721 * Get an iterator for the set of function signatures
722 */
723 exec_list_iterator iterator()
724 {
725 return signatures.iterator();
726 }
727
728 /**
729 * Find a signature that matches a set of actual parameters, taking implicit
730 * conversions into account. Also flags whether the match was exact.
731 */
732 ir_function_signature *matching_signature(const exec_list *actual_param,
733 bool *match_is_exact);
734
735 /**
736 * Find a signature that matches a set of actual parameters, taking implicit
737 * conversions into account.
738 */
739 ir_function_signature *matching_signature(const exec_list *actual_param);
740
741 /**
742 * Find a signature that exactly matches a set of actual parameters without
743 * any implicit type conversions.
744 */
745 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
746
747 /**
748 * Name of the function.
749 */
750 const char *name;
751
752 /** Whether or not this function has a signature that isn't a built-in. */
753 bool has_user_signature();
754
755 /**
756 * List of ir_function_signature for each overloaded function with this name.
757 */
758 struct exec_list signatures;
759 };
760
761 inline const char *ir_function_signature::function_name() const
762 {
763 return this->_function->name;
764 }
765 /*@}*/
766
767
768 /**
769 * IR instruction representing high-level if-statements
770 */
771 class ir_if : public ir_instruction {
772 public:
773 ir_if(ir_rvalue *condition)
774 : condition(condition)
775 {
776 ir_type = ir_type_if;
777 }
778
779 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
780
781 virtual ir_if *as_if()
782 {
783 return this;
784 }
785
786 virtual void accept(ir_visitor *v)
787 {
788 v->visit(this);
789 }
790
791 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
792
793 ir_rvalue *condition;
794 /** List of ir_instruction for the body of the then branch */
795 exec_list then_instructions;
796 /** List of ir_instruction for the body of the else branch */
797 exec_list else_instructions;
798 };
799
800
801 /**
802 * IR instruction representing a high-level loop structure.
803 */
804 class ir_loop : public ir_instruction {
805 public:
806 ir_loop();
807
808 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
809
810 virtual void accept(ir_visitor *v)
811 {
812 v->visit(this);
813 }
814
815 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
816
817 virtual ir_loop *as_loop()
818 {
819 return this;
820 }
821
822 /**
823 * Get an iterator for the instructions of the loop body
824 */
825 exec_list_iterator iterator()
826 {
827 return body_instructions.iterator();
828 }
829
830 /** List of ir_instruction that make up the body of the loop. */
831 exec_list body_instructions;
832
833 /**
834 * \name Loop counter and controls
835 *
836 * Represents a loop like a FORTRAN \c do-loop.
837 *
838 * \note
839 * If \c from and \c to are the same value, the loop will execute once.
840 */
841 /*@{*/
842 ir_rvalue *from; /** Value of the loop counter on the first
843 * iteration of the loop.
844 */
845 ir_rvalue *to; /** Value of the loop counter on the last
846 * iteration of the loop.
847 */
848 ir_rvalue *increment;
849 ir_variable *counter;
850
851 /**
852 * Comparison operation in the loop terminator.
853 *
854 * If any of the loop control fields are non-\c NULL, this field must be
855 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
856 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
857 */
858 int cmp;
859 /*@}*/
860 };
861
862
863 class ir_assignment : public ir_instruction {
864 public:
865 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
866
867 /**
868 * Construct an assignment with an explicit write mask
869 *
870 * \note
871 * Since a write mask is supplied, the LHS must already be a bare
872 * \c ir_dereference. The cannot be any swizzles in the LHS.
873 */
874 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
875 unsigned write_mask);
876
877 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
878
879 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
880
881 virtual void accept(ir_visitor *v)
882 {
883 v->visit(this);
884 }
885
886 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
887
888 virtual ir_assignment * as_assignment()
889 {
890 return this;
891 }
892
893 /**
894 * Get a whole variable written by an assignment
895 *
896 * If the LHS of the assignment writes a whole variable, the variable is
897 * returned. Otherwise \c NULL is returned. Examples of whole-variable
898 * assignment are:
899 *
900 * - Assigning to a scalar
901 * - Assigning to all components of a vector
902 * - Whole array (or matrix) assignment
903 * - Whole structure assignment
904 */
905 ir_variable *whole_variable_written();
906
907 /**
908 * Set the LHS of an assignment
909 */
910 void set_lhs(ir_rvalue *lhs);
911
912 /**
913 * Left-hand side of the assignment.
914 *
915 * This should be treated as read only. If you need to set the LHS of an
916 * assignment, use \c ir_assignment::set_lhs.
917 */
918 ir_dereference *lhs;
919
920 /**
921 * Value being assigned
922 */
923 ir_rvalue *rhs;
924
925 /**
926 * Optional condition for the assignment.
927 */
928 ir_rvalue *condition;
929
930
931 /**
932 * Component mask written
933 *
934 * For non-vector types in the LHS, this field will be zero. For vector
935 * types, a bit will be set for each component that is written. Note that
936 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
937 *
938 * A partially-set write mask means that each enabled channel gets
939 * the value from a consecutive channel of the rhs. For example,
940 * to write just .xyw of gl_FrontColor with color:
941 *
942 * (assign (constant bool (1)) (xyw)
943 * (var_ref gl_FragColor)
944 * (swiz xyw (var_ref color)))
945 */
946 unsigned write_mask:4;
947 };
948
949 /* Update ir_expression::get_num_operands() and operator_strs when
950 * updating this list.
951 */
952 enum ir_expression_operation {
953 ir_unop_bit_not,
954 ir_unop_logic_not,
955 ir_unop_neg,
956 ir_unop_abs,
957 ir_unop_sign,
958 ir_unop_rcp,
959 ir_unop_rsq,
960 ir_unop_sqrt,
961 ir_unop_exp, /**< Log base e on gentype */
962 ir_unop_log, /**< Natural log on gentype */
963 ir_unop_exp2,
964 ir_unop_log2,
965 ir_unop_f2i, /**< Float-to-integer conversion. */
966 ir_unop_f2u, /**< Float-to-unsigned conversion. */
967 ir_unop_i2f, /**< Integer-to-float conversion. */
968 ir_unop_f2b, /**< Float-to-boolean conversion */
969 ir_unop_b2f, /**< Boolean-to-float conversion */
970 ir_unop_i2b, /**< int-to-boolean conversion */
971 ir_unop_b2i, /**< Boolean-to-int conversion */
972 ir_unop_u2f, /**< Unsigned-to-float conversion. */
973 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
974 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
975 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
976 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
977 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
978 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
979 ir_unop_any,
980
981 /**
982 * \name Unary floating-point rounding operations.
983 */
984 /*@{*/
985 ir_unop_trunc,
986 ir_unop_ceil,
987 ir_unop_floor,
988 ir_unop_fract,
989 ir_unop_round_even,
990 /*@}*/
991
992 /**
993 * \name Trigonometric operations.
994 */
995 /*@{*/
996 ir_unop_sin,
997 ir_unop_cos,
998 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
999 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1000 /*@}*/
1001
1002 /**
1003 * \name Partial derivatives.
1004 */
1005 /*@{*/
1006 ir_unop_dFdx,
1007 ir_unop_dFdy,
1008 /*@}*/
1009
1010 /**
1011 * \name Floating point pack and unpack operations.
1012 */
1013 /*@{*/
1014 ir_unop_pack_snorm_2x16,
1015 ir_unop_pack_snorm_4x8,
1016 ir_unop_pack_unorm_2x16,
1017 ir_unop_pack_unorm_4x8,
1018 ir_unop_pack_half_2x16,
1019 ir_unop_unpack_snorm_2x16,
1020 ir_unop_unpack_snorm_4x8,
1021 ir_unop_unpack_unorm_2x16,
1022 ir_unop_unpack_unorm_4x8,
1023 ir_unop_unpack_half_2x16,
1024 /*@}*/
1025
1026 /**
1027 * \name Lowered floating point unpacking operations.
1028 *
1029 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1030 */
1031 /*@{*/
1032 ir_unop_unpack_half_2x16_split_x,
1033 ir_unop_unpack_half_2x16_split_y,
1034 /*@}*/
1035
1036 /**
1037 * \name Bit operations, part of ARB_gpu_shader5.
1038 */
1039 /*@{*/
1040 ir_unop_bitfield_reverse,
1041 ir_unop_bit_count,
1042 ir_unop_find_msb,
1043 ir_unop_find_lsb,
1044 /*@}*/
1045
1046 ir_unop_noise,
1047
1048 /**
1049 * A sentinel marking the last of the unary operations.
1050 */
1051 ir_last_unop = ir_unop_noise,
1052
1053 ir_binop_add,
1054 ir_binop_sub,
1055 ir_binop_mul,
1056 ir_binop_div,
1057
1058 /**
1059 * Takes one of two combinations of arguments:
1060 *
1061 * - mod(vecN, vecN)
1062 * - mod(vecN, float)
1063 *
1064 * Does not take integer types.
1065 */
1066 ir_binop_mod,
1067
1068 /**
1069 * \name Binary comparison operators which return a boolean vector.
1070 * The type of both operands must be equal.
1071 */
1072 /*@{*/
1073 ir_binop_less,
1074 ir_binop_greater,
1075 ir_binop_lequal,
1076 ir_binop_gequal,
1077 ir_binop_equal,
1078 ir_binop_nequal,
1079 /**
1080 * Returns single boolean for whether all components of operands[0]
1081 * equal the components of operands[1].
1082 */
1083 ir_binop_all_equal,
1084 /**
1085 * Returns single boolean for whether any component of operands[0]
1086 * is not equal to the corresponding component of operands[1].
1087 */
1088 ir_binop_any_nequal,
1089 /*@}*/
1090
1091 /**
1092 * \name Bit-wise binary operations.
1093 */
1094 /*@{*/
1095 ir_binop_lshift,
1096 ir_binop_rshift,
1097 ir_binop_bit_and,
1098 ir_binop_bit_xor,
1099 ir_binop_bit_or,
1100 /*@}*/
1101
1102 ir_binop_logic_and,
1103 ir_binop_logic_xor,
1104 ir_binop_logic_or,
1105
1106 ir_binop_dot,
1107 ir_binop_min,
1108 ir_binop_max,
1109
1110 ir_binop_pow,
1111
1112 /**
1113 * \name Lowered floating point packing operations.
1114 *
1115 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1116 */
1117 /*@{*/
1118 ir_binop_pack_half_2x16_split,
1119 /*@}*/
1120
1121 /**
1122 * \name First half of a lowered bitfieldInsert() operation.
1123 *
1124 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1125 */
1126 /*@{*/
1127 ir_binop_bfm,
1128 /*@}*/
1129
1130 /**
1131 * Load a value the size of a given GLSL type from a uniform block.
1132 *
1133 * operand0 is the ir_constant uniform block index in the linked shader.
1134 * operand1 is a byte offset within the uniform block.
1135 */
1136 ir_binop_ubo_load,
1137
1138 /**
1139 * Extract a scalar from a vector
1140 *
1141 * operand0 is the vector
1142 * operand1 is the index of the field to read from operand0
1143 */
1144 ir_binop_vector_extract,
1145
1146 /**
1147 * A sentinel marking the last of the binary operations.
1148 */
1149 ir_last_binop = ir_binop_vector_extract,
1150
1151 ir_triop_lrp,
1152
1153 /**
1154 * \name Second half of a lowered bitfieldInsert() operation.
1155 *
1156 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1157 */
1158 /*@{*/
1159 ir_triop_bfi,
1160 /*@}*/
1161
1162 ir_triop_bitfield_extract,
1163
1164 /**
1165 * Generate a value with one field of a vector changed
1166 *
1167 * operand0 is the vector
1168 * operand1 is the value to write into the vector result
1169 * operand2 is the index in operand0 to be modified
1170 */
1171 ir_triop_vector_insert,
1172
1173 /**
1174 * A sentinel marking the last of the ternary operations.
1175 */
1176 ir_last_triop = ir_triop_vector_insert,
1177
1178 ir_quadop_bitfield_insert,
1179
1180 ir_quadop_vector,
1181
1182 /**
1183 * A sentinel marking the last of the ternary operations.
1184 */
1185 ir_last_quadop = ir_quadop_vector,
1186
1187 /**
1188 * A sentinel marking the last of all operations.
1189 */
1190 ir_last_opcode = ir_quadop_vector
1191 };
1192
1193 class ir_expression : public ir_rvalue {
1194 public:
1195 ir_expression(int op, const struct glsl_type *type,
1196 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1197 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1198
1199 /**
1200 * Constructor for unary operation expressions
1201 */
1202 ir_expression(int op, ir_rvalue *);
1203
1204 /**
1205 * Constructor for binary operation expressions
1206 */
1207 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1208
1209 virtual ir_expression *as_expression()
1210 {
1211 return this;
1212 }
1213
1214 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1215
1216 /**
1217 * Attempt to constant-fold the expression
1218 *
1219 * The "variable_context" hash table links ir_variable * to ir_constant *
1220 * that represent the variables' values. \c NULL represents an empty
1221 * context.
1222 *
1223 * If the expression cannot be constant folded, this method will return
1224 * \c NULL.
1225 */
1226 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1227
1228 /**
1229 * Determine the number of operands used by an expression
1230 */
1231 static unsigned int get_num_operands(ir_expression_operation);
1232
1233 /**
1234 * Determine the number of operands used by an expression
1235 */
1236 unsigned int get_num_operands() const
1237 {
1238 return (this->operation == ir_quadop_vector)
1239 ? this->type->vector_elements : get_num_operands(operation);
1240 }
1241
1242 /**
1243 * Return a string representing this expression's operator.
1244 */
1245 const char *operator_string();
1246
1247 /**
1248 * Return a string representing this expression's operator.
1249 */
1250 static const char *operator_string(ir_expression_operation);
1251
1252
1253 /**
1254 * Do a reverse-lookup to translate the given string into an operator.
1255 */
1256 static ir_expression_operation get_operator(const char *);
1257
1258 virtual void accept(ir_visitor *v)
1259 {
1260 v->visit(this);
1261 }
1262
1263 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1264
1265 ir_expression_operation operation;
1266 ir_rvalue *operands[4];
1267 };
1268
1269
1270 /**
1271 * HIR instruction representing a high-level function call, containing a list
1272 * of parameters and returning a value in the supplied temporary.
1273 */
1274 class ir_call : public ir_instruction {
1275 public:
1276 ir_call(ir_function_signature *callee,
1277 ir_dereference_variable *return_deref,
1278 exec_list *actual_parameters)
1279 : return_deref(return_deref), callee(callee)
1280 {
1281 ir_type = ir_type_call;
1282 assert(callee->return_type != NULL);
1283 actual_parameters->move_nodes_to(& this->actual_parameters);
1284 this->use_builtin = callee->is_builtin;
1285 }
1286
1287 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1288
1289 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1290
1291 virtual ir_call *as_call()
1292 {
1293 return this;
1294 }
1295
1296 virtual void accept(ir_visitor *v)
1297 {
1298 v->visit(this);
1299 }
1300
1301 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1302
1303 /**
1304 * Get an iterator for the set of acutal parameters
1305 */
1306 exec_list_iterator iterator()
1307 {
1308 return actual_parameters.iterator();
1309 }
1310
1311 /**
1312 * Get the name of the function being called.
1313 */
1314 const char *callee_name() const
1315 {
1316 return callee->function_name();
1317 }
1318
1319 /**
1320 * Generates an inline version of the function before @ir,
1321 * storing the return value in return_deref.
1322 */
1323 void generate_inline(ir_instruction *ir);
1324
1325 /**
1326 * Storage for the function's return value.
1327 * This must be NULL if the return type is void.
1328 */
1329 ir_dereference_variable *return_deref;
1330
1331 /**
1332 * The specific function signature being called.
1333 */
1334 ir_function_signature *callee;
1335
1336 /* List of ir_rvalue of paramaters passed in this call. */
1337 exec_list actual_parameters;
1338
1339 /** Should this call only bind to a built-in function? */
1340 bool use_builtin;
1341 };
1342
1343
1344 /**
1345 * \name Jump-like IR instructions.
1346 *
1347 * These include \c break, \c continue, \c return, and \c discard.
1348 */
1349 /*@{*/
1350 class ir_jump : public ir_instruction {
1351 protected:
1352 ir_jump()
1353 {
1354 ir_type = ir_type_unset;
1355 }
1356
1357 public:
1358 virtual ir_jump *as_jump()
1359 {
1360 return this;
1361 }
1362 };
1363
1364 class ir_return : public ir_jump {
1365 public:
1366 ir_return()
1367 : value(NULL)
1368 {
1369 this->ir_type = ir_type_return;
1370 }
1371
1372 ir_return(ir_rvalue *value)
1373 : value(value)
1374 {
1375 this->ir_type = ir_type_return;
1376 }
1377
1378 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1379
1380 virtual ir_return *as_return()
1381 {
1382 return this;
1383 }
1384
1385 ir_rvalue *get_value() const
1386 {
1387 return value;
1388 }
1389
1390 virtual void accept(ir_visitor *v)
1391 {
1392 v->visit(this);
1393 }
1394
1395 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1396
1397 ir_rvalue *value;
1398 };
1399
1400
1401 /**
1402 * Jump instructions used inside loops
1403 *
1404 * These include \c break and \c continue. The \c break within a loop is
1405 * different from the \c break within a switch-statement.
1406 *
1407 * \sa ir_switch_jump
1408 */
1409 class ir_loop_jump : public ir_jump {
1410 public:
1411 enum jump_mode {
1412 jump_break,
1413 jump_continue
1414 };
1415
1416 ir_loop_jump(jump_mode mode)
1417 {
1418 this->ir_type = ir_type_loop_jump;
1419 this->mode = mode;
1420 }
1421
1422 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1423
1424 virtual void accept(ir_visitor *v)
1425 {
1426 v->visit(this);
1427 }
1428
1429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1430
1431 bool is_break() const
1432 {
1433 return mode == jump_break;
1434 }
1435
1436 bool is_continue() const
1437 {
1438 return mode == jump_continue;
1439 }
1440
1441 /** Mode selector for the jump instruction. */
1442 enum jump_mode mode;
1443 };
1444
1445 /**
1446 * IR instruction representing discard statements.
1447 */
1448 class ir_discard : public ir_jump {
1449 public:
1450 ir_discard()
1451 {
1452 this->ir_type = ir_type_discard;
1453 this->condition = NULL;
1454 }
1455
1456 ir_discard(ir_rvalue *cond)
1457 {
1458 this->ir_type = ir_type_discard;
1459 this->condition = cond;
1460 }
1461
1462 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1463
1464 virtual void accept(ir_visitor *v)
1465 {
1466 v->visit(this);
1467 }
1468
1469 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1470
1471 virtual ir_discard *as_discard()
1472 {
1473 return this;
1474 }
1475
1476 ir_rvalue *condition;
1477 };
1478 /*@}*/
1479
1480
1481 /**
1482 * Texture sampling opcodes used in ir_texture
1483 */
1484 enum ir_texture_opcode {
1485 ir_tex, /**< Regular texture look-up */
1486 ir_txb, /**< Texture look-up with LOD bias */
1487 ir_txl, /**< Texture look-up with explicit LOD */
1488 ir_txd, /**< Texture look-up with partial derivatvies */
1489 ir_txf, /**< Texel fetch with explicit LOD */
1490 ir_txf_ms, /**< Multisample texture fetch */
1491 ir_txs, /**< Texture size */
1492 ir_lod /**< Texture lod query */
1493 };
1494
1495
1496 /**
1497 * IR instruction to sample a texture
1498 *
1499 * The specific form of the IR instruction depends on the \c mode value
1500 * selected from \c ir_texture_opcodes. In the printed IR, these will
1501 * appear as:
1502 *
1503 * Texel offset (0 or an expression)
1504 * | Projection divisor
1505 * | | Shadow comparitor
1506 * | | |
1507 * v v v
1508 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1509 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1510 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1511 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1512 * (txf <type> <sampler> <coordinate> 0 <lod>)
1513 * (txf_ms
1514 * <type> <sampler> <coordinate> <sample_index>)
1515 * (txs <type> <sampler> <lod>)
1516 * (lod <type> <sampler> <coordinate>)
1517 */
1518 class ir_texture : public ir_rvalue {
1519 public:
1520 ir_texture(enum ir_texture_opcode op)
1521 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1522 shadow_comparitor(NULL), offset(NULL)
1523 {
1524 this->ir_type = ir_type_texture;
1525 }
1526
1527 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1528
1529 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1530
1531 virtual void accept(ir_visitor *v)
1532 {
1533 v->visit(this);
1534 }
1535
1536 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1537
1538 /**
1539 * Return a string representing the ir_texture_opcode.
1540 */
1541 const char *opcode_string();
1542
1543 /** Set the sampler and type. */
1544 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1545
1546 /**
1547 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1548 */
1549 static ir_texture_opcode get_opcode(const char *);
1550
1551 enum ir_texture_opcode op;
1552
1553 /** Sampler to use for the texture access. */
1554 ir_dereference *sampler;
1555
1556 /** Texture coordinate to sample */
1557 ir_rvalue *coordinate;
1558
1559 /**
1560 * Value used for projective divide.
1561 *
1562 * If there is no projective divide (the common case), this will be
1563 * \c NULL. Optimization passes should check for this to point to a constant
1564 * of 1.0 and replace that with \c NULL.
1565 */
1566 ir_rvalue *projector;
1567
1568 /**
1569 * Coordinate used for comparison on shadow look-ups.
1570 *
1571 * If there is no shadow comparison, this will be \c NULL. For the
1572 * \c ir_txf opcode, this *must* be \c NULL.
1573 */
1574 ir_rvalue *shadow_comparitor;
1575
1576 /** Texel offset. */
1577 ir_rvalue *offset;
1578
1579 union {
1580 ir_rvalue *lod; /**< Floating point LOD */
1581 ir_rvalue *bias; /**< Floating point LOD bias */
1582 ir_rvalue *sample_index; /**< MSAA sample index */
1583 struct {
1584 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1585 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1586 } grad;
1587 } lod_info;
1588 };
1589
1590
1591 struct ir_swizzle_mask {
1592 unsigned x:2;
1593 unsigned y:2;
1594 unsigned z:2;
1595 unsigned w:2;
1596
1597 /**
1598 * Number of components in the swizzle.
1599 */
1600 unsigned num_components:3;
1601
1602 /**
1603 * Does the swizzle contain duplicate components?
1604 *
1605 * L-value swizzles cannot contain duplicate components.
1606 */
1607 unsigned has_duplicates:1;
1608 };
1609
1610
1611 class ir_swizzle : public ir_rvalue {
1612 public:
1613 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1614 unsigned count);
1615
1616 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1617
1618 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1619
1620 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1621
1622 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1623
1624 virtual ir_swizzle *as_swizzle()
1625 {
1626 return this;
1627 }
1628
1629 /**
1630 * Construct an ir_swizzle from the textual representation. Can fail.
1631 */
1632 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1633
1634 virtual void accept(ir_visitor *v)
1635 {
1636 v->visit(this);
1637 }
1638
1639 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1640
1641 bool is_lvalue() const
1642 {
1643 return val->is_lvalue() && !mask.has_duplicates;
1644 }
1645
1646 /**
1647 * Get the variable that is ultimately referenced by an r-value
1648 */
1649 virtual ir_variable *variable_referenced() const;
1650
1651 ir_rvalue *val;
1652 ir_swizzle_mask mask;
1653
1654 private:
1655 /**
1656 * Initialize the mask component of a swizzle
1657 *
1658 * This is used by the \c ir_swizzle constructors.
1659 */
1660 void init_mask(const unsigned *components, unsigned count);
1661 };
1662
1663
1664 class ir_dereference : public ir_rvalue {
1665 public:
1666 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1667
1668 virtual ir_dereference *as_dereference()
1669 {
1670 return this;
1671 }
1672
1673 bool is_lvalue() const;
1674
1675 /**
1676 * Get the variable that is ultimately referenced by an r-value
1677 */
1678 virtual ir_variable *variable_referenced() const = 0;
1679
1680 /**
1681 * Get the constant that is ultimately referenced by an r-value,
1682 * in a constant expression evaluation context.
1683 *
1684 * The offset is used when the reference is to a specific column of
1685 * a matrix.
1686 */
1687 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1688 };
1689
1690
1691 class ir_dereference_variable : public ir_dereference {
1692 public:
1693 ir_dereference_variable(ir_variable *var);
1694
1695 virtual ir_dereference_variable *clone(void *mem_ctx,
1696 struct hash_table *) const;
1697
1698 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1699
1700 virtual ir_dereference_variable *as_dereference_variable()
1701 {
1702 return this;
1703 }
1704
1705 /**
1706 * Get the variable that is ultimately referenced by an r-value
1707 */
1708 virtual ir_variable *variable_referenced() const
1709 {
1710 return this->var;
1711 }
1712
1713 /**
1714 * Get the constant that is ultimately referenced by an r-value,
1715 * in a constant expression evaluation context.
1716 *
1717 * The offset is used when the reference is to a specific column of
1718 * a matrix.
1719 */
1720 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1721
1722 virtual ir_variable *whole_variable_referenced()
1723 {
1724 /* ir_dereference_variable objects always dereference the entire
1725 * variable. However, if this dereference is dereferenced by anything
1726 * else, the complete deferefernce chain is not a whole-variable
1727 * dereference. This method should only be called on the top most
1728 * ir_rvalue in a dereference chain.
1729 */
1730 return this->var;
1731 }
1732
1733 virtual void accept(ir_visitor *v)
1734 {
1735 v->visit(this);
1736 }
1737
1738 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1739
1740 /**
1741 * Object being dereferenced.
1742 */
1743 ir_variable *var;
1744 };
1745
1746
1747 class ir_dereference_array : public ir_dereference {
1748 public:
1749 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1750
1751 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1752
1753 virtual ir_dereference_array *clone(void *mem_ctx,
1754 struct hash_table *) const;
1755
1756 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1757
1758 virtual ir_dereference_array *as_dereference_array()
1759 {
1760 return this;
1761 }
1762
1763 /**
1764 * Get the variable that is ultimately referenced by an r-value
1765 */
1766 virtual ir_variable *variable_referenced() const
1767 {
1768 return this->array->variable_referenced();
1769 }
1770
1771 /**
1772 * Get the constant that is ultimately referenced by an r-value,
1773 * in a constant expression evaluation context.
1774 *
1775 * The offset is used when the reference is to a specific column of
1776 * a matrix.
1777 */
1778 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1779
1780 virtual void accept(ir_visitor *v)
1781 {
1782 v->visit(this);
1783 }
1784
1785 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1786
1787 ir_rvalue *array;
1788 ir_rvalue *array_index;
1789
1790 private:
1791 void set_array(ir_rvalue *value);
1792 };
1793
1794
1795 class ir_dereference_record : public ir_dereference {
1796 public:
1797 ir_dereference_record(ir_rvalue *value, const char *field);
1798
1799 ir_dereference_record(ir_variable *var, const char *field);
1800
1801 virtual ir_dereference_record *clone(void *mem_ctx,
1802 struct hash_table *) const;
1803
1804 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1805
1806 virtual ir_dereference_record *as_dereference_record()
1807 {
1808 return this;
1809 }
1810
1811 /**
1812 * Get the variable that is ultimately referenced by an r-value
1813 */
1814 virtual ir_variable *variable_referenced() const
1815 {
1816 return this->record->variable_referenced();
1817 }
1818
1819 /**
1820 * Get the constant that is ultimately referenced by an r-value,
1821 * in a constant expression evaluation context.
1822 *
1823 * The offset is used when the reference is to a specific column of
1824 * a matrix.
1825 */
1826 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1827
1828 virtual void accept(ir_visitor *v)
1829 {
1830 v->visit(this);
1831 }
1832
1833 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1834
1835 ir_rvalue *record;
1836 const char *field;
1837 };
1838
1839
1840 /**
1841 * Data stored in an ir_constant
1842 */
1843 union ir_constant_data {
1844 unsigned u[16];
1845 int i[16];
1846 float f[16];
1847 bool b[16];
1848 };
1849
1850
1851 class ir_constant : public ir_rvalue {
1852 public:
1853 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1854 ir_constant(bool b);
1855 ir_constant(unsigned int u);
1856 ir_constant(int i);
1857 ir_constant(float f);
1858
1859 /**
1860 * Construct an ir_constant from a list of ir_constant values
1861 */
1862 ir_constant(const struct glsl_type *type, exec_list *values);
1863
1864 /**
1865 * Construct an ir_constant from a scalar component of another ir_constant
1866 *
1867 * The new \c ir_constant inherits the type of the component from the
1868 * source constant.
1869 *
1870 * \note
1871 * In the case of a matrix constant, the new constant is a scalar, \b not
1872 * a vector.
1873 */
1874 ir_constant(const ir_constant *c, unsigned i);
1875
1876 /**
1877 * Return a new ir_constant of the specified type containing all zeros.
1878 */
1879 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1880
1881 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1882
1883 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1884
1885 virtual ir_constant *as_constant()
1886 {
1887 return this;
1888 }
1889
1890 virtual void accept(ir_visitor *v)
1891 {
1892 v->visit(this);
1893 }
1894
1895 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1896
1897 /**
1898 * Get a particular component of a constant as a specific type
1899 *
1900 * This is useful, for example, to get a value from an integer constant
1901 * as a float or bool. This appears frequently when constructors are
1902 * called with all constant parameters.
1903 */
1904 /*@{*/
1905 bool get_bool_component(unsigned i) const;
1906 float get_float_component(unsigned i) const;
1907 int get_int_component(unsigned i) const;
1908 unsigned get_uint_component(unsigned i) const;
1909 /*@}*/
1910
1911 ir_constant *get_array_element(unsigned i) const;
1912
1913 ir_constant *get_record_field(const char *name);
1914
1915 /**
1916 * Copy the values on another constant at a given offset.
1917 *
1918 * The offset is ignored for array or struct copies, it's only for
1919 * scalars or vectors into vectors or matrices.
1920 *
1921 * With identical types on both sides and zero offset it's clone()
1922 * without creating a new object.
1923 */
1924
1925 void copy_offset(ir_constant *src, int offset);
1926
1927 /**
1928 * Copy the values on another constant at a given offset and
1929 * following an assign-like mask.
1930 *
1931 * The mask is ignored for scalars.
1932 *
1933 * Note that this function only handles what assign can handle,
1934 * i.e. at most a vector as source and a column of a matrix as
1935 * destination.
1936 */
1937
1938 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1939
1940 /**
1941 * Determine whether a constant has the same value as another constant
1942 *
1943 * \sa ir_constant::is_zero, ir_constant::is_one,
1944 * ir_constant::is_negative_one, ir_constant::is_basis
1945 */
1946 bool has_value(const ir_constant *) const;
1947
1948 virtual bool is_zero() const;
1949 virtual bool is_one() const;
1950 virtual bool is_negative_one() const;
1951 virtual bool is_basis() const;
1952
1953 /**
1954 * Value of the constant.
1955 *
1956 * The field used to back the values supplied by the constant is determined
1957 * by the type associated with the \c ir_instruction. Constants may be
1958 * scalars, vectors, or matrices.
1959 */
1960 union ir_constant_data value;
1961
1962 /* Array elements */
1963 ir_constant **array_elements;
1964
1965 /* Structure fields */
1966 exec_list components;
1967
1968 private:
1969 /**
1970 * Parameterless constructor only used by the clone method
1971 */
1972 ir_constant(void);
1973 };
1974
1975 /*@}*/
1976
1977 /**
1978 * Apply a visitor to each IR node in a list
1979 */
1980 void
1981 visit_exec_list(exec_list *list, ir_visitor *visitor);
1982
1983 /**
1984 * Validate invariants on each IR node in a list
1985 */
1986 void validate_ir_tree(exec_list *instructions);
1987
1988 struct _mesa_glsl_parse_state;
1989 struct gl_shader_program;
1990
1991 /**
1992 * Detect whether an unlinked shader contains static recursion
1993 *
1994 * If the list of instructions is determined to contain static recursion,
1995 * \c _mesa_glsl_error will be called to emit error messages for each function
1996 * that is in the recursion cycle.
1997 */
1998 void
1999 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2000 exec_list *instructions);
2001
2002 /**
2003 * Detect whether a linked shader contains static recursion
2004 *
2005 * If the list of instructions is determined to contain static recursion,
2006 * \c link_error_printf will be called to emit error messages for each function
2007 * that is in the recursion cycle. In addition,
2008 * \c gl_shader_program::LinkStatus will be set to false.
2009 */
2010 void
2011 detect_recursion_linked(struct gl_shader_program *prog,
2012 exec_list *instructions);
2013
2014 /**
2015 * Make a clone of each IR instruction in a list
2016 *
2017 * \param in List of IR instructions that are to be cloned
2018 * \param out List to hold the cloned instructions
2019 */
2020 void
2021 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2022
2023 extern void
2024 _mesa_glsl_initialize_variables(exec_list *instructions,
2025 struct _mesa_glsl_parse_state *state);
2026
2027 extern void
2028 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2029
2030 extern void
2031 _mesa_glsl_release_functions(void);
2032
2033 extern void
2034 reparent_ir(exec_list *list, void *mem_ctx);
2035
2036 struct glsl_symbol_table;
2037
2038 extern void
2039 import_prototypes(const exec_list *source, exec_list *dest,
2040 struct glsl_symbol_table *symbols, void *mem_ctx);
2041
2042 extern bool
2043 ir_has_call(ir_instruction *ir);
2044
2045 extern void
2046 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2047 bool is_fragment_shader);
2048
2049 extern char *
2050 prototype_string(const glsl_type *return_type, const char *name,
2051 exec_list *parameters);
2052
2053 #endif /* IR_H */