glsl: move variables in to ir_variable::data, part II
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_emit_vertex,
85 ir_type_end_primitive,
86 ir_type_max /**< maximum ir_type enum number, for validation */
87 };
88
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96
97 /**
98 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
99 * there's a virtual destructor present. Because we almost
100 * universally use ralloc for our memory management of
101 * ir_instructions, the destructor doesn't need to do any work.
102 */
103 virtual ~ir_instruction()
104 {
105 }
106
107 /** ir_print_visitor helper for debugging. */
108 void print(void) const;
109
110 virtual void accept(ir_visitor *) = 0;
111 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
112 virtual ir_instruction *clone(void *mem_ctx,
113 struct hash_table *ht) const = 0;
114
115 /**
116 * \name IR instruction downcast functions
117 *
118 * These functions either cast the object to a derived class or return
119 * \c NULL if the object's type does not match the specified derived class.
120 * Additional downcast functions will be added as needed.
121 */
122 /*@{*/
123 virtual class ir_variable * as_variable() { return NULL; }
124 virtual class ir_function * as_function() { return NULL; }
125 virtual class ir_dereference * as_dereference() { return NULL; }
126 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
127 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
128 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
129 virtual class ir_expression * as_expression() { return NULL; }
130 virtual class ir_rvalue * as_rvalue() { return NULL; }
131 virtual class ir_loop * as_loop() { return NULL; }
132 virtual class ir_assignment * as_assignment() { return NULL; }
133 virtual class ir_call * as_call() { return NULL; }
134 virtual class ir_return * as_return() { return NULL; }
135 virtual class ir_if * as_if() { return NULL; }
136 virtual class ir_swizzle * as_swizzle() { return NULL; }
137 virtual class ir_texture * as_texture() { return NULL; }
138 virtual class ir_constant * as_constant() { return NULL; }
139 virtual class ir_discard * as_discard() { return NULL; }
140 virtual class ir_jump * as_jump() { return NULL; }
141 /*@}*/
142
143 /**
144 * IR equality method: Return true if the referenced instruction would
145 * return the same value as this one.
146 *
147 * This intended to be used for CSE and algebraic optimizations, on rvalues
148 * in particular. No support for other instruction types (assignments,
149 * jumps, calls, etc.) is planned.
150 */
151 virtual bool equals(ir_instruction *ir);
152
153 protected:
154 ir_instruction()
155 {
156 ir_type = ir_type_unset;
157 }
158 };
159
160
161 /**
162 * The base class for all "values"/expression trees.
163 */
164 class ir_rvalue : public ir_instruction {
165 public:
166 const struct glsl_type *type;
167
168 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
169
170 virtual void accept(ir_visitor *v)
171 {
172 v->visit(this);
173 }
174
175 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
176
177 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
178
179 virtual ir_rvalue * as_rvalue()
180 {
181 return this;
182 }
183
184 ir_rvalue *as_rvalue_to_saturate();
185
186 virtual bool is_lvalue() const
187 {
188 return false;
189 }
190
191 /**
192 * Get the variable that is ultimately referenced by an r-value
193 */
194 virtual ir_variable *variable_referenced() const
195 {
196 return NULL;
197 }
198
199
200 /**
201 * If an r-value is a reference to a whole variable, get that variable
202 *
203 * \return
204 * Pointer to a variable that is completely dereferenced by the r-value. If
205 * the r-value is not a dereference or the dereference does not access the
206 * entire variable (i.e., it's just one array element, struct field), \c NULL
207 * is returned.
208 */
209 virtual ir_variable *whole_variable_referenced()
210 {
211 return NULL;
212 }
213
214 /**
215 * Determine if an r-value has the value zero
216 *
217 * The base implementation of this function always returns \c false. The
218 * \c ir_constant class over-rides this function to return \c true \b only
219 * for vector and scalar types that have all elements set to the value
220 * zero (or \c false for booleans).
221 *
222 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
223 * ir_constant::is_basis
224 */
225 virtual bool is_zero() const;
226
227 /**
228 * Determine if an r-value has the value one
229 *
230 * The base implementation of this function always returns \c false. The
231 * \c ir_constant class over-rides this function to return \c true \b only
232 * for vector and scalar types that have all elements set to the value
233 * one (or \c true for booleans).
234 *
235 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
236 * ir_constant::is_basis
237 */
238 virtual bool is_one() const;
239
240 /**
241 * Determine if an r-value has the value negative one
242 *
243 * The base implementation of this function always returns \c false. The
244 * \c ir_constant class over-rides this function to return \c true \b only
245 * for vector and scalar types that have all elements set to the value
246 * negative one. For boolean types, the result is always \c false.
247 *
248 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
249 * ir_constant::is_basis
250 */
251 virtual bool is_negative_one() const;
252
253 /**
254 * Determine if an r-value is a basis vector
255 *
256 * The base implementation of this function always returns \c false. The
257 * \c ir_constant class over-rides this function to return \c true \b only
258 * for vector and scalar types that have one element set to the value one,
259 * and the other elements set to the value zero. For boolean types, the
260 * result is always \c false.
261 *
262 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
263 * is_constant::is_negative_one
264 */
265 virtual bool is_basis() const;
266
267
268 /**
269 * Return a generic value of error_type.
270 *
271 * Allocation will be performed with 'mem_ctx' as ralloc owner.
272 */
273 static ir_rvalue *error_value(void *mem_ctx);
274
275 protected:
276 ir_rvalue();
277 };
278
279
280 /**
281 * Variable storage classes
282 */
283 enum ir_variable_mode {
284 ir_var_auto = 0, /**< Function local variables and globals. */
285 ir_var_uniform, /**< Variable declared as a uniform. */
286 ir_var_shader_in,
287 ir_var_shader_out,
288 ir_var_function_in,
289 ir_var_function_out,
290 ir_var_function_inout,
291 ir_var_const_in, /**< "in" param that must be a constant expression */
292 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
293 ir_var_temporary, /**< Temporary variable generated during compilation. */
294 ir_var_mode_count /**< Number of variable modes */
295 };
296
297 /**
298 * Enum keeping track of how a variable was declared. For error checking of
299 * the gl_PerVertex redeclaration rules.
300 */
301 enum ir_var_declaration_type {
302 /**
303 * Normal declaration (for most variables, this means an explicit
304 * declaration. Exception: temporaries are always implicitly declared, but
305 * they still use ir_var_declared_normally).
306 *
307 * Note: an ir_variable that represents a named interface block uses
308 * ir_var_declared_normally.
309 */
310 ir_var_declared_normally = 0,
311
312 /**
313 * Variable was explicitly declared (or re-declared) in an unnamed
314 * interface block.
315 */
316 ir_var_declared_in_block,
317
318 /**
319 * Variable is an implicitly declared built-in that has not been explicitly
320 * re-declared by the shader.
321 */
322 ir_var_declared_implicitly,
323 };
324
325 /**
326 * \brief Layout qualifiers for gl_FragDepth.
327 *
328 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
329 * with a layout qualifier.
330 */
331 enum ir_depth_layout {
332 ir_depth_layout_none, /**< No depth layout is specified. */
333 ir_depth_layout_any,
334 ir_depth_layout_greater,
335 ir_depth_layout_less,
336 ir_depth_layout_unchanged
337 };
338
339 /**
340 * \brief Convert depth layout qualifier to string.
341 */
342 const char*
343 depth_layout_string(ir_depth_layout layout);
344
345 /**
346 * Description of built-in state associated with a uniform
347 *
348 * \sa ir_variable::state_slots
349 */
350 struct ir_state_slot {
351 int tokens[5];
352 int swizzle;
353 };
354
355
356 /**
357 * Get the string value for an interpolation qualifier
358 *
359 * \return The string that would be used in a shader to specify \c
360 * mode will be returned.
361 *
362 * This function is used to generate error messages of the form "shader
363 * uses %s interpolation qualifier", so in the case where there is no
364 * interpolation qualifier, it returns "no".
365 *
366 * This function should only be used on a shader input or output variable.
367 */
368 const char *interpolation_string(unsigned interpolation);
369
370
371 class ir_variable : public ir_instruction {
372 public:
373 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
374
375 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
376
377 virtual ir_variable *as_variable()
378 {
379 return this;
380 }
381
382 virtual void accept(ir_visitor *v)
383 {
384 v->visit(this);
385 }
386
387 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
388
389
390 /**
391 * Determine how this variable should be interpolated based on its
392 * interpolation qualifier (if present), whether it is gl_Color or
393 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
394 * state.
395 *
396 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
397 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
398 */
399 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
400
401 /**
402 * Determine whether or not a variable is part of a uniform block.
403 */
404 inline bool is_in_uniform_block() const
405 {
406 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
407 }
408
409 /**
410 * Determine whether or not a variable is the declaration of an interface
411 * block
412 *
413 * For the first declaration below, there will be an \c ir_variable named
414 * "instance" whose type and whose instance_type will be the same
415 * \cglsl_type. For the second declaration, there will be an \c ir_variable
416 * named "f" whose type is float and whose instance_type is B2.
417 *
418 * "instance" is an interface instance variable, but "f" is not.
419 *
420 * uniform B1 {
421 * float f;
422 * } instance;
423 *
424 * uniform B2 {
425 * float f;
426 * };
427 */
428 inline bool is_interface_instance() const
429 {
430 const glsl_type *const t = this->type;
431
432 return (t == this->interface_type)
433 || (t->is_array() && t->fields.array == this->interface_type);
434 }
435
436 /**
437 * Set this->interface_type on a newly created variable.
438 */
439 void init_interface_type(const struct glsl_type *type)
440 {
441 assert(this->interface_type == NULL);
442 this->interface_type = type;
443 if (this->is_interface_instance()) {
444 this->max_ifc_array_access =
445 rzalloc_array(this, unsigned, type->length);
446 }
447 }
448
449 /**
450 * Change this->interface_type on a variable that previously had a
451 * different, but compatible, interface_type. This is used during linking
452 * to set the size of arrays in interface blocks.
453 */
454 void change_interface_type(const struct glsl_type *type)
455 {
456 if (this->max_ifc_array_access != NULL) {
457 /* max_ifc_array_access has already been allocated, so make sure the
458 * new interface has the same number of fields as the old one.
459 */
460 assert(this->interface_type->length == type->length);
461 }
462 this->interface_type = type;
463 }
464
465 /**
466 * Change this->interface_type on a variable that previously had a
467 * different, and incompatible, interface_type. This is used during
468 * compilation to handle redeclaration of the built-in gl_PerVertex
469 * interface block.
470 */
471 void reinit_interface_type(const struct glsl_type *type)
472 {
473 if (this->max_ifc_array_access != NULL) {
474 #ifndef _NDEBUG
475 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
476 * it defines have been accessed yet; so it's safe to throw away the
477 * old max_ifc_array_access pointer, since all of its values are
478 * zero.
479 */
480 for (unsigned i = 0; i < this->interface_type->length; i++)
481 assert(this->max_ifc_array_access[i] == 0);
482 #endif
483 ralloc_free(this->max_ifc_array_access);
484 this->max_ifc_array_access = NULL;
485 }
486 this->interface_type = NULL;
487 init_interface_type(type);
488 }
489
490 const glsl_type *get_interface_type() const
491 {
492 return this->interface_type;
493 }
494
495 /**
496 * Declared type of the variable
497 */
498 const struct glsl_type *type;
499
500 /**
501 * Declared name of the variable
502 */
503 const char *name;
504
505 /**
506 * For variables which satisfy the is_interface_instance() predicate, this
507 * points to an array of integers such that if the ith member of the
508 * interface block is an array, max_ifc_array_access[i] is the maximum
509 * array element of that member that has been accessed. If the ith member
510 * of the interface block is not an array, max_ifc_array_access[i] is
511 * unused.
512 *
513 * For variables whose type is not an interface block, this pointer is
514 * NULL.
515 */
516 unsigned *max_ifc_array_access;
517
518 struct ir_variable_data {
519
520 /**
521 * Is the variable read-only?
522 *
523 * This is set for variables declared as \c const, shader inputs,
524 * and uniforms.
525 */
526 unsigned read_only:1;
527 unsigned centroid:1;
528 unsigned sample:1;
529 unsigned invariant:1;
530
531 /**
532 * Has this variable been used for reading or writing?
533 *
534 * Several GLSL semantic checks require knowledge of whether or not a
535 * variable has been used. For example, it is an error to redeclare a
536 * variable as invariant after it has been used.
537 *
538 * This is only maintained in the ast_to_hir.cpp path, not in
539 * Mesa's fixed function or ARB program paths.
540 */
541 unsigned used:1;
542
543 /**
544 * Has this variable been statically assigned?
545 *
546 * This answers whether the variable was assigned in any path of
547 * the shader during ast_to_hir. This doesn't answer whether it is
548 * still written after dead code removal, nor is it maintained in
549 * non-ast_to_hir.cpp (GLSL parsing) paths.
550 */
551 unsigned assigned:1;
552
553 /**
554 * Enum indicating how the variable was declared. See
555 * ir_var_declaration_type.
556 *
557 * This is used to detect certain kinds of illegal variable redeclarations.
558 */
559 unsigned how_declared:2;
560
561 /**
562 * Storage class of the variable.
563 *
564 * \sa ir_variable_mode
565 */
566 unsigned mode:4;
567
568 /**
569 * Interpolation mode for shader inputs / outputs
570 *
571 * \sa ir_variable_interpolation
572 */
573 unsigned interpolation:2;
574
575 /**
576 * \name ARB_fragment_coord_conventions
577 * @{
578 */
579 unsigned origin_upper_left:1;
580 unsigned pixel_center_integer:1;
581 /*@}*/
582
583 /**
584 * Was the location explicitly set in the shader?
585 *
586 * If the location is explicitly set in the shader, it \b cannot be changed
587 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
588 * no effect).
589 */
590 unsigned explicit_location:1;
591 unsigned explicit_index:1;
592
593 /**
594 * Was an initial binding explicitly set in the shader?
595 *
596 * If so, constant_value contains an integer ir_constant representing the
597 * initial binding point.
598 */
599 unsigned explicit_binding:1;
600
601 /**
602 * Does this variable have an initializer?
603 *
604 * This is used by the linker to cross-validiate initializers of global
605 * variables.
606 */
607 unsigned has_initializer:1;
608
609 /**
610 * Is this variable a generic output or input that has not yet been matched
611 * up to a variable in another stage of the pipeline?
612 *
613 * This is used by the linker as scratch storage while assigning locations
614 * to generic inputs and outputs.
615 */
616 unsigned is_unmatched_generic_inout:1;
617
618 /**
619 * If non-zero, then this variable may be packed along with other variables
620 * into a single varying slot, so this offset should be applied when
621 * accessing components. For example, an offset of 1 means that the x
622 * component of this variable is actually stored in component y of the
623 * location specified by \c location.
624 */
625 unsigned location_frac:2;
626
627 /**
628 * Non-zero if this variable was created by lowering a named interface
629 * block which was not an array.
630 *
631 * Note that this variable and \c from_named_ifc_block_array will never
632 * both be non-zero.
633 */
634 unsigned from_named_ifc_block_nonarray:1;
635
636 /**
637 * Non-zero if this variable was created by lowering a named interface
638 * block which was an array.
639 *
640 * Note that this variable and \c from_named_ifc_block_nonarray will never
641 * both be non-zero.
642 */
643 unsigned from_named_ifc_block_array:1;
644
645 /**
646 * \brief Layout qualifier for gl_FragDepth.
647 *
648 * This is not equal to \c ir_depth_layout_none if and only if this
649 * variable is \c gl_FragDepth and a layout qualifier is specified.
650 */
651 ir_depth_layout depth_layout;
652
653 /**
654 * Storage location of the base of this variable
655 *
656 * The precise meaning of this field depends on the nature of the variable.
657 *
658 * - Vertex shader input: one of the values from \c gl_vert_attrib.
659 * - Vertex shader output: one of the values from \c gl_varying_slot.
660 * - Geometry shader input: one of the values from \c gl_varying_slot.
661 * - Geometry shader output: one of the values from \c gl_varying_slot.
662 * - Fragment shader input: one of the values from \c gl_varying_slot.
663 * - Fragment shader output: one of the values from \c gl_frag_result.
664 * - Uniforms: Per-stage uniform slot number for default uniform block.
665 * - Uniforms: Index within the uniform block definition for UBO members.
666 * - Other: This field is not currently used.
667 *
668 * If the variable is a uniform, shader input, or shader output, and the
669 * slot has not been assigned, the value will be -1.
670 */
671 int location;
672
673 /**
674 * output index for dual source blending.
675 */
676 int index;
677
678 /**
679 * Initial binding point for a sampler or UBO.
680 *
681 * For array types, this represents the binding point for the first element.
682 */
683 int binding;
684
685 /**
686 * Location an atomic counter is stored at.
687 */
688 struct {
689 unsigned buffer_index;
690 unsigned offset;
691 } atomic;
692
693 /**
694 * Highest element accessed with a constant expression array index
695 *
696 * Not used for non-array variables.
697 */
698 unsigned max_array_access;
699
700 } data;
701
702 /**
703 * Built-in state that backs this uniform
704 *
705 * Once set at variable creation, \c state_slots must remain invariant.
706 * This is because, ideally, this array would be shared by all clones of
707 * this variable in the IR tree. In other words, we'd really like for it
708 * to be a fly-weight.
709 *
710 * If the variable is not a uniform, \c num_state_slots will be zero and
711 * \c state_slots will be \c NULL.
712 */
713 /*@{*/
714 unsigned num_state_slots; /**< Number of state slots used */
715 ir_state_slot *state_slots; /**< State descriptors. */
716 /*@}*/
717
718 /**
719 * Emit a warning if this variable is accessed.
720 */
721 const char *warn_extension;
722
723 /**
724 * Value assigned in the initializer of a variable declared "const"
725 */
726 ir_constant *constant_value;
727
728 /**
729 * Constant expression assigned in the initializer of the variable
730 *
731 * \warning
732 * This field and \c ::constant_value are distinct. Even if the two fields
733 * refer to constants with the same value, they must point to separate
734 * objects.
735 */
736 ir_constant *constant_initializer;
737
738 private:
739 /**
740 * For variables that are in an interface block or are an instance of an
741 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
742 *
743 * \sa ir_variable::location
744 */
745 const glsl_type *interface_type;
746 };
747
748 /**
749 * A function that returns whether a built-in function is available in the
750 * current shading language (based on version, ES or desktop, and extensions).
751 */
752 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
753
754 /*@{*/
755 /**
756 * The representation of a function instance; may be the full definition or
757 * simply a prototype.
758 */
759 class ir_function_signature : public ir_instruction {
760 /* An ir_function_signature will be part of the list of signatures in
761 * an ir_function.
762 */
763 public:
764 ir_function_signature(const glsl_type *return_type,
765 builtin_available_predicate builtin_avail = NULL);
766
767 virtual ir_function_signature *clone(void *mem_ctx,
768 struct hash_table *ht) const;
769 ir_function_signature *clone_prototype(void *mem_ctx,
770 struct hash_table *ht) const;
771
772 virtual void accept(ir_visitor *v)
773 {
774 v->visit(this);
775 }
776
777 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
778
779 /**
780 * Attempt to evaluate this function as a constant expression,
781 * given a list of the actual parameters and the variable context.
782 * Returns NULL for non-built-ins.
783 */
784 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
785
786 /**
787 * Get the name of the function for which this is a signature
788 */
789 const char *function_name() const;
790
791 /**
792 * Get a handle to the function for which this is a signature
793 *
794 * There is no setter function, this function returns a \c const pointer,
795 * and \c ir_function_signature::_function is private for a reason. The
796 * only way to make a connection between a function and function signature
797 * is via \c ir_function::add_signature. This helps ensure that certain
798 * invariants (i.e., a function signature is in the list of signatures for
799 * its \c _function) are met.
800 *
801 * \sa ir_function::add_signature
802 */
803 inline const class ir_function *function() const
804 {
805 return this->_function;
806 }
807
808 /**
809 * Check whether the qualifiers match between this signature's parameters
810 * and the supplied parameter list. If not, returns the name of the first
811 * parameter with mismatched qualifiers (for use in error messages).
812 */
813 const char *qualifiers_match(exec_list *params);
814
815 /**
816 * Replace the current parameter list with the given one. This is useful
817 * if the current information came from a prototype, and either has invalid
818 * or missing parameter names.
819 */
820 void replace_parameters(exec_list *new_params);
821
822 /**
823 * Function return type.
824 *
825 * \note This discards the optional precision qualifier.
826 */
827 const struct glsl_type *return_type;
828
829 /**
830 * List of ir_variable of function parameters.
831 *
832 * This represents the storage. The paramaters passed in a particular
833 * call will be in ir_call::actual_paramaters.
834 */
835 struct exec_list parameters;
836
837 /** Whether or not this function has a body (which may be empty). */
838 unsigned is_defined:1;
839
840 /** Whether or not this function signature is a built-in. */
841 bool is_builtin() const;
842
843 /**
844 * Whether or not this function is an intrinsic to be implemented
845 * by the driver.
846 */
847 bool is_intrinsic;
848
849 /** Whether or not a built-in is available for this shader. */
850 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
851
852 /** Body of instructions in the function. */
853 struct exec_list body;
854
855 private:
856 /**
857 * A function pointer to a predicate that answers whether a built-in
858 * function is available in the current shader. NULL if not a built-in.
859 */
860 builtin_available_predicate builtin_avail;
861
862 /** Function of which this signature is one overload. */
863 class ir_function *_function;
864
865 /** Function signature of which this one is a prototype clone */
866 const ir_function_signature *origin;
867
868 friend class ir_function;
869
870 /**
871 * Helper function to run a list of instructions for constant
872 * expression evaluation.
873 *
874 * The hash table represents the values of the visible variables.
875 * There are no scoping issues because the table is indexed on
876 * ir_variable pointers, not variable names.
877 *
878 * Returns false if the expression is not constant, true otherwise,
879 * and the value in *result if result is non-NULL.
880 */
881 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
882 struct hash_table *variable_context,
883 ir_constant **result);
884 };
885
886
887 /**
888 * Header for tracking multiple overloaded functions with the same name.
889 * Contains a list of ir_function_signatures representing each of the
890 * actual functions.
891 */
892 class ir_function : public ir_instruction {
893 public:
894 ir_function(const char *name);
895
896 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
897
898 virtual ir_function *as_function()
899 {
900 return this;
901 }
902
903 virtual void accept(ir_visitor *v)
904 {
905 v->visit(this);
906 }
907
908 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
909
910 void add_signature(ir_function_signature *sig)
911 {
912 sig->_function = this;
913 this->signatures.push_tail(sig);
914 }
915
916 /**
917 * Get an iterator for the set of function signatures
918 */
919 exec_list_iterator iterator()
920 {
921 return signatures.iterator();
922 }
923
924 /**
925 * Find a signature that matches a set of actual parameters, taking implicit
926 * conversions into account. Also flags whether the match was exact.
927 */
928 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
929 const exec_list *actual_param,
930 bool *match_is_exact);
931
932 /**
933 * Find a signature that matches a set of actual parameters, taking implicit
934 * conversions into account.
935 */
936 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
937 const exec_list *actual_param);
938
939 /**
940 * Find a signature that exactly matches a set of actual parameters without
941 * any implicit type conversions.
942 */
943 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
944 const exec_list *actual_ps);
945
946 /**
947 * Name of the function.
948 */
949 const char *name;
950
951 /** Whether or not this function has a signature that isn't a built-in. */
952 bool has_user_signature();
953
954 /**
955 * List of ir_function_signature for each overloaded function with this name.
956 */
957 struct exec_list signatures;
958 };
959
960 inline const char *ir_function_signature::function_name() const
961 {
962 return this->_function->name;
963 }
964 /*@}*/
965
966
967 /**
968 * IR instruction representing high-level if-statements
969 */
970 class ir_if : public ir_instruction {
971 public:
972 ir_if(ir_rvalue *condition)
973 : condition(condition)
974 {
975 ir_type = ir_type_if;
976 }
977
978 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
979
980 virtual ir_if *as_if()
981 {
982 return this;
983 }
984
985 virtual void accept(ir_visitor *v)
986 {
987 v->visit(this);
988 }
989
990 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
991
992 ir_rvalue *condition;
993 /** List of ir_instruction for the body of the then branch */
994 exec_list then_instructions;
995 /** List of ir_instruction for the body of the else branch */
996 exec_list else_instructions;
997 };
998
999
1000 /**
1001 * IR instruction representing a high-level loop structure.
1002 */
1003 class ir_loop : public ir_instruction {
1004 public:
1005 ir_loop();
1006
1007 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1008
1009 virtual void accept(ir_visitor *v)
1010 {
1011 v->visit(this);
1012 }
1013
1014 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1015
1016 virtual ir_loop *as_loop()
1017 {
1018 return this;
1019 }
1020
1021 /**
1022 * Get an iterator for the instructions of the loop body
1023 */
1024 exec_list_iterator iterator()
1025 {
1026 return body_instructions.iterator();
1027 }
1028
1029 /** List of ir_instruction that make up the body of the loop. */
1030 exec_list body_instructions;
1031 };
1032
1033
1034 class ir_assignment : public ir_instruction {
1035 public:
1036 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1037
1038 /**
1039 * Construct an assignment with an explicit write mask
1040 *
1041 * \note
1042 * Since a write mask is supplied, the LHS must already be a bare
1043 * \c ir_dereference. The cannot be any swizzles in the LHS.
1044 */
1045 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1046 unsigned write_mask);
1047
1048 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1049
1050 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1051
1052 virtual void accept(ir_visitor *v)
1053 {
1054 v->visit(this);
1055 }
1056
1057 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1058
1059 virtual ir_assignment * as_assignment()
1060 {
1061 return this;
1062 }
1063
1064 /**
1065 * Get a whole variable written by an assignment
1066 *
1067 * If the LHS of the assignment writes a whole variable, the variable is
1068 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1069 * assignment are:
1070 *
1071 * - Assigning to a scalar
1072 * - Assigning to all components of a vector
1073 * - Whole array (or matrix) assignment
1074 * - Whole structure assignment
1075 */
1076 ir_variable *whole_variable_written();
1077
1078 /**
1079 * Set the LHS of an assignment
1080 */
1081 void set_lhs(ir_rvalue *lhs);
1082
1083 /**
1084 * Left-hand side of the assignment.
1085 *
1086 * This should be treated as read only. If you need to set the LHS of an
1087 * assignment, use \c ir_assignment::set_lhs.
1088 */
1089 ir_dereference *lhs;
1090
1091 /**
1092 * Value being assigned
1093 */
1094 ir_rvalue *rhs;
1095
1096 /**
1097 * Optional condition for the assignment.
1098 */
1099 ir_rvalue *condition;
1100
1101
1102 /**
1103 * Component mask written
1104 *
1105 * For non-vector types in the LHS, this field will be zero. For vector
1106 * types, a bit will be set for each component that is written. Note that
1107 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1108 *
1109 * A partially-set write mask means that each enabled channel gets
1110 * the value from a consecutive channel of the rhs. For example,
1111 * to write just .xyw of gl_FrontColor with color:
1112 *
1113 * (assign (constant bool (1)) (xyw)
1114 * (var_ref gl_FragColor)
1115 * (swiz xyw (var_ref color)))
1116 */
1117 unsigned write_mask:4;
1118 };
1119
1120 /* Update ir_expression::get_num_operands() and operator_strs when
1121 * updating this list.
1122 */
1123 enum ir_expression_operation {
1124 ir_unop_bit_not,
1125 ir_unop_logic_not,
1126 ir_unop_neg,
1127 ir_unop_abs,
1128 ir_unop_sign,
1129 ir_unop_rcp,
1130 ir_unop_rsq,
1131 ir_unop_sqrt,
1132 ir_unop_exp, /**< Log base e on gentype */
1133 ir_unop_log, /**< Natural log on gentype */
1134 ir_unop_exp2,
1135 ir_unop_log2,
1136 ir_unop_f2i, /**< Float-to-integer conversion. */
1137 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1138 ir_unop_i2f, /**< Integer-to-float conversion. */
1139 ir_unop_f2b, /**< Float-to-boolean conversion */
1140 ir_unop_b2f, /**< Boolean-to-float conversion */
1141 ir_unop_i2b, /**< int-to-boolean conversion */
1142 ir_unop_b2i, /**< Boolean-to-int conversion */
1143 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1144 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1145 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1146 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1147 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1148 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1149 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1150 ir_unop_any,
1151
1152 /**
1153 * \name Unary floating-point rounding operations.
1154 */
1155 /*@{*/
1156 ir_unop_trunc,
1157 ir_unop_ceil,
1158 ir_unop_floor,
1159 ir_unop_fract,
1160 ir_unop_round_even,
1161 /*@}*/
1162
1163 /**
1164 * \name Trigonometric operations.
1165 */
1166 /*@{*/
1167 ir_unop_sin,
1168 ir_unop_cos,
1169 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1170 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1171 /*@}*/
1172
1173 /**
1174 * \name Partial derivatives.
1175 */
1176 /*@{*/
1177 ir_unop_dFdx,
1178 ir_unop_dFdy,
1179 /*@}*/
1180
1181 /**
1182 * \name Floating point pack and unpack operations.
1183 */
1184 /*@{*/
1185 ir_unop_pack_snorm_2x16,
1186 ir_unop_pack_snorm_4x8,
1187 ir_unop_pack_unorm_2x16,
1188 ir_unop_pack_unorm_4x8,
1189 ir_unop_pack_half_2x16,
1190 ir_unop_unpack_snorm_2x16,
1191 ir_unop_unpack_snorm_4x8,
1192 ir_unop_unpack_unorm_2x16,
1193 ir_unop_unpack_unorm_4x8,
1194 ir_unop_unpack_half_2x16,
1195 /*@}*/
1196
1197 /**
1198 * \name Lowered floating point unpacking operations.
1199 *
1200 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1201 */
1202 /*@{*/
1203 ir_unop_unpack_half_2x16_split_x,
1204 ir_unop_unpack_half_2x16_split_y,
1205 /*@}*/
1206
1207 /**
1208 * \name Bit operations, part of ARB_gpu_shader5.
1209 */
1210 /*@{*/
1211 ir_unop_bitfield_reverse,
1212 ir_unop_bit_count,
1213 ir_unop_find_msb,
1214 ir_unop_find_lsb,
1215 /*@}*/
1216
1217 ir_unop_noise,
1218
1219 /**
1220 * A sentinel marking the last of the unary operations.
1221 */
1222 ir_last_unop = ir_unop_noise,
1223
1224 ir_binop_add,
1225 ir_binop_sub,
1226 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1227 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1228 ir_binop_div,
1229
1230 /**
1231 * Returns the carry resulting from the addition of the two arguments.
1232 */
1233 /*@{*/
1234 ir_binop_carry,
1235 /*@}*/
1236
1237 /**
1238 * Returns the borrow resulting from the subtraction of the second argument
1239 * from the first argument.
1240 */
1241 /*@{*/
1242 ir_binop_borrow,
1243 /*@}*/
1244
1245 /**
1246 * Takes one of two combinations of arguments:
1247 *
1248 * - mod(vecN, vecN)
1249 * - mod(vecN, float)
1250 *
1251 * Does not take integer types.
1252 */
1253 ir_binop_mod,
1254
1255 /**
1256 * \name Binary comparison operators which return a boolean vector.
1257 * The type of both operands must be equal.
1258 */
1259 /*@{*/
1260 ir_binop_less,
1261 ir_binop_greater,
1262 ir_binop_lequal,
1263 ir_binop_gequal,
1264 ir_binop_equal,
1265 ir_binop_nequal,
1266 /**
1267 * Returns single boolean for whether all components of operands[0]
1268 * equal the components of operands[1].
1269 */
1270 ir_binop_all_equal,
1271 /**
1272 * Returns single boolean for whether any component of operands[0]
1273 * is not equal to the corresponding component of operands[1].
1274 */
1275 ir_binop_any_nequal,
1276 /*@}*/
1277
1278 /**
1279 * \name Bit-wise binary operations.
1280 */
1281 /*@{*/
1282 ir_binop_lshift,
1283 ir_binop_rshift,
1284 ir_binop_bit_and,
1285 ir_binop_bit_xor,
1286 ir_binop_bit_or,
1287 /*@}*/
1288
1289 ir_binop_logic_and,
1290 ir_binop_logic_xor,
1291 ir_binop_logic_or,
1292
1293 ir_binop_dot,
1294 ir_binop_min,
1295 ir_binop_max,
1296
1297 ir_binop_pow,
1298
1299 /**
1300 * \name Lowered floating point packing operations.
1301 *
1302 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1303 */
1304 /*@{*/
1305 ir_binop_pack_half_2x16_split,
1306 /*@}*/
1307
1308 /**
1309 * \name First half of a lowered bitfieldInsert() operation.
1310 *
1311 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1312 */
1313 /*@{*/
1314 ir_binop_bfm,
1315 /*@}*/
1316
1317 /**
1318 * Load a value the size of a given GLSL type from a uniform block.
1319 *
1320 * operand0 is the ir_constant uniform block index in the linked shader.
1321 * operand1 is a byte offset within the uniform block.
1322 */
1323 ir_binop_ubo_load,
1324
1325 /**
1326 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1327 */
1328 /*@{*/
1329 ir_binop_ldexp,
1330 /*@}*/
1331
1332 /**
1333 * Extract a scalar from a vector
1334 *
1335 * operand0 is the vector
1336 * operand1 is the index of the field to read from operand0
1337 */
1338 ir_binop_vector_extract,
1339
1340 /**
1341 * A sentinel marking the last of the binary operations.
1342 */
1343 ir_last_binop = ir_binop_vector_extract,
1344
1345 /**
1346 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1347 */
1348 /*@{*/
1349 ir_triop_fma,
1350 /*@}*/
1351
1352 ir_triop_lrp,
1353
1354 /**
1355 * \name Conditional Select
1356 *
1357 * A vector conditional select instruction (like ?:, but operating per-
1358 * component on vectors).
1359 *
1360 * \see lower_instructions_visitor::ldexp_to_arith
1361 */
1362 /*@{*/
1363 ir_triop_csel,
1364 /*@}*/
1365
1366 /**
1367 * \name Second half of a lowered bitfieldInsert() operation.
1368 *
1369 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1370 */
1371 /*@{*/
1372 ir_triop_bfi,
1373 /*@}*/
1374
1375 ir_triop_bitfield_extract,
1376
1377 /**
1378 * Generate a value with one field of a vector changed
1379 *
1380 * operand0 is the vector
1381 * operand1 is the value to write into the vector result
1382 * operand2 is the index in operand0 to be modified
1383 */
1384 ir_triop_vector_insert,
1385
1386 /**
1387 * A sentinel marking the last of the ternary operations.
1388 */
1389 ir_last_triop = ir_triop_vector_insert,
1390
1391 ir_quadop_bitfield_insert,
1392
1393 ir_quadop_vector,
1394
1395 /**
1396 * A sentinel marking the last of the ternary operations.
1397 */
1398 ir_last_quadop = ir_quadop_vector,
1399
1400 /**
1401 * A sentinel marking the last of all operations.
1402 */
1403 ir_last_opcode = ir_quadop_vector
1404 };
1405
1406 class ir_expression : public ir_rvalue {
1407 public:
1408 ir_expression(int op, const struct glsl_type *type,
1409 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1410 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1411
1412 /**
1413 * Constructor for unary operation expressions
1414 */
1415 ir_expression(int op, ir_rvalue *);
1416
1417 /**
1418 * Constructor for binary operation expressions
1419 */
1420 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1421
1422 /**
1423 * Constructor for ternary operation expressions
1424 */
1425 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1426
1427 virtual ir_expression *as_expression()
1428 {
1429 return this;
1430 }
1431
1432 virtual bool equals(ir_instruction *ir);
1433
1434 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1435
1436 /**
1437 * Attempt to constant-fold the expression
1438 *
1439 * The "variable_context" hash table links ir_variable * to ir_constant *
1440 * that represent the variables' values. \c NULL represents an empty
1441 * context.
1442 *
1443 * If the expression cannot be constant folded, this method will return
1444 * \c NULL.
1445 */
1446 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1447
1448 /**
1449 * Determine the number of operands used by an expression
1450 */
1451 static unsigned int get_num_operands(ir_expression_operation);
1452
1453 /**
1454 * Determine the number of operands used by an expression
1455 */
1456 unsigned int get_num_operands() const
1457 {
1458 return (this->operation == ir_quadop_vector)
1459 ? this->type->vector_elements : get_num_operands(operation);
1460 }
1461
1462 /**
1463 * Return a string representing this expression's operator.
1464 */
1465 const char *operator_string();
1466
1467 /**
1468 * Return a string representing this expression's operator.
1469 */
1470 static const char *operator_string(ir_expression_operation);
1471
1472
1473 /**
1474 * Do a reverse-lookup to translate the given string into an operator.
1475 */
1476 static ir_expression_operation get_operator(const char *);
1477
1478 virtual void accept(ir_visitor *v)
1479 {
1480 v->visit(this);
1481 }
1482
1483 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1484
1485 ir_expression_operation operation;
1486 ir_rvalue *operands[4];
1487 };
1488
1489
1490 /**
1491 * HIR instruction representing a high-level function call, containing a list
1492 * of parameters and returning a value in the supplied temporary.
1493 */
1494 class ir_call : public ir_instruction {
1495 public:
1496 ir_call(ir_function_signature *callee,
1497 ir_dereference_variable *return_deref,
1498 exec_list *actual_parameters)
1499 : return_deref(return_deref), callee(callee)
1500 {
1501 ir_type = ir_type_call;
1502 assert(callee->return_type != NULL);
1503 actual_parameters->move_nodes_to(& this->actual_parameters);
1504 this->use_builtin = callee->is_builtin();
1505 }
1506
1507 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1508
1509 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1510
1511 virtual ir_call *as_call()
1512 {
1513 return this;
1514 }
1515
1516 virtual void accept(ir_visitor *v)
1517 {
1518 v->visit(this);
1519 }
1520
1521 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1522
1523 /**
1524 * Get an iterator for the set of acutal parameters
1525 */
1526 exec_list_iterator iterator()
1527 {
1528 return actual_parameters.iterator();
1529 }
1530
1531 /**
1532 * Get the name of the function being called.
1533 */
1534 const char *callee_name() const
1535 {
1536 return callee->function_name();
1537 }
1538
1539 /**
1540 * Generates an inline version of the function before @ir,
1541 * storing the return value in return_deref.
1542 */
1543 void generate_inline(ir_instruction *ir);
1544
1545 /**
1546 * Storage for the function's return value.
1547 * This must be NULL if the return type is void.
1548 */
1549 ir_dereference_variable *return_deref;
1550
1551 /**
1552 * The specific function signature being called.
1553 */
1554 ir_function_signature *callee;
1555
1556 /* List of ir_rvalue of paramaters passed in this call. */
1557 exec_list actual_parameters;
1558
1559 /** Should this call only bind to a built-in function? */
1560 bool use_builtin;
1561 };
1562
1563
1564 /**
1565 * \name Jump-like IR instructions.
1566 *
1567 * These include \c break, \c continue, \c return, and \c discard.
1568 */
1569 /*@{*/
1570 class ir_jump : public ir_instruction {
1571 protected:
1572 ir_jump()
1573 {
1574 ir_type = ir_type_unset;
1575 }
1576
1577 public:
1578 virtual ir_jump *as_jump()
1579 {
1580 return this;
1581 }
1582 };
1583
1584 class ir_return : public ir_jump {
1585 public:
1586 ir_return()
1587 : value(NULL)
1588 {
1589 this->ir_type = ir_type_return;
1590 }
1591
1592 ir_return(ir_rvalue *value)
1593 : value(value)
1594 {
1595 this->ir_type = ir_type_return;
1596 }
1597
1598 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1599
1600 virtual ir_return *as_return()
1601 {
1602 return this;
1603 }
1604
1605 ir_rvalue *get_value() const
1606 {
1607 return value;
1608 }
1609
1610 virtual void accept(ir_visitor *v)
1611 {
1612 v->visit(this);
1613 }
1614
1615 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1616
1617 ir_rvalue *value;
1618 };
1619
1620
1621 /**
1622 * Jump instructions used inside loops
1623 *
1624 * These include \c break and \c continue. The \c break within a loop is
1625 * different from the \c break within a switch-statement.
1626 *
1627 * \sa ir_switch_jump
1628 */
1629 class ir_loop_jump : public ir_jump {
1630 public:
1631 enum jump_mode {
1632 jump_break,
1633 jump_continue
1634 };
1635
1636 ir_loop_jump(jump_mode mode)
1637 {
1638 this->ir_type = ir_type_loop_jump;
1639 this->mode = mode;
1640 }
1641
1642 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1643
1644 virtual void accept(ir_visitor *v)
1645 {
1646 v->visit(this);
1647 }
1648
1649 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1650
1651 bool is_break() const
1652 {
1653 return mode == jump_break;
1654 }
1655
1656 bool is_continue() const
1657 {
1658 return mode == jump_continue;
1659 }
1660
1661 /** Mode selector for the jump instruction. */
1662 enum jump_mode mode;
1663 };
1664
1665 /**
1666 * IR instruction representing discard statements.
1667 */
1668 class ir_discard : public ir_jump {
1669 public:
1670 ir_discard()
1671 {
1672 this->ir_type = ir_type_discard;
1673 this->condition = NULL;
1674 }
1675
1676 ir_discard(ir_rvalue *cond)
1677 {
1678 this->ir_type = ir_type_discard;
1679 this->condition = cond;
1680 }
1681
1682 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1683
1684 virtual void accept(ir_visitor *v)
1685 {
1686 v->visit(this);
1687 }
1688
1689 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1690
1691 virtual ir_discard *as_discard()
1692 {
1693 return this;
1694 }
1695
1696 ir_rvalue *condition;
1697 };
1698 /*@}*/
1699
1700
1701 /**
1702 * Texture sampling opcodes used in ir_texture
1703 */
1704 enum ir_texture_opcode {
1705 ir_tex, /**< Regular texture look-up */
1706 ir_txb, /**< Texture look-up with LOD bias */
1707 ir_txl, /**< Texture look-up with explicit LOD */
1708 ir_txd, /**< Texture look-up with partial derivatvies */
1709 ir_txf, /**< Texel fetch with explicit LOD */
1710 ir_txf_ms, /**< Multisample texture fetch */
1711 ir_txs, /**< Texture size */
1712 ir_lod, /**< Texture lod query */
1713 ir_tg4, /**< Texture gather */
1714 ir_query_levels /**< Texture levels query */
1715 };
1716
1717
1718 /**
1719 * IR instruction to sample a texture
1720 *
1721 * The specific form of the IR instruction depends on the \c mode value
1722 * selected from \c ir_texture_opcodes. In the printed IR, these will
1723 * appear as:
1724 *
1725 * Texel offset (0 or an expression)
1726 * | Projection divisor
1727 * | | Shadow comparitor
1728 * | | |
1729 * v v v
1730 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1731 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1732 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1733 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1734 * (txf <type> <sampler> <coordinate> 0 <lod>)
1735 * (txf_ms
1736 * <type> <sampler> <coordinate> <sample_index>)
1737 * (txs <type> <sampler> <lod>)
1738 * (lod <type> <sampler> <coordinate>)
1739 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1740 * (query_levels <type> <sampler>)
1741 */
1742 class ir_texture : public ir_rvalue {
1743 public:
1744 ir_texture(enum ir_texture_opcode op)
1745 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1746 shadow_comparitor(NULL), offset(NULL)
1747 {
1748 this->ir_type = ir_type_texture;
1749 memset(&lod_info, 0, sizeof(lod_info));
1750 }
1751
1752 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1753
1754 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1755
1756 virtual void accept(ir_visitor *v)
1757 {
1758 v->visit(this);
1759 }
1760
1761 virtual ir_texture *as_texture()
1762 {
1763 return this;
1764 }
1765
1766 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1767
1768 virtual bool equals(ir_instruction *ir);
1769
1770 /**
1771 * Return a string representing the ir_texture_opcode.
1772 */
1773 const char *opcode_string();
1774
1775 /** Set the sampler and type. */
1776 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1777
1778 /**
1779 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1780 */
1781 static ir_texture_opcode get_opcode(const char *);
1782
1783 enum ir_texture_opcode op;
1784
1785 /** Sampler to use for the texture access. */
1786 ir_dereference *sampler;
1787
1788 /** Texture coordinate to sample */
1789 ir_rvalue *coordinate;
1790
1791 /**
1792 * Value used for projective divide.
1793 *
1794 * If there is no projective divide (the common case), this will be
1795 * \c NULL. Optimization passes should check for this to point to a constant
1796 * of 1.0 and replace that with \c NULL.
1797 */
1798 ir_rvalue *projector;
1799
1800 /**
1801 * Coordinate used for comparison on shadow look-ups.
1802 *
1803 * If there is no shadow comparison, this will be \c NULL. For the
1804 * \c ir_txf opcode, this *must* be \c NULL.
1805 */
1806 ir_rvalue *shadow_comparitor;
1807
1808 /** Texel offset. */
1809 ir_rvalue *offset;
1810
1811 union {
1812 ir_rvalue *lod; /**< Floating point LOD */
1813 ir_rvalue *bias; /**< Floating point LOD bias */
1814 ir_rvalue *sample_index; /**< MSAA sample index */
1815 ir_rvalue *component; /**< Gather component selector */
1816 struct {
1817 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1818 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1819 } grad;
1820 } lod_info;
1821 };
1822
1823
1824 struct ir_swizzle_mask {
1825 unsigned x:2;
1826 unsigned y:2;
1827 unsigned z:2;
1828 unsigned w:2;
1829
1830 /**
1831 * Number of components in the swizzle.
1832 */
1833 unsigned num_components:3;
1834
1835 /**
1836 * Does the swizzle contain duplicate components?
1837 *
1838 * L-value swizzles cannot contain duplicate components.
1839 */
1840 unsigned has_duplicates:1;
1841 };
1842
1843
1844 class ir_swizzle : public ir_rvalue {
1845 public:
1846 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1847 unsigned count);
1848
1849 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1850
1851 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1852
1853 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1854
1855 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1856
1857 virtual ir_swizzle *as_swizzle()
1858 {
1859 return this;
1860 }
1861
1862 /**
1863 * Construct an ir_swizzle from the textual representation. Can fail.
1864 */
1865 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1866
1867 virtual void accept(ir_visitor *v)
1868 {
1869 v->visit(this);
1870 }
1871
1872 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1873
1874 virtual bool equals(ir_instruction *ir);
1875
1876 bool is_lvalue() const
1877 {
1878 return val->is_lvalue() && !mask.has_duplicates;
1879 }
1880
1881 /**
1882 * Get the variable that is ultimately referenced by an r-value
1883 */
1884 virtual ir_variable *variable_referenced() const;
1885
1886 ir_rvalue *val;
1887 ir_swizzle_mask mask;
1888
1889 private:
1890 /**
1891 * Initialize the mask component of a swizzle
1892 *
1893 * This is used by the \c ir_swizzle constructors.
1894 */
1895 void init_mask(const unsigned *components, unsigned count);
1896 };
1897
1898
1899 class ir_dereference : public ir_rvalue {
1900 public:
1901 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1902
1903 virtual ir_dereference *as_dereference()
1904 {
1905 return this;
1906 }
1907
1908 bool is_lvalue() const;
1909
1910 /**
1911 * Get the variable that is ultimately referenced by an r-value
1912 */
1913 virtual ir_variable *variable_referenced() const = 0;
1914
1915 /**
1916 * Get the constant that is ultimately referenced by an r-value,
1917 * in a constant expression evaluation context.
1918 *
1919 * The offset is used when the reference is to a specific column of
1920 * a matrix.
1921 */
1922 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1923 };
1924
1925
1926 class ir_dereference_variable : public ir_dereference {
1927 public:
1928 ir_dereference_variable(ir_variable *var);
1929
1930 virtual ir_dereference_variable *clone(void *mem_ctx,
1931 struct hash_table *) const;
1932
1933 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1934
1935 virtual ir_dereference_variable *as_dereference_variable()
1936 {
1937 return this;
1938 }
1939
1940 virtual bool equals(ir_instruction *ir);
1941
1942 /**
1943 * Get the variable that is ultimately referenced by an r-value
1944 */
1945 virtual ir_variable *variable_referenced() const
1946 {
1947 return this->var;
1948 }
1949
1950 /**
1951 * Get the constant that is ultimately referenced by an r-value,
1952 * in a constant expression evaluation context.
1953 *
1954 * The offset is used when the reference is to a specific column of
1955 * a matrix.
1956 */
1957 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1958
1959 virtual ir_variable *whole_variable_referenced()
1960 {
1961 /* ir_dereference_variable objects always dereference the entire
1962 * variable. However, if this dereference is dereferenced by anything
1963 * else, the complete deferefernce chain is not a whole-variable
1964 * dereference. This method should only be called on the top most
1965 * ir_rvalue in a dereference chain.
1966 */
1967 return this->var;
1968 }
1969
1970 virtual void accept(ir_visitor *v)
1971 {
1972 v->visit(this);
1973 }
1974
1975 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1976
1977 /**
1978 * Object being dereferenced.
1979 */
1980 ir_variable *var;
1981 };
1982
1983
1984 class ir_dereference_array : public ir_dereference {
1985 public:
1986 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1987
1988 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1989
1990 virtual ir_dereference_array *clone(void *mem_ctx,
1991 struct hash_table *) const;
1992
1993 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1994
1995 virtual ir_dereference_array *as_dereference_array()
1996 {
1997 return this;
1998 }
1999
2000 virtual bool equals(ir_instruction *ir);
2001
2002 /**
2003 * Get the variable that is ultimately referenced by an r-value
2004 */
2005 virtual ir_variable *variable_referenced() const
2006 {
2007 return this->array->variable_referenced();
2008 }
2009
2010 /**
2011 * Get the constant that is ultimately referenced by an r-value,
2012 * in a constant expression evaluation context.
2013 *
2014 * The offset is used when the reference is to a specific column of
2015 * a matrix.
2016 */
2017 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2018
2019 virtual void accept(ir_visitor *v)
2020 {
2021 v->visit(this);
2022 }
2023
2024 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2025
2026 ir_rvalue *array;
2027 ir_rvalue *array_index;
2028
2029 private:
2030 void set_array(ir_rvalue *value);
2031 };
2032
2033
2034 class ir_dereference_record : public ir_dereference {
2035 public:
2036 ir_dereference_record(ir_rvalue *value, const char *field);
2037
2038 ir_dereference_record(ir_variable *var, const char *field);
2039
2040 virtual ir_dereference_record *clone(void *mem_ctx,
2041 struct hash_table *) const;
2042
2043 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2044
2045 virtual ir_dereference_record *as_dereference_record()
2046 {
2047 return this;
2048 }
2049
2050 /**
2051 * Get the variable that is ultimately referenced by an r-value
2052 */
2053 virtual ir_variable *variable_referenced() const
2054 {
2055 return this->record->variable_referenced();
2056 }
2057
2058 /**
2059 * Get the constant that is ultimately referenced by an r-value,
2060 * in a constant expression evaluation context.
2061 *
2062 * The offset is used when the reference is to a specific column of
2063 * a matrix.
2064 */
2065 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2066
2067 virtual void accept(ir_visitor *v)
2068 {
2069 v->visit(this);
2070 }
2071
2072 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2073
2074 ir_rvalue *record;
2075 const char *field;
2076 };
2077
2078
2079 /**
2080 * Data stored in an ir_constant
2081 */
2082 union ir_constant_data {
2083 unsigned u[16];
2084 int i[16];
2085 float f[16];
2086 bool b[16];
2087 };
2088
2089
2090 class ir_constant : public ir_rvalue {
2091 public:
2092 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2093 ir_constant(bool b, unsigned vector_elements=1);
2094 ir_constant(unsigned int u, unsigned vector_elements=1);
2095 ir_constant(int i, unsigned vector_elements=1);
2096 ir_constant(float f, unsigned vector_elements=1);
2097
2098 /**
2099 * Construct an ir_constant from a list of ir_constant values
2100 */
2101 ir_constant(const struct glsl_type *type, exec_list *values);
2102
2103 /**
2104 * Construct an ir_constant from a scalar component of another ir_constant
2105 *
2106 * The new \c ir_constant inherits the type of the component from the
2107 * source constant.
2108 *
2109 * \note
2110 * In the case of a matrix constant, the new constant is a scalar, \b not
2111 * a vector.
2112 */
2113 ir_constant(const ir_constant *c, unsigned i);
2114
2115 /**
2116 * Return a new ir_constant of the specified type containing all zeros.
2117 */
2118 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2119
2120 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2121
2122 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2123
2124 virtual ir_constant *as_constant()
2125 {
2126 return this;
2127 }
2128
2129 virtual void accept(ir_visitor *v)
2130 {
2131 v->visit(this);
2132 }
2133
2134 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2135
2136 virtual bool equals(ir_instruction *ir);
2137
2138 /**
2139 * Get a particular component of a constant as a specific type
2140 *
2141 * This is useful, for example, to get a value from an integer constant
2142 * as a float or bool. This appears frequently when constructors are
2143 * called with all constant parameters.
2144 */
2145 /*@{*/
2146 bool get_bool_component(unsigned i) const;
2147 float get_float_component(unsigned i) const;
2148 int get_int_component(unsigned i) const;
2149 unsigned get_uint_component(unsigned i) const;
2150 /*@}*/
2151
2152 ir_constant *get_array_element(unsigned i) const;
2153
2154 ir_constant *get_record_field(const char *name);
2155
2156 /**
2157 * Copy the values on another constant at a given offset.
2158 *
2159 * The offset is ignored for array or struct copies, it's only for
2160 * scalars or vectors into vectors or matrices.
2161 *
2162 * With identical types on both sides and zero offset it's clone()
2163 * without creating a new object.
2164 */
2165
2166 void copy_offset(ir_constant *src, int offset);
2167
2168 /**
2169 * Copy the values on another constant at a given offset and
2170 * following an assign-like mask.
2171 *
2172 * The mask is ignored for scalars.
2173 *
2174 * Note that this function only handles what assign can handle,
2175 * i.e. at most a vector as source and a column of a matrix as
2176 * destination.
2177 */
2178
2179 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2180
2181 /**
2182 * Determine whether a constant has the same value as another constant
2183 *
2184 * \sa ir_constant::is_zero, ir_constant::is_one,
2185 * ir_constant::is_negative_one, ir_constant::is_basis
2186 */
2187 bool has_value(const ir_constant *) const;
2188
2189 virtual bool is_zero() const;
2190 virtual bool is_one() const;
2191 virtual bool is_negative_one() const;
2192 virtual bool is_basis() const;
2193
2194 /**
2195 * Value of the constant.
2196 *
2197 * The field used to back the values supplied by the constant is determined
2198 * by the type associated with the \c ir_instruction. Constants may be
2199 * scalars, vectors, or matrices.
2200 */
2201 union ir_constant_data value;
2202
2203 /* Array elements */
2204 ir_constant **array_elements;
2205
2206 /* Structure fields */
2207 exec_list components;
2208
2209 private:
2210 /**
2211 * Parameterless constructor only used by the clone method
2212 */
2213 ir_constant(void);
2214 };
2215
2216 /*@}*/
2217
2218 /**
2219 * IR instruction to emit a vertex in a geometry shader.
2220 */
2221 class ir_emit_vertex : public ir_instruction {
2222 public:
2223 ir_emit_vertex()
2224 {
2225 ir_type = ir_type_emit_vertex;
2226 }
2227
2228 virtual void accept(ir_visitor *v)
2229 {
2230 v->visit(this);
2231 }
2232
2233 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *) const
2234 {
2235 return new(mem_ctx) ir_emit_vertex();
2236 }
2237
2238 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2239 };
2240
2241 /**
2242 * IR instruction to complete the current primitive and start a new one in a
2243 * geometry shader.
2244 */
2245 class ir_end_primitive : public ir_instruction {
2246 public:
2247 ir_end_primitive()
2248 {
2249 ir_type = ir_type_end_primitive;
2250 }
2251
2252 virtual void accept(ir_visitor *v)
2253 {
2254 v->visit(this);
2255 }
2256
2257 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *) const
2258 {
2259 return new(mem_ctx) ir_end_primitive();
2260 }
2261
2262 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2263 };
2264
2265 /**
2266 * Apply a visitor to each IR node in a list
2267 */
2268 void
2269 visit_exec_list(exec_list *list, ir_visitor *visitor);
2270
2271 /**
2272 * Validate invariants on each IR node in a list
2273 */
2274 void validate_ir_tree(exec_list *instructions);
2275
2276 struct _mesa_glsl_parse_state;
2277 struct gl_shader_program;
2278
2279 /**
2280 * Detect whether an unlinked shader contains static recursion
2281 *
2282 * If the list of instructions is determined to contain static recursion,
2283 * \c _mesa_glsl_error will be called to emit error messages for each function
2284 * that is in the recursion cycle.
2285 */
2286 void
2287 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2288 exec_list *instructions);
2289
2290 /**
2291 * Detect whether a linked shader contains static recursion
2292 *
2293 * If the list of instructions is determined to contain static recursion,
2294 * \c link_error_printf will be called to emit error messages for each function
2295 * that is in the recursion cycle. In addition,
2296 * \c gl_shader_program::LinkStatus will be set to false.
2297 */
2298 void
2299 detect_recursion_linked(struct gl_shader_program *prog,
2300 exec_list *instructions);
2301
2302 /**
2303 * Make a clone of each IR instruction in a list
2304 *
2305 * \param in List of IR instructions that are to be cloned
2306 * \param out List to hold the cloned instructions
2307 */
2308 void
2309 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2310
2311 extern void
2312 _mesa_glsl_initialize_variables(exec_list *instructions,
2313 struct _mesa_glsl_parse_state *state);
2314
2315 extern void
2316 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2317
2318 extern void
2319 _mesa_glsl_initialize_builtin_functions();
2320
2321 extern ir_function_signature *
2322 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2323 const char *name, exec_list *actual_parameters);
2324
2325 extern gl_shader *
2326 _mesa_glsl_get_builtin_function_shader(void);
2327
2328 extern void
2329 _mesa_glsl_release_functions(void);
2330
2331 extern void
2332 _mesa_glsl_release_builtin_functions(void);
2333
2334 extern void
2335 reparent_ir(exec_list *list, void *mem_ctx);
2336
2337 struct glsl_symbol_table;
2338
2339 extern void
2340 import_prototypes(const exec_list *source, exec_list *dest,
2341 struct glsl_symbol_table *symbols, void *mem_ctx);
2342
2343 extern bool
2344 ir_has_call(ir_instruction *ir);
2345
2346 extern void
2347 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2348 GLenum shader_type);
2349
2350 extern char *
2351 prototype_string(const glsl_type *return_type, const char *name,
2352 exec_list *parameters);
2353
2354 const char *
2355 mode_string(const ir_variable *var);
2356
2357 extern "C" {
2358 #endif /* __cplusplus */
2359
2360 extern void _mesa_print_ir(struct exec_list *instructions,
2361 struct _mesa_glsl_parse_state *state);
2362
2363 #ifdef __cplusplus
2364 } /* extern "C" */
2365 #endif
2366
2367 unsigned
2368 vertices_per_prim(GLenum prim);
2369
2370 #endif /* IR_H */