98951221b020b458e7dd688db7deb3fef38c9c39
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine how this variable should be interpolated based on its
435 * interpolation qualifier (if present), whether it is gl_Color or
436 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
437 * state.
438 *
439 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
440 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
441 */
442 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
443
444 /**
445 * Determine whether or not a variable is part of a uniform or
446 * shader storage block.
447 */
448 inline bool is_in_buffer_block() const
449 {
450 return (this->data.mode == ir_var_uniform ||
451 this->data.mode == ir_var_shader_storage) &&
452 this->interface_type != NULL;
453 }
454
455 /**
456 * Determine whether or not a variable is the declaration of an interface
457 * block
458 *
459 * For the first declaration below, there will be an \c ir_variable named
460 * "instance" whose type and whose instance_type will be the same
461 * \cglsl_type. For the second declaration, there will be an \c ir_variable
462 * named "f" whose type is float and whose instance_type is B2.
463 *
464 * "instance" is an interface instance variable, but "f" is not.
465 *
466 * uniform B1 {
467 * float f;
468 * } instance;
469 *
470 * uniform B2 {
471 * float f;
472 * };
473 */
474 inline bool is_interface_instance() const
475 {
476 return this->type->without_array() == this->interface_type;
477 }
478
479 /**
480 * Set this->interface_type on a newly created variable.
481 */
482 void init_interface_type(const struct glsl_type *type)
483 {
484 assert(this->interface_type == NULL);
485 this->interface_type = type;
486 if (this->is_interface_instance()) {
487 this->u.max_ifc_array_access =
488 rzalloc_array(this, unsigned, type->length);
489 }
490 }
491
492 /**
493 * Change this->interface_type on a variable that previously had a
494 * different, but compatible, interface_type. This is used during linking
495 * to set the size of arrays in interface blocks.
496 */
497 void change_interface_type(const struct glsl_type *type)
498 {
499 if (this->u.max_ifc_array_access != NULL) {
500 /* max_ifc_array_access has already been allocated, so make sure the
501 * new interface has the same number of fields as the old one.
502 */
503 assert(this->interface_type->length == type->length);
504 }
505 this->interface_type = type;
506 }
507
508 /**
509 * Change this->interface_type on a variable that previously had a
510 * different, and incompatible, interface_type. This is used during
511 * compilation to handle redeclaration of the built-in gl_PerVertex
512 * interface block.
513 */
514 void reinit_interface_type(const struct glsl_type *type)
515 {
516 if (this->u.max_ifc_array_access != NULL) {
517 #ifndef NDEBUG
518 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
519 * it defines have been accessed yet; so it's safe to throw away the
520 * old max_ifc_array_access pointer, since all of its values are
521 * zero.
522 */
523 for (unsigned i = 0; i < this->interface_type->length; i++)
524 assert(this->u.max_ifc_array_access[i] == 0);
525 #endif
526 ralloc_free(this->u.max_ifc_array_access);
527 this->u.max_ifc_array_access = NULL;
528 }
529 this->interface_type = NULL;
530 init_interface_type(type);
531 }
532
533 const glsl_type *get_interface_type() const
534 {
535 return this->interface_type;
536 }
537
538 /**
539 * Get the max_ifc_array_access pointer
540 *
541 * A "set" function is not needed because the array is dynmically allocated
542 * as necessary.
543 */
544 inline unsigned *get_max_ifc_array_access()
545 {
546 assert(this->data._num_state_slots == 0);
547 return this->u.max_ifc_array_access;
548 }
549
550 inline unsigned get_num_state_slots() const
551 {
552 assert(!this->is_interface_instance()
553 || this->data._num_state_slots == 0);
554 return this->data._num_state_slots;
555 }
556
557 inline void set_num_state_slots(unsigned n)
558 {
559 assert(!this->is_interface_instance()
560 || n == 0);
561 this->data._num_state_slots = n;
562 }
563
564 inline ir_state_slot *get_state_slots()
565 {
566 return this->is_interface_instance() ? NULL : this->u.state_slots;
567 }
568
569 inline const ir_state_slot *get_state_slots() const
570 {
571 return this->is_interface_instance() ? NULL : this->u.state_slots;
572 }
573
574 inline ir_state_slot *allocate_state_slots(unsigned n)
575 {
576 assert(!this->is_interface_instance());
577
578 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
579 this->data._num_state_slots = 0;
580
581 if (this->u.state_slots != NULL)
582 this->data._num_state_slots = n;
583
584 return this->u.state_slots;
585 }
586
587 inline bool is_name_ralloced() const
588 {
589 return this->name != ir_variable::tmp_name;
590 }
591
592 /**
593 * Enable emitting extension warnings for this variable
594 */
595 void enable_extension_warning(const char *extension);
596
597 /**
598 * Get the extension warning string for this variable
599 *
600 * If warnings are not enabled, \c NULL is returned.
601 */
602 const char *get_extension_warning() const;
603
604 /**
605 * Declared type of the variable
606 */
607 const struct glsl_type *type;
608
609 /**
610 * Declared name of the variable
611 */
612 const char *name;
613
614 struct ir_variable_data {
615
616 /**
617 * Is the variable read-only?
618 *
619 * This is set for variables declared as \c const, shader inputs,
620 * and uniforms.
621 */
622 unsigned read_only:1;
623 unsigned centroid:1;
624 unsigned sample:1;
625 unsigned patch:1;
626 unsigned invariant:1;
627 unsigned precise:1;
628
629 /**
630 * Has this variable been used for reading or writing?
631 *
632 * Several GLSL semantic checks require knowledge of whether or not a
633 * variable has been used. For example, it is an error to redeclare a
634 * variable as invariant after it has been used.
635 *
636 * This is only maintained in the ast_to_hir.cpp path, not in
637 * Mesa's fixed function or ARB program paths.
638 */
639 unsigned used:1;
640
641 /**
642 * Has this variable been statically assigned?
643 *
644 * This answers whether the variable was assigned in any path of
645 * the shader during ast_to_hir. This doesn't answer whether it is
646 * still written after dead code removal, nor is it maintained in
647 * non-ast_to_hir.cpp (GLSL parsing) paths.
648 */
649 unsigned assigned:1;
650
651 /**
652 * Enum indicating how the variable was declared. See
653 * ir_var_declaration_type.
654 *
655 * This is used to detect certain kinds of illegal variable redeclarations.
656 */
657 unsigned how_declared:2;
658
659 /**
660 * Storage class of the variable.
661 *
662 * \sa ir_variable_mode
663 */
664 unsigned mode:4;
665
666 /**
667 * Interpolation mode for shader inputs / outputs
668 *
669 * \sa ir_variable_interpolation
670 */
671 unsigned interpolation:2;
672
673 /**
674 * \name ARB_fragment_coord_conventions
675 * @{
676 */
677 unsigned origin_upper_left:1;
678 unsigned pixel_center_integer:1;
679 /*@}*/
680
681 /**
682 * Was the location explicitly set in the shader?
683 *
684 * If the location is explicitly set in the shader, it \b cannot be changed
685 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
686 * no effect).
687 */
688 unsigned explicit_location:1;
689 unsigned explicit_index:1;
690
691 /**
692 * Was an initial binding explicitly set in the shader?
693 *
694 * If so, constant_value contains an integer ir_constant representing the
695 * initial binding point.
696 */
697 unsigned explicit_binding:1;
698
699 /**
700 * Does this variable have an initializer?
701 *
702 * This is used by the linker to cross-validiate initializers of global
703 * variables.
704 */
705 unsigned has_initializer:1;
706
707 /**
708 * Is this variable a generic output or input that has not yet been matched
709 * up to a variable in another stage of the pipeline?
710 *
711 * This is used by the linker as scratch storage while assigning locations
712 * to generic inputs and outputs.
713 */
714 unsigned is_unmatched_generic_inout:1;
715
716 /**
717 * If non-zero, then this variable may be packed along with other variables
718 * into a single varying slot, so this offset should be applied when
719 * accessing components. For example, an offset of 1 means that the x
720 * component of this variable is actually stored in component y of the
721 * location specified by \c location.
722 */
723 unsigned location_frac:2;
724
725 /**
726 * Layout of the matrix. Uses glsl_matrix_layout values.
727 */
728 unsigned matrix_layout:2;
729
730 /**
731 * Non-zero if this variable was created by lowering a named interface
732 * block which was not an array.
733 *
734 * Note that this variable and \c from_named_ifc_block_array will never
735 * both be non-zero.
736 */
737 unsigned from_named_ifc_block_nonarray:1;
738
739 /**
740 * Non-zero if this variable was created by lowering a named interface
741 * block which was an array.
742 *
743 * Note that this variable and \c from_named_ifc_block_nonarray will never
744 * both be non-zero.
745 */
746 unsigned from_named_ifc_block_array:1;
747
748 /**
749 * Non-zero if the variable must be a shader input. This is useful for
750 * constraints on function parameters.
751 */
752 unsigned must_be_shader_input:1;
753
754 /**
755 * Output index for dual source blending.
756 *
757 * \note
758 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
759 * source blending.
760 */
761 unsigned index:1;
762
763 /**
764 * \brief Layout qualifier for gl_FragDepth.
765 *
766 * This is not equal to \c ir_depth_layout_none if and only if this
767 * variable is \c gl_FragDepth and a layout qualifier is specified.
768 */
769 ir_depth_layout depth_layout:3;
770
771 /**
772 * ARB_shader_image_load_store qualifiers.
773 */
774 unsigned image_read_only:1; /**< "readonly" qualifier. */
775 unsigned image_write_only:1; /**< "writeonly" qualifier. */
776 unsigned image_coherent:1;
777 unsigned image_volatile:1;
778 unsigned image_restrict:1;
779
780 /**
781 * Emit a warning if this variable is accessed.
782 */
783 private:
784 uint8_t warn_extension_index;
785
786 public:
787 /** Image internal format if specified explicitly, otherwise GL_NONE. */
788 uint16_t image_format;
789
790 private:
791 /**
792 * Number of state slots used
793 *
794 * \note
795 * This could be stored in as few as 7-bits, if necessary. If it is made
796 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
797 * be safe.
798 */
799 uint16_t _num_state_slots;
800
801 public:
802 /**
803 * Initial binding point for a sampler, atomic, or UBO.
804 *
805 * For array types, this represents the binding point for the first element.
806 */
807 int16_t binding;
808
809 /**
810 * Storage location of the base of this variable
811 *
812 * The precise meaning of this field depends on the nature of the variable.
813 *
814 * - Vertex shader input: one of the values from \c gl_vert_attrib.
815 * - Vertex shader output: one of the values from \c gl_varying_slot.
816 * - Geometry shader input: one of the values from \c gl_varying_slot.
817 * - Geometry shader output: one of the values from \c gl_varying_slot.
818 * - Fragment shader input: one of the values from \c gl_varying_slot.
819 * - Fragment shader output: one of the values from \c gl_frag_result.
820 * - Uniforms: Per-stage uniform slot number for default uniform block.
821 * - Uniforms: Index within the uniform block definition for UBO members.
822 * - Other: This field is not currently used.
823 *
824 * If the variable is a uniform, shader input, or shader output, and the
825 * slot has not been assigned, the value will be -1.
826 */
827 int location;
828
829 /**
830 * Vertex stream output identifier.
831 */
832 unsigned stream;
833
834 /**
835 * Location an atomic counter is stored at.
836 */
837 struct {
838 unsigned offset;
839 } atomic;
840
841 /**
842 * Highest element accessed with a constant expression array index
843 *
844 * Not used for non-array variables.
845 */
846 unsigned max_array_access;
847
848 /**
849 * Allow (only) ir_variable direct access private members.
850 */
851 friend class ir_variable;
852 } data;
853
854 /**
855 * Value assigned in the initializer of a variable declared "const"
856 */
857 ir_constant *constant_value;
858
859 /**
860 * Constant expression assigned in the initializer of the variable
861 *
862 * \warning
863 * This field and \c ::constant_value are distinct. Even if the two fields
864 * refer to constants with the same value, they must point to separate
865 * objects.
866 */
867 ir_constant *constant_initializer;
868
869 private:
870 static const char *const warn_extension_table[];
871
872 union {
873 /**
874 * For variables which satisfy the is_interface_instance() predicate,
875 * this points to an array of integers such that if the ith member of
876 * the interface block is an array, max_ifc_array_access[i] is the
877 * maximum array element of that member that has been accessed. If the
878 * ith member of the interface block is not an array,
879 * max_ifc_array_access[i] is unused.
880 *
881 * For variables whose type is not an interface block, this pointer is
882 * NULL.
883 */
884 unsigned *max_ifc_array_access;
885
886 /**
887 * Built-in state that backs this uniform
888 *
889 * Once set at variable creation, \c state_slots must remain invariant.
890 *
891 * If the variable is not a uniform, \c _num_state_slots will be zero
892 * and \c state_slots will be \c NULL.
893 */
894 ir_state_slot *state_slots;
895 } u;
896
897 /**
898 * For variables that are in an interface block or are an instance of an
899 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
900 *
901 * \sa ir_variable::location
902 */
903 const glsl_type *interface_type;
904
905 /**
906 * Name used for anonymous compiler temporaries
907 */
908 static const char tmp_name[];
909
910 public:
911 /**
912 * Should the construct keep names for ir_var_temporary variables?
913 *
914 * When this global is false, names passed to the constructor for
915 * \c ir_var_temporary variables will be dropped. Instead, the variable will
916 * be named "compiler_temp". This name will be in static storage.
917 *
918 * \warning
919 * \b NEVER change the mode of an \c ir_var_temporary.
920 *
921 * \warning
922 * This variable is \b not thread-safe. It is global, \b not
923 * per-context. It begins life false. A context can, at some point, make
924 * it true. From that point on, it will be true forever. This should be
925 * okay since it will only be set true while debugging.
926 */
927 static bool temporaries_allocate_names;
928 };
929
930 /**
931 * A function that returns whether a built-in function is available in the
932 * current shading language (based on version, ES or desktop, and extensions).
933 */
934 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
935
936 /*@{*/
937 /**
938 * The representation of a function instance; may be the full definition or
939 * simply a prototype.
940 */
941 class ir_function_signature : public ir_instruction {
942 /* An ir_function_signature will be part of the list of signatures in
943 * an ir_function.
944 */
945 public:
946 ir_function_signature(const glsl_type *return_type,
947 builtin_available_predicate builtin_avail = NULL);
948
949 virtual ir_function_signature *clone(void *mem_ctx,
950 struct hash_table *ht) const;
951 ir_function_signature *clone_prototype(void *mem_ctx,
952 struct hash_table *ht) const;
953
954 virtual void accept(ir_visitor *v)
955 {
956 v->visit(this);
957 }
958
959 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
960
961 /**
962 * Attempt to evaluate this function as a constant expression,
963 * given a list of the actual parameters and the variable context.
964 * Returns NULL for non-built-ins.
965 */
966 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
967
968 /**
969 * Get the name of the function for which this is a signature
970 */
971 const char *function_name() const;
972
973 /**
974 * Get a handle to the function for which this is a signature
975 *
976 * There is no setter function, this function returns a \c const pointer,
977 * and \c ir_function_signature::_function is private for a reason. The
978 * only way to make a connection between a function and function signature
979 * is via \c ir_function::add_signature. This helps ensure that certain
980 * invariants (i.e., a function signature is in the list of signatures for
981 * its \c _function) are met.
982 *
983 * \sa ir_function::add_signature
984 */
985 inline const class ir_function *function() const
986 {
987 return this->_function;
988 }
989
990 /**
991 * Check whether the qualifiers match between this signature's parameters
992 * and the supplied parameter list. If not, returns the name of the first
993 * parameter with mismatched qualifiers (for use in error messages).
994 */
995 const char *qualifiers_match(exec_list *params);
996
997 /**
998 * Replace the current parameter list with the given one. This is useful
999 * if the current information came from a prototype, and either has invalid
1000 * or missing parameter names.
1001 */
1002 void replace_parameters(exec_list *new_params);
1003
1004 /**
1005 * Function return type.
1006 *
1007 * \note This discards the optional precision qualifier.
1008 */
1009 const struct glsl_type *return_type;
1010
1011 /**
1012 * List of ir_variable of function parameters.
1013 *
1014 * This represents the storage. The paramaters passed in a particular
1015 * call will be in ir_call::actual_paramaters.
1016 */
1017 struct exec_list parameters;
1018
1019 /** Whether or not this function has a body (which may be empty). */
1020 unsigned is_defined:1;
1021
1022 /** Whether or not this function signature is a built-in. */
1023 bool is_builtin() const;
1024
1025 /**
1026 * Whether or not this function is an intrinsic to be implemented
1027 * by the driver.
1028 */
1029 bool is_intrinsic;
1030
1031 /** Whether or not a built-in is available for this shader. */
1032 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1033
1034 /** Body of instructions in the function. */
1035 struct exec_list body;
1036
1037 private:
1038 /**
1039 * A function pointer to a predicate that answers whether a built-in
1040 * function is available in the current shader. NULL if not a built-in.
1041 */
1042 builtin_available_predicate builtin_avail;
1043
1044 /** Function of which this signature is one overload. */
1045 class ir_function *_function;
1046
1047 /** Function signature of which this one is a prototype clone */
1048 const ir_function_signature *origin;
1049
1050 friend class ir_function;
1051
1052 /**
1053 * Helper function to run a list of instructions for constant
1054 * expression evaluation.
1055 *
1056 * The hash table represents the values of the visible variables.
1057 * There are no scoping issues because the table is indexed on
1058 * ir_variable pointers, not variable names.
1059 *
1060 * Returns false if the expression is not constant, true otherwise,
1061 * and the value in *result if result is non-NULL.
1062 */
1063 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1064 struct hash_table *variable_context,
1065 ir_constant **result);
1066 };
1067
1068
1069 /**
1070 * Header for tracking multiple overloaded functions with the same name.
1071 * Contains a list of ir_function_signatures representing each of the
1072 * actual functions.
1073 */
1074 class ir_function : public ir_instruction {
1075 public:
1076 ir_function(const char *name);
1077
1078 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1079
1080 virtual void accept(ir_visitor *v)
1081 {
1082 v->visit(this);
1083 }
1084
1085 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1086
1087 void add_signature(ir_function_signature *sig)
1088 {
1089 sig->_function = this;
1090 this->signatures.push_tail(sig);
1091 }
1092
1093 /**
1094 * Find a signature that matches a set of actual parameters, taking implicit
1095 * conversions into account. Also flags whether the match was exact.
1096 */
1097 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1098 const exec_list *actual_param,
1099 bool allow_builtins,
1100 bool *match_is_exact);
1101
1102 /**
1103 * Find a signature that matches a set of actual parameters, taking implicit
1104 * conversions into account.
1105 */
1106 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1107 const exec_list *actual_param,
1108 bool allow_builtins);
1109
1110 /**
1111 * Find a signature that exactly matches a set of actual parameters without
1112 * any implicit type conversions.
1113 */
1114 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1115 const exec_list *actual_ps);
1116
1117 /**
1118 * Name of the function.
1119 */
1120 const char *name;
1121
1122 /** Whether or not this function has a signature that isn't a built-in. */
1123 bool has_user_signature();
1124
1125 /**
1126 * List of ir_function_signature for each overloaded function with this name.
1127 */
1128 struct exec_list signatures;
1129 };
1130
1131 inline const char *ir_function_signature::function_name() const
1132 {
1133 return this->_function->name;
1134 }
1135 /*@}*/
1136
1137
1138 /**
1139 * IR instruction representing high-level if-statements
1140 */
1141 class ir_if : public ir_instruction {
1142 public:
1143 ir_if(ir_rvalue *condition)
1144 : ir_instruction(ir_type_if), condition(condition)
1145 {
1146 }
1147
1148 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1149
1150 virtual void accept(ir_visitor *v)
1151 {
1152 v->visit(this);
1153 }
1154
1155 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1156
1157 ir_rvalue *condition;
1158 /** List of ir_instruction for the body of the then branch */
1159 exec_list then_instructions;
1160 /** List of ir_instruction for the body of the else branch */
1161 exec_list else_instructions;
1162 };
1163
1164
1165 /**
1166 * IR instruction representing a high-level loop structure.
1167 */
1168 class ir_loop : public ir_instruction {
1169 public:
1170 ir_loop();
1171
1172 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1173
1174 virtual void accept(ir_visitor *v)
1175 {
1176 v->visit(this);
1177 }
1178
1179 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1180
1181 /** List of ir_instruction that make up the body of the loop. */
1182 exec_list body_instructions;
1183 };
1184
1185
1186 class ir_assignment : public ir_instruction {
1187 public:
1188 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1189
1190 /**
1191 * Construct an assignment with an explicit write mask
1192 *
1193 * \note
1194 * Since a write mask is supplied, the LHS must already be a bare
1195 * \c ir_dereference. The cannot be any swizzles in the LHS.
1196 */
1197 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1198 unsigned write_mask);
1199
1200 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1201
1202 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1203
1204 virtual void accept(ir_visitor *v)
1205 {
1206 v->visit(this);
1207 }
1208
1209 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1210
1211 /**
1212 * Get a whole variable written by an assignment
1213 *
1214 * If the LHS of the assignment writes a whole variable, the variable is
1215 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1216 * assignment are:
1217 *
1218 * - Assigning to a scalar
1219 * - Assigning to all components of a vector
1220 * - Whole array (or matrix) assignment
1221 * - Whole structure assignment
1222 */
1223 ir_variable *whole_variable_written();
1224
1225 /**
1226 * Set the LHS of an assignment
1227 */
1228 void set_lhs(ir_rvalue *lhs);
1229
1230 /**
1231 * Left-hand side of the assignment.
1232 *
1233 * This should be treated as read only. If you need to set the LHS of an
1234 * assignment, use \c ir_assignment::set_lhs.
1235 */
1236 ir_dereference *lhs;
1237
1238 /**
1239 * Value being assigned
1240 */
1241 ir_rvalue *rhs;
1242
1243 /**
1244 * Optional condition for the assignment.
1245 */
1246 ir_rvalue *condition;
1247
1248
1249 /**
1250 * Component mask written
1251 *
1252 * For non-vector types in the LHS, this field will be zero. For vector
1253 * types, a bit will be set for each component that is written. Note that
1254 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1255 *
1256 * A partially-set write mask means that each enabled channel gets
1257 * the value from a consecutive channel of the rhs. For example,
1258 * to write just .xyw of gl_FrontColor with color:
1259 *
1260 * (assign (constant bool (1)) (xyw)
1261 * (var_ref gl_FragColor)
1262 * (swiz xyw (var_ref color)))
1263 */
1264 unsigned write_mask:4;
1265 };
1266
1267 /* Update ir_expression::get_num_operands() and operator_strs when
1268 * updating this list.
1269 */
1270 enum ir_expression_operation {
1271 ir_unop_bit_not,
1272 ir_unop_logic_not,
1273 ir_unop_neg,
1274 ir_unop_abs,
1275 ir_unop_sign,
1276 ir_unop_rcp,
1277 ir_unop_rsq,
1278 ir_unop_sqrt,
1279 ir_unop_exp, /**< Log base e on gentype */
1280 ir_unop_log, /**< Natural log on gentype */
1281 ir_unop_exp2,
1282 ir_unop_log2,
1283 ir_unop_f2i, /**< Float-to-integer conversion. */
1284 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1285 ir_unop_i2f, /**< Integer-to-float conversion. */
1286 ir_unop_f2b, /**< Float-to-boolean conversion */
1287 ir_unop_b2f, /**< Boolean-to-float conversion */
1288 ir_unop_i2b, /**< int-to-boolean conversion */
1289 ir_unop_b2i, /**< Boolean-to-int conversion */
1290 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1291 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1292 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1293 ir_unop_d2f, /**< Double-to-float conversion. */
1294 ir_unop_f2d, /**< Float-to-double conversion. */
1295 ir_unop_d2i, /**< Double-to-integer conversion. */
1296 ir_unop_i2d, /**< Integer-to-double conversion. */
1297 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1298 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1299 ir_unop_d2b, /**< Double-to-boolean conversion. */
1300 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1301 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1302 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1303 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1304 ir_unop_any,
1305
1306 /**
1307 * \name Unary floating-point rounding operations.
1308 */
1309 /*@{*/
1310 ir_unop_trunc,
1311 ir_unop_ceil,
1312 ir_unop_floor,
1313 ir_unop_fract,
1314 ir_unop_round_even,
1315 /*@}*/
1316
1317 /**
1318 * \name Trigonometric operations.
1319 */
1320 /*@{*/
1321 ir_unop_sin,
1322 ir_unop_cos,
1323 /*@}*/
1324
1325 /**
1326 * \name Partial derivatives.
1327 */
1328 /*@{*/
1329 ir_unop_dFdx,
1330 ir_unop_dFdx_coarse,
1331 ir_unop_dFdx_fine,
1332 ir_unop_dFdy,
1333 ir_unop_dFdy_coarse,
1334 ir_unop_dFdy_fine,
1335 /*@}*/
1336
1337 /**
1338 * \name Floating point pack and unpack operations.
1339 */
1340 /*@{*/
1341 ir_unop_pack_snorm_2x16,
1342 ir_unop_pack_snorm_4x8,
1343 ir_unop_pack_unorm_2x16,
1344 ir_unop_pack_unorm_4x8,
1345 ir_unop_pack_half_2x16,
1346 ir_unop_unpack_snorm_2x16,
1347 ir_unop_unpack_snorm_4x8,
1348 ir_unop_unpack_unorm_2x16,
1349 ir_unop_unpack_unorm_4x8,
1350 ir_unop_unpack_half_2x16,
1351 /*@}*/
1352
1353 /**
1354 * \name Lowered floating point unpacking operations.
1355 *
1356 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1357 */
1358 /*@{*/
1359 ir_unop_unpack_half_2x16_split_x,
1360 ir_unop_unpack_half_2x16_split_y,
1361 /*@}*/
1362
1363 /**
1364 * \name Bit operations, part of ARB_gpu_shader5.
1365 */
1366 /*@{*/
1367 ir_unop_bitfield_reverse,
1368 ir_unop_bit_count,
1369 ir_unop_find_msb,
1370 ir_unop_find_lsb,
1371 /*@}*/
1372
1373 ir_unop_saturate,
1374
1375 /**
1376 * \name Double packing, part of ARB_gpu_shader_fp64.
1377 */
1378 /*@{*/
1379 ir_unop_pack_double_2x32,
1380 ir_unop_unpack_double_2x32,
1381 /*@}*/
1382
1383 ir_unop_frexp_sig,
1384 ir_unop_frexp_exp,
1385
1386 ir_unop_noise,
1387
1388 /**
1389 * Interpolate fs input at centroid
1390 *
1391 * operand0 is the fs input.
1392 */
1393 ir_unop_interpolate_at_centroid,
1394
1395 /**
1396 * A sentinel marking the last of the unary operations.
1397 */
1398 ir_last_unop = ir_unop_interpolate_at_centroid,
1399
1400 ir_binop_add,
1401 ir_binop_sub,
1402 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1403 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1404 ir_binop_div,
1405
1406 /**
1407 * Returns the carry resulting from the addition of the two arguments.
1408 */
1409 /*@{*/
1410 ir_binop_carry,
1411 /*@}*/
1412
1413 /**
1414 * Returns the borrow resulting from the subtraction of the second argument
1415 * from the first argument.
1416 */
1417 /*@{*/
1418 ir_binop_borrow,
1419 /*@}*/
1420
1421 /**
1422 * Takes one of two combinations of arguments:
1423 *
1424 * - mod(vecN, vecN)
1425 * - mod(vecN, float)
1426 *
1427 * Does not take integer types.
1428 */
1429 ir_binop_mod,
1430
1431 /**
1432 * \name Binary comparison operators which return a boolean vector.
1433 * The type of both operands must be equal.
1434 */
1435 /*@{*/
1436 ir_binop_less,
1437 ir_binop_greater,
1438 ir_binop_lequal,
1439 ir_binop_gequal,
1440 ir_binop_equal,
1441 ir_binop_nequal,
1442 /**
1443 * Returns single boolean for whether all components of operands[0]
1444 * equal the components of operands[1].
1445 */
1446 ir_binop_all_equal,
1447 /**
1448 * Returns single boolean for whether any component of operands[0]
1449 * is not equal to the corresponding component of operands[1].
1450 */
1451 ir_binop_any_nequal,
1452 /*@}*/
1453
1454 /**
1455 * \name Bit-wise binary operations.
1456 */
1457 /*@{*/
1458 ir_binop_lshift,
1459 ir_binop_rshift,
1460 ir_binop_bit_and,
1461 ir_binop_bit_xor,
1462 ir_binop_bit_or,
1463 /*@}*/
1464
1465 ir_binop_logic_and,
1466 ir_binop_logic_xor,
1467 ir_binop_logic_or,
1468
1469 ir_binop_dot,
1470 ir_binop_min,
1471 ir_binop_max,
1472
1473 ir_binop_pow,
1474
1475 /**
1476 * \name Lowered floating point packing operations.
1477 *
1478 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1479 */
1480 /*@{*/
1481 ir_binop_pack_half_2x16_split,
1482 /*@}*/
1483
1484 /**
1485 * \name First half of a lowered bitfieldInsert() operation.
1486 *
1487 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1488 */
1489 /*@{*/
1490 ir_binop_bfm,
1491 /*@}*/
1492
1493 /**
1494 * Load a value the size of a given GLSL type from a uniform block.
1495 *
1496 * operand0 is the ir_constant uniform block index in the linked shader.
1497 * operand1 is a byte offset within the uniform block.
1498 */
1499 ir_binop_ubo_load,
1500
1501 /**
1502 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1503 */
1504 /*@{*/
1505 ir_binop_ldexp,
1506 /*@}*/
1507
1508 /**
1509 * Extract a scalar from a vector
1510 *
1511 * operand0 is the vector
1512 * operand1 is the index of the field to read from operand0
1513 */
1514 ir_binop_vector_extract,
1515
1516 /**
1517 * Interpolate fs input at offset
1518 *
1519 * operand0 is the fs input
1520 * operand1 is the offset from the pixel center
1521 */
1522 ir_binop_interpolate_at_offset,
1523
1524 /**
1525 * Interpolate fs input at sample position
1526 *
1527 * operand0 is the fs input
1528 * operand1 is the sample ID
1529 */
1530 ir_binop_interpolate_at_sample,
1531
1532 /**
1533 * A sentinel marking the last of the binary operations.
1534 */
1535 ir_last_binop = ir_binop_interpolate_at_sample,
1536
1537 /**
1538 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1539 */
1540 /*@{*/
1541 ir_triop_fma,
1542 /*@}*/
1543
1544 ir_triop_lrp,
1545
1546 /**
1547 * \name Conditional Select
1548 *
1549 * A vector conditional select instruction (like ?:, but operating per-
1550 * component on vectors).
1551 *
1552 * \see lower_instructions_visitor::ldexp_to_arith
1553 */
1554 /*@{*/
1555 ir_triop_csel,
1556 /*@}*/
1557
1558 /**
1559 * \name Second half of a lowered bitfieldInsert() operation.
1560 *
1561 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1562 */
1563 /*@{*/
1564 ir_triop_bfi,
1565 /*@}*/
1566
1567 ir_triop_bitfield_extract,
1568
1569 /**
1570 * Generate a value with one field of a vector changed
1571 *
1572 * operand0 is the vector
1573 * operand1 is the value to write into the vector result
1574 * operand2 is the index in operand0 to be modified
1575 */
1576 ir_triop_vector_insert,
1577
1578 /**
1579 * A sentinel marking the last of the ternary operations.
1580 */
1581 ir_last_triop = ir_triop_vector_insert,
1582
1583 ir_quadop_bitfield_insert,
1584
1585 ir_quadop_vector,
1586
1587 /**
1588 * A sentinel marking the last of the ternary operations.
1589 */
1590 ir_last_quadop = ir_quadop_vector,
1591
1592 /**
1593 * A sentinel marking the last of all operations.
1594 */
1595 ir_last_opcode = ir_quadop_vector
1596 };
1597
1598 class ir_expression : public ir_rvalue {
1599 public:
1600 ir_expression(int op, const struct glsl_type *type,
1601 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1602 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1603
1604 /**
1605 * Constructor for unary operation expressions
1606 */
1607 ir_expression(int op, ir_rvalue *);
1608
1609 /**
1610 * Constructor for binary operation expressions
1611 */
1612 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1613
1614 /**
1615 * Constructor for ternary operation expressions
1616 */
1617 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1618
1619 virtual bool equals(const ir_instruction *ir,
1620 enum ir_node_type ignore = ir_type_unset) const;
1621
1622 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1623
1624 /**
1625 * Attempt to constant-fold the expression
1626 *
1627 * The "variable_context" hash table links ir_variable * to ir_constant *
1628 * that represent the variables' values. \c NULL represents an empty
1629 * context.
1630 *
1631 * If the expression cannot be constant folded, this method will return
1632 * \c NULL.
1633 */
1634 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1635
1636 /**
1637 * Determine the number of operands used by an expression
1638 */
1639 static unsigned int get_num_operands(ir_expression_operation);
1640
1641 /**
1642 * Determine the number of operands used by an expression
1643 */
1644 unsigned int get_num_operands() const
1645 {
1646 return (this->operation == ir_quadop_vector)
1647 ? this->type->vector_elements : get_num_operands(operation);
1648 }
1649
1650 /**
1651 * Return whether the expression operates on vectors horizontally.
1652 */
1653 bool is_horizontal() const
1654 {
1655 return operation == ir_binop_all_equal ||
1656 operation == ir_binop_any_nequal ||
1657 operation == ir_unop_any ||
1658 operation == ir_binop_dot ||
1659 operation == ir_quadop_vector;
1660 }
1661
1662 /**
1663 * Return a string representing this expression's operator.
1664 */
1665 const char *operator_string();
1666
1667 /**
1668 * Return a string representing this expression's operator.
1669 */
1670 static const char *operator_string(ir_expression_operation);
1671
1672
1673 /**
1674 * Do a reverse-lookup to translate the given string into an operator.
1675 */
1676 static ir_expression_operation get_operator(const char *);
1677
1678 virtual void accept(ir_visitor *v)
1679 {
1680 v->visit(this);
1681 }
1682
1683 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1684
1685 ir_expression_operation operation;
1686 ir_rvalue *operands[4];
1687 };
1688
1689
1690 /**
1691 * HIR instruction representing a high-level function call, containing a list
1692 * of parameters and returning a value in the supplied temporary.
1693 */
1694 class ir_call : public ir_instruction {
1695 public:
1696 ir_call(ir_function_signature *callee,
1697 ir_dereference_variable *return_deref,
1698 exec_list *actual_parameters)
1699 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1700 {
1701 assert(callee->return_type != NULL);
1702 actual_parameters->move_nodes_to(& this->actual_parameters);
1703 this->use_builtin = callee->is_builtin();
1704 }
1705
1706 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1707
1708 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1709
1710 virtual void accept(ir_visitor *v)
1711 {
1712 v->visit(this);
1713 }
1714
1715 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1716
1717 /**
1718 * Get the name of the function being called.
1719 */
1720 const char *callee_name() const
1721 {
1722 return callee->function_name();
1723 }
1724
1725 /**
1726 * Generates an inline version of the function before @ir,
1727 * storing the return value in return_deref.
1728 */
1729 void generate_inline(ir_instruction *ir);
1730
1731 /**
1732 * Storage for the function's return value.
1733 * This must be NULL if the return type is void.
1734 */
1735 ir_dereference_variable *return_deref;
1736
1737 /**
1738 * The specific function signature being called.
1739 */
1740 ir_function_signature *callee;
1741
1742 /* List of ir_rvalue of paramaters passed in this call. */
1743 exec_list actual_parameters;
1744
1745 /** Should this call only bind to a built-in function? */
1746 bool use_builtin;
1747 };
1748
1749
1750 /**
1751 * \name Jump-like IR instructions.
1752 *
1753 * These include \c break, \c continue, \c return, and \c discard.
1754 */
1755 /*@{*/
1756 class ir_jump : public ir_instruction {
1757 protected:
1758 ir_jump(enum ir_node_type t)
1759 : ir_instruction(t)
1760 {
1761 }
1762 };
1763
1764 class ir_return : public ir_jump {
1765 public:
1766 ir_return()
1767 : ir_jump(ir_type_return), value(NULL)
1768 {
1769 }
1770
1771 ir_return(ir_rvalue *value)
1772 : ir_jump(ir_type_return), value(value)
1773 {
1774 }
1775
1776 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1777
1778 ir_rvalue *get_value() const
1779 {
1780 return value;
1781 }
1782
1783 virtual void accept(ir_visitor *v)
1784 {
1785 v->visit(this);
1786 }
1787
1788 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1789
1790 ir_rvalue *value;
1791 };
1792
1793
1794 /**
1795 * Jump instructions used inside loops
1796 *
1797 * These include \c break and \c continue. The \c break within a loop is
1798 * different from the \c break within a switch-statement.
1799 *
1800 * \sa ir_switch_jump
1801 */
1802 class ir_loop_jump : public ir_jump {
1803 public:
1804 enum jump_mode {
1805 jump_break,
1806 jump_continue
1807 };
1808
1809 ir_loop_jump(jump_mode mode)
1810 : ir_jump(ir_type_loop_jump)
1811 {
1812 this->mode = mode;
1813 }
1814
1815 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1816
1817 virtual void accept(ir_visitor *v)
1818 {
1819 v->visit(this);
1820 }
1821
1822 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1823
1824 bool is_break() const
1825 {
1826 return mode == jump_break;
1827 }
1828
1829 bool is_continue() const
1830 {
1831 return mode == jump_continue;
1832 }
1833
1834 /** Mode selector for the jump instruction. */
1835 enum jump_mode mode;
1836 };
1837
1838 /**
1839 * IR instruction representing discard statements.
1840 */
1841 class ir_discard : public ir_jump {
1842 public:
1843 ir_discard()
1844 : ir_jump(ir_type_discard)
1845 {
1846 this->condition = NULL;
1847 }
1848
1849 ir_discard(ir_rvalue *cond)
1850 : ir_jump(ir_type_discard)
1851 {
1852 this->condition = cond;
1853 }
1854
1855 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1856
1857 virtual void accept(ir_visitor *v)
1858 {
1859 v->visit(this);
1860 }
1861
1862 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1863
1864 ir_rvalue *condition;
1865 };
1866 /*@}*/
1867
1868
1869 /**
1870 * Texture sampling opcodes used in ir_texture
1871 */
1872 enum ir_texture_opcode {
1873 ir_tex, /**< Regular texture look-up */
1874 ir_txb, /**< Texture look-up with LOD bias */
1875 ir_txl, /**< Texture look-up with explicit LOD */
1876 ir_txd, /**< Texture look-up with partial derivatvies */
1877 ir_txf, /**< Texel fetch with explicit LOD */
1878 ir_txf_ms, /**< Multisample texture fetch */
1879 ir_txs, /**< Texture size */
1880 ir_lod, /**< Texture lod query */
1881 ir_tg4, /**< Texture gather */
1882 ir_query_levels /**< Texture levels query */
1883 };
1884
1885
1886 /**
1887 * IR instruction to sample a texture
1888 *
1889 * The specific form of the IR instruction depends on the \c mode value
1890 * selected from \c ir_texture_opcodes. In the printed IR, these will
1891 * appear as:
1892 *
1893 * Texel offset (0 or an expression)
1894 * | Projection divisor
1895 * | | Shadow comparitor
1896 * | | |
1897 * v v v
1898 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1899 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1900 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1901 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1902 * (txf <type> <sampler> <coordinate> 0 <lod>)
1903 * (txf_ms
1904 * <type> <sampler> <coordinate> <sample_index>)
1905 * (txs <type> <sampler> <lod>)
1906 * (lod <type> <sampler> <coordinate>)
1907 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1908 * (query_levels <type> <sampler>)
1909 */
1910 class ir_texture : public ir_rvalue {
1911 public:
1912 ir_texture(enum ir_texture_opcode op)
1913 : ir_rvalue(ir_type_texture),
1914 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1915 shadow_comparitor(NULL), offset(NULL)
1916 {
1917 memset(&lod_info, 0, sizeof(lod_info));
1918 }
1919
1920 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1921
1922 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1923
1924 virtual void accept(ir_visitor *v)
1925 {
1926 v->visit(this);
1927 }
1928
1929 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1930
1931 virtual bool equals(const ir_instruction *ir,
1932 enum ir_node_type ignore = ir_type_unset) const;
1933
1934 /**
1935 * Return a string representing the ir_texture_opcode.
1936 */
1937 const char *opcode_string();
1938
1939 /** Set the sampler and type. */
1940 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1941
1942 /**
1943 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1944 */
1945 static ir_texture_opcode get_opcode(const char *);
1946
1947 enum ir_texture_opcode op;
1948
1949 /** Sampler to use for the texture access. */
1950 ir_dereference *sampler;
1951
1952 /** Texture coordinate to sample */
1953 ir_rvalue *coordinate;
1954
1955 /**
1956 * Value used for projective divide.
1957 *
1958 * If there is no projective divide (the common case), this will be
1959 * \c NULL. Optimization passes should check for this to point to a constant
1960 * of 1.0 and replace that with \c NULL.
1961 */
1962 ir_rvalue *projector;
1963
1964 /**
1965 * Coordinate used for comparison on shadow look-ups.
1966 *
1967 * If there is no shadow comparison, this will be \c NULL. For the
1968 * \c ir_txf opcode, this *must* be \c NULL.
1969 */
1970 ir_rvalue *shadow_comparitor;
1971
1972 /** Texel offset. */
1973 ir_rvalue *offset;
1974
1975 union {
1976 ir_rvalue *lod; /**< Floating point LOD */
1977 ir_rvalue *bias; /**< Floating point LOD bias */
1978 ir_rvalue *sample_index; /**< MSAA sample index */
1979 ir_rvalue *component; /**< Gather component selector */
1980 struct {
1981 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1982 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1983 } grad;
1984 } lod_info;
1985 };
1986
1987
1988 struct ir_swizzle_mask {
1989 unsigned x:2;
1990 unsigned y:2;
1991 unsigned z:2;
1992 unsigned w:2;
1993
1994 /**
1995 * Number of components in the swizzle.
1996 */
1997 unsigned num_components:3;
1998
1999 /**
2000 * Does the swizzle contain duplicate components?
2001 *
2002 * L-value swizzles cannot contain duplicate components.
2003 */
2004 unsigned has_duplicates:1;
2005 };
2006
2007
2008 class ir_swizzle : public ir_rvalue {
2009 public:
2010 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2011 unsigned count);
2012
2013 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2014
2015 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2016
2017 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2018
2019 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2020
2021 /**
2022 * Construct an ir_swizzle from the textual representation. Can fail.
2023 */
2024 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2025
2026 virtual void accept(ir_visitor *v)
2027 {
2028 v->visit(this);
2029 }
2030
2031 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2032
2033 virtual bool equals(const ir_instruction *ir,
2034 enum ir_node_type ignore = ir_type_unset) const;
2035
2036 bool is_lvalue() const
2037 {
2038 return val->is_lvalue() && !mask.has_duplicates;
2039 }
2040
2041 /**
2042 * Get the variable that is ultimately referenced by an r-value
2043 */
2044 virtual ir_variable *variable_referenced() const;
2045
2046 ir_rvalue *val;
2047 ir_swizzle_mask mask;
2048
2049 private:
2050 /**
2051 * Initialize the mask component of a swizzle
2052 *
2053 * This is used by the \c ir_swizzle constructors.
2054 */
2055 void init_mask(const unsigned *components, unsigned count);
2056 };
2057
2058
2059 class ir_dereference : public ir_rvalue {
2060 public:
2061 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2062
2063 bool is_lvalue() const;
2064
2065 /**
2066 * Get the variable that is ultimately referenced by an r-value
2067 */
2068 virtual ir_variable *variable_referenced() const = 0;
2069
2070 protected:
2071 ir_dereference(enum ir_node_type t)
2072 : ir_rvalue(t)
2073 {
2074 }
2075 };
2076
2077
2078 class ir_dereference_variable : public ir_dereference {
2079 public:
2080 ir_dereference_variable(ir_variable *var);
2081
2082 virtual ir_dereference_variable *clone(void *mem_ctx,
2083 struct hash_table *) const;
2084
2085 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2086
2087 virtual bool equals(const ir_instruction *ir,
2088 enum ir_node_type ignore = ir_type_unset) const;
2089
2090 /**
2091 * Get the variable that is ultimately referenced by an r-value
2092 */
2093 virtual ir_variable *variable_referenced() const
2094 {
2095 return this->var;
2096 }
2097
2098 virtual ir_variable *whole_variable_referenced()
2099 {
2100 /* ir_dereference_variable objects always dereference the entire
2101 * variable. However, if this dereference is dereferenced by anything
2102 * else, the complete deferefernce chain is not a whole-variable
2103 * dereference. This method should only be called on the top most
2104 * ir_rvalue in a dereference chain.
2105 */
2106 return this->var;
2107 }
2108
2109 virtual void accept(ir_visitor *v)
2110 {
2111 v->visit(this);
2112 }
2113
2114 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2115
2116 /**
2117 * Object being dereferenced.
2118 */
2119 ir_variable *var;
2120 };
2121
2122
2123 class ir_dereference_array : public ir_dereference {
2124 public:
2125 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2126
2127 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2128
2129 virtual ir_dereference_array *clone(void *mem_ctx,
2130 struct hash_table *) const;
2131
2132 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2133
2134 virtual bool equals(const ir_instruction *ir,
2135 enum ir_node_type ignore = ir_type_unset) const;
2136
2137 /**
2138 * Get the variable that is ultimately referenced by an r-value
2139 */
2140 virtual ir_variable *variable_referenced() const
2141 {
2142 return this->array->variable_referenced();
2143 }
2144
2145 virtual void accept(ir_visitor *v)
2146 {
2147 v->visit(this);
2148 }
2149
2150 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2151
2152 ir_rvalue *array;
2153 ir_rvalue *array_index;
2154
2155 private:
2156 void set_array(ir_rvalue *value);
2157 };
2158
2159
2160 class ir_dereference_record : public ir_dereference {
2161 public:
2162 ir_dereference_record(ir_rvalue *value, const char *field);
2163
2164 ir_dereference_record(ir_variable *var, const char *field);
2165
2166 virtual ir_dereference_record *clone(void *mem_ctx,
2167 struct hash_table *) const;
2168
2169 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2170
2171 /**
2172 * Get the variable that is ultimately referenced by an r-value
2173 */
2174 virtual ir_variable *variable_referenced() const
2175 {
2176 return this->record->variable_referenced();
2177 }
2178
2179 virtual void accept(ir_visitor *v)
2180 {
2181 v->visit(this);
2182 }
2183
2184 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2185
2186 ir_rvalue *record;
2187 const char *field;
2188 };
2189
2190
2191 /**
2192 * Data stored in an ir_constant
2193 */
2194 union ir_constant_data {
2195 unsigned u[16];
2196 int i[16];
2197 float f[16];
2198 bool b[16];
2199 double d[16];
2200 };
2201
2202
2203 class ir_constant : public ir_rvalue {
2204 public:
2205 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2206 ir_constant(bool b, unsigned vector_elements=1);
2207 ir_constant(unsigned int u, unsigned vector_elements=1);
2208 ir_constant(int i, unsigned vector_elements=1);
2209 ir_constant(float f, unsigned vector_elements=1);
2210 ir_constant(double d, unsigned vector_elements=1);
2211
2212 /**
2213 * Construct an ir_constant from a list of ir_constant values
2214 */
2215 ir_constant(const struct glsl_type *type, exec_list *values);
2216
2217 /**
2218 * Construct an ir_constant from a scalar component of another ir_constant
2219 *
2220 * The new \c ir_constant inherits the type of the component from the
2221 * source constant.
2222 *
2223 * \note
2224 * In the case of a matrix constant, the new constant is a scalar, \b not
2225 * a vector.
2226 */
2227 ir_constant(const ir_constant *c, unsigned i);
2228
2229 /**
2230 * Return a new ir_constant of the specified type containing all zeros.
2231 */
2232 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2233
2234 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2235
2236 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2237
2238 virtual void accept(ir_visitor *v)
2239 {
2240 v->visit(this);
2241 }
2242
2243 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2244
2245 virtual bool equals(const ir_instruction *ir,
2246 enum ir_node_type ignore = ir_type_unset) const;
2247
2248 /**
2249 * Get a particular component of a constant as a specific type
2250 *
2251 * This is useful, for example, to get a value from an integer constant
2252 * as a float or bool. This appears frequently when constructors are
2253 * called with all constant parameters.
2254 */
2255 /*@{*/
2256 bool get_bool_component(unsigned i) const;
2257 float get_float_component(unsigned i) const;
2258 double get_double_component(unsigned i) const;
2259 int get_int_component(unsigned i) const;
2260 unsigned get_uint_component(unsigned i) const;
2261 /*@}*/
2262
2263 ir_constant *get_array_element(unsigned i) const;
2264
2265 ir_constant *get_record_field(const char *name);
2266
2267 /**
2268 * Copy the values on another constant at a given offset.
2269 *
2270 * The offset is ignored for array or struct copies, it's only for
2271 * scalars or vectors into vectors or matrices.
2272 *
2273 * With identical types on both sides and zero offset it's clone()
2274 * without creating a new object.
2275 */
2276
2277 void copy_offset(ir_constant *src, int offset);
2278
2279 /**
2280 * Copy the values on another constant at a given offset and
2281 * following an assign-like mask.
2282 *
2283 * The mask is ignored for scalars.
2284 *
2285 * Note that this function only handles what assign can handle,
2286 * i.e. at most a vector as source and a column of a matrix as
2287 * destination.
2288 */
2289
2290 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2291
2292 /**
2293 * Determine whether a constant has the same value as another constant
2294 *
2295 * \sa ir_constant::is_zero, ir_constant::is_one,
2296 * ir_constant::is_negative_one
2297 */
2298 bool has_value(const ir_constant *) const;
2299
2300 /**
2301 * Return true if this ir_constant represents the given value.
2302 *
2303 * For vectors, this checks that each component is the given value.
2304 */
2305 virtual bool is_value(float f, int i) const;
2306 virtual bool is_zero() const;
2307 virtual bool is_one() const;
2308 virtual bool is_negative_one() const;
2309
2310 /**
2311 * Return true for constants that could be stored as 16-bit unsigned values.
2312 *
2313 * Note that this will return true even for signed integer ir_constants, as
2314 * long as the value is non-negative and fits in 16-bits.
2315 */
2316 virtual bool is_uint16_constant() const;
2317
2318 /**
2319 * Value of the constant.
2320 *
2321 * The field used to back the values supplied by the constant is determined
2322 * by the type associated with the \c ir_instruction. Constants may be
2323 * scalars, vectors, or matrices.
2324 */
2325 union ir_constant_data value;
2326
2327 /* Array elements */
2328 ir_constant **array_elements;
2329
2330 /* Structure fields */
2331 exec_list components;
2332
2333 private:
2334 /**
2335 * Parameterless constructor only used by the clone method
2336 */
2337 ir_constant(void);
2338 };
2339
2340 /**
2341 * IR instruction to emit a vertex in a geometry shader.
2342 */
2343 class ir_emit_vertex : public ir_instruction {
2344 public:
2345 ir_emit_vertex(ir_rvalue *stream)
2346 : ir_instruction(ir_type_emit_vertex),
2347 stream(stream)
2348 {
2349 assert(stream);
2350 }
2351
2352 virtual void accept(ir_visitor *v)
2353 {
2354 v->visit(this);
2355 }
2356
2357 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2358 {
2359 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2360 }
2361
2362 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2363
2364 int stream_id() const
2365 {
2366 return stream->as_constant()->value.i[0];
2367 }
2368
2369 ir_rvalue *stream;
2370 };
2371
2372 /**
2373 * IR instruction to complete the current primitive and start a new one in a
2374 * geometry shader.
2375 */
2376 class ir_end_primitive : public ir_instruction {
2377 public:
2378 ir_end_primitive(ir_rvalue *stream)
2379 : ir_instruction(ir_type_end_primitive),
2380 stream(stream)
2381 {
2382 assert(stream);
2383 }
2384
2385 virtual void accept(ir_visitor *v)
2386 {
2387 v->visit(this);
2388 }
2389
2390 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2391 {
2392 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2393 }
2394
2395 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2396
2397 int stream_id() const
2398 {
2399 return stream->as_constant()->value.i[0];
2400 }
2401
2402 ir_rvalue *stream;
2403 };
2404
2405 /**
2406 * IR instruction for tessellation control and compute shader barrier.
2407 */
2408 class ir_barrier : public ir_instruction {
2409 public:
2410 ir_barrier()
2411 : ir_instruction(ir_type_barrier)
2412 {
2413 }
2414
2415 virtual void accept(ir_visitor *v)
2416 {
2417 v->visit(this);
2418 }
2419
2420 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2421 {
2422 return new(mem_ctx) ir_barrier();
2423 }
2424
2425 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2426 };
2427
2428 /*@}*/
2429
2430 /**
2431 * Apply a visitor to each IR node in a list
2432 */
2433 void
2434 visit_exec_list(exec_list *list, ir_visitor *visitor);
2435
2436 /**
2437 * Validate invariants on each IR node in a list
2438 */
2439 void validate_ir_tree(exec_list *instructions);
2440
2441 struct _mesa_glsl_parse_state;
2442 struct gl_shader_program;
2443
2444 /**
2445 * Detect whether an unlinked shader contains static recursion
2446 *
2447 * If the list of instructions is determined to contain static recursion,
2448 * \c _mesa_glsl_error will be called to emit error messages for each function
2449 * that is in the recursion cycle.
2450 */
2451 void
2452 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2453 exec_list *instructions);
2454
2455 /**
2456 * Detect whether a linked shader contains static recursion
2457 *
2458 * If the list of instructions is determined to contain static recursion,
2459 * \c link_error_printf will be called to emit error messages for each function
2460 * that is in the recursion cycle. In addition,
2461 * \c gl_shader_program::LinkStatus will be set to false.
2462 */
2463 void
2464 detect_recursion_linked(struct gl_shader_program *prog,
2465 exec_list *instructions);
2466
2467 /**
2468 * Make a clone of each IR instruction in a list
2469 *
2470 * \param in List of IR instructions that are to be cloned
2471 * \param out List to hold the cloned instructions
2472 */
2473 void
2474 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2475
2476 extern void
2477 _mesa_glsl_initialize_variables(exec_list *instructions,
2478 struct _mesa_glsl_parse_state *state);
2479
2480 extern void
2481 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2482
2483 extern void
2484 _mesa_glsl_initialize_builtin_functions();
2485
2486 extern ir_function_signature *
2487 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2488 const char *name, exec_list *actual_parameters);
2489
2490 extern ir_function *
2491 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2492 const char *name);
2493
2494 extern gl_shader *
2495 _mesa_glsl_get_builtin_function_shader(void);
2496
2497 extern void
2498 _mesa_glsl_release_functions(void);
2499
2500 extern void
2501 _mesa_glsl_release_builtin_functions(void);
2502
2503 extern void
2504 reparent_ir(exec_list *list, void *mem_ctx);
2505
2506 struct glsl_symbol_table;
2507
2508 extern void
2509 import_prototypes(const exec_list *source, exec_list *dest,
2510 struct glsl_symbol_table *symbols, void *mem_ctx);
2511
2512 extern bool
2513 ir_has_call(ir_instruction *ir);
2514
2515 extern void
2516 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2517 gl_shader_stage shader_stage);
2518
2519 extern char *
2520 prototype_string(const glsl_type *return_type, const char *name,
2521 exec_list *parameters);
2522
2523 const char *
2524 mode_string(const ir_variable *var);
2525
2526 /**
2527 * Built-in / reserved GL variables names start with "gl_"
2528 */
2529 static inline bool
2530 is_gl_identifier(const char *s)
2531 {
2532 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2533 }
2534
2535 extern "C" {
2536 #endif /* __cplusplus */
2537
2538 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2539 struct _mesa_glsl_parse_state *state);
2540
2541 extern void
2542 fprint_ir(FILE *f, const void *instruction);
2543
2544 #ifdef __cplusplus
2545 } /* extern "C" */
2546 #endif
2547
2548 unsigned
2549 vertices_per_prim(GLenum prim);
2550
2551 #endif /* IR_H */