990808fa3436cdeb46ec21e715ea770e3e56d61b
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 /**
113 * \name IR instruction downcast functions
114 *
115 * These functions either cast the object to a derived class or return
116 * \c NULL if the object's type does not match the specified derived class.
117 * Additional downcast functions will be added as needed.
118 */
119 /*@{*/
120 class ir_rvalue *as_rvalue()
121 {
122 if (ir_type == ir_type_dereference_array ||
123 ir_type == ir_type_dereference_record ||
124 ir_type == ir_type_dereference_variable ||
125 ir_type == ir_type_constant ||
126 ir_type == ir_type_expression ||
127 ir_type == ir_type_swizzle ||
128 ir_type == ir_type_texture)
129 return (class ir_rvalue *) this;
130 return NULL;
131 }
132
133 class ir_dereference *as_dereference()
134 {
135 if (ir_type == ir_type_dereference_array ||
136 ir_type == ir_type_dereference_record ||
137 ir_type == ir_type_dereference_variable)
138 return (class ir_dereference *) this;
139 return NULL;
140 }
141
142 class ir_jump *as_jump()
143 {
144 if (ir_type == ir_type_loop_jump ||
145 ir_type == ir_type_return ||
146 ir_type == ir_type_discard)
147 return (class ir_jump *) this;
148 return NULL;
149 }
150
151 #define AS_CHILD(TYPE) \
152 class ir_##TYPE * as_##TYPE() \
153 { \
154 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
155 }
156 AS_CHILD(variable)
157 AS_CHILD(function)
158 AS_CHILD(dereference_array)
159 AS_CHILD(dereference_variable)
160 AS_CHILD(dereference_record)
161 AS_CHILD(expression)
162 AS_CHILD(loop)
163 AS_CHILD(assignment)
164 AS_CHILD(call)
165 AS_CHILD(return)
166 AS_CHILD(if)
167 AS_CHILD(swizzle)
168 AS_CHILD(texture)
169 AS_CHILD(constant)
170 AS_CHILD(discard)
171 #undef AS_CHILD
172 /*@}*/
173
174 /**
175 * IR equality method: Return true if the referenced instruction would
176 * return the same value as this one.
177 *
178 * This intended to be used for CSE and algebraic optimizations, on rvalues
179 * in particular. No support for other instruction types (assignments,
180 * jumps, calls, etc.) is planned.
181 */
182 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
183
184 protected:
185 ir_instruction(enum ir_node_type t)
186 : ir_type(t)
187 {
188 }
189
190 private:
191 ir_instruction()
192 {
193 assert(!"Should not get here.");
194 }
195 };
196
197
198 /**
199 * The base class for all "values"/expression trees.
200 */
201 class ir_rvalue : public ir_instruction {
202 public:
203 const struct glsl_type *type;
204
205 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
206
207 virtual void accept(ir_visitor *v)
208 {
209 v->visit(this);
210 }
211
212 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
213
214 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
215
216 ir_rvalue *as_rvalue_to_saturate();
217
218 virtual bool is_lvalue() const
219 {
220 return false;
221 }
222
223 /**
224 * Get the variable that is ultimately referenced by an r-value
225 */
226 virtual ir_variable *variable_referenced() const
227 {
228 return NULL;
229 }
230
231
232 /**
233 * If an r-value is a reference to a whole variable, get that variable
234 *
235 * \return
236 * Pointer to a variable that is completely dereferenced by the r-value. If
237 * the r-value is not a dereference or the dereference does not access the
238 * entire variable (i.e., it's just one array element, struct field), \c NULL
239 * is returned.
240 */
241 virtual ir_variable *whole_variable_referenced()
242 {
243 return NULL;
244 }
245
246 /**
247 * Determine if an r-value has the value zero
248 *
249 * The base implementation of this function always returns \c false. The
250 * \c ir_constant class over-rides this function to return \c true \b only
251 * for vector and scalar types that have all elements set to the value
252 * zero (or \c false for booleans).
253 *
254 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
255 * ir_constant::is_basis
256 */
257 virtual bool is_zero() const;
258
259 /**
260 * Determine if an r-value has the value one
261 *
262 * The base implementation of this function always returns \c false. The
263 * \c ir_constant class over-rides this function to return \c true \b only
264 * for vector and scalar types that have all elements set to the value
265 * one (or \c true for booleans).
266 *
267 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
268 * ir_constant::is_basis
269 */
270 virtual bool is_one() const;
271
272 /**
273 * Determine if an r-value has the value negative one
274 *
275 * The base implementation of this function always returns \c false. The
276 * \c ir_constant class over-rides this function to return \c true \b only
277 * for vector and scalar types that have all elements set to the value
278 * negative one. For boolean types, the result is always \c false.
279 *
280 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
281 * ir_constant::is_basis
282 */
283 virtual bool is_negative_one() const;
284
285 /**
286 * Determine if an r-value is a basis vector
287 *
288 * The base implementation of this function always returns \c false. The
289 * \c ir_constant class over-rides this function to return \c true \b only
290 * for vector and scalar types that have one element set to the value one,
291 * and the other elements set to the value zero. For boolean types, the
292 * result is always \c false.
293 *
294 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
295 * is_constant::is_negative_one
296 */
297 virtual bool is_basis() const;
298
299 /**
300 * Determine if an r-value is an unsigned integer constant which can be
301 * stored in 16 bits.
302 *
303 * \sa ir_constant::is_uint16_constant.
304 */
305 virtual bool is_uint16_constant() const { return false; }
306
307 /**
308 * Return a generic value of error_type.
309 *
310 * Allocation will be performed with 'mem_ctx' as ralloc owner.
311 */
312 static ir_rvalue *error_value(void *mem_ctx);
313
314 protected:
315 ir_rvalue(enum ir_node_type t);
316 };
317
318
319 /**
320 * Variable storage classes
321 */
322 enum ir_variable_mode {
323 ir_var_auto = 0, /**< Function local variables and globals. */
324 ir_var_uniform, /**< Variable declared as a uniform. */
325 ir_var_shader_in,
326 ir_var_shader_out,
327 ir_var_function_in,
328 ir_var_function_out,
329 ir_var_function_inout,
330 ir_var_const_in, /**< "in" param that must be a constant expression */
331 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
332 ir_var_temporary, /**< Temporary variable generated during compilation. */
333 ir_var_mode_count /**< Number of variable modes */
334 };
335
336 /**
337 * Enum keeping track of how a variable was declared. For error checking of
338 * the gl_PerVertex redeclaration rules.
339 */
340 enum ir_var_declaration_type {
341 /**
342 * Normal declaration (for most variables, this means an explicit
343 * declaration. Exception: temporaries are always implicitly declared, but
344 * they still use ir_var_declared_normally).
345 *
346 * Note: an ir_variable that represents a named interface block uses
347 * ir_var_declared_normally.
348 */
349 ir_var_declared_normally = 0,
350
351 /**
352 * Variable was explicitly declared (or re-declared) in an unnamed
353 * interface block.
354 */
355 ir_var_declared_in_block,
356
357 /**
358 * Variable is an implicitly declared built-in that has not been explicitly
359 * re-declared by the shader.
360 */
361 ir_var_declared_implicitly,
362 };
363
364 /**
365 * \brief Layout qualifiers for gl_FragDepth.
366 *
367 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
368 * with a layout qualifier.
369 */
370 enum ir_depth_layout {
371 ir_depth_layout_none, /**< No depth layout is specified. */
372 ir_depth_layout_any,
373 ir_depth_layout_greater,
374 ir_depth_layout_less,
375 ir_depth_layout_unchanged
376 };
377
378 /**
379 * \brief Convert depth layout qualifier to string.
380 */
381 const char*
382 depth_layout_string(ir_depth_layout layout);
383
384 /**
385 * Description of built-in state associated with a uniform
386 *
387 * \sa ir_variable::state_slots
388 */
389 struct ir_state_slot {
390 int tokens[5];
391 int swizzle;
392 };
393
394
395 /**
396 * Get the string value for an interpolation qualifier
397 *
398 * \return The string that would be used in a shader to specify \c
399 * mode will be returned.
400 *
401 * This function is used to generate error messages of the form "shader
402 * uses %s interpolation qualifier", so in the case where there is no
403 * interpolation qualifier, it returns "no".
404 *
405 * This function should only be used on a shader input or output variable.
406 */
407 const char *interpolation_string(unsigned interpolation);
408
409
410 class ir_variable : public ir_instruction {
411 public:
412 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
413
414 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
415
416 virtual void accept(ir_visitor *v)
417 {
418 v->visit(this);
419 }
420
421 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
422
423
424 /**
425 * Determine how this variable should be interpolated based on its
426 * interpolation qualifier (if present), whether it is gl_Color or
427 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
428 * state.
429 *
430 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
431 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
432 */
433 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
434
435 /**
436 * Determine whether or not a variable is part of a uniform block.
437 */
438 inline bool is_in_uniform_block() const
439 {
440 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
441 }
442
443 /**
444 * Determine whether or not a variable is the declaration of an interface
445 * block
446 *
447 * For the first declaration below, there will be an \c ir_variable named
448 * "instance" whose type and whose instance_type will be the same
449 * \cglsl_type. For the second declaration, there will be an \c ir_variable
450 * named "f" whose type is float and whose instance_type is B2.
451 *
452 * "instance" is an interface instance variable, but "f" is not.
453 *
454 * uniform B1 {
455 * float f;
456 * } instance;
457 *
458 * uniform B2 {
459 * float f;
460 * };
461 */
462 inline bool is_interface_instance() const
463 {
464 const glsl_type *const t = this->type;
465
466 return (t == this->interface_type)
467 || (t->is_array() && t->fields.array == this->interface_type);
468 }
469
470 /**
471 * Set this->interface_type on a newly created variable.
472 */
473 void init_interface_type(const struct glsl_type *type)
474 {
475 assert(this->interface_type == NULL);
476 this->interface_type = type;
477 if (this->is_interface_instance()) {
478 this->u.max_ifc_array_access =
479 rzalloc_array(this, unsigned, type->length);
480 }
481 }
482
483 /**
484 * Change this->interface_type on a variable that previously had a
485 * different, but compatible, interface_type. This is used during linking
486 * to set the size of arrays in interface blocks.
487 */
488 void change_interface_type(const struct glsl_type *type)
489 {
490 if (this->u.max_ifc_array_access != NULL) {
491 /* max_ifc_array_access has already been allocated, so make sure the
492 * new interface has the same number of fields as the old one.
493 */
494 assert(this->interface_type->length == type->length);
495 }
496 this->interface_type = type;
497 }
498
499 /**
500 * Change this->interface_type on a variable that previously had a
501 * different, and incompatible, interface_type. This is used during
502 * compilation to handle redeclaration of the built-in gl_PerVertex
503 * interface block.
504 */
505 void reinit_interface_type(const struct glsl_type *type)
506 {
507 if (this->u.max_ifc_array_access != NULL) {
508 #ifndef NDEBUG
509 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
510 * it defines have been accessed yet; so it's safe to throw away the
511 * old max_ifc_array_access pointer, since all of its values are
512 * zero.
513 */
514 for (unsigned i = 0; i < this->interface_type->length; i++)
515 assert(this->u.max_ifc_array_access[i] == 0);
516 #endif
517 ralloc_free(this->u.max_ifc_array_access);
518 this->u.max_ifc_array_access = NULL;
519 }
520 this->interface_type = NULL;
521 init_interface_type(type);
522 }
523
524 const glsl_type *get_interface_type() const
525 {
526 return this->interface_type;
527 }
528
529 /**
530 * Get the max_ifc_array_access pointer
531 *
532 * A "set" function is not needed because the array is dynmically allocated
533 * as necessary.
534 */
535 inline unsigned *get_max_ifc_array_access()
536 {
537 assert(this->data._num_state_slots == 0);
538 return this->u.max_ifc_array_access;
539 }
540
541 inline unsigned get_num_state_slots() const
542 {
543 assert(!this->is_interface_instance()
544 || this->data._num_state_slots == 0);
545 return this->data._num_state_slots;
546 }
547
548 inline void set_num_state_slots(unsigned n)
549 {
550 assert(!this->is_interface_instance()
551 || n == 0);
552 this->data._num_state_slots = n;
553 }
554
555 inline ir_state_slot *get_state_slots()
556 {
557 return this->is_interface_instance() ? NULL : this->u.state_slots;
558 }
559
560 inline const ir_state_slot *get_state_slots() const
561 {
562 return this->is_interface_instance() ? NULL : this->u.state_slots;
563 }
564
565 inline ir_state_slot *allocate_state_slots(unsigned n)
566 {
567 assert(!this->is_interface_instance());
568
569 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
570 this->data._num_state_slots = 0;
571
572 if (this->u.state_slots != NULL)
573 this->data._num_state_slots = n;
574
575 return this->u.state_slots;
576 }
577
578 /**
579 * Enable emitting extension warnings for this variable
580 */
581 void enable_extension_warning(const char *extension);
582
583 /**
584 * Get the extension warning string for this variable
585 *
586 * If warnings are not enabled, \c NULL is returned.
587 */
588 const char *get_extension_warning() const;
589
590 /**
591 * Declared type of the variable
592 */
593 const struct glsl_type *type;
594
595 /**
596 * Declared name of the variable
597 */
598 const char *name;
599
600 struct ir_variable_data {
601
602 /**
603 * Is the variable read-only?
604 *
605 * This is set for variables declared as \c const, shader inputs,
606 * and uniforms.
607 */
608 unsigned read_only:1;
609 unsigned centroid:1;
610 unsigned sample:1;
611 unsigned invariant:1;
612 unsigned precise:1;
613
614 /**
615 * Has this variable been used for reading or writing?
616 *
617 * Several GLSL semantic checks require knowledge of whether or not a
618 * variable has been used. For example, it is an error to redeclare a
619 * variable as invariant after it has been used.
620 *
621 * This is only maintained in the ast_to_hir.cpp path, not in
622 * Mesa's fixed function or ARB program paths.
623 */
624 unsigned used:1;
625
626 /**
627 * Has this variable been statically assigned?
628 *
629 * This answers whether the variable was assigned in any path of
630 * the shader during ast_to_hir. This doesn't answer whether it is
631 * still written after dead code removal, nor is it maintained in
632 * non-ast_to_hir.cpp (GLSL parsing) paths.
633 */
634 unsigned assigned:1;
635
636 /**
637 * Enum indicating how the variable was declared. See
638 * ir_var_declaration_type.
639 *
640 * This is used to detect certain kinds of illegal variable redeclarations.
641 */
642 unsigned how_declared:2;
643
644 /**
645 * Storage class of the variable.
646 *
647 * \sa ir_variable_mode
648 */
649 unsigned mode:4;
650
651 /**
652 * Interpolation mode for shader inputs / outputs
653 *
654 * \sa ir_variable_interpolation
655 */
656 unsigned interpolation:2;
657
658 /**
659 * \name ARB_fragment_coord_conventions
660 * @{
661 */
662 unsigned origin_upper_left:1;
663 unsigned pixel_center_integer:1;
664 /*@}*/
665
666 /**
667 * Was the location explicitly set in the shader?
668 *
669 * If the location is explicitly set in the shader, it \b cannot be changed
670 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
671 * no effect).
672 */
673 unsigned explicit_location:1;
674 unsigned explicit_index:1;
675
676 /**
677 * Was an initial binding explicitly set in the shader?
678 *
679 * If so, constant_value contains an integer ir_constant representing the
680 * initial binding point.
681 */
682 unsigned explicit_binding:1;
683
684 /**
685 * Does this variable have an initializer?
686 *
687 * This is used by the linker to cross-validiate initializers of global
688 * variables.
689 */
690 unsigned has_initializer:1;
691
692 /**
693 * Is this variable a generic output or input that has not yet been matched
694 * up to a variable in another stage of the pipeline?
695 *
696 * This is used by the linker as scratch storage while assigning locations
697 * to generic inputs and outputs.
698 */
699 unsigned is_unmatched_generic_inout:1;
700
701 /**
702 * If non-zero, then this variable may be packed along with other variables
703 * into a single varying slot, so this offset should be applied when
704 * accessing components. For example, an offset of 1 means that the x
705 * component of this variable is actually stored in component y of the
706 * location specified by \c location.
707 */
708 unsigned location_frac:2;
709
710 /**
711 * Layout of the matrix. Uses glsl_matrix_layout values.
712 */
713 unsigned matrix_layout:2;
714
715 /**
716 * Non-zero if this variable was created by lowering a named interface
717 * block which was not an array.
718 *
719 * Note that this variable and \c from_named_ifc_block_array will never
720 * both be non-zero.
721 */
722 unsigned from_named_ifc_block_nonarray:1;
723
724 /**
725 * Non-zero if this variable was created by lowering a named interface
726 * block which was an array.
727 *
728 * Note that this variable and \c from_named_ifc_block_nonarray will never
729 * both be non-zero.
730 */
731 unsigned from_named_ifc_block_array:1;
732
733 /**
734 * Non-zero if the variable must be a shader input. This is useful for
735 * constraints on function parameters.
736 */
737 unsigned must_be_shader_input:1;
738
739 /**
740 * Output index for dual source blending.
741 *
742 * \note
743 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
744 * source blending.
745 */
746 unsigned index:1;
747
748 /**
749 * \brief Layout qualifier for gl_FragDepth.
750 *
751 * This is not equal to \c ir_depth_layout_none if and only if this
752 * variable is \c gl_FragDepth and a layout qualifier is specified.
753 */
754 ir_depth_layout depth_layout:3;
755
756 /**
757 * ARB_shader_image_load_store qualifiers.
758 */
759 unsigned image_read_only:1; /**< "readonly" qualifier. */
760 unsigned image_write_only:1; /**< "writeonly" qualifier. */
761 unsigned image_coherent:1;
762 unsigned image_volatile:1;
763 unsigned image_restrict:1;
764
765 /**
766 * Emit a warning if this variable is accessed.
767 */
768 private:
769 uint8_t warn_extension_index;
770
771 public:
772 /** Image internal format if specified explicitly, otherwise GL_NONE. */
773 uint16_t image_format;
774
775 private:
776 unsigned _num_state_slots; /**< Number of state slots used */
777
778 public:
779 /**
780 * Storage location of the base of this variable
781 *
782 * The precise meaning of this field depends on the nature of the variable.
783 *
784 * - Vertex shader input: one of the values from \c gl_vert_attrib.
785 * - Vertex shader output: one of the values from \c gl_varying_slot.
786 * - Geometry shader input: one of the values from \c gl_varying_slot.
787 * - Geometry shader output: one of the values from \c gl_varying_slot.
788 * - Fragment shader input: one of the values from \c gl_varying_slot.
789 * - Fragment shader output: one of the values from \c gl_frag_result.
790 * - Uniforms: Per-stage uniform slot number for default uniform block.
791 * - Uniforms: Index within the uniform block definition for UBO members.
792 * - Other: This field is not currently used.
793 *
794 * If the variable is a uniform, shader input, or shader output, and the
795 * slot has not been assigned, the value will be -1.
796 */
797 int location;
798
799 /**
800 * Vertex stream output identifier.
801 */
802 unsigned stream;
803
804 /**
805 * Initial binding point for a sampler, atomic, or UBO.
806 *
807 * For array types, this represents the binding point for the first element.
808 */
809 int binding;
810
811 /**
812 * Location an atomic counter is stored at.
813 */
814 struct {
815 unsigned offset;
816 } atomic;
817
818 /**
819 * Highest element accessed with a constant expression array index
820 *
821 * Not used for non-array variables.
822 */
823 unsigned max_array_access;
824
825 /**
826 * Allow (only) ir_variable direct access private members.
827 */
828 friend class ir_variable;
829 } data;
830
831 /**
832 * Value assigned in the initializer of a variable declared "const"
833 */
834 ir_constant *constant_value;
835
836 /**
837 * Constant expression assigned in the initializer of the variable
838 *
839 * \warning
840 * This field and \c ::constant_value are distinct. Even if the two fields
841 * refer to constants with the same value, they must point to separate
842 * objects.
843 */
844 ir_constant *constant_initializer;
845
846 private:
847 static const char *const warn_extension_table[];
848
849 union {
850 /**
851 * For variables which satisfy the is_interface_instance() predicate,
852 * this points to an array of integers such that if the ith member of
853 * the interface block is an array, max_ifc_array_access[i] is the
854 * maximum array element of that member that has been accessed. If the
855 * ith member of the interface block is not an array,
856 * max_ifc_array_access[i] is unused.
857 *
858 * For variables whose type is not an interface block, this pointer is
859 * NULL.
860 */
861 unsigned *max_ifc_array_access;
862
863 /**
864 * Built-in state that backs this uniform
865 *
866 * Once set at variable creation, \c state_slots must remain invariant.
867 *
868 * If the variable is not a uniform, \c _num_state_slots will be zero
869 * and \c state_slots will be \c NULL.
870 */
871 ir_state_slot *state_slots;
872 } u;
873
874 /**
875 * For variables that are in an interface block or are an instance of an
876 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
877 *
878 * \sa ir_variable::location
879 */
880 const glsl_type *interface_type;
881 };
882
883 /**
884 * A function that returns whether a built-in function is available in the
885 * current shading language (based on version, ES or desktop, and extensions).
886 */
887 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
888
889 /*@{*/
890 /**
891 * The representation of a function instance; may be the full definition or
892 * simply a prototype.
893 */
894 class ir_function_signature : public ir_instruction {
895 /* An ir_function_signature will be part of the list of signatures in
896 * an ir_function.
897 */
898 public:
899 ir_function_signature(const glsl_type *return_type,
900 builtin_available_predicate builtin_avail = NULL);
901
902 virtual ir_function_signature *clone(void *mem_ctx,
903 struct hash_table *ht) const;
904 ir_function_signature *clone_prototype(void *mem_ctx,
905 struct hash_table *ht) const;
906
907 virtual void accept(ir_visitor *v)
908 {
909 v->visit(this);
910 }
911
912 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
913
914 /**
915 * Attempt to evaluate this function as a constant expression,
916 * given a list of the actual parameters and the variable context.
917 * Returns NULL for non-built-ins.
918 */
919 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
920
921 /**
922 * Get the name of the function for which this is a signature
923 */
924 const char *function_name() const;
925
926 /**
927 * Get a handle to the function for which this is a signature
928 *
929 * There is no setter function, this function returns a \c const pointer,
930 * and \c ir_function_signature::_function is private for a reason. The
931 * only way to make a connection between a function and function signature
932 * is via \c ir_function::add_signature. This helps ensure that certain
933 * invariants (i.e., a function signature is in the list of signatures for
934 * its \c _function) are met.
935 *
936 * \sa ir_function::add_signature
937 */
938 inline const class ir_function *function() const
939 {
940 return this->_function;
941 }
942
943 /**
944 * Check whether the qualifiers match between this signature's parameters
945 * and the supplied parameter list. If not, returns the name of the first
946 * parameter with mismatched qualifiers (for use in error messages).
947 */
948 const char *qualifiers_match(exec_list *params);
949
950 /**
951 * Replace the current parameter list with the given one. This is useful
952 * if the current information came from a prototype, and either has invalid
953 * or missing parameter names.
954 */
955 void replace_parameters(exec_list *new_params);
956
957 /**
958 * Function return type.
959 *
960 * \note This discards the optional precision qualifier.
961 */
962 const struct glsl_type *return_type;
963
964 /**
965 * List of ir_variable of function parameters.
966 *
967 * This represents the storage. The paramaters passed in a particular
968 * call will be in ir_call::actual_paramaters.
969 */
970 struct exec_list parameters;
971
972 /** Whether or not this function has a body (which may be empty). */
973 unsigned is_defined:1;
974
975 /** Whether or not this function signature is a built-in. */
976 bool is_builtin() const;
977
978 /**
979 * Whether or not this function is an intrinsic to be implemented
980 * by the driver.
981 */
982 bool is_intrinsic;
983
984 /** Whether or not a built-in is available for this shader. */
985 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
986
987 /** Body of instructions in the function. */
988 struct exec_list body;
989
990 private:
991 /**
992 * A function pointer to a predicate that answers whether a built-in
993 * function is available in the current shader. NULL if not a built-in.
994 */
995 builtin_available_predicate builtin_avail;
996
997 /** Function of which this signature is one overload. */
998 class ir_function *_function;
999
1000 /** Function signature of which this one is a prototype clone */
1001 const ir_function_signature *origin;
1002
1003 friend class ir_function;
1004
1005 /**
1006 * Helper function to run a list of instructions for constant
1007 * expression evaluation.
1008 *
1009 * The hash table represents the values of the visible variables.
1010 * There are no scoping issues because the table is indexed on
1011 * ir_variable pointers, not variable names.
1012 *
1013 * Returns false if the expression is not constant, true otherwise,
1014 * and the value in *result if result is non-NULL.
1015 */
1016 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1017 struct hash_table *variable_context,
1018 ir_constant **result);
1019 };
1020
1021
1022 /**
1023 * Header for tracking multiple overloaded functions with the same name.
1024 * Contains a list of ir_function_signatures representing each of the
1025 * actual functions.
1026 */
1027 class ir_function : public ir_instruction {
1028 public:
1029 ir_function(const char *name);
1030
1031 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1032
1033 virtual void accept(ir_visitor *v)
1034 {
1035 v->visit(this);
1036 }
1037
1038 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1039
1040 void add_signature(ir_function_signature *sig)
1041 {
1042 sig->_function = this;
1043 this->signatures.push_tail(sig);
1044 }
1045
1046 /**
1047 * Find a signature that matches a set of actual parameters, taking implicit
1048 * conversions into account. Also flags whether the match was exact.
1049 */
1050 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1051 const exec_list *actual_param,
1052 bool allow_builtins,
1053 bool *match_is_exact);
1054
1055 /**
1056 * Find a signature that matches a set of actual parameters, taking implicit
1057 * conversions into account.
1058 */
1059 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1060 const exec_list *actual_param,
1061 bool allow_builtins);
1062
1063 /**
1064 * Find a signature that exactly matches a set of actual parameters without
1065 * any implicit type conversions.
1066 */
1067 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1068 const exec_list *actual_ps);
1069
1070 /**
1071 * Name of the function.
1072 */
1073 const char *name;
1074
1075 /** Whether or not this function has a signature that isn't a built-in. */
1076 bool has_user_signature();
1077
1078 /**
1079 * List of ir_function_signature for each overloaded function with this name.
1080 */
1081 struct exec_list signatures;
1082 };
1083
1084 inline const char *ir_function_signature::function_name() const
1085 {
1086 return this->_function->name;
1087 }
1088 /*@}*/
1089
1090
1091 /**
1092 * IR instruction representing high-level if-statements
1093 */
1094 class ir_if : public ir_instruction {
1095 public:
1096 ir_if(ir_rvalue *condition)
1097 : ir_instruction(ir_type_if), condition(condition)
1098 {
1099 }
1100
1101 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1102
1103 virtual void accept(ir_visitor *v)
1104 {
1105 v->visit(this);
1106 }
1107
1108 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1109
1110 ir_rvalue *condition;
1111 /** List of ir_instruction for the body of the then branch */
1112 exec_list then_instructions;
1113 /** List of ir_instruction for the body of the else branch */
1114 exec_list else_instructions;
1115 };
1116
1117
1118 /**
1119 * IR instruction representing a high-level loop structure.
1120 */
1121 class ir_loop : public ir_instruction {
1122 public:
1123 ir_loop();
1124
1125 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1126
1127 virtual void accept(ir_visitor *v)
1128 {
1129 v->visit(this);
1130 }
1131
1132 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1133
1134 /** List of ir_instruction that make up the body of the loop. */
1135 exec_list body_instructions;
1136 };
1137
1138
1139 class ir_assignment : public ir_instruction {
1140 public:
1141 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1142
1143 /**
1144 * Construct an assignment with an explicit write mask
1145 *
1146 * \note
1147 * Since a write mask is supplied, the LHS must already be a bare
1148 * \c ir_dereference. The cannot be any swizzles in the LHS.
1149 */
1150 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1151 unsigned write_mask);
1152
1153 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1154
1155 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1156
1157 virtual void accept(ir_visitor *v)
1158 {
1159 v->visit(this);
1160 }
1161
1162 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1163
1164 /**
1165 * Get a whole variable written by an assignment
1166 *
1167 * If the LHS of the assignment writes a whole variable, the variable is
1168 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1169 * assignment are:
1170 *
1171 * - Assigning to a scalar
1172 * - Assigning to all components of a vector
1173 * - Whole array (or matrix) assignment
1174 * - Whole structure assignment
1175 */
1176 ir_variable *whole_variable_written();
1177
1178 /**
1179 * Set the LHS of an assignment
1180 */
1181 void set_lhs(ir_rvalue *lhs);
1182
1183 /**
1184 * Left-hand side of the assignment.
1185 *
1186 * This should be treated as read only. If you need to set the LHS of an
1187 * assignment, use \c ir_assignment::set_lhs.
1188 */
1189 ir_dereference *lhs;
1190
1191 /**
1192 * Value being assigned
1193 */
1194 ir_rvalue *rhs;
1195
1196 /**
1197 * Optional condition for the assignment.
1198 */
1199 ir_rvalue *condition;
1200
1201
1202 /**
1203 * Component mask written
1204 *
1205 * For non-vector types in the LHS, this field will be zero. For vector
1206 * types, a bit will be set for each component that is written. Note that
1207 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1208 *
1209 * A partially-set write mask means that each enabled channel gets
1210 * the value from a consecutive channel of the rhs. For example,
1211 * to write just .xyw of gl_FrontColor with color:
1212 *
1213 * (assign (constant bool (1)) (xyw)
1214 * (var_ref gl_FragColor)
1215 * (swiz xyw (var_ref color)))
1216 */
1217 unsigned write_mask:4;
1218 };
1219
1220 /* Update ir_expression::get_num_operands() and operator_strs when
1221 * updating this list.
1222 */
1223 enum ir_expression_operation {
1224 ir_unop_bit_not,
1225 ir_unop_logic_not,
1226 ir_unop_neg,
1227 ir_unop_abs,
1228 ir_unop_sign,
1229 ir_unop_rcp,
1230 ir_unop_rsq,
1231 ir_unop_sqrt,
1232 ir_unop_exp, /**< Log base e on gentype */
1233 ir_unop_log, /**< Natural log on gentype */
1234 ir_unop_exp2,
1235 ir_unop_log2,
1236 ir_unop_f2i, /**< Float-to-integer conversion. */
1237 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1238 ir_unop_i2f, /**< Integer-to-float conversion. */
1239 ir_unop_f2b, /**< Float-to-boolean conversion */
1240 ir_unop_b2f, /**< Boolean-to-float conversion */
1241 ir_unop_i2b, /**< int-to-boolean conversion */
1242 ir_unop_b2i, /**< Boolean-to-int conversion */
1243 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1244 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1245 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1246 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1247 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1248 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1249 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1250 ir_unop_any,
1251
1252 /**
1253 * \name Unary floating-point rounding operations.
1254 */
1255 /*@{*/
1256 ir_unop_trunc,
1257 ir_unop_ceil,
1258 ir_unop_floor,
1259 ir_unop_fract,
1260 ir_unop_round_even,
1261 /*@}*/
1262
1263 /**
1264 * \name Trigonometric operations.
1265 */
1266 /*@{*/
1267 ir_unop_sin,
1268 ir_unop_cos,
1269 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1270 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1271 /*@}*/
1272
1273 /**
1274 * \name Partial derivatives.
1275 */
1276 /*@{*/
1277 ir_unop_dFdx,
1278 ir_unop_dFdx_coarse,
1279 ir_unop_dFdx_fine,
1280 ir_unop_dFdy,
1281 ir_unop_dFdy_coarse,
1282 ir_unop_dFdy_fine,
1283 /*@}*/
1284
1285 /**
1286 * \name Floating point pack and unpack operations.
1287 */
1288 /*@{*/
1289 ir_unop_pack_snorm_2x16,
1290 ir_unop_pack_snorm_4x8,
1291 ir_unop_pack_unorm_2x16,
1292 ir_unop_pack_unorm_4x8,
1293 ir_unop_pack_half_2x16,
1294 ir_unop_unpack_snorm_2x16,
1295 ir_unop_unpack_snorm_4x8,
1296 ir_unop_unpack_unorm_2x16,
1297 ir_unop_unpack_unorm_4x8,
1298 ir_unop_unpack_half_2x16,
1299 /*@}*/
1300
1301 /**
1302 * \name Lowered floating point unpacking operations.
1303 *
1304 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1305 */
1306 /*@{*/
1307 ir_unop_unpack_half_2x16_split_x,
1308 ir_unop_unpack_half_2x16_split_y,
1309 /*@}*/
1310
1311 /**
1312 * \name Bit operations, part of ARB_gpu_shader5.
1313 */
1314 /*@{*/
1315 ir_unop_bitfield_reverse,
1316 ir_unop_bit_count,
1317 ir_unop_find_msb,
1318 ir_unop_find_lsb,
1319 /*@}*/
1320
1321 ir_unop_saturate,
1322 ir_unop_noise,
1323
1324 /**
1325 * Interpolate fs input at centroid
1326 *
1327 * operand0 is the fs input.
1328 */
1329 ir_unop_interpolate_at_centroid,
1330
1331 /**
1332 * A sentinel marking the last of the unary operations.
1333 */
1334 ir_last_unop = ir_unop_interpolate_at_centroid,
1335
1336 ir_binop_add,
1337 ir_binop_sub,
1338 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1339 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1340 ir_binop_div,
1341
1342 /**
1343 * Returns the carry resulting from the addition of the two arguments.
1344 */
1345 /*@{*/
1346 ir_binop_carry,
1347 /*@}*/
1348
1349 /**
1350 * Returns the borrow resulting from the subtraction of the second argument
1351 * from the first argument.
1352 */
1353 /*@{*/
1354 ir_binop_borrow,
1355 /*@}*/
1356
1357 /**
1358 * Takes one of two combinations of arguments:
1359 *
1360 * - mod(vecN, vecN)
1361 * - mod(vecN, float)
1362 *
1363 * Does not take integer types.
1364 */
1365 ir_binop_mod,
1366
1367 /**
1368 * \name Binary comparison operators which return a boolean vector.
1369 * The type of both operands must be equal.
1370 */
1371 /*@{*/
1372 ir_binop_less,
1373 ir_binop_greater,
1374 ir_binop_lequal,
1375 ir_binop_gequal,
1376 ir_binop_equal,
1377 ir_binop_nequal,
1378 /**
1379 * Returns single boolean for whether all components of operands[0]
1380 * equal the components of operands[1].
1381 */
1382 ir_binop_all_equal,
1383 /**
1384 * Returns single boolean for whether any component of operands[0]
1385 * is not equal to the corresponding component of operands[1].
1386 */
1387 ir_binop_any_nequal,
1388 /*@}*/
1389
1390 /**
1391 * \name Bit-wise binary operations.
1392 */
1393 /*@{*/
1394 ir_binop_lshift,
1395 ir_binop_rshift,
1396 ir_binop_bit_and,
1397 ir_binop_bit_xor,
1398 ir_binop_bit_or,
1399 /*@}*/
1400
1401 ir_binop_logic_and,
1402 ir_binop_logic_xor,
1403 ir_binop_logic_or,
1404
1405 ir_binop_dot,
1406 ir_binop_min,
1407 ir_binop_max,
1408
1409 ir_binop_pow,
1410
1411 /**
1412 * \name Lowered floating point packing operations.
1413 *
1414 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1415 */
1416 /*@{*/
1417 ir_binop_pack_half_2x16_split,
1418 /*@}*/
1419
1420 /**
1421 * \name First half of a lowered bitfieldInsert() operation.
1422 *
1423 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1424 */
1425 /*@{*/
1426 ir_binop_bfm,
1427 /*@}*/
1428
1429 /**
1430 * Load a value the size of a given GLSL type from a uniform block.
1431 *
1432 * operand0 is the ir_constant uniform block index in the linked shader.
1433 * operand1 is a byte offset within the uniform block.
1434 */
1435 ir_binop_ubo_load,
1436
1437 /**
1438 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1439 */
1440 /*@{*/
1441 ir_binop_ldexp,
1442 /*@}*/
1443
1444 /**
1445 * Extract a scalar from a vector
1446 *
1447 * operand0 is the vector
1448 * operand1 is the index of the field to read from operand0
1449 */
1450 ir_binop_vector_extract,
1451
1452 /**
1453 * Interpolate fs input at offset
1454 *
1455 * operand0 is the fs input
1456 * operand1 is the offset from the pixel center
1457 */
1458 ir_binop_interpolate_at_offset,
1459
1460 /**
1461 * Interpolate fs input at sample position
1462 *
1463 * operand0 is the fs input
1464 * operand1 is the sample ID
1465 */
1466 ir_binop_interpolate_at_sample,
1467
1468 /**
1469 * A sentinel marking the last of the binary operations.
1470 */
1471 ir_last_binop = ir_binop_interpolate_at_sample,
1472
1473 /**
1474 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1475 */
1476 /*@{*/
1477 ir_triop_fma,
1478 /*@}*/
1479
1480 ir_triop_lrp,
1481
1482 /**
1483 * \name Conditional Select
1484 *
1485 * A vector conditional select instruction (like ?:, but operating per-
1486 * component on vectors).
1487 *
1488 * \see lower_instructions_visitor::ldexp_to_arith
1489 */
1490 /*@{*/
1491 ir_triop_csel,
1492 /*@}*/
1493
1494 /**
1495 * \name Second half of a lowered bitfieldInsert() operation.
1496 *
1497 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1498 */
1499 /*@{*/
1500 ir_triop_bfi,
1501 /*@}*/
1502
1503 ir_triop_bitfield_extract,
1504
1505 /**
1506 * Generate a value with one field of a vector changed
1507 *
1508 * operand0 is the vector
1509 * operand1 is the value to write into the vector result
1510 * operand2 is the index in operand0 to be modified
1511 */
1512 ir_triop_vector_insert,
1513
1514 /**
1515 * A sentinel marking the last of the ternary operations.
1516 */
1517 ir_last_triop = ir_triop_vector_insert,
1518
1519 ir_quadop_bitfield_insert,
1520
1521 ir_quadop_vector,
1522
1523 /**
1524 * A sentinel marking the last of the ternary operations.
1525 */
1526 ir_last_quadop = ir_quadop_vector,
1527
1528 /**
1529 * A sentinel marking the last of all operations.
1530 */
1531 ir_last_opcode = ir_quadop_vector
1532 };
1533
1534 class ir_expression : public ir_rvalue {
1535 public:
1536 ir_expression(int op, const struct glsl_type *type,
1537 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1538 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1539
1540 /**
1541 * Constructor for unary operation expressions
1542 */
1543 ir_expression(int op, ir_rvalue *);
1544
1545 /**
1546 * Constructor for binary operation expressions
1547 */
1548 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1549
1550 /**
1551 * Constructor for ternary operation expressions
1552 */
1553 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1554
1555 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1556
1557 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1558
1559 /**
1560 * Attempt to constant-fold the expression
1561 *
1562 * The "variable_context" hash table links ir_variable * to ir_constant *
1563 * that represent the variables' values. \c NULL represents an empty
1564 * context.
1565 *
1566 * If the expression cannot be constant folded, this method will return
1567 * \c NULL.
1568 */
1569 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1570
1571 /**
1572 * Determine the number of operands used by an expression
1573 */
1574 static unsigned int get_num_operands(ir_expression_operation);
1575
1576 /**
1577 * Determine the number of operands used by an expression
1578 */
1579 unsigned int get_num_operands() const
1580 {
1581 return (this->operation == ir_quadop_vector)
1582 ? this->type->vector_elements : get_num_operands(operation);
1583 }
1584
1585 /**
1586 * Return whether the expression operates on vectors horizontally.
1587 */
1588 bool is_horizontal() const
1589 {
1590 return operation == ir_binop_all_equal ||
1591 operation == ir_binop_any_nequal ||
1592 operation == ir_unop_any ||
1593 operation == ir_binop_dot ||
1594 operation == ir_quadop_vector;
1595 }
1596
1597 /**
1598 * Return a string representing this expression's operator.
1599 */
1600 const char *operator_string();
1601
1602 /**
1603 * Return a string representing this expression's operator.
1604 */
1605 static const char *operator_string(ir_expression_operation);
1606
1607
1608 /**
1609 * Do a reverse-lookup to translate the given string into an operator.
1610 */
1611 static ir_expression_operation get_operator(const char *);
1612
1613 virtual void accept(ir_visitor *v)
1614 {
1615 v->visit(this);
1616 }
1617
1618 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1619
1620 ir_expression_operation operation;
1621 ir_rvalue *operands[4];
1622 };
1623
1624
1625 /**
1626 * HIR instruction representing a high-level function call, containing a list
1627 * of parameters and returning a value in the supplied temporary.
1628 */
1629 class ir_call : public ir_instruction {
1630 public:
1631 ir_call(ir_function_signature *callee,
1632 ir_dereference_variable *return_deref,
1633 exec_list *actual_parameters)
1634 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1635 {
1636 assert(callee->return_type != NULL);
1637 actual_parameters->move_nodes_to(& this->actual_parameters);
1638 this->use_builtin = callee->is_builtin();
1639 }
1640
1641 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1642
1643 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1644
1645 virtual void accept(ir_visitor *v)
1646 {
1647 v->visit(this);
1648 }
1649
1650 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1651
1652 /**
1653 * Get the name of the function being called.
1654 */
1655 const char *callee_name() const
1656 {
1657 return callee->function_name();
1658 }
1659
1660 /**
1661 * Generates an inline version of the function before @ir,
1662 * storing the return value in return_deref.
1663 */
1664 void generate_inline(ir_instruction *ir);
1665
1666 /**
1667 * Storage for the function's return value.
1668 * This must be NULL if the return type is void.
1669 */
1670 ir_dereference_variable *return_deref;
1671
1672 /**
1673 * The specific function signature being called.
1674 */
1675 ir_function_signature *callee;
1676
1677 /* List of ir_rvalue of paramaters passed in this call. */
1678 exec_list actual_parameters;
1679
1680 /** Should this call only bind to a built-in function? */
1681 bool use_builtin;
1682 };
1683
1684
1685 /**
1686 * \name Jump-like IR instructions.
1687 *
1688 * These include \c break, \c continue, \c return, and \c discard.
1689 */
1690 /*@{*/
1691 class ir_jump : public ir_instruction {
1692 protected:
1693 ir_jump(enum ir_node_type t)
1694 : ir_instruction(t)
1695 {
1696 }
1697 };
1698
1699 class ir_return : public ir_jump {
1700 public:
1701 ir_return()
1702 : ir_jump(ir_type_return), value(NULL)
1703 {
1704 }
1705
1706 ir_return(ir_rvalue *value)
1707 : ir_jump(ir_type_return), value(value)
1708 {
1709 }
1710
1711 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1712
1713 ir_rvalue *get_value() const
1714 {
1715 return value;
1716 }
1717
1718 virtual void accept(ir_visitor *v)
1719 {
1720 v->visit(this);
1721 }
1722
1723 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1724
1725 ir_rvalue *value;
1726 };
1727
1728
1729 /**
1730 * Jump instructions used inside loops
1731 *
1732 * These include \c break and \c continue. The \c break within a loop is
1733 * different from the \c break within a switch-statement.
1734 *
1735 * \sa ir_switch_jump
1736 */
1737 class ir_loop_jump : public ir_jump {
1738 public:
1739 enum jump_mode {
1740 jump_break,
1741 jump_continue
1742 };
1743
1744 ir_loop_jump(jump_mode mode)
1745 : ir_jump(ir_type_loop_jump)
1746 {
1747 this->mode = mode;
1748 }
1749
1750 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1751
1752 virtual void accept(ir_visitor *v)
1753 {
1754 v->visit(this);
1755 }
1756
1757 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1758
1759 bool is_break() const
1760 {
1761 return mode == jump_break;
1762 }
1763
1764 bool is_continue() const
1765 {
1766 return mode == jump_continue;
1767 }
1768
1769 /** Mode selector for the jump instruction. */
1770 enum jump_mode mode;
1771 };
1772
1773 /**
1774 * IR instruction representing discard statements.
1775 */
1776 class ir_discard : public ir_jump {
1777 public:
1778 ir_discard()
1779 : ir_jump(ir_type_discard)
1780 {
1781 this->condition = NULL;
1782 }
1783
1784 ir_discard(ir_rvalue *cond)
1785 : ir_jump(ir_type_discard)
1786 {
1787 this->condition = cond;
1788 }
1789
1790 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1791
1792 virtual void accept(ir_visitor *v)
1793 {
1794 v->visit(this);
1795 }
1796
1797 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1798
1799 ir_rvalue *condition;
1800 };
1801 /*@}*/
1802
1803
1804 /**
1805 * Texture sampling opcodes used in ir_texture
1806 */
1807 enum ir_texture_opcode {
1808 ir_tex, /**< Regular texture look-up */
1809 ir_txb, /**< Texture look-up with LOD bias */
1810 ir_txl, /**< Texture look-up with explicit LOD */
1811 ir_txd, /**< Texture look-up with partial derivatvies */
1812 ir_txf, /**< Texel fetch with explicit LOD */
1813 ir_txf_ms, /**< Multisample texture fetch */
1814 ir_txs, /**< Texture size */
1815 ir_lod, /**< Texture lod query */
1816 ir_tg4, /**< Texture gather */
1817 ir_query_levels /**< Texture levels query */
1818 };
1819
1820
1821 /**
1822 * IR instruction to sample a texture
1823 *
1824 * The specific form of the IR instruction depends on the \c mode value
1825 * selected from \c ir_texture_opcodes. In the printed IR, these will
1826 * appear as:
1827 *
1828 * Texel offset (0 or an expression)
1829 * | Projection divisor
1830 * | | Shadow comparitor
1831 * | | |
1832 * v v v
1833 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1834 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1835 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1836 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1837 * (txf <type> <sampler> <coordinate> 0 <lod>)
1838 * (txf_ms
1839 * <type> <sampler> <coordinate> <sample_index>)
1840 * (txs <type> <sampler> <lod>)
1841 * (lod <type> <sampler> <coordinate>)
1842 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1843 * (query_levels <type> <sampler>)
1844 */
1845 class ir_texture : public ir_rvalue {
1846 public:
1847 ir_texture(enum ir_texture_opcode op)
1848 : ir_rvalue(ir_type_texture),
1849 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1850 shadow_comparitor(NULL), offset(NULL)
1851 {
1852 memset(&lod_info, 0, sizeof(lod_info));
1853 }
1854
1855 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1856
1857 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1858
1859 virtual void accept(ir_visitor *v)
1860 {
1861 v->visit(this);
1862 }
1863
1864 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1865
1866 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1867
1868 /**
1869 * Return a string representing the ir_texture_opcode.
1870 */
1871 const char *opcode_string();
1872
1873 /** Set the sampler and type. */
1874 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1875
1876 /**
1877 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1878 */
1879 static ir_texture_opcode get_opcode(const char *);
1880
1881 enum ir_texture_opcode op;
1882
1883 /** Sampler to use for the texture access. */
1884 ir_dereference *sampler;
1885
1886 /** Texture coordinate to sample */
1887 ir_rvalue *coordinate;
1888
1889 /**
1890 * Value used for projective divide.
1891 *
1892 * If there is no projective divide (the common case), this will be
1893 * \c NULL. Optimization passes should check for this to point to a constant
1894 * of 1.0 and replace that with \c NULL.
1895 */
1896 ir_rvalue *projector;
1897
1898 /**
1899 * Coordinate used for comparison on shadow look-ups.
1900 *
1901 * If there is no shadow comparison, this will be \c NULL. For the
1902 * \c ir_txf opcode, this *must* be \c NULL.
1903 */
1904 ir_rvalue *shadow_comparitor;
1905
1906 /** Texel offset. */
1907 ir_rvalue *offset;
1908
1909 union {
1910 ir_rvalue *lod; /**< Floating point LOD */
1911 ir_rvalue *bias; /**< Floating point LOD bias */
1912 ir_rvalue *sample_index; /**< MSAA sample index */
1913 ir_rvalue *component; /**< Gather component selector */
1914 struct {
1915 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1916 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1917 } grad;
1918 } lod_info;
1919 };
1920
1921
1922 struct ir_swizzle_mask {
1923 unsigned x:2;
1924 unsigned y:2;
1925 unsigned z:2;
1926 unsigned w:2;
1927
1928 /**
1929 * Number of components in the swizzle.
1930 */
1931 unsigned num_components:3;
1932
1933 /**
1934 * Does the swizzle contain duplicate components?
1935 *
1936 * L-value swizzles cannot contain duplicate components.
1937 */
1938 unsigned has_duplicates:1;
1939 };
1940
1941
1942 class ir_swizzle : public ir_rvalue {
1943 public:
1944 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1945 unsigned count);
1946
1947 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1948
1949 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1950
1951 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1952
1953 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1954
1955 /**
1956 * Construct an ir_swizzle from the textual representation. Can fail.
1957 */
1958 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1959
1960 virtual void accept(ir_visitor *v)
1961 {
1962 v->visit(this);
1963 }
1964
1965 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1966
1967 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1968
1969 bool is_lvalue() const
1970 {
1971 return val->is_lvalue() && !mask.has_duplicates;
1972 }
1973
1974 /**
1975 * Get the variable that is ultimately referenced by an r-value
1976 */
1977 virtual ir_variable *variable_referenced() const;
1978
1979 ir_rvalue *val;
1980 ir_swizzle_mask mask;
1981
1982 private:
1983 /**
1984 * Initialize the mask component of a swizzle
1985 *
1986 * This is used by the \c ir_swizzle constructors.
1987 */
1988 void init_mask(const unsigned *components, unsigned count);
1989 };
1990
1991
1992 class ir_dereference : public ir_rvalue {
1993 public:
1994 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1995
1996 bool is_lvalue() const;
1997
1998 /**
1999 * Get the variable that is ultimately referenced by an r-value
2000 */
2001 virtual ir_variable *variable_referenced() const = 0;
2002
2003 protected:
2004 ir_dereference(enum ir_node_type t)
2005 : ir_rvalue(t)
2006 {
2007 }
2008 };
2009
2010
2011 class ir_dereference_variable : public ir_dereference {
2012 public:
2013 ir_dereference_variable(ir_variable *var);
2014
2015 virtual ir_dereference_variable *clone(void *mem_ctx,
2016 struct hash_table *) const;
2017
2018 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2019
2020 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2021
2022 /**
2023 * Get the variable that is ultimately referenced by an r-value
2024 */
2025 virtual ir_variable *variable_referenced() const
2026 {
2027 return this->var;
2028 }
2029
2030 virtual ir_variable *whole_variable_referenced()
2031 {
2032 /* ir_dereference_variable objects always dereference the entire
2033 * variable. However, if this dereference is dereferenced by anything
2034 * else, the complete deferefernce chain is not a whole-variable
2035 * dereference. This method should only be called on the top most
2036 * ir_rvalue in a dereference chain.
2037 */
2038 return this->var;
2039 }
2040
2041 virtual void accept(ir_visitor *v)
2042 {
2043 v->visit(this);
2044 }
2045
2046 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2047
2048 /**
2049 * Object being dereferenced.
2050 */
2051 ir_variable *var;
2052 };
2053
2054
2055 class ir_dereference_array : public ir_dereference {
2056 public:
2057 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2058
2059 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2060
2061 virtual ir_dereference_array *clone(void *mem_ctx,
2062 struct hash_table *) const;
2063
2064 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2065
2066 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2067
2068 /**
2069 * Get the variable that is ultimately referenced by an r-value
2070 */
2071 virtual ir_variable *variable_referenced() const
2072 {
2073 return this->array->variable_referenced();
2074 }
2075
2076 virtual void accept(ir_visitor *v)
2077 {
2078 v->visit(this);
2079 }
2080
2081 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2082
2083 ir_rvalue *array;
2084 ir_rvalue *array_index;
2085
2086 private:
2087 void set_array(ir_rvalue *value);
2088 };
2089
2090
2091 class ir_dereference_record : public ir_dereference {
2092 public:
2093 ir_dereference_record(ir_rvalue *value, const char *field);
2094
2095 ir_dereference_record(ir_variable *var, const char *field);
2096
2097 virtual ir_dereference_record *clone(void *mem_ctx,
2098 struct hash_table *) const;
2099
2100 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2101
2102 /**
2103 * Get the variable that is ultimately referenced by an r-value
2104 */
2105 virtual ir_variable *variable_referenced() const
2106 {
2107 return this->record->variable_referenced();
2108 }
2109
2110 virtual void accept(ir_visitor *v)
2111 {
2112 v->visit(this);
2113 }
2114
2115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2116
2117 ir_rvalue *record;
2118 const char *field;
2119 };
2120
2121
2122 /**
2123 * Data stored in an ir_constant
2124 */
2125 union ir_constant_data {
2126 unsigned u[16];
2127 int i[16];
2128 float f[16];
2129 bool b[16];
2130 };
2131
2132
2133 class ir_constant : public ir_rvalue {
2134 public:
2135 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2136 ir_constant(bool b, unsigned vector_elements=1);
2137 ir_constant(unsigned int u, unsigned vector_elements=1);
2138 ir_constant(int i, unsigned vector_elements=1);
2139 ir_constant(float f, unsigned vector_elements=1);
2140
2141 /**
2142 * Construct an ir_constant from a list of ir_constant values
2143 */
2144 ir_constant(const struct glsl_type *type, exec_list *values);
2145
2146 /**
2147 * Construct an ir_constant from a scalar component of another ir_constant
2148 *
2149 * The new \c ir_constant inherits the type of the component from the
2150 * source constant.
2151 *
2152 * \note
2153 * In the case of a matrix constant, the new constant is a scalar, \b not
2154 * a vector.
2155 */
2156 ir_constant(const ir_constant *c, unsigned i);
2157
2158 /**
2159 * Return a new ir_constant of the specified type containing all zeros.
2160 */
2161 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2162
2163 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2164
2165 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2166
2167 virtual void accept(ir_visitor *v)
2168 {
2169 v->visit(this);
2170 }
2171
2172 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2173
2174 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2175
2176 /**
2177 * Get a particular component of a constant as a specific type
2178 *
2179 * This is useful, for example, to get a value from an integer constant
2180 * as a float or bool. This appears frequently when constructors are
2181 * called with all constant parameters.
2182 */
2183 /*@{*/
2184 bool get_bool_component(unsigned i) const;
2185 float get_float_component(unsigned i) const;
2186 int get_int_component(unsigned i) const;
2187 unsigned get_uint_component(unsigned i) const;
2188 /*@}*/
2189
2190 ir_constant *get_array_element(unsigned i) const;
2191
2192 ir_constant *get_record_field(const char *name);
2193
2194 /**
2195 * Copy the values on another constant at a given offset.
2196 *
2197 * The offset is ignored for array or struct copies, it's only for
2198 * scalars or vectors into vectors or matrices.
2199 *
2200 * With identical types on both sides and zero offset it's clone()
2201 * without creating a new object.
2202 */
2203
2204 void copy_offset(ir_constant *src, int offset);
2205
2206 /**
2207 * Copy the values on another constant at a given offset and
2208 * following an assign-like mask.
2209 *
2210 * The mask is ignored for scalars.
2211 *
2212 * Note that this function only handles what assign can handle,
2213 * i.e. at most a vector as source and a column of a matrix as
2214 * destination.
2215 */
2216
2217 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2218
2219 /**
2220 * Determine whether a constant has the same value as another constant
2221 *
2222 * \sa ir_constant::is_zero, ir_constant::is_one,
2223 * ir_constant::is_negative_one, ir_constant::is_basis
2224 */
2225 bool has_value(const ir_constant *) const;
2226
2227 /**
2228 * Return true if this ir_constant represents the given value.
2229 *
2230 * For vectors, this checks that each component is the given value.
2231 */
2232 virtual bool is_value(float f, int i) const;
2233 virtual bool is_zero() const;
2234 virtual bool is_one() const;
2235 virtual bool is_negative_one() const;
2236 virtual bool is_basis() const;
2237
2238 /**
2239 * Return true for constants that could be stored as 16-bit unsigned values.
2240 *
2241 * Note that this will return true even for signed integer ir_constants, as
2242 * long as the value is non-negative and fits in 16-bits.
2243 */
2244 virtual bool is_uint16_constant() const;
2245
2246 /**
2247 * Value of the constant.
2248 *
2249 * The field used to back the values supplied by the constant is determined
2250 * by the type associated with the \c ir_instruction. Constants may be
2251 * scalars, vectors, or matrices.
2252 */
2253 union ir_constant_data value;
2254
2255 /* Array elements */
2256 ir_constant **array_elements;
2257
2258 /* Structure fields */
2259 exec_list components;
2260
2261 private:
2262 /**
2263 * Parameterless constructor only used by the clone method
2264 */
2265 ir_constant(void);
2266 };
2267
2268 /**
2269 * IR instruction to emit a vertex in a geometry shader.
2270 */
2271 class ir_emit_vertex : public ir_instruction {
2272 public:
2273 ir_emit_vertex(ir_rvalue *stream)
2274 : ir_instruction(ir_type_emit_vertex),
2275 stream(stream)
2276 {
2277 assert(stream);
2278 }
2279
2280 virtual void accept(ir_visitor *v)
2281 {
2282 v->visit(this);
2283 }
2284
2285 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2286 {
2287 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2288 }
2289
2290 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2291
2292 int stream_id() const
2293 {
2294 return stream->as_constant()->value.i[0];
2295 }
2296
2297 ir_rvalue *stream;
2298 };
2299
2300 /**
2301 * IR instruction to complete the current primitive and start a new one in a
2302 * geometry shader.
2303 */
2304 class ir_end_primitive : public ir_instruction {
2305 public:
2306 ir_end_primitive(ir_rvalue *stream)
2307 : ir_instruction(ir_type_end_primitive),
2308 stream(stream)
2309 {
2310 assert(stream);
2311 }
2312
2313 virtual void accept(ir_visitor *v)
2314 {
2315 v->visit(this);
2316 }
2317
2318 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2319 {
2320 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2321 }
2322
2323 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2324
2325 int stream_id() const
2326 {
2327 return stream->as_constant()->value.i[0];
2328 }
2329
2330 ir_rvalue *stream;
2331 };
2332
2333 /*@}*/
2334
2335 /**
2336 * Apply a visitor to each IR node in a list
2337 */
2338 void
2339 visit_exec_list(exec_list *list, ir_visitor *visitor);
2340
2341 /**
2342 * Validate invariants on each IR node in a list
2343 */
2344 void validate_ir_tree(exec_list *instructions);
2345
2346 struct _mesa_glsl_parse_state;
2347 struct gl_shader_program;
2348
2349 /**
2350 * Detect whether an unlinked shader contains static recursion
2351 *
2352 * If the list of instructions is determined to contain static recursion,
2353 * \c _mesa_glsl_error will be called to emit error messages for each function
2354 * that is in the recursion cycle.
2355 */
2356 void
2357 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2358 exec_list *instructions);
2359
2360 /**
2361 * Detect whether a linked shader contains static recursion
2362 *
2363 * If the list of instructions is determined to contain static recursion,
2364 * \c link_error_printf will be called to emit error messages for each function
2365 * that is in the recursion cycle. In addition,
2366 * \c gl_shader_program::LinkStatus will be set to false.
2367 */
2368 void
2369 detect_recursion_linked(struct gl_shader_program *prog,
2370 exec_list *instructions);
2371
2372 /**
2373 * Make a clone of each IR instruction in a list
2374 *
2375 * \param in List of IR instructions that are to be cloned
2376 * \param out List to hold the cloned instructions
2377 */
2378 void
2379 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2380
2381 extern void
2382 _mesa_glsl_initialize_variables(exec_list *instructions,
2383 struct _mesa_glsl_parse_state *state);
2384
2385 extern void
2386 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2387
2388 extern void
2389 _mesa_glsl_initialize_builtin_functions();
2390
2391 extern ir_function_signature *
2392 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2393 const char *name, exec_list *actual_parameters);
2394
2395 extern gl_shader *
2396 _mesa_glsl_get_builtin_function_shader(void);
2397
2398 extern void
2399 _mesa_glsl_release_functions(void);
2400
2401 extern void
2402 _mesa_glsl_release_builtin_functions(void);
2403
2404 extern void
2405 reparent_ir(exec_list *list, void *mem_ctx);
2406
2407 struct glsl_symbol_table;
2408
2409 extern void
2410 import_prototypes(const exec_list *source, exec_list *dest,
2411 struct glsl_symbol_table *symbols, void *mem_ctx);
2412
2413 extern bool
2414 ir_has_call(ir_instruction *ir);
2415
2416 extern void
2417 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2418 gl_shader_stage shader_stage);
2419
2420 extern char *
2421 prototype_string(const glsl_type *return_type, const char *name,
2422 exec_list *parameters);
2423
2424 const char *
2425 mode_string(const ir_variable *var);
2426
2427 /**
2428 * Built-in / reserved GL variables names start with "gl_"
2429 */
2430 static inline bool
2431 is_gl_identifier(const char *s)
2432 {
2433 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2434 }
2435
2436 extern "C" {
2437 #endif /* __cplusplus */
2438
2439 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2440 struct _mesa_glsl_parse_state *state);
2441
2442 extern void
2443 fprint_ir(FILE *f, const void *instruction);
2444
2445 #ifdef __cplusplus
2446 } /* extern "C" */
2447 #endif
2448
2449 unsigned
2450 vertices_per_prim(GLenum prim);
2451
2452 #endif /* IR_H */