9c7961ab92c8642bb2b481cce3177767e1717ca8
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /** ir_print_visitor helper for debugging. */
93 void print(void) const;
94
95 virtual void accept(ir_visitor *) = 0;
96 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97 virtual ir_instruction *clone(void *mem_ctx,
98 struct hash_table *ht) const = 0;
99
100 /**
101 * \name IR instruction downcast functions
102 *
103 * These functions either cast the object to a derived class or return
104 * \c NULL if the object's type does not match the specified derived class.
105 * Additional downcast functions will be added as needed.
106 */
107 /*@{*/
108 virtual class ir_variable * as_variable() { return NULL; }
109 virtual class ir_function * as_function() { return NULL; }
110 virtual class ir_dereference * as_dereference() { return NULL; }
111 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
112 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113 virtual class ir_expression * as_expression() { return NULL; }
114 virtual class ir_rvalue * as_rvalue() { return NULL; }
115 virtual class ir_loop * as_loop() { return NULL; }
116 virtual class ir_assignment * as_assignment() { return NULL; }
117 virtual class ir_call * as_call() { return NULL; }
118 virtual class ir_return * as_return() { return NULL; }
119 virtual class ir_if * as_if() { return NULL; }
120 virtual class ir_swizzle * as_swizzle() { return NULL; }
121 virtual class ir_constant * as_constant() { return NULL; }
122 virtual class ir_discard * as_discard() { return NULL; }
123 /*@}*/
124
125 protected:
126 ir_instruction()
127 {
128 ir_type = ir_type_unset;
129 }
130 };
131
132
133 /**
134 * The base class for all "values"/expression trees.
135 */
136 class ir_rvalue : public ir_instruction {
137 public:
138 const struct glsl_type *type;
139
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142 virtual void accept(ir_visitor *v)
143 {
144 v->visit(this);
145 }
146
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
150
151 virtual ir_rvalue * as_rvalue()
152 {
153 return this;
154 }
155
156 ir_rvalue *as_rvalue_to_saturate();
157
158 virtual bool is_lvalue() const
159 {
160 return false;
161 }
162
163 /**
164 * Get the variable that is ultimately referenced by an r-value
165 */
166 virtual ir_variable *variable_referenced() const
167 {
168 return NULL;
169 }
170
171
172 /**
173 * If an r-value is a reference to a whole variable, get that variable
174 *
175 * \return
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
179 * is returned.
180 */
181 virtual ir_variable *whole_variable_referenced()
182 {
183 return NULL;
184 }
185
186 /**
187 * Determine if an r-value has the value zero
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195 */
196 virtual bool is_zero() const;
197
198 /**
199 * Determine if an r-value has the value one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207 */
208 virtual bool is_one() const;
209
210 /**
211 * Determine if an r-value has the value negative one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219 */
220 virtual bool is_negative_one() const;
221
222
223 /**
224 * Return a generic value of error_type.
225 *
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
227 */
228 static ir_rvalue *error_value(void *mem_ctx);
229
230 protected:
231 ir_rvalue();
232 };
233
234
235 /**
236 * Variable storage classes
237 */
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
241 ir_var_in,
242 ir_var_out,
243 ir_var_inout,
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
247 };
248
249 /**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
257 ir_depth_layout_any,
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
261 };
262
263 /**
264 * \brief Convert depth layout qualifier to string.
265 */
266 const char*
267 depth_layout_string(ir_depth_layout layout);
268
269 /**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274 struct ir_state_slot {
275 int tokens[5];
276 int swizzle;
277 };
278
279 class ir_variable : public ir_instruction {
280 public:
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285 virtual ir_variable *as_variable()
286 {
287 return this;
288 }
289
290 virtual void accept(ir_visitor *v)
291 {
292 v->visit(this);
293 }
294
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298 /**
299 * Get the string value for the interpolation qualifier
300 *
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
303 *
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
307 *
308 * This function should only be used on a shader input or output variable.
309 */
310 const char *interpolation_string() const;
311
312 /**
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316 * state.
317 *
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320 */
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323 /**
324 * Declared type of the variable
325 */
326 const struct glsl_type *type;
327
328 /**
329 * Delcared name of the variable
330 */
331 const char *name;
332
333 /**
334 * Highest element accessed with a constant expression array index
335 *
336 * Not used for non-array variables.
337 */
338 unsigned max_array_access;
339
340 /**
341 * Is the variable read-only?
342 *
343 * This is set for variables declared as \c const, shader inputs,
344 * and uniforms.
345 */
346 unsigned read_only:1;
347 unsigned centroid:1;
348 unsigned invariant:1;
349
350 /**
351 * Has this variable been used for reading or writing?
352 *
353 * Several GLSL semantic checks require knowledge of whether or not a
354 * variable has been used. For example, it is an error to redeclare a
355 * variable as invariant after it has been used.
356 *
357 * This is only maintained in the ast_to_hir.cpp path, not in
358 * Mesa's fixed function or ARB program paths.
359 */
360 unsigned used:1;
361
362 /**
363 * Has this variable been statically assigned?
364 *
365 * This answers whether the variable was assigned in any path of
366 * the shader during ast_to_hir. This doesn't answer whether it is
367 * still written after dead code removal, nor is it maintained in
368 * non-ast_to_hir.cpp (GLSL parsing) paths.
369 */
370 unsigned assigned:1;
371
372 /**
373 * Storage class of the variable.
374 *
375 * \sa ir_variable_mode
376 */
377 unsigned mode:3;
378
379 /**
380 * Interpolation mode for shader inputs / outputs
381 *
382 * \sa ir_variable_interpolation
383 */
384 unsigned interpolation:2;
385
386 /**
387 * \name ARB_fragment_coord_conventions
388 * @{
389 */
390 unsigned origin_upper_left:1;
391 unsigned pixel_center_integer:1;
392 /*@}*/
393
394 /**
395 * Was the location explicitly set in the shader?
396 *
397 * If the location is explicitly set in the shader, it \b cannot be changed
398 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
399 * no effect).
400 */
401 unsigned explicit_location:1;
402 unsigned explicit_index:1;
403
404 /**
405 * Does this variable have an initializer?
406 *
407 * This is used by the linker to cross-validiate initializers of global
408 * variables.
409 */
410 unsigned has_initializer:1;
411
412 /**
413 * \brief Layout qualifier for gl_FragDepth.
414 *
415 * This is not equal to \c ir_depth_layout_none if and only if this
416 * variable is \c gl_FragDepth and a layout qualifier is specified.
417 */
418 ir_depth_layout depth_layout;
419
420 /**
421 * Storage location of the base of this variable
422 *
423 * The precise meaning of this field depends on the nature of the variable.
424 *
425 * - Vertex shader input: one of the values from \c gl_vert_attrib.
426 * - Vertex shader output: one of the values from \c gl_vert_result.
427 * - Fragment shader input: one of the values from \c gl_frag_attrib.
428 * - Fragment shader output: one of the values from \c gl_frag_result.
429 * - Uniforms: Per-stage uniform slot number.
430 * - Other: This field is not currently used.
431 *
432 * If the variable is a uniform, shader input, or shader output, and the
433 * slot has not been assigned, the value will be -1.
434 */
435 int location;
436
437 /**
438 * output index for dual source blending.
439 */
440 int index;
441
442 /**
443 * Built-in state that backs this uniform
444 *
445 * Once set at variable creation, \c state_slots must remain invariant.
446 * This is because, ideally, this array would be shared by all clones of
447 * this variable in the IR tree. In other words, we'd really like for it
448 * to be a fly-weight.
449 *
450 * If the variable is not a uniform, \c num_state_slots will be zero and
451 * \c state_slots will be \c NULL.
452 */
453 /*@{*/
454 unsigned num_state_slots; /**< Number of state slots used */
455 ir_state_slot *state_slots; /**< State descriptors. */
456 /*@}*/
457
458 /**
459 * Emit a warning if this variable is accessed.
460 */
461 const char *warn_extension;
462
463 /**
464 * Value assigned in the initializer of a variable declared "const"
465 */
466 ir_constant *constant_value;
467
468 /**
469 * Constant expression assigned in the initializer of the variable
470 *
471 * \warning
472 * This field and \c ::constant_value are distinct. Even if the two fields
473 * refer to constants with the same value, they must point to separate
474 * objects.
475 */
476 ir_constant *constant_initializer;
477 };
478
479
480 /*@{*/
481 /**
482 * The representation of a function instance; may be the full definition or
483 * simply a prototype.
484 */
485 class ir_function_signature : public ir_instruction {
486 /* An ir_function_signature will be part of the list of signatures in
487 * an ir_function.
488 */
489 public:
490 ir_function_signature(const glsl_type *return_type);
491
492 virtual ir_function_signature *clone(void *mem_ctx,
493 struct hash_table *ht) const;
494 ir_function_signature *clone_prototype(void *mem_ctx,
495 struct hash_table *ht) const;
496
497 virtual void accept(ir_visitor *v)
498 {
499 v->visit(this);
500 }
501
502 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
503
504 /**
505 * Attempt to evaluate this function as a constant expression,
506 * given a list of the actual parameters and the variable context.
507 * Returns NULL for non-built-ins.
508 */
509 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
510
511 /**
512 * Get the name of the function for which this is a signature
513 */
514 const char *function_name() const;
515
516 /**
517 * Get a handle to the function for which this is a signature
518 *
519 * There is no setter function, this function returns a \c const pointer,
520 * and \c ir_function_signature::_function is private for a reason. The
521 * only way to make a connection between a function and function signature
522 * is via \c ir_function::add_signature. This helps ensure that certain
523 * invariants (i.e., a function signature is in the list of signatures for
524 * its \c _function) are met.
525 *
526 * \sa ir_function::add_signature
527 */
528 inline const class ir_function *function() const
529 {
530 return this->_function;
531 }
532
533 /**
534 * Check whether the qualifiers match between this signature's parameters
535 * and the supplied parameter list. If not, returns the name of the first
536 * parameter with mismatched qualifiers (for use in error messages).
537 */
538 const char *qualifiers_match(exec_list *params);
539
540 /**
541 * Replace the current parameter list with the given one. This is useful
542 * if the current information came from a prototype, and either has invalid
543 * or missing parameter names.
544 */
545 void replace_parameters(exec_list *new_params);
546
547 /**
548 * Function return type.
549 *
550 * \note This discards the optional precision qualifier.
551 */
552 const struct glsl_type *return_type;
553
554 /**
555 * List of ir_variable of function parameters.
556 *
557 * This represents the storage. The paramaters passed in a particular
558 * call will be in ir_call::actual_paramaters.
559 */
560 struct exec_list parameters;
561
562 /** Whether or not this function has a body (which may be empty). */
563 unsigned is_defined:1;
564
565 /** Whether or not this function signature is a built-in. */
566 unsigned is_builtin:1;
567
568 /** Body of instructions in the function. */
569 struct exec_list body;
570
571 private:
572 /** Function of which this signature is one overload. */
573 class ir_function *_function;
574
575 /** Function signature of which this one is a prototype clone */
576 const ir_function_signature *origin;
577
578 friend class ir_function;
579
580 /**
581 * Helper function to run a list of instructions for constant
582 * expression evaluation.
583 *
584 * The hash table represents the values of the visible variables.
585 * There are no scoping issues because the table is indexed on
586 * ir_variable pointers, not variable names.
587 *
588 * Returns false if the expression is not constant, true otherwise,
589 * and the value in *result if result is non-NULL.
590 */
591 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
592 struct hash_table *variable_context,
593 ir_constant **result);
594 };
595
596
597 /**
598 * Header for tracking multiple overloaded functions with the same name.
599 * Contains a list of ir_function_signatures representing each of the
600 * actual functions.
601 */
602 class ir_function : public ir_instruction {
603 public:
604 ir_function(const char *name);
605
606 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
607
608 virtual ir_function *as_function()
609 {
610 return this;
611 }
612
613 virtual void accept(ir_visitor *v)
614 {
615 v->visit(this);
616 }
617
618 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
619
620 void add_signature(ir_function_signature *sig)
621 {
622 sig->_function = this;
623 this->signatures.push_tail(sig);
624 }
625
626 /**
627 * Get an iterator for the set of function signatures
628 */
629 exec_list_iterator iterator()
630 {
631 return signatures.iterator();
632 }
633
634 /**
635 * Find a signature that matches a set of actual parameters, taking implicit
636 * conversions into account. Also flags whether the match was exact.
637 */
638 ir_function_signature *matching_signature(const exec_list *actual_param,
639 bool *match_is_exact);
640
641 /**
642 * Find a signature that matches a set of actual parameters, taking implicit
643 * conversions into account.
644 */
645 ir_function_signature *matching_signature(const exec_list *actual_param);
646
647 /**
648 * Find a signature that exactly matches a set of actual parameters without
649 * any implicit type conversions.
650 */
651 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
652
653 /**
654 * Name of the function.
655 */
656 const char *name;
657
658 /** Whether or not this function has a signature that isn't a built-in. */
659 bool has_user_signature();
660
661 /**
662 * List of ir_function_signature for each overloaded function with this name.
663 */
664 struct exec_list signatures;
665 };
666
667 inline const char *ir_function_signature::function_name() const
668 {
669 return this->_function->name;
670 }
671 /*@}*/
672
673
674 /**
675 * IR instruction representing high-level if-statements
676 */
677 class ir_if : public ir_instruction {
678 public:
679 ir_if(ir_rvalue *condition)
680 : condition(condition)
681 {
682 ir_type = ir_type_if;
683 }
684
685 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
686
687 virtual ir_if *as_if()
688 {
689 return this;
690 }
691
692 virtual void accept(ir_visitor *v)
693 {
694 v->visit(this);
695 }
696
697 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
698
699 ir_rvalue *condition;
700 /** List of ir_instruction for the body of the then branch */
701 exec_list then_instructions;
702 /** List of ir_instruction for the body of the else branch */
703 exec_list else_instructions;
704 };
705
706
707 /**
708 * IR instruction representing a high-level loop structure.
709 */
710 class ir_loop : public ir_instruction {
711 public:
712 ir_loop();
713
714 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
715
716 virtual void accept(ir_visitor *v)
717 {
718 v->visit(this);
719 }
720
721 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
722
723 virtual ir_loop *as_loop()
724 {
725 return this;
726 }
727
728 /**
729 * Get an iterator for the instructions of the loop body
730 */
731 exec_list_iterator iterator()
732 {
733 return body_instructions.iterator();
734 }
735
736 /** List of ir_instruction that make up the body of the loop. */
737 exec_list body_instructions;
738
739 /**
740 * \name Loop counter and controls
741 *
742 * Represents a loop like a FORTRAN \c do-loop.
743 *
744 * \note
745 * If \c from and \c to are the same value, the loop will execute once.
746 */
747 /*@{*/
748 ir_rvalue *from; /** Value of the loop counter on the first
749 * iteration of the loop.
750 */
751 ir_rvalue *to; /** Value of the loop counter on the last
752 * iteration of the loop.
753 */
754 ir_rvalue *increment;
755 ir_variable *counter;
756
757 /**
758 * Comparison operation in the loop terminator.
759 *
760 * If any of the loop control fields are non-\c NULL, this field must be
761 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
762 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
763 */
764 int cmp;
765 /*@}*/
766 };
767
768
769 class ir_assignment : public ir_instruction {
770 public:
771 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
772
773 /**
774 * Construct an assignment with an explicit write mask
775 *
776 * \note
777 * Since a write mask is supplied, the LHS must already be a bare
778 * \c ir_dereference. The cannot be any swizzles in the LHS.
779 */
780 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
781 unsigned write_mask);
782
783 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
784
785 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
786
787 virtual void accept(ir_visitor *v)
788 {
789 v->visit(this);
790 }
791
792 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
793
794 virtual ir_assignment * as_assignment()
795 {
796 return this;
797 }
798
799 /**
800 * Get a whole variable written by an assignment
801 *
802 * If the LHS of the assignment writes a whole variable, the variable is
803 * returned. Otherwise \c NULL is returned. Examples of whole-variable
804 * assignment are:
805 *
806 * - Assigning to a scalar
807 * - Assigning to all components of a vector
808 * - Whole array (or matrix) assignment
809 * - Whole structure assignment
810 */
811 ir_variable *whole_variable_written();
812
813 /**
814 * Set the LHS of an assignment
815 */
816 void set_lhs(ir_rvalue *lhs);
817
818 /**
819 * Left-hand side of the assignment.
820 *
821 * This should be treated as read only. If you need to set the LHS of an
822 * assignment, use \c ir_assignment::set_lhs.
823 */
824 ir_dereference *lhs;
825
826 /**
827 * Value being assigned
828 */
829 ir_rvalue *rhs;
830
831 /**
832 * Optional condition for the assignment.
833 */
834 ir_rvalue *condition;
835
836
837 /**
838 * Component mask written
839 *
840 * For non-vector types in the LHS, this field will be zero. For vector
841 * types, a bit will be set for each component that is written. Note that
842 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
843 *
844 * A partially-set write mask means that each enabled channel gets
845 * the value from a consecutive channel of the rhs. For example,
846 * to write just .xyw of gl_FrontColor with color:
847 *
848 * (assign (constant bool (1)) (xyw)
849 * (var_ref gl_FragColor)
850 * (swiz xyw (var_ref color)))
851 */
852 unsigned write_mask:4;
853 };
854
855 /* Update ir_expression::num_operands() and operator_strs when
856 * updating this list.
857 */
858 enum ir_expression_operation {
859 ir_unop_bit_not,
860 ir_unop_logic_not,
861 ir_unop_neg,
862 ir_unop_abs,
863 ir_unop_sign,
864 ir_unop_rcp,
865 ir_unop_rsq,
866 ir_unop_sqrt,
867 ir_unop_exp, /**< Log base e on gentype */
868 ir_unop_log, /**< Natural log on gentype */
869 ir_unop_exp2,
870 ir_unop_log2,
871 ir_unop_f2i, /**< Float-to-integer conversion. */
872 ir_unop_i2f, /**< Integer-to-float conversion. */
873 ir_unop_f2b, /**< Float-to-boolean conversion */
874 ir_unop_b2f, /**< Boolean-to-float conversion */
875 ir_unop_i2b, /**< int-to-boolean conversion */
876 ir_unop_b2i, /**< Boolean-to-int conversion */
877 ir_unop_u2f, /**< Unsigned-to-float conversion. */
878 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
879 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
880 ir_unop_any,
881
882 /**
883 * \name Unary floating-point rounding operations.
884 */
885 /*@{*/
886 ir_unop_trunc,
887 ir_unop_ceil,
888 ir_unop_floor,
889 ir_unop_fract,
890 ir_unop_round_even,
891 /*@}*/
892
893 /**
894 * \name Trigonometric operations.
895 */
896 /*@{*/
897 ir_unop_sin,
898 ir_unop_cos,
899 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
900 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
901 /*@}*/
902
903 /**
904 * \name Partial derivatives.
905 */
906 /*@{*/
907 ir_unop_dFdx,
908 ir_unop_dFdy,
909 /*@}*/
910
911 ir_unop_noise,
912
913 /**
914 * A sentinel marking the last of the unary operations.
915 */
916 ir_last_unop = ir_unop_noise,
917
918 ir_binop_add,
919 ir_binop_sub,
920 ir_binop_mul,
921 ir_binop_div,
922
923 /**
924 * Takes one of two combinations of arguments:
925 *
926 * - mod(vecN, vecN)
927 * - mod(vecN, float)
928 *
929 * Does not take integer types.
930 */
931 ir_binop_mod,
932
933 /**
934 * \name Binary comparison operators which return a boolean vector.
935 * The type of both operands must be equal.
936 */
937 /*@{*/
938 ir_binop_less,
939 ir_binop_greater,
940 ir_binop_lequal,
941 ir_binop_gequal,
942 ir_binop_equal,
943 ir_binop_nequal,
944 /**
945 * Returns single boolean for whether all components of operands[0]
946 * equal the components of operands[1].
947 */
948 ir_binop_all_equal,
949 /**
950 * Returns single boolean for whether any component of operands[0]
951 * is not equal to the corresponding component of operands[1].
952 */
953 ir_binop_any_nequal,
954 /*@}*/
955
956 /**
957 * \name Bit-wise binary operations.
958 */
959 /*@{*/
960 ir_binop_lshift,
961 ir_binop_rshift,
962 ir_binop_bit_and,
963 ir_binop_bit_xor,
964 ir_binop_bit_or,
965 /*@}*/
966
967 ir_binop_logic_and,
968 ir_binop_logic_xor,
969 ir_binop_logic_or,
970
971 ir_binop_dot,
972 ir_binop_min,
973 ir_binop_max,
974
975 ir_binop_pow,
976
977 /**
978 * A sentinel marking the last of the binary operations.
979 */
980 ir_last_binop = ir_binop_pow,
981
982 ir_quadop_vector,
983
984 /**
985 * A sentinel marking the last of all operations.
986 */
987 ir_last_opcode = ir_last_binop
988 };
989
990 class ir_expression : public ir_rvalue {
991 public:
992 /**
993 * Constructor for unary operation expressions
994 */
995 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
996 ir_expression(int op, ir_rvalue *);
997
998 /**
999 * Constructor for binary operation expressions
1000 */
1001 ir_expression(int op, const struct glsl_type *type,
1002 ir_rvalue *, ir_rvalue *);
1003 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1004
1005 /**
1006 * Constructor for quad operator expressions
1007 */
1008 ir_expression(int op, const struct glsl_type *type,
1009 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1010
1011 virtual ir_expression *as_expression()
1012 {
1013 return this;
1014 }
1015
1016 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1017
1018 /**
1019 * Attempt to constant-fold the expression
1020 *
1021 * The "variable_context" hash table links ir_variable * to ir_constant *
1022 * that represent the variables' values. \c NULL represents an empty
1023 * context.
1024 *
1025 * If the expression cannot be constant folded, this method will return
1026 * \c NULL.
1027 */
1028 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1029
1030 /**
1031 * Determine the number of operands used by an expression
1032 */
1033 static unsigned int get_num_operands(ir_expression_operation);
1034
1035 /**
1036 * Determine the number of operands used by an expression
1037 */
1038 unsigned int get_num_operands() const
1039 {
1040 return (this->operation == ir_quadop_vector)
1041 ? this->type->vector_elements : get_num_operands(operation);
1042 }
1043
1044 /**
1045 * Return a string representing this expression's operator.
1046 */
1047 const char *operator_string();
1048
1049 /**
1050 * Return a string representing this expression's operator.
1051 */
1052 static const char *operator_string(ir_expression_operation);
1053
1054
1055 /**
1056 * Do a reverse-lookup to translate the given string into an operator.
1057 */
1058 static ir_expression_operation get_operator(const char *);
1059
1060 virtual void accept(ir_visitor *v)
1061 {
1062 v->visit(this);
1063 }
1064
1065 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1066
1067 ir_expression_operation operation;
1068 ir_rvalue *operands[4];
1069 };
1070
1071
1072 /**
1073 * HIR instruction representing a high-level function call, containing a list
1074 * of parameters and returning a value in the supplied temporary.
1075 */
1076 class ir_call : public ir_instruction {
1077 public:
1078 ir_call(ir_function_signature *callee,
1079 ir_dereference_variable *return_deref,
1080 exec_list *actual_parameters)
1081 : return_deref(return_deref), callee(callee)
1082 {
1083 ir_type = ir_type_call;
1084 assert(callee->return_type != NULL);
1085 actual_parameters->move_nodes_to(& this->actual_parameters);
1086 this->use_builtin = callee->is_builtin;
1087 }
1088
1089 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1090
1091 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1092
1093 virtual ir_call *as_call()
1094 {
1095 return this;
1096 }
1097
1098 virtual void accept(ir_visitor *v)
1099 {
1100 v->visit(this);
1101 }
1102
1103 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1104
1105 /**
1106 * Get an iterator for the set of acutal parameters
1107 */
1108 exec_list_iterator iterator()
1109 {
1110 return actual_parameters.iterator();
1111 }
1112
1113 /**
1114 * Get the name of the function being called.
1115 */
1116 const char *callee_name() const
1117 {
1118 return callee->function_name();
1119 }
1120
1121 /**
1122 * Generates an inline version of the function before @ir,
1123 * storing the return value in return_deref.
1124 */
1125 void generate_inline(ir_instruction *ir);
1126
1127 /**
1128 * Storage for the function's return value.
1129 * This must be NULL if the return type is void.
1130 */
1131 ir_dereference_variable *return_deref;
1132
1133 /**
1134 * The specific function signature being called.
1135 */
1136 ir_function_signature *callee;
1137
1138 /* List of ir_rvalue of paramaters passed in this call. */
1139 exec_list actual_parameters;
1140
1141 /** Should this call only bind to a built-in function? */
1142 bool use_builtin;
1143 };
1144
1145
1146 /**
1147 * \name Jump-like IR instructions.
1148 *
1149 * These include \c break, \c continue, \c return, and \c discard.
1150 */
1151 /*@{*/
1152 class ir_jump : public ir_instruction {
1153 protected:
1154 ir_jump()
1155 {
1156 ir_type = ir_type_unset;
1157 }
1158 };
1159
1160 class ir_return : public ir_jump {
1161 public:
1162 ir_return()
1163 : value(NULL)
1164 {
1165 this->ir_type = ir_type_return;
1166 }
1167
1168 ir_return(ir_rvalue *value)
1169 : value(value)
1170 {
1171 this->ir_type = ir_type_return;
1172 }
1173
1174 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1175
1176 virtual ir_return *as_return()
1177 {
1178 return this;
1179 }
1180
1181 ir_rvalue *get_value() const
1182 {
1183 return value;
1184 }
1185
1186 virtual void accept(ir_visitor *v)
1187 {
1188 v->visit(this);
1189 }
1190
1191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1192
1193 ir_rvalue *value;
1194 };
1195
1196
1197 /**
1198 * Jump instructions used inside loops
1199 *
1200 * These include \c break and \c continue. The \c break within a loop is
1201 * different from the \c break within a switch-statement.
1202 *
1203 * \sa ir_switch_jump
1204 */
1205 class ir_loop_jump : public ir_jump {
1206 public:
1207 enum jump_mode {
1208 jump_break,
1209 jump_continue
1210 };
1211
1212 ir_loop_jump(jump_mode mode)
1213 {
1214 this->ir_type = ir_type_loop_jump;
1215 this->mode = mode;
1216 this->loop = loop;
1217 }
1218
1219 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1220
1221 virtual void accept(ir_visitor *v)
1222 {
1223 v->visit(this);
1224 }
1225
1226 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1227
1228 bool is_break() const
1229 {
1230 return mode == jump_break;
1231 }
1232
1233 bool is_continue() const
1234 {
1235 return mode == jump_continue;
1236 }
1237
1238 /** Mode selector for the jump instruction. */
1239 enum jump_mode mode;
1240 private:
1241 /** Loop containing this break instruction. */
1242 ir_loop *loop;
1243 };
1244
1245 /**
1246 * IR instruction representing discard statements.
1247 */
1248 class ir_discard : public ir_jump {
1249 public:
1250 ir_discard()
1251 {
1252 this->ir_type = ir_type_discard;
1253 this->condition = NULL;
1254 }
1255
1256 ir_discard(ir_rvalue *cond)
1257 {
1258 this->ir_type = ir_type_discard;
1259 this->condition = cond;
1260 }
1261
1262 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1263
1264 virtual void accept(ir_visitor *v)
1265 {
1266 v->visit(this);
1267 }
1268
1269 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1270
1271 virtual ir_discard *as_discard()
1272 {
1273 return this;
1274 }
1275
1276 ir_rvalue *condition;
1277 };
1278 /*@}*/
1279
1280
1281 /**
1282 * Texture sampling opcodes used in ir_texture
1283 */
1284 enum ir_texture_opcode {
1285 ir_tex, /**< Regular texture look-up */
1286 ir_txb, /**< Texture look-up with LOD bias */
1287 ir_txl, /**< Texture look-up with explicit LOD */
1288 ir_txd, /**< Texture look-up with partial derivatvies */
1289 ir_txf, /**< Texel fetch with explicit LOD */
1290 ir_txs /**< Texture size */
1291 };
1292
1293
1294 /**
1295 * IR instruction to sample a texture
1296 *
1297 * The specific form of the IR instruction depends on the \c mode value
1298 * selected from \c ir_texture_opcodes. In the printed IR, these will
1299 * appear as:
1300 *
1301 * Texel offset (0 or an expression)
1302 * | Projection divisor
1303 * | | Shadow comparitor
1304 * | | |
1305 * v v v
1306 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1307 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1308 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1309 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1310 * (txf <type> <sampler> <coordinate> 0 <lod>)
1311 * (txs <type> <sampler> <lod>)
1312 */
1313 class ir_texture : public ir_rvalue {
1314 public:
1315 ir_texture(enum ir_texture_opcode op)
1316 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1317 {
1318 this->ir_type = ir_type_texture;
1319 }
1320
1321 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1322
1323 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1324
1325 virtual void accept(ir_visitor *v)
1326 {
1327 v->visit(this);
1328 }
1329
1330 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1331
1332 /**
1333 * Return a string representing the ir_texture_opcode.
1334 */
1335 const char *opcode_string();
1336
1337 /** Set the sampler and type. */
1338 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1339
1340 /**
1341 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1342 */
1343 static ir_texture_opcode get_opcode(const char *);
1344
1345 enum ir_texture_opcode op;
1346
1347 /** Sampler to use for the texture access. */
1348 ir_dereference *sampler;
1349
1350 /** Texture coordinate to sample */
1351 ir_rvalue *coordinate;
1352
1353 /**
1354 * Value used for projective divide.
1355 *
1356 * If there is no projective divide (the common case), this will be
1357 * \c NULL. Optimization passes should check for this to point to a constant
1358 * of 1.0 and replace that with \c NULL.
1359 */
1360 ir_rvalue *projector;
1361
1362 /**
1363 * Coordinate used for comparison on shadow look-ups.
1364 *
1365 * If there is no shadow comparison, this will be \c NULL. For the
1366 * \c ir_txf opcode, this *must* be \c NULL.
1367 */
1368 ir_rvalue *shadow_comparitor;
1369
1370 /** Texel offset. */
1371 ir_rvalue *offset;
1372
1373 union {
1374 ir_rvalue *lod; /**< Floating point LOD */
1375 ir_rvalue *bias; /**< Floating point LOD bias */
1376 struct {
1377 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1378 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1379 } grad;
1380 } lod_info;
1381 };
1382
1383
1384 struct ir_swizzle_mask {
1385 unsigned x:2;
1386 unsigned y:2;
1387 unsigned z:2;
1388 unsigned w:2;
1389
1390 /**
1391 * Number of components in the swizzle.
1392 */
1393 unsigned num_components:3;
1394
1395 /**
1396 * Does the swizzle contain duplicate components?
1397 *
1398 * L-value swizzles cannot contain duplicate components.
1399 */
1400 unsigned has_duplicates:1;
1401 };
1402
1403
1404 class ir_swizzle : public ir_rvalue {
1405 public:
1406 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1407 unsigned count);
1408
1409 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1410
1411 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1412
1413 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1414
1415 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1416
1417 virtual ir_swizzle *as_swizzle()
1418 {
1419 return this;
1420 }
1421
1422 /**
1423 * Construct an ir_swizzle from the textual representation. Can fail.
1424 */
1425 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1426
1427 virtual void accept(ir_visitor *v)
1428 {
1429 v->visit(this);
1430 }
1431
1432 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1433
1434 bool is_lvalue() const
1435 {
1436 return val->is_lvalue() && !mask.has_duplicates;
1437 }
1438
1439 /**
1440 * Get the variable that is ultimately referenced by an r-value
1441 */
1442 virtual ir_variable *variable_referenced() const;
1443
1444 ir_rvalue *val;
1445 ir_swizzle_mask mask;
1446
1447 private:
1448 /**
1449 * Initialize the mask component of a swizzle
1450 *
1451 * This is used by the \c ir_swizzle constructors.
1452 */
1453 void init_mask(const unsigned *components, unsigned count);
1454 };
1455
1456
1457 class ir_dereference : public ir_rvalue {
1458 public:
1459 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1460
1461 virtual ir_dereference *as_dereference()
1462 {
1463 return this;
1464 }
1465
1466 bool is_lvalue() const;
1467
1468 /**
1469 * Get the variable that is ultimately referenced by an r-value
1470 */
1471 virtual ir_variable *variable_referenced() const = 0;
1472
1473 /**
1474 * Get the constant that is ultimately referenced by an r-value,
1475 * in a constant expression evaluation context.
1476 *
1477 * The offset is used when the reference is to a specific column of
1478 * a matrix.
1479 */
1480 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1481 };
1482
1483
1484 class ir_dereference_variable : public ir_dereference {
1485 public:
1486 ir_dereference_variable(ir_variable *var);
1487
1488 virtual ir_dereference_variable *clone(void *mem_ctx,
1489 struct hash_table *) const;
1490
1491 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1492
1493 virtual ir_dereference_variable *as_dereference_variable()
1494 {
1495 return this;
1496 }
1497
1498 /**
1499 * Get the variable that is ultimately referenced by an r-value
1500 */
1501 virtual ir_variable *variable_referenced() const
1502 {
1503 return this->var;
1504 }
1505
1506 /**
1507 * Get the constant that is ultimately referenced by an r-value,
1508 * in a constant expression evaluation context.
1509 *
1510 * The offset is used when the reference is to a specific column of
1511 * a matrix.
1512 */
1513 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1514
1515 virtual ir_variable *whole_variable_referenced()
1516 {
1517 /* ir_dereference_variable objects always dereference the entire
1518 * variable. However, if this dereference is dereferenced by anything
1519 * else, the complete deferefernce chain is not a whole-variable
1520 * dereference. This method should only be called on the top most
1521 * ir_rvalue in a dereference chain.
1522 */
1523 return this->var;
1524 }
1525
1526 virtual void accept(ir_visitor *v)
1527 {
1528 v->visit(this);
1529 }
1530
1531 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1532
1533 /**
1534 * Object being dereferenced.
1535 */
1536 ir_variable *var;
1537 };
1538
1539
1540 class ir_dereference_array : public ir_dereference {
1541 public:
1542 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1543
1544 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1545
1546 virtual ir_dereference_array *clone(void *mem_ctx,
1547 struct hash_table *) const;
1548
1549 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1550
1551 virtual ir_dereference_array *as_dereference_array()
1552 {
1553 return this;
1554 }
1555
1556 /**
1557 * Get the variable that is ultimately referenced by an r-value
1558 */
1559 virtual ir_variable *variable_referenced() const
1560 {
1561 return this->array->variable_referenced();
1562 }
1563
1564 /**
1565 * Get the constant that is ultimately referenced by an r-value,
1566 * in a constant expression evaluation context.
1567 *
1568 * The offset is used when the reference is to a specific column of
1569 * a matrix.
1570 */
1571 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1572
1573 virtual void accept(ir_visitor *v)
1574 {
1575 v->visit(this);
1576 }
1577
1578 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1579
1580 ir_rvalue *array;
1581 ir_rvalue *array_index;
1582
1583 private:
1584 void set_array(ir_rvalue *value);
1585 };
1586
1587
1588 class ir_dereference_record : public ir_dereference {
1589 public:
1590 ir_dereference_record(ir_rvalue *value, const char *field);
1591
1592 ir_dereference_record(ir_variable *var, const char *field);
1593
1594 virtual ir_dereference_record *clone(void *mem_ctx,
1595 struct hash_table *) const;
1596
1597 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1598
1599 /**
1600 * Get the variable that is ultimately referenced by an r-value
1601 */
1602 virtual ir_variable *variable_referenced() const
1603 {
1604 return this->record->variable_referenced();
1605 }
1606
1607 /**
1608 * Get the constant that is ultimately referenced by an r-value,
1609 * in a constant expression evaluation context.
1610 *
1611 * The offset is used when the reference is to a specific column of
1612 * a matrix.
1613 */
1614 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1615
1616 virtual void accept(ir_visitor *v)
1617 {
1618 v->visit(this);
1619 }
1620
1621 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1622
1623 ir_rvalue *record;
1624 const char *field;
1625 };
1626
1627
1628 /**
1629 * Data stored in an ir_constant
1630 */
1631 union ir_constant_data {
1632 unsigned u[16];
1633 int i[16];
1634 float f[16];
1635 bool b[16];
1636 };
1637
1638
1639 class ir_constant : public ir_rvalue {
1640 public:
1641 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1642 ir_constant(bool b);
1643 ir_constant(unsigned int u);
1644 ir_constant(int i);
1645 ir_constant(float f);
1646
1647 /**
1648 * Construct an ir_constant from a list of ir_constant values
1649 */
1650 ir_constant(const struct glsl_type *type, exec_list *values);
1651
1652 /**
1653 * Construct an ir_constant from a scalar component of another ir_constant
1654 *
1655 * The new \c ir_constant inherits the type of the component from the
1656 * source constant.
1657 *
1658 * \note
1659 * In the case of a matrix constant, the new constant is a scalar, \b not
1660 * a vector.
1661 */
1662 ir_constant(const ir_constant *c, unsigned i);
1663
1664 /**
1665 * Return a new ir_constant of the specified type containing all zeros.
1666 */
1667 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1668
1669 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1670
1671 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1672
1673 virtual ir_constant *as_constant()
1674 {
1675 return this;
1676 }
1677
1678 virtual void accept(ir_visitor *v)
1679 {
1680 v->visit(this);
1681 }
1682
1683 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1684
1685 /**
1686 * Get a particular component of a constant as a specific type
1687 *
1688 * This is useful, for example, to get a value from an integer constant
1689 * as a float or bool. This appears frequently when constructors are
1690 * called with all constant parameters.
1691 */
1692 /*@{*/
1693 bool get_bool_component(unsigned i) const;
1694 float get_float_component(unsigned i) const;
1695 int get_int_component(unsigned i) const;
1696 unsigned get_uint_component(unsigned i) const;
1697 /*@}*/
1698
1699 ir_constant *get_array_element(unsigned i) const;
1700
1701 ir_constant *get_record_field(const char *name);
1702
1703 /**
1704 * Copy the values on another constant at a given offset.
1705 *
1706 * The offset is ignored for array or struct copies, it's only for
1707 * scalars or vectors into vectors or matrices.
1708 *
1709 * With identical types on both sides and zero offset it's clone()
1710 * without creating a new object.
1711 */
1712
1713 void copy_offset(ir_constant *src, int offset);
1714
1715 /**
1716 * Copy the values on another constant at a given offset and
1717 * following an assign-like mask.
1718 *
1719 * The mask is ignored for scalars.
1720 *
1721 * Note that this function only handles what assign can handle,
1722 * i.e. at most a vector as source and a column of a matrix as
1723 * destination.
1724 */
1725
1726 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1727
1728 /**
1729 * Determine whether a constant has the same value as another constant
1730 *
1731 * \sa ir_constant::is_zero, ir_constant::is_one,
1732 * ir_constant::is_negative_one
1733 */
1734 bool has_value(const ir_constant *) const;
1735
1736 virtual bool is_zero() const;
1737 virtual bool is_one() const;
1738 virtual bool is_negative_one() const;
1739
1740 /**
1741 * Value of the constant.
1742 *
1743 * The field used to back the values supplied by the constant is determined
1744 * by the type associated with the \c ir_instruction. Constants may be
1745 * scalars, vectors, or matrices.
1746 */
1747 union ir_constant_data value;
1748
1749 /* Array elements */
1750 ir_constant **array_elements;
1751
1752 /* Structure fields */
1753 exec_list components;
1754
1755 private:
1756 /**
1757 * Parameterless constructor only used by the clone method
1758 */
1759 ir_constant(void);
1760 };
1761
1762 /*@}*/
1763
1764 /**
1765 * Apply a visitor to each IR node in a list
1766 */
1767 void
1768 visit_exec_list(exec_list *list, ir_visitor *visitor);
1769
1770 /**
1771 * Validate invariants on each IR node in a list
1772 */
1773 void validate_ir_tree(exec_list *instructions);
1774
1775 struct _mesa_glsl_parse_state;
1776 struct gl_shader_program;
1777
1778 /**
1779 * Detect whether an unlinked shader contains static recursion
1780 *
1781 * If the list of instructions is determined to contain static recursion,
1782 * \c _mesa_glsl_error will be called to emit error messages for each function
1783 * that is in the recursion cycle.
1784 */
1785 void
1786 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1787 exec_list *instructions);
1788
1789 /**
1790 * Detect whether a linked shader contains static recursion
1791 *
1792 * If the list of instructions is determined to contain static recursion,
1793 * \c link_error_printf will be called to emit error messages for each function
1794 * that is in the recursion cycle. In addition,
1795 * \c gl_shader_program::LinkStatus will be set to false.
1796 */
1797 void
1798 detect_recursion_linked(struct gl_shader_program *prog,
1799 exec_list *instructions);
1800
1801 /**
1802 * Make a clone of each IR instruction in a list
1803 *
1804 * \param in List of IR instructions that are to be cloned
1805 * \param out List to hold the cloned instructions
1806 */
1807 void
1808 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1809
1810 extern void
1811 _mesa_glsl_initialize_variables(exec_list *instructions,
1812 struct _mesa_glsl_parse_state *state);
1813
1814 extern void
1815 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1816
1817 extern void
1818 _mesa_glsl_release_functions(void);
1819
1820 extern void
1821 reparent_ir(exec_list *list, void *mem_ctx);
1822
1823 struct glsl_symbol_table;
1824
1825 extern void
1826 import_prototypes(const exec_list *source, exec_list *dest,
1827 struct glsl_symbol_table *symbols, void *mem_ctx);
1828
1829 extern bool
1830 ir_has_call(ir_instruction *ir);
1831
1832 extern void
1833 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1834 bool is_fragment_shader);
1835
1836 extern char *
1837 prototype_string(const glsl_type *return_type, const char *name,
1838 exec_list *parameters);
1839
1840 #endif /* IR_H */