llvmpipe: implement 64 bit mul opcodes in llvmpipe
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_emit_vertex,
85 ir_type_end_primitive,
86 ir_type_max /**< maximum ir_type enum number, for validation */
87 };
88
89 /**
90 * Base class of all IR instructions
91 */
92 class ir_instruction : public exec_node {
93 public:
94 enum ir_node_type ir_type;
95
96 /**
97 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
98 * there's a virtual destructor present. Because we almost
99 * universally use ralloc for our memory management of
100 * ir_instructions, the destructor doesn't need to do any work.
101 */
102 virtual ~ir_instruction()
103 {
104 }
105
106 /** ir_print_visitor helper for debugging. */
107 void print(void) const;
108
109 virtual void accept(ir_visitor *) = 0;
110 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111 virtual ir_instruction *clone(void *mem_ctx,
112 struct hash_table *ht) const = 0;
113
114 /**
115 * \name IR instruction downcast functions
116 *
117 * These functions either cast the object to a derived class or return
118 * \c NULL if the object's type does not match the specified derived class.
119 * Additional downcast functions will be added as needed.
120 */
121 /*@{*/
122 virtual class ir_variable * as_variable() { return NULL; }
123 virtual class ir_function * as_function() { return NULL; }
124 virtual class ir_dereference * as_dereference() { return NULL; }
125 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
126 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
127 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
128 virtual class ir_expression * as_expression() { return NULL; }
129 virtual class ir_rvalue * as_rvalue() { return NULL; }
130 virtual class ir_loop * as_loop() { return NULL; }
131 virtual class ir_assignment * as_assignment() { return NULL; }
132 virtual class ir_call * as_call() { return NULL; }
133 virtual class ir_return * as_return() { return NULL; }
134 virtual class ir_if * as_if() { return NULL; }
135 virtual class ir_swizzle * as_swizzle() { return NULL; }
136 virtual class ir_constant * as_constant() { return NULL; }
137 virtual class ir_discard * as_discard() { return NULL; }
138 virtual class ir_jump * as_jump() { return NULL; }
139 /*@}*/
140
141 protected:
142 ir_instruction()
143 {
144 ir_type = ir_type_unset;
145 }
146 };
147
148
149 /**
150 * The base class for all "values"/expression trees.
151 */
152 class ir_rvalue : public ir_instruction {
153 public:
154 const struct glsl_type *type;
155
156 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
157
158 virtual void accept(ir_visitor *v)
159 {
160 v->visit(this);
161 }
162
163 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
164
165 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
166
167 virtual ir_rvalue * as_rvalue()
168 {
169 return this;
170 }
171
172 ir_rvalue *as_rvalue_to_saturate();
173
174 virtual bool is_lvalue() const
175 {
176 return false;
177 }
178
179 /**
180 * Get the variable that is ultimately referenced by an r-value
181 */
182 virtual ir_variable *variable_referenced() const
183 {
184 return NULL;
185 }
186
187
188 /**
189 * If an r-value is a reference to a whole variable, get that variable
190 *
191 * \return
192 * Pointer to a variable that is completely dereferenced by the r-value. If
193 * the r-value is not a dereference or the dereference does not access the
194 * entire variable (i.e., it's just one array element, struct field), \c NULL
195 * is returned.
196 */
197 virtual ir_variable *whole_variable_referenced()
198 {
199 return NULL;
200 }
201
202 /**
203 * Determine if an r-value has the value zero
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * zero (or \c false for booleans).
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
211 * ir_constant::is_basis
212 */
213 virtual bool is_zero() const;
214
215 /**
216 * Determine if an r-value has the value one
217 *
218 * The base implementation of this function always returns \c false. The
219 * \c ir_constant class over-rides this function to return \c true \b only
220 * for vector and scalar types that have all elements set to the value
221 * one (or \c true for booleans).
222 *
223 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
224 * ir_constant::is_basis
225 */
226 virtual bool is_one() const;
227
228 /**
229 * Determine if an r-value has the value negative one
230 *
231 * The base implementation of this function always returns \c false. The
232 * \c ir_constant class over-rides this function to return \c true \b only
233 * for vector and scalar types that have all elements set to the value
234 * negative one. For boolean types, the result is always \c false.
235 *
236 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
237 * ir_constant::is_basis
238 */
239 virtual bool is_negative_one() const;
240
241 /**
242 * Determine if an r-value is a basis vector
243 *
244 * The base implementation of this function always returns \c false. The
245 * \c ir_constant class over-rides this function to return \c true \b only
246 * for vector and scalar types that have one element set to the value one,
247 * and the other elements set to the value zero. For boolean types, the
248 * result is always \c false.
249 *
250 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
251 * is_constant::is_negative_one
252 */
253 virtual bool is_basis() const;
254
255
256 /**
257 * Return a generic value of error_type.
258 *
259 * Allocation will be performed with 'mem_ctx' as ralloc owner.
260 */
261 static ir_rvalue *error_value(void *mem_ctx);
262
263 protected:
264 ir_rvalue();
265 };
266
267
268 /**
269 * Variable storage classes
270 */
271 enum ir_variable_mode {
272 ir_var_auto = 0, /**< Function local variables and globals. */
273 ir_var_uniform, /**< Variable declared as a uniform. */
274 ir_var_shader_in,
275 ir_var_shader_out,
276 ir_var_function_in,
277 ir_var_function_out,
278 ir_var_function_inout,
279 ir_var_const_in, /**< "in" param that must be a constant expression */
280 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
281 ir_var_temporary, /**< Temporary variable generated during compilation. */
282 ir_var_mode_count /**< Number of variable modes */
283 };
284
285 /**
286 * \brief Layout qualifiers for gl_FragDepth.
287 *
288 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
289 * with a layout qualifier.
290 */
291 enum ir_depth_layout {
292 ir_depth_layout_none, /**< No depth layout is specified. */
293 ir_depth_layout_any,
294 ir_depth_layout_greater,
295 ir_depth_layout_less,
296 ir_depth_layout_unchanged
297 };
298
299 /**
300 * \brief Convert depth layout qualifier to string.
301 */
302 const char*
303 depth_layout_string(ir_depth_layout layout);
304
305 /**
306 * Description of built-in state associated with a uniform
307 *
308 * \sa ir_variable::state_slots
309 */
310 struct ir_state_slot {
311 int tokens[5];
312 int swizzle;
313 };
314
315 class ir_variable : public ir_instruction {
316 public:
317 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
318
319 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
320
321 virtual ir_variable *as_variable()
322 {
323 return this;
324 }
325
326 virtual void accept(ir_visitor *v)
327 {
328 v->visit(this);
329 }
330
331 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
332
333
334 /**
335 * Get the string value for the interpolation qualifier
336 *
337 * \return The string that would be used in a shader to specify \c
338 * mode will be returned.
339 *
340 * This function is used to generate error messages of the form "shader
341 * uses %s interpolation qualifier", so in the case where there is no
342 * interpolation qualifier, it returns "no".
343 *
344 * This function should only be used on a shader input or output variable.
345 */
346 const char *interpolation_string() const;
347
348 /**
349 * Determine how this variable should be interpolated based on its
350 * interpolation qualifier (if present), whether it is gl_Color or
351 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
352 * state.
353 *
354 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
355 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
356 */
357 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
358
359 /**
360 * Determine whether or not a variable is part of a uniform block.
361 */
362 inline bool is_in_uniform_block() const
363 {
364 return this->mode == ir_var_uniform && this->interface_type != NULL;
365 }
366
367 /**
368 * Determine whether or not a variable is the declaration of an interface
369 * block
370 *
371 * For the first declaration below, there will be an \c ir_variable named
372 * "instance" whose type and whose instance_type will be the same
373 * \cglsl_type. For the second declaration, there will be an \c ir_variable
374 * named "f" whose type is float and whose instance_type is B2.
375 *
376 * "instance" is an interface instance variable, but "f" is not.
377 *
378 * uniform B1 {
379 * float f;
380 * } instance;
381 *
382 * uniform B2 {
383 * float f;
384 * };
385 */
386 inline bool is_interface_instance() const
387 {
388 const glsl_type *const t = this->type;
389
390 return (t == this->interface_type)
391 || (t->is_array() && t->fields.array == this->interface_type);
392 }
393
394 /**
395 * Declared type of the variable
396 */
397 const struct glsl_type *type;
398
399 /**
400 * Declared name of the variable
401 */
402 const char *name;
403
404 /**
405 * Highest element accessed with a constant expression array index
406 *
407 * Not used for non-array variables.
408 */
409 unsigned max_array_access;
410
411 /**
412 * Is the variable read-only?
413 *
414 * This is set for variables declared as \c const, shader inputs,
415 * and uniforms.
416 */
417 unsigned read_only:1;
418 unsigned centroid:1;
419 unsigned invariant:1;
420
421 /**
422 * Has this variable been used for reading or writing?
423 *
424 * Several GLSL semantic checks require knowledge of whether or not a
425 * variable has been used. For example, it is an error to redeclare a
426 * variable as invariant after it has been used.
427 *
428 * This is only maintained in the ast_to_hir.cpp path, not in
429 * Mesa's fixed function or ARB program paths.
430 */
431 unsigned used:1;
432
433 /**
434 * Has this variable been statically assigned?
435 *
436 * This answers whether the variable was assigned in any path of
437 * the shader during ast_to_hir. This doesn't answer whether it is
438 * still written after dead code removal, nor is it maintained in
439 * non-ast_to_hir.cpp (GLSL parsing) paths.
440 */
441 unsigned assigned:1;
442
443 /**
444 * Storage class of the variable.
445 *
446 * \sa ir_variable_mode
447 */
448 unsigned mode:4;
449
450 /**
451 * Interpolation mode for shader inputs / outputs
452 *
453 * \sa ir_variable_interpolation
454 */
455 unsigned interpolation:2;
456
457 /**
458 * \name ARB_fragment_coord_conventions
459 * @{
460 */
461 unsigned origin_upper_left:1;
462 unsigned pixel_center_integer:1;
463 /*@}*/
464
465 /**
466 * Was the location explicitly set in the shader?
467 *
468 * If the location is explicitly set in the shader, it \b cannot be changed
469 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
470 * no effect).
471 */
472 unsigned explicit_location:1;
473 unsigned explicit_index:1;
474
475 /**
476 * Was an initial binding explicitly set in the shader?
477 *
478 * If so, constant_value contains an integer ir_constant representing the
479 * initial binding point.
480 */
481 unsigned explicit_binding:1;
482
483 /**
484 * Does this variable have an initializer?
485 *
486 * This is used by the linker to cross-validiate initializers of global
487 * variables.
488 */
489 unsigned has_initializer:1;
490
491 /**
492 * Is this variable a generic output or input that has not yet been matched
493 * up to a variable in another stage of the pipeline?
494 *
495 * This is used by the linker as scratch storage while assigning locations
496 * to generic inputs and outputs.
497 */
498 unsigned is_unmatched_generic_inout:1;
499
500 /**
501 * If non-zero, then this variable may be packed along with other variables
502 * into a single varying slot, so this offset should be applied when
503 * accessing components. For example, an offset of 1 means that the x
504 * component of this variable is actually stored in component y of the
505 * location specified by \c location.
506 */
507 unsigned location_frac:2;
508
509 /**
510 * \brief Layout qualifier for gl_FragDepth.
511 *
512 * This is not equal to \c ir_depth_layout_none if and only if this
513 * variable is \c gl_FragDepth and a layout qualifier is specified.
514 */
515 ir_depth_layout depth_layout;
516
517 /**
518 * Storage location of the base of this variable
519 *
520 * The precise meaning of this field depends on the nature of the variable.
521 *
522 * - Vertex shader input: one of the values from \c gl_vert_attrib.
523 * - Vertex shader output: one of the values from \c gl_varying_slot.
524 * - Geometry shader input: one of the values from \c gl_varying_slot.
525 * - Geometry shader output: one of the values from \c gl_varying_slot.
526 * - Fragment shader input: one of the values from \c gl_varying_slot.
527 * - Fragment shader output: one of the values from \c gl_frag_result.
528 * - Uniforms: Per-stage uniform slot number for default uniform block.
529 * - Uniforms: Index within the uniform block definition for UBO members.
530 * - Other: This field is not currently used.
531 *
532 * If the variable is a uniform, shader input, or shader output, and the
533 * slot has not been assigned, the value will be -1.
534 */
535 int location;
536
537 /**
538 * output index for dual source blending.
539 */
540 int index;
541
542 /**
543 * Initial binding point for a sampler or UBO.
544 *
545 * For array types, this represents the binding point for the first element.
546 */
547 int binding;
548
549 /**
550 * Built-in state that backs this uniform
551 *
552 * Once set at variable creation, \c state_slots must remain invariant.
553 * This is because, ideally, this array would be shared by all clones of
554 * this variable in the IR tree. In other words, we'd really like for it
555 * to be a fly-weight.
556 *
557 * If the variable is not a uniform, \c num_state_slots will be zero and
558 * \c state_slots will be \c NULL.
559 */
560 /*@{*/
561 unsigned num_state_slots; /**< Number of state slots used */
562 ir_state_slot *state_slots; /**< State descriptors. */
563 /*@}*/
564
565 /**
566 * Emit a warning if this variable is accessed.
567 */
568 const char *warn_extension;
569
570 /**
571 * Value assigned in the initializer of a variable declared "const"
572 */
573 ir_constant *constant_value;
574
575 /**
576 * Constant expression assigned in the initializer of the variable
577 *
578 * \warning
579 * This field and \c ::constant_value are distinct. Even if the two fields
580 * refer to constants with the same value, they must point to separate
581 * objects.
582 */
583 ir_constant *constant_initializer;
584
585 /**
586 * For variables that are in an interface block or are an instance of an
587 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
588 *
589 * \sa ir_variable::location
590 */
591 const glsl_type *interface_type;
592 };
593
594 /**
595 * A function that returns whether a built-in function is available in the
596 * current shading language (based on version, ES or desktop, and extensions).
597 */
598 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
599
600 /*@{*/
601 /**
602 * The representation of a function instance; may be the full definition or
603 * simply a prototype.
604 */
605 class ir_function_signature : public ir_instruction {
606 /* An ir_function_signature will be part of the list of signatures in
607 * an ir_function.
608 */
609 public:
610 ir_function_signature(const glsl_type *return_type,
611 builtin_available_predicate builtin_avail = NULL);
612
613 virtual ir_function_signature *clone(void *mem_ctx,
614 struct hash_table *ht) const;
615 ir_function_signature *clone_prototype(void *mem_ctx,
616 struct hash_table *ht) const;
617
618 virtual void accept(ir_visitor *v)
619 {
620 v->visit(this);
621 }
622
623 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
624
625 /**
626 * Attempt to evaluate this function as a constant expression,
627 * given a list of the actual parameters and the variable context.
628 * Returns NULL for non-built-ins.
629 */
630 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
631
632 /**
633 * Get the name of the function for which this is a signature
634 */
635 const char *function_name() const;
636
637 /**
638 * Get a handle to the function for which this is a signature
639 *
640 * There is no setter function, this function returns a \c const pointer,
641 * and \c ir_function_signature::_function is private for a reason. The
642 * only way to make a connection between a function and function signature
643 * is via \c ir_function::add_signature. This helps ensure that certain
644 * invariants (i.e., a function signature is in the list of signatures for
645 * its \c _function) are met.
646 *
647 * \sa ir_function::add_signature
648 */
649 inline const class ir_function *function() const
650 {
651 return this->_function;
652 }
653
654 /**
655 * Check whether the qualifiers match between this signature's parameters
656 * and the supplied parameter list. If not, returns the name of the first
657 * parameter with mismatched qualifiers (for use in error messages).
658 */
659 const char *qualifiers_match(exec_list *params);
660
661 /**
662 * Replace the current parameter list with the given one. This is useful
663 * if the current information came from a prototype, and either has invalid
664 * or missing parameter names.
665 */
666 void replace_parameters(exec_list *new_params);
667
668 /**
669 * Function return type.
670 *
671 * \note This discards the optional precision qualifier.
672 */
673 const struct glsl_type *return_type;
674
675 /**
676 * List of ir_variable of function parameters.
677 *
678 * This represents the storage. The paramaters passed in a particular
679 * call will be in ir_call::actual_paramaters.
680 */
681 struct exec_list parameters;
682
683 /** Whether or not this function has a body (which may be empty). */
684 unsigned is_defined:1;
685
686 /** Whether or not this function signature is a built-in. */
687 bool is_builtin() const;
688
689 /** Whether or not a built-in is available for this shader. */
690 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
691
692 /** Body of instructions in the function. */
693 struct exec_list body;
694
695 private:
696 /**
697 * A function pointer to a predicate that answers whether a built-in
698 * function is available in the current shader. NULL if not a built-in.
699 */
700 builtin_available_predicate builtin_avail;
701
702 /** Function of which this signature is one overload. */
703 class ir_function *_function;
704
705 /** Function signature of which this one is a prototype clone */
706 const ir_function_signature *origin;
707
708 friend class ir_function;
709
710 /**
711 * Helper function to run a list of instructions for constant
712 * expression evaluation.
713 *
714 * The hash table represents the values of the visible variables.
715 * There are no scoping issues because the table is indexed on
716 * ir_variable pointers, not variable names.
717 *
718 * Returns false if the expression is not constant, true otherwise,
719 * and the value in *result if result is non-NULL.
720 */
721 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
722 struct hash_table *variable_context,
723 ir_constant **result);
724 };
725
726
727 /**
728 * Header for tracking multiple overloaded functions with the same name.
729 * Contains a list of ir_function_signatures representing each of the
730 * actual functions.
731 */
732 class ir_function : public ir_instruction {
733 public:
734 ir_function(const char *name);
735
736 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
737
738 virtual ir_function *as_function()
739 {
740 return this;
741 }
742
743 virtual void accept(ir_visitor *v)
744 {
745 v->visit(this);
746 }
747
748 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
749
750 void add_signature(ir_function_signature *sig)
751 {
752 sig->_function = this;
753 this->signatures.push_tail(sig);
754 }
755
756 /**
757 * Get an iterator for the set of function signatures
758 */
759 exec_list_iterator iterator()
760 {
761 return signatures.iterator();
762 }
763
764 /**
765 * Find a signature that matches a set of actual parameters, taking implicit
766 * conversions into account. Also flags whether the match was exact.
767 */
768 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
769 const exec_list *actual_param,
770 bool *match_is_exact);
771
772 /**
773 * Find a signature that matches a set of actual parameters, taking implicit
774 * conversions into account.
775 */
776 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
777 const exec_list *actual_param);
778
779 /**
780 * Find a signature that exactly matches a set of actual parameters without
781 * any implicit type conversions.
782 */
783 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
784 const exec_list *actual_ps);
785
786 /**
787 * Name of the function.
788 */
789 const char *name;
790
791 /** Whether or not this function has a signature that isn't a built-in. */
792 bool has_user_signature();
793
794 /**
795 * List of ir_function_signature for each overloaded function with this name.
796 */
797 struct exec_list signatures;
798 };
799
800 inline const char *ir_function_signature::function_name() const
801 {
802 return this->_function->name;
803 }
804 /*@}*/
805
806
807 /**
808 * IR instruction representing high-level if-statements
809 */
810 class ir_if : public ir_instruction {
811 public:
812 ir_if(ir_rvalue *condition)
813 : condition(condition)
814 {
815 ir_type = ir_type_if;
816 }
817
818 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
819
820 virtual ir_if *as_if()
821 {
822 return this;
823 }
824
825 virtual void accept(ir_visitor *v)
826 {
827 v->visit(this);
828 }
829
830 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
831
832 ir_rvalue *condition;
833 /** List of ir_instruction for the body of the then branch */
834 exec_list then_instructions;
835 /** List of ir_instruction for the body of the else branch */
836 exec_list else_instructions;
837 };
838
839
840 /**
841 * IR instruction representing a high-level loop structure.
842 */
843 class ir_loop : public ir_instruction {
844 public:
845 ir_loop();
846
847 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
848
849 virtual void accept(ir_visitor *v)
850 {
851 v->visit(this);
852 }
853
854 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
855
856 virtual ir_loop *as_loop()
857 {
858 return this;
859 }
860
861 /**
862 * Get an iterator for the instructions of the loop body
863 */
864 exec_list_iterator iterator()
865 {
866 return body_instructions.iterator();
867 }
868
869 /** List of ir_instruction that make up the body of the loop. */
870 exec_list body_instructions;
871
872 /**
873 * \name Loop counter and controls
874 *
875 * Represents a loop like a FORTRAN \c do-loop.
876 *
877 * \note
878 * If \c from and \c to are the same value, the loop will execute once.
879 */
880 /*@{*/
881 ir_rvalue *from; /** Value of the loop counter on the first
882 * iteration of the loop.
883 */
884 ir_rvalue *to; /** Value of the loop counter on the last
885 * iteration of the loop.
886 */
887 ir_rvalue *increment;
888 ir_variable *counter;
889
890 /**
891 * Comparison operation in the loop terminator.
892 *
893 * If any of the loop control fields are non-\c NULL, this field must be
894 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
895 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
896 */
897 int cmp;
898 /*@}*/
899 };
900
901
902 class ir_assignment : public ir_instruction {
903 public:
904 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
905
906 /**
907 * Construct an assignment with an explicit write mask
908 *
909 * \note
910 * Since a write mask is supplied, the LHS must already be a bare
911 * \c ir_dereference. The cannot be any swizzles in the LHS.
912 */
913 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
914 unsigned write_mask);
915
916 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
917
918 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
919
920 virtual void accept(ir_visitor *v)
921 {
922 v->visit(this);
923 }
924
925 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
926
927 virtual ir_assignment * as_assignment()
928 {
929 return this;
930 }
931
932 /**
933 * Get a whole variable written by an assignment
934 *
935 * If the LHS of the assignment writes a whole variable, the variable is
936 * returned. Otherwise \c NULL is returned. Examples of whole-variable
937 * assignment are:
938 *
939 * - Assigning to a scalar
940 * - Assigning to all components of a vector
941 * - Whole array (or matrix) assignment
942 * - Whole structure assignment
943 */
944 ir_variable *whole_variable_written();
945
946 /**
947 * Set the LHS of an assignment
948 */
949 void set_lhs(ir_rvalue *lhs);
950
951 /**
952 * Left-hand side of the assignment.
953 *
954 * This should be treated as read only. If you need to set the LHS of an
955 * assignment, use \c ir_assignment::set_lhs.
956 */
957 ir_dereference *lhs;
958
959 /**
960 * Value being assigned
961 */
962 ir_rvalue *rhs;
963
964 /**
965 * Optional condition for the assignment.
966 */
967 ir_rvalue *condition;
968
969
970 /**
971 * Component mask written
972 *
973 * For non-vector types in the LHS, this field will be zero. For vector
974 * types, a bit will be set for each component that is written. Note that
975 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
976 *
977 * A partially-set write mask means that each enabled channel gets
978 * the value from a consecutive channel of the rhs. For example,
979 * to write just .xyw of gl_FrontColor with color:
980 *
981 * (assign (constant bool (1)) (xyw)
982 * (var_ref gl_FragColor)
983 * (swiz xyw (var_ref color)))
984 */
985 unsigned write_mask:4;
986 };
987
988 /* Update ir_expression::get_num_operands() and operator_strs when
989 * updating this list.
990 */
991 enum ir_expression_operation {
992 ir_unop_bit_not,
993 ir_unop_logic_not,
994 ir_unop_neg,
995 ir_unop_abs,
996 ir_unop_sign,
997 ir_unop_rcp,
998 ir_unop_rsq,
999 ir_unop_sqrt,
1000 ir_unop_exp, /**< Log base e on gentype */
1001 ir_unop_log, /**< Natural log on gentype */
1002 ir_unop_exp2,
1003 ir_unop_log2,
1004 ir_unop_f2i, /**< Float-to-integer conversion. */
1005 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1006 ir_unop_i2f, /**< Integer-to-float conversion. */
1007 ir_unop_f2b, /**< Float-to-boolean conversion */
1008 ir_unop_b2f, /**< Boolean-to-float conversion */
1009 ir_unop_i2b, /**< int-to-boolean conversion */
1010 ir_unop_b2i, /**< Boolean-to-int conversion */
1011 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1012 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1013 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1014 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1015 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1016 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1017 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1018 ir_unop_any,
1019
1020 /**
1021 * \name Unary floating-point rounding operations.
1022 */
1023 /*@{*/
1024 ir_unop_trunc,
1025 ir_unop_ceil,
1026 ir_unop_floor,
1027 ir_unop_fract,
1028 ir_unop_round_even,
1029 /*@}*/
1030
1031 /**
1032 * \name Trigonometric operations.
1033 */
1034 /*@{*/
1035 ir_unop_sin,
1036 ir_unop_cos,
1037 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1038 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1039 /*@}*/
1040
1041 /**
1042 * \name Partial derivatives.
1043 */
1044 /*@{*/
1045 ir_unop_dFdx,
1046 ir_unop_dFdy,
1047 /*@}*/
1048
1049 /**
1050 * \name Floating point pack and unpack operations.
1051 */
1052 /*@{*/
1053 ir_unop_pack_snorm_2x16,
1054 ir_unop_pack_snorm_4x8,
1055 ir_unop_pack_unorm_2x16,
1056 ir_unop_pack_unorm_4x8,
1057 ir_unop_pack_half_2x16,
1058 ir_unop_unpack_snorm_2x16,
1059 ir_unop_unpack_snorm_4x8,
1060 ir_unop_unpack_unorm_2x16,
1061 ir_unop_unpack_unorm_4x8,
1062 ir_unop_unpack_half_2x16,
1063 /*@}*/
1064
1065 /**
1066 * \name Lowered floating point unpacking operations.
1067 *
1068 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1069 */
1070 /*@{*/
1071 ir_unop_unpack_half_2x16_split_x,
1072 ir_unop_unpack_half_2x16_split_y,
1073 /*@}*/
1074
1075 /**
1076 * \name Bit operations, part of ARB_gpu_shader5.
1077 */
1078 /*@{*/
1079 ir_unop_bitfield_reverse,
1080 ir_unop_bit_count,
1081 ir_unop_find_msb,
1082 ir_unop_find_lsb,
1083 /*@}*/
1084
1085 ir_unop_noise,
1086
1087 /**
1088 * A sentinel marking the last of the unary operations.
1089 */
1090 ir_last_unop = ir_unop_noise,
1091
1092 ir_binop_add,
1093 ir_binop_sub,
1094 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1095 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1096 ir_binop_div,
1097
1098 /**
1099 * Returns the carry resulting from the addition of the two arguments.
1100 */
1101 /*@{*/
1102 ir_binop_carry,
1103 /*@}*/
1104
1105 /**
1106 * Returns the borrow resulting from the subtraction of the second argument
1107 * from the first argument.
1108 */
1109 /*@{*/
1110 ir_binop_borrow,
1111 /*@}*/
1112
1113 /**
1114 * Takes one of two combinations of arguments:
1115 *
1116 * - mod(vecN, vecN)
1117 * - mod(vecN, float)
1118 *
1119 * Does not take integer types.
1120 */
1121 ir_binop_mod,
1122
1123 /**
1124 * \name Binary comparison operators which return a boolean vector.
1125 * The type of both operands must be equal.
1126 */
1127 /*@{*/
1128 ir_binop_less,
1129 ir_binop_greater,
1130 ir_binop_lequal,
1131 ir_binop_gequal,
1132 ir_binop_equal,
1133 ir_binop_nequal,
1134 /**
1135 * Returns single boolean for whether all components of operands[0]
1136 * equal the components of operands[1].
1137 */
1138 ir_binop_all_equal,
1139 /**
1140 * Returns single boolean for whether any component of operands[0]
1141 * is not equal to the corresponding component of operands[1].
1142 */
1143 ir_binop_any_nequal,
1144 /*@}*/
1145
1146 /**
1147 * \name Bit-wise binary operations.
1148 */
1149 /*@{*/
1150 ir_binop_lshift,
1151 ir_binop_rshift,
1152 ir_binop_bit_and,
1153 ir_binop_bit_xor,
1154 ir_binop_bit_or,
1155 /*@}*/
1156
1157 ir_binop_logic_and,
1158 ir_binop_logic_xor,
1159 ir_binop_logic_or,
1160
1161 ir_binop_dot,
1162 ir_binop_min,
1163 ir_binop_max,
1164
1165 ir_binop_pow,
1166
1167 /**
1168 * \name Lowered floating point packing operations.
1169 *
1170 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1171 */
1172 /*@{*/
1173 ir_binop_pack_half_2x16_split,
1174 /*@}*/
1175
1176 /**
1177 * \name First half of a lowered bitfieldInsert() operation.
1178 *
1179 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1180 */
1181 /*@{*/
1182 ir_binop_bfm,
1183 /*@}*/
1184
1185 /**
1186 * Load a value the size of a given GLSL type from a uniform block.
1187 *
1188 * operand0 is the ir_constant uniform block index in the linked shader.
1189 * operand1 is a byte offset within the uniform block.
1190 */
1191 ir_binop_ubo_load,
1192
1193 /**
1194 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1195 */
1196 /*@{*/
1197 ir_binop_ldexp,
1198 /*@}*/
1199
1200 /**
1201 * Extract a scalar from a vector
1202 *
1203 * operand0 is the vector
1204 * operand1 is the index of the field to read from operand0
1205 */
1206 ir_binop_vector_extract,
1207
1208 /**
1209 * A sentinel marking the last of the binary operations.
1210 */
1211 ir_last_binop = ir_binop_vector_extract,
1212
1213 /**
1214 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1215 */
1216 /*@{*/
1217 ir_triop_fma,
1218 /*@}*/
1219
1220 ir_triop_lrp,
1221
1222 /**
1223 * \name Conditional Select
1224 *
1225 * A vector conditional select instruction (like ?:, but operating per-
1226 * component on vectors).
1227 *
1228 * \see lower_instructions_visitor::ldexp_to_arith
1229 */
1230 /*@{*/
1231 ir_triop_csel,
1232 /*@}*/
1233
1234 /**
1235 * \name Second half of a lowered bitfieldInsert() operation.
1236 *
1237 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1238 */
1239 /*@{*/
1240 ir_triop_bfi,
1241 /*@}*/
1242
1243 ir_triop_bitfield_extract,
1244
1245 /**
1246 * Generate a value with one field of a vector changed
1247 *
1248 * operand0 is the vector
1249 * operand1 is the value to write into the vector result
1250 * operand2 is the index in operand0 to be modified
1251 */
1252 ir_triop_vector_insert,
1253
1254 /**
1255 * A sentinel marking the last of the ternary operations.
1256 */
1257 ir_last_triop = ir_triop_vector_insert,
1258
1259 ir_quadop_bitfield_insert,
1260
1261 ir_quadop_vector,
1262
1263 /**
1264 * A sentinel marking the last of the ternary operations.
1265 */
1266 ir_last_quadop = ir_quadop_vector,
1267
1268 /**
1269 * A sentinel marking the last of all operations.
1270 */
1271 ir_last_opcode = ir_quadop_vector
1272 };
1273
1274 class ir_expression : public ir_rvalue {
1275 public:
1276 ir_expression(int op, const struct glsl_type *type,
1277 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1278 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1279
1280 /**
1281 * Constructor for unary operation expressions
1282 */
1283 ir_expression(int op, ir_rvalue *);
1284
1285 /**
1286 * Constructor for binary operation expressions
1287 */
1288 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1289
1290 /**
1291 * Constructor for ternary operation expressions
1292 */
1293 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1294
1295 virtual ir_expression *as_expression()
1296 {
1297 return this;
1298 }
1299
1300 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1301
1302 /**
1303 * Attempt to constant-fold the expression
1304 *
1305 * The "variable_context" hash table links ir_variable * to ir_constant *
1306 * that represent the variables' values. \c NULL represents an empty
1307 * context.
1308 *
1309 * If the expression cannot be constant folded, this method will return
1310 * \c NULL.
1311 */
1312 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1313
1314 /**
1315 * Determine the number of operands used by an expression
1316 */
1317 static unsigned int get_num_operands(ir_expression_operation);
1318
1319 /**
1320 * Determine the number of operands used by an expression
1321 */
1322 unsigned int get_num_operands() const
1323 {
1324 return (this->operation == ir_quadop_vector)
1325 ? this->type->vector_elements : get_num_operands(operation);
1326 }
1327
1328 /**
1329 * Return a string representing this expression's operator.
1330 */
1331 const char *operator_string();
1332
1333 /**
1334 * Return a string representing this expression's operator.
1335 */
1336 static const char *operator_string(ir_expression_operation);
1337
1338
1339 /**
1340 * Do a reverse-lookup to translate the given string into an operator.
1341 */
1342 static ir_expression_operation get_operator(const char *);
1343
1344 virtual void accept(ir_visitor *v)
1345 {
1346 v->visit(this);
1347 }
1348
1349 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1350
1351 ir_expression_operation operation;
1352 ir_rvalue *operands[4];
1353 };
1354
1355
1356 /**
1357 * HIR instruction representing a high-level function call, containing a list
1358 * of parameters and returning a value in the supplied temporary.
1359 */
1360 class ir_call : public ir_instruction {
1361 public:
1362 ir_call(ir_function_signature *callee,
1363 ir_dereference_variable *return_deref,
1364 exec_list *actual_parameters)
1365 : return_deref(return_deref), callee(callee)
1366 {
1367 ir_type = ir_type_call;
1368 assert(callee->return_type != NULL);
1369 actual_parameters->move_nodes_to(& this->actual_parameters);
1370 this->use_builtin = callee->is_builtin();
1371 }
1372
1373 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1374
1375 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1376
1377 virtual ir_call *as_call()
1378 {
1379 return this;
1380 }
1381
1382 virtual void accept(ir_visitor *v)
1383 {
1384 v->visit(this);
1385 }
1386
1387 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1388
1389 /**
1390 * Get an iterator for the set of acutal parameters
1391 */
1392 exec_list_iterator iterator()
1393 {
1394 return actual_parameters.iterator();
1395 }
1396
1397 /**
1398 * Get the name of the function being called.
1399 */
1400 const char *callee_name() const
1401 {
1402 return callee->function_name();
1403 }
1404
1405 /**
1406 * Generates an inline version of the function before @ir,
1407 * storing the return value in return_deref.
1408 */
1409 void generate_inline(ir_instruction *ir);
1410
1411 /**
1412 * Storage for the function's return value.
1413 * This must be NULL if the return type is void.
1414 */
1415 ir_dereference_variable *return_deref;
1416
1417 /**
1418 * The specific function signature being called.
1419 */
1420 ir_function_signature *callee;
1421
1422 /* List of ir_rvalue of paramaters passed in this call. */
1423 exec_list actual_parameters;
1424
1425 /** Should this call only bind to a built-in function? */
1426 bool use_builtin;
1427 };
1428
1429
1430 /**
1431 * \name Jump-like IR instructions.
1432 *
1433 * These include \c break, \c continue, \c return, and \c discard.
1434 */
1435 /*@{*/
1436 class ir_jump : public ir_instruction {
1437 protected:
1438 ir_jump()
1439 {
1440 ir_type = ir_type_unset;
1441 }
1442
1443 public:
1444 virtual ir_jump *as_jump()
1445 {
1446 return this;
1447 }
1448 };
1449
1450 class ir_return : public ir_jump {
1451 public:
1452 ir_return()
1453 : value(NULL)
1454 {
1455 this->ir_type = ir_type_return;
1456 }
1457
1458 ir_return(ir_rvalue *value)
1459 : value(value)
1460 {
1461 this->ir_type = ir_type_return;
1462 }
1463
1464 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1465
1466 virtual ir_return *as_return()
1467 {
1468 return this;
1469 }
1470
1471 ir_rvalue *get_value() const
1472 {
1473 return value;
1474 }
1475
1476 virtual void accept(ir_visitor *v)
1477 {
1478 v->visit(this);
1479 }
1480
1481 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1482
1483 ir_rvalue *value;
1484 };
1485
1486
1487 /**
1488 * Jump instructions used inside loops
1489 *
1490 * These include \c break and \c continue. The \c break within a loop is
1491 * different from the \c break within a switch-statement.
1492 *
1493 * \sa ir_switch_jump
1494 */
1495 class ir_loop_jump : public ir_jump {
1496 public:
1497 enum jump_mode {
1498 jump_break,
1499 jump_continue
1500 };
1501
1502 ir_loop_jump(jump_mode mode)
1503 {
1504 this->ir_type = ir_type_loop_jump;
1505 this->mode = mode;
1506 }
1507
1508 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1509
1510 virtual void accept(ir_visitor *v)
1511 {
1512 v->visit(this);
1513 }
1514
1515 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1516
1517 bool is_break() const
1518 {
1519 return mode == jump_break;
1520 }
1521
1522 bool is_continue() const
1523 {
1524 return mode == jump_continue;
1525 }
1526
1527 /** Mode selector for the jump instruction. */
1528 enum jump_mode mode;
1529 };
1530
1531 /**
1532 * IR instruction representing discard statements.
1533 */
1534 class ir_discard : public ir_jump {
1535 public:
1536 ir_discard()
1537 {
1538 this->ir_type = ir_type_discard;
1539 this->condition = NULL;
1540 }
1541
1542 ir_discard(ir_rvalue *cond)
1543 {
1544 this->ir_type = ir_type_discard;
1545 this->condition = cond;
1546 }
1547
1548 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1549
1550 virtual void accept(ir_visitor *v)
1551 {
1552 v->visit(this);
1553 }
1554
1555 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1556
1557 virtual ir_discard *as_discard()
1558 {
1559 return this;
1560 }
1561
1562 ir_rvalue *condition;
1563 };
1564 /*@}*/
1565
1566
1567 /**
1568 * Texture sampling opcodes used in ir_texture
1569 */
1570 enum ir_texture_opcode {
1571 ir_tex, /**< Regular texture look-up */
1572 ir_txb, /**< Texture look-up with LOD bias */
1573 ir_txl, /**< Texture look-up with explicit LOD */
1574 ir_txd, /**< Texture look-up with partial derivatvies */
1575 ir_txf, /**< Texel fetch with explicit LOD */
1576 ir_txf_ms, /**< Multisample texture fetch */
1577 ir_txs, /**< Texture size */
1578 ir_lod, /**< Texture lod query */
1579 ir_tg4, /**< Texture gather */
1580 ir_query_levels /**< Texture levels query */
1581 };
1582
1583
1584 /**
1585 * IR instruction to sample a texture
1586 *
1587 * The specific form of the IR instruction depends on the \c mode value
1588 * selected from \c ir_texture_opcodes. In the printed IR, these will
1589 * appear as:
1590 *
1591 * Texel offset (0 or an expression)
1592 * | Projection divisor
1593 * | | Shadow comparitor
1594 * | | |
1595 * v v v
1596 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1597 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1598 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1599 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1600 * (txf <type> <sampler> <coordinate> 0 <lod>)
1601 * (txf_ms
1602 * <type> <sampler> <coordinate> <sample_index>)
1603 * (txs <type> <sampler> <lod>)
1604 * (lod <type> <sampler> <coordinate>)
1605 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1606 * (query_levels <type> <sampler>)
1607 */
1608 class ir_texture : public ir_rvalue {
1609 public:
1610 ir_texture(enum ir_texture_opcode op)
1611 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1612 shadow_comparitor(NULL), offset(NULL)
1613 {
1614 this->ir_type = ir_type_texture;
1615 memset(&lod_info, 0, sizeof(lod_info));
1616 }
1617
1618 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1619
1620 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1621
1622 virtual void accept(ir_visitor *v)
1623 {
1624 v->visit(this);
1625 }
1626
1627 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1628
1629 /**
1630 * Return a string representing the ir_texture_opcode.
1631 */
1632 const char *opcode_string();
1633
1634 /** Set the sampler and type. */
1635 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1636
1637 /**
1638 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1639 */
1640 static ir_texture_opcode get_opcode(const char *);
1641
1642 enum ir_texture_opcode op;
1643
1644 /** Sampler to use for the texture access. */
1645 ir_dereference *sampler;
1646
1647 /** Texture coordinate to sample */
1648 ir_rvalue *coordinate;
1649
1650 /**
1651 * Value used for projective divide.
1652 *
1653 * If there is no projective divide (the common case), this will be
1654 * \c NULL. Optimization passes should check for this to point to a constant
1655 * of 1.0 and replace that with \c NULL.
1656 */
1657 ir_rvalue *projector;
1658
1659 /**
1660 * Coordinate used for comparison on shadow look-ups.
1661 *
1662 * If there is no shadow comparison, this will be \c NULL. For the
1663 * \c ir_txf opcode, this *must* be \c NULL.
1664 */
1665 ir_rvalue *shadow_comparitor;
1666
1667 /** Texel offset. */
1668 ir_rvalue *offset;
1669
1670 union {
1671 ir_rvalue *lod; /**< Floating point LOD */
1672 ir_rvalue *bias; /**< Floating point LOD bias */
1673 ir_rvalue *sample_index; /**< MSAA sample index */
1674 ir_rvalue *component; /**< Gather component selector */
1675 struct {
1676 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1677 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1678 } grad;
1679 } lod_info;
1680 };
1681
1682
1683 struct ir_swizzle_mask {
1684 unsigned x:2;
1685 unsigned y:2;
1686 unsigned z:2;
1687 unsigned w:2;
1688
1689 /**
1690 * Number of components in the swizzle.
1691 */
1692 unsigned num_components:3;
1693
1694 /**
1695 * Does the swizzle contain duplicate components?
1696 *
1697 * L-value swizzles cannot contain duplicate components.
1698 */
1699 unsigned has_duplicates:1;
1700 };
1701
1702
1703 class ir_swizzle : public ir_rvalue {
1704 public:
1705 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1706 unsigned count);
1707
1708 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1709
1710 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1711
1712 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1713
1714 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1715
1716 virtual ir_swizzle *as_swizzle()
1717 {
1718 return this;
1719 }
1720
1721 /**
1722 * Construct an ir_swizzle from the textual representation. Can fail.
1723 */
1724 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1725
1726 virtual void accept(ir_visitor *v)
1727 {
1728 v->visit(this);
1729 }
1730
1731 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1732
1733 bool is_lvalue() const
1734 {
1735 return val->is_lvalue() && !mask.has_duplicates;
1736 }
1737
1738 /**
1739 * Get the variable that is ultimately referenced by an r-value
1740 */
1741 virtual ir_variable *variable_referenced() const;
1742
1743 ir_rvalue *val;
1744 ir_swizzle_mask mask;
1745
1746 private:
1747 /**
1748 * Initialize the mask component of a swizzle
1749 *
1750 * This is used by the \c ir_swizzle constructors.
1751 */
1752 void init_mask(const unsigned *components, unsigned count);
1753 };
1754
1755
1756 class ir_dereference : public ir_rvalue {
1757 public:
1758 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1759
1760 virtual ir_dereference *as_dereference()
1761 {
1762 return this;
1763 }
1764
1765 bool is_lvalue() const;
1766
1767 /**
1768 * Get the variable that is ultimately referenced by an r-value
1769 */
1770 virtual ir_variable *variable_referenced() const = 0;
1771
1772 /**
1773 * Get the constant that is ultimately referenced by an r-value,
1774 * in a constant expression evaluation context.
1775 *
1776 * The offset is used when the reference is to a specific column of
1777 * a matrix.
1778 */
1779 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1780 };
1781
1782
1783 class ir_dereference_variable : public ir_dereference {
1784 public:
1785 ir_dereference_variable(ir_variable *var);
1786
1787 virtual ir_dereference_variable *clone(void *mem_ctx,
1788 struct hash_table *) const;
1789
1790 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1791
1792 virtual ir_dereference_variable *as_dereference_variable()
1793 {
1794 return this;
1795 }
1796
1797 /**
1798 * Get the variable that is ultimately referenced by an r-value
1799 */
1800 virtual ir_variable *variable_referenced() const
1801 {
1802 return this->var;
1803 }
1804
1805 /**
1806 * Get the constant that is ultimately referenced by an r-value,
1807 * in a constant expression evaluation context.
1808 *
1809 * The offset is used when the reference is to a specific column of
1810 * a matrix.
1811 */
1812 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1813
1814 virtual ir_variable *whole_variable_referenced()
1815 {
1816 /* ir_dereference_variable objects always dereference the entire
1817 * variable. However, if this dereference is dereferenced by anything
1818 * else, the complete deferefernce chain is not a whole-variable
1819 * dereference. This method should only be called on the top most
1820 * ir_rvalue in a dereference chain.
1821 */
1822 return this->var;
1823 }
1824
1825 virtual void accept(ir_visitor *v)
1826 {
1827 v->visit(this);
1828 }
1829
1830 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1831
1832 /**
1833 * Object being dereferenced.
1834 */
1835 ir_variable *var;
1836 };
1837
1838
1839 class ir_dereference_array : public ir_dereference {
1840 public:
1841 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1842
1843 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1844
1845 virtual ir_dereference_array *clone(void *mem_ctx,
1846 struct hash_table *) const;
1847
1848 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1849
1850 virtual ir_dereference_array *as_dereference_array()
1851 {
1852 return this;
1853 }
1854
1855 /**
1856 * Get the variable that is ultimately referenced by an r-value
1857 */
1858 virtual ir_variable *variable_referenced() const
1859 {
1860 return this->array->variable_referenced();
1861 }
1862
1863 /**
1864 * Get the constant that is ultimately referenced by an r-value,
1865 * in a constant expression evaluation context.
1866 *
1867 * The offset is used when the reference is to a specific column of
1868 * a matrix.
1869 */
1870 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1871
1872 virtual void accept(ir_visitor *v)
1873 {
1874 v->visit(this);
1875 }
1876
1877 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1878
1879 ir_rvalue *array;
1880 ir_rvalue *array_index;
1881
1882 private:
1883 void set_array(ir_rvalue *value);
1884 };
1885
1886
1887 class ir_dereference_record : public ir_dereference {
1888 public:
1889 ir_dereference_record(ir_rvalue *value, const char *field);
1890
1891 ir_dereference_record(ir_variable *var, const char *field);
1892
1893 virtual ir_dereference_record *clone(void *mem_ctx,
1894 struct hash_table *) const;
1895
1896 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1897
1898 virtual ir_dereference_record *as_dereference_record()
1899 {
1900 return this;
1901 }
1902
1903 /**
1904 * Get the variable that is ultimately referenced by an r-value
1905 */
1906 virtual ir_variable *variable_referenced() const
1907 {
1908 return this->record->variable_referenced();
1909 }
1910
1911 /**
1912 * Get the constant that is ultimately referenced by an r-value,
1913 * in a constant expression evaluation context.
1914 *
1915 * The offset is used when the reference is to a specific column of
1916 * a matrix.
1917 */
1918 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1919
1920 virtual void accept(ir_visitor *v)
1921 {
1922 v->visit(this);
1923 }
1924
1925 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1926
1927 ir_rvalue *record;
1928 const char *field;
1929 };
1930
1931
1932 /**
1933 * Data stored in an ir_constant
1934 */
1935 union ir_constant_data {
1936 unsigned u[16];
1937 int i[16];
1938 float f[16];
1939 bool b[16];
1940 };
1941
1942
1943 class ir_constant : public ir_rvalue {
1944 public:
1945 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1946 ir_constant(bool b, unsigned vector_elements=1);
1947 ir_constant(unsigned int u, unsigned vector_elements=1);
1948 ir_constant(int i, unsigned vector_elements=1);
1949 ir_constant(float f, unsigned vector_elements=1);
1950
1951 /**
1952 * Construct an ir_constant from a list of ir_constant values
1953 */
1954 ir_constant(const struct glsl_type *type, exec_list *values);
1955
1956 /**
1957 * Construct an ir_constant from a scalar component of another ir_constant
1958 *
1959 * The new \c ir_constant inherits the type of the component from the
1960 * source constant.
1961 *
1962 * \note
1963 * In the case of a matrix constant, the new constant is a scalar, \b not
1964 * a vector.
1965 */
1966 ir_constant(const ir_constant *c, unsigned i);
1967
1968 /**
1969 * Return a new ir_constant of the specified type containing all zeros.
1970 */
1971 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1972
1973 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1974
1975 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1976
1977 virtual ir_constant *as_constant()
1978 {
1979 return this;
1980 }
1981
1982 virtual void accept(ir_visitor *v)
1983 {
1984 v->visit(this);
1985 }
1986
1987 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1988
1989 /**
1990 * Get a particular component of a constant as a specific type
1991 *
1992 * This is useful, for example, to get a value from an integer constant
1993 * as a float or bool. This appears frequently when constructors are
1994 * called with all constant parameters.
1995 */
1996 /*@{*/
1997 bool get_bool_component(unsigned i) const;
1998 float get_float_component(unsigned i) const;
1999 int get_int_component(unsigned i) const;
2000 unsigned get_uint_component(unsigned i) const;
2001 /*@}*/
2002
2003 ir_constant *get_array_element(unsigned i) const;
2004
2005 ir_constant *get_record_field(const char *name);
2006
2007 /**
2008 * Copy the values on another constant at a given offset.
2009 *
2010 * The offset is ignored for array or struct copies, it's only for
2011 * scalars or vectors into vectors or matrices.
2012 *
2013 * With identical types on both sides and zero offset it's clone()
2014 * without creating a new object.
2015 */
2016
2017 void copy_offset(ir_constant *src, int offset);
2018
2019 /**
2020 * Copy the values on another constant at a given offset and
2021 * following an assign-like mask.
2022 *
2023 * The mask is ignored for scalars.
2024 *
2025 * Note that this function only handles what assign can handle,
2026 * i.e. at most a vector as source and a column of a matrix as
2027 * destination.
2028 */
2029
2030 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2031
2032 /**
2033 * Determine whether a constant has the same value as another constant
2034 *
2035 * \sa ir_constant::is_zero, ir_constant::is_one,
2036 * ir_constant::is_negative_one, ir_constant::is_basis
2037 */
2038 bool has_value(const ir_constant *) const;
2039
2040 virtual bool is_zero() const;
2041 virtual bool is_one() const;
2042 virtual bool is_negative_one() const;
2043 virtual bool is_basis() const;
2044
2045 /**
2046 * Value of the constant.
2047 *
2048 * The field used to back the values supplied by the constant is determined
2049 * by the type associated with the \c ir_instruction. Constants may be
2050 * scalars, vectors, or matrices.
2051 */
2052 union ir_constant_data value;
2053
2054 /* Array elements */
2055 ir_constant **array_elements;
2056
2057 /* Structure fields */
2058 exec_list components;
2059
2060 private:
2061 /**
2062 * Parameterless constructor only used by the clone method
2063 */
2064 ir_constant(void);
2065 };
2066
2067 /*@}*/
2068
2069 /**
2070 * IR instruction to emit a vertex in a geometry shader.
2071 */
2072 class ir_emit_vertex : public ir_instruction {
2073 public:
2074 ir_emit_vertex()
2075 {
2076 ir_type = ir_type_emit_vertex;
2077 }
2078
2079 virtual void accept(ir_visitor *v)
2080 {
2081 v->visit(this);
2082 }
2083
2084 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *) const
2085 {
2086 return new(mem_ctx) ir_emit_vertex();
2087 }
2088
2089 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2090 };
2091
2092 /**
2093 * IR instruction to complete the current primitive and start a new one in a
2094 * geometry shader.
2095 */
2096 class ir_end_primitive : public ir_instruction {
2097 public:
2098 ir_end_primitive()
2099 {
2100 ir_type = ir_type_end_primitive;
2101 }
2102
2103 virtual void accept(ir_visitor *v)
2104 {
2105 v->visit(this);
2106 }
2107
2108 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *) const
2109 {
2110 return new(mem_ctx) ir_end_primitive();
2111 }
2112
2113 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2114 };
2115
2116 /**
2117 * Apply a visitor to each IR node in a list
2118 */
2119 void
2120 visit_exec_list(exec_list *list, ir_visitor *visitor);
2121
2122 /**
2123 * Validate invariants on each IR node in a list
2124 */
2125 void validate_ir_tree(exec_list *instructions);
2126
2127 struct _mesa_glsl_parse_state;
2128 struct gl_shader_program;
2129
2130 /**
2131 * Detect whether an unlinked shader contains static recursion
2132 *
2133 * If the list of instructions is determined to contain static recursion,
2134 * \c _mesa_glsl_error will be called to emit error messages for each function
2135 * that is in the recursion cycle.
2136 */
2137 void
2138 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2139 exec_list *instructions);
2140
2141 /**
2142 * Detect whether a linked shader contains static recursion
2143 *
2144 * If the list of instructions is determined to contain static recursion,
2145 * \c link_error_printf will be called to emit error messages for each function
2146 * that is in the recursion cycle. In addition,
2147 * \c gl_shader_program::LinkStatus will be set to false.
2148 */
2149 void
2150 detect_recursion_linked(struct gl_shader_program *prog,
2151 exec_list *instructions);
2152
2153 /**
2154 * Make a clone of each IR instruction in a list
2155 *
2156 * \param in List of IR instructions that are to be cloned
2157 * \param out List to hold the cloned instructions
2158 */
2159 void
2160 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2161
2162 extern void
2163 _mesa_glsl_initialize_variables(exec_list *instructions,
2164 struct _mesa_glsl_parse_state *state);
2165
2166 extern void
2167 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2168
2169 extern void
2170 _mesa_glsl_initialize_builtin_functions();
2171
2172 extern ir_function_signature *
2173 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2174 const char *name, exec_list *actual_parameters);
2175
2176 extern void
2177 _mesa_glsl_release_functions(void);
2178
2179 extern void
2180 _mesa_glsl_release_builtin_functions(void);
2181
2182 extern void
2183 reparent_ir(exec_list *list, void *mem_ctx);
2184
2185 struct glsl_symbol_table;
2186
2187 extern void
2188 import_prototypes(const exec_list *source, exec_list *dest,
2189 struct glsl_symbol_table *symbols, void *mem_ctx);
2190
2191 extern bool
2192 ir_has_call(ir_instruction *ir);
2193
2194 extern void
2195 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2196 GLenum shader_type);
2197
2198 extern char *
2199 prototype_string(const glsl_type *return_type, const char *name,
2200 exec_list *parameters);
2201
2202 extern "C" {
2203 #endif /* __cplusplus */
2204
2205 extern void _mesa_print_ir(struct exec_list *instructions,
2206 struct _mesa_glsl_parse_state *state);
2207
2208 #ifdef __cplusplus
2209 } /* extern "C" */
2210 #endif
2211
2212 unsigned
2213 vertices_per_prim(GLenum prim);
2214
2215 #endif /* IR_H */