nir: Add a foreach_block_reverse function
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 /**
113 * \name IR instruction downcast functions
114 *
115 * These functions either cast the object to a derived class or return
116 * \c NULL if the object's type does not match the specified derived class.
117 * Additional downcast functions will be added as needed.
118 */
119 /*@{*/
120 class ir_rvalue *as_rvalue()
121 {
122 if (ir_type == ir_type_dereference_array ||
123 ir_type == ir_type_dereference_record ||
124 ir_type == ir_type_dereference_variable ||
125 ir_type == ir_type_constant ||
126 ir_type == ir_type_expression ||
127 ir_type == ir_type_swizzle ||
128 ir_type == ir_type_texture)
129 return (class ir_rvalue *) this;
130 return NULL;
131 }
132
133 class ir_dereference *as_dereference()
134 {
135 if (ir_type == ir_type_dereference_array ||
136 ir_type == ir_type_dereference_record ||
137 ir_type == ir_type_dereference_variable)
138 return (class ir_dereference *) this;
139 return NULL;
140 }
141
142 class ir_jump *as_jump()
143 {
144 if (ir_type == ir_type_loop_jump ||
145 ir_type == ir_type_return ||
146 ir_type == ir_type_discard)
147 return (class ir_jump *) this;
148 return NULL;
149 }
150
151 #define AS_CHILD(TYPE) \
152 class ir_##TYPE * as_##TYPE() \
153 { \
154 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
155 }
156 AS_CHILD(variable)
157 AS_CHILD(function)
158 AS_CHILD(dereference_array)
159 AS_CHILD(dereference_variable)
160 AS_CHILD(dereference_record)
161 AS_CHILD(expression)
162 AS_CHILD(loop)
163 AS_CHILD(assignment)
164 AS_CHILD(call)
165 AS_CHILD(return)
166 AS_CHILD(if)
167 AS_CHILD(swizzle)
168 AS_CHILD(texture)
169 AS_CHILD(constant)
170 AS_CHILD(discard)
171 #undef AS_CHILD
172 /*@}*/
173
174 /**
175 * IR equality method: Return true if the referenced instruction would
176 * return the same value as this one.
177 *
178 * This intended to be used for CSE and algebraic optimizations, on rvalues
179 * in particular. No support for other instruction types (assignments,
180 * jumps, calls, etc.) is planned.
181 */
182 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
183
184 protected:
185 ir_instruction(enum ir_node_type t)
186 : ir_type(t)
187 {
188 }
189
190 private:
191 ir_instruction()
192 {
193 assert(!"Should not get here.");
194 }
195 };
196
197
198 /**
199 * The base class for all "values"/expression trees.
200 */
201 class ir_rvalue : public ir_instruction {
202 public:
203 const struct glsl_type *type;
204
205 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
206
207 virtual void accept(ir_visitor *v)
208 {
209 v->visit(this);
210 }
211
212 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
213
214 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
215
216 ir_rvalue *as_rvalue_to_saturate();
217
218 virtual bool is_lvalue() const
219 {
220 return false;
221 }
222
223 /**
224 * Get the variable that is ultimately referenced by an r-value
225 */
226 virtual ir_variable *variable_referenced() const
227 {
228 return NULL;
229 }
230
231
232 /**
233 * If an r-value is a reference to a whole variable, get that variable
234 *
235 * \return
236 * Pointer to a variable that is completely dereferenced by the r-value. If
237 * the r-value is not a dereference or the dereference does not access the
238 * entire variable (i.e., it's just one array element, struct field), \c NULL
239 * is returned.
240 */
241 virtual ir_variable *whole_variable_referenced()
242 {
243 return NULL;
244 }
245
246 /**
247 * Determine if an r-value has the value zero
248 *
249 * The base implementation of this function always returns \c false. The
250 * \c ir_constant class over-rides this function to return \c true \b only
251 * for vector and scalar types that have all elements set to the value
252 * zero (or \c false for booleans).
253 *
254 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
255 */
256 virtual bool is_zero() const;
257
258 /**
259 * Determine if an r-value has the value one
260 *
261 * The base implementation of this function always returns \c false. The
262 * \c ir_constant class over-rides this function to return \c true \b only
263 * for vector and scalar types that have all elements set to the value
264 * one (or \c true for booleans).
265 *
266 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
267 */
268 virtual bool is_one() const;
269
270 /**
271 * Determine if an r-value has the value negative one
272 *
273 * The base implementation of this function always returns \c false. The
274 * \c ir_constant class over-rides this function to return \c true \b only
275 * for vector and scalar types that have all elements set to the value
276 * negative one. For boolean types, the result is always \c false.
277 *
278 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
279 */
280 virtual bool is_negative_one() const;
281
282 /**
283 * Determine if an r-value is an unsigned integer constant which can be
284 * stored in 16 bits.
285 *
286 * \sa ir_constant::is_uint16_constant.
287 */
288 virtual bool is_uint16_constant() const { return false; }
289
290 /**
291 * Return a generic value of error_type.
292 *
293 * Allocation will be performed with 'mem_ctx' as ralloc owner.
294 */
295 static ir_rvalue *error_value(void *mem_ctx);
296
297 protected:
298 ir_rvalue(enum ir_node_type t);
299 };
300
301
302 /**
303 * Variable storage classes
304 */
305 enum ir_variable_mode {
306 ir_var_auto = 0, /**< Function local variables and globals. */
307 ir_var_uniform, /**< Variable declared as a uniform. */
308 ir_var_shader_in,
309 ir_var_shader_out,
310 ir_var_function_in,
311 ir_var_function_out,
312 ir_var_function_inout,
313 ir_var_const_in, /**< "in" param that must be a constant expression */
314 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
315 ir_var_temporary, /**< Temporary variable generated during compilation. */
316 ir_var_mode_count /**< Number of variable modes */
317 };
318
319 /**
320 * Enum keeping track of how a variable was declared. For error checking of
321 * the gl_PerVertex redeclaration rules.
322 */
323 enum ir_var_declaration_type {
324 /**
325 * Normal declaration (for most variables, this means an explicit
326 * declaration. Exception: temporaries are always implicitly declared, but
327 * they still use ir_var_declared_normally).
328 *
329 * Note: an ir_variable that represents a named interface block uses
330 * ir_var_declared_normally.
331 */
332 ir_var_declared_normally = 0,
333
334 /**
335 * Variable was explicitly declared (or re-declared) in an unnamed
336 * interface block.
337 */
338 ir_var_declared_in_block,
339
340 /**
341 * Variable is an implicitly declared built-in that has not been explicitly
342 * re-declared by the shader.
343 */
344 ir_var_declared_implicitly,
345
346 /**
347 * Variable is implicitly generated by the compiler and should not be
348 * visible via the API.
349 */
350 ir_var_hidden,
351 };
352
353 /**
354 * \brief Layout qualifiers for gl_FragDepth.
355 *
356 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
357 * with a layout qualifier.
358 */
359 enum ir_depth_layout {
360 ir_depth_layout_none, /**< No depth layout is specified. */
361 ir_depth_layout_any,
362 ir_depth_layout_greater,
363 ir_depth_layout_less,
364 ir_depth_layout_unchanged
365 };
366
367 /**
368 * \brief Convert depth layout qualifier to string.
369 */
370 const char*
371 depth_layout_string(ir_depth_layout layout);
372
373 /**
374 * Description of built-in state associated with a uniform
375 *
376 * \sa ir_variable::state_slots
377 */
378 struct ir_state_slot {
379 int tokens[5];
380 int swizzle;
381 };
382
383
384 /**
385 * Get the string value for an interpolation qualifier
386 *
387 * \return The string that would be used in a shader to specify \c
388 * mode will be returned.
389 *
390 * This function is used to generate error messages of the form "shader
391 * uses %s interpolation qualifier", so in the case where there is no
392 * interpolation qualifier, it returns "no".
393 *
394 * This function should only be used on a shader input or output variable.
395 */
396 const char *interpolation_string(unsigned interpolation);
397
398
399 class ir_variable : public ir_instruction {
400 public:
401 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
402
403 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
404
405 virtual void accept(ir_visitor *v)
406 {
407 v->visit(this);
408 }
409
410 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
411
412
413 /**
414 * Determine how this variable should be interpolated based on its
415 * interpolation qualifier (if present), whether it is gl_Color or
416 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
417 * state.
418 *
419 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
420 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
421 */
422 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
423
424 /**
425 * Determine whether or not a variable is part of a uniform block.
426 */
427 inline bool is_in_uniform_block() const
428 {
429 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
430 }
431
432 /**
433 * Determine whether or not a variable is the declaration of an interface
434 * block
435 *
436 * For the first declaration below, there will be an \c ir_variable named
437 * "instance" whose type and whose instance_type will be the same
438 * \cglsl_type. For the second declaration, there will be an \c ir_variable
439 * named "f" whose type is float and whose instance_type is B2.
440 *
441 * "instance" is an interface instance variable, but "f" is not.
442 *
443 * uniform B1 {
444 * float f;
445 * } instance;
446 *
447 * uniform B2 {
448 * float f;
449 * };
450 */
451 inline bool is_interface_instance() const
452 {
453 const glsl_type *const t = this->type;
454
455 return (t == this->interface_type)
456 || (t->is_array() && t->fields.array == this->interface_type);
457 }
458
459 /**
460 * Set this->interface_type on a newly created variable.
461 */
462 void init_interface_type(const struct glsl_type *type)
463 {
464 assert(this->interface_type == NULL);
465 this->interface_type = type;
466 if (this->is_interface_instance()) {
467 this->u.max_ifc_array_access =
468 rzalloc_array(this, unsigned, type->length);
469 }
470 }
471
472 /**
473 * Change this->interface_type on a variable that previously had a
474 * different, but compatible, interface_type. This is used during linking
475 * to set the size of arrays in interface blocks.
476 */
477 void change_interface_type(const struct glsl_type *type)
478 {
479 if (this->u.max_ifc_array_access != NULL) {
480 /* max_ifc_array_access has already been allocated, so make sure the
481 * new interface has the same number of fields as the old one.
482 */
483 assert(this->interface_type->length == type->length);
484 }
485 this->interface_type = type;
486 }
487
488 /**
489 * Change this->interface_type on a variable that previously had a
490 * different, and incompatible, interface_type. This is used during
491 * compilation to handle redeclaration of the built-in gl_PerVertex
492 * interface block.
493 */
494 void reinit_interface_type(const struct glsl_type *type)
495 {
496 if (this->u.max_ifc_array_access != NULL) {
497 #ifndef NDEBUG
498 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
499 * it defines have been accessed yet; so it's safe to throw away the
500 * old max_ifc_array_access pointer, since all of its values are
501 * zero.
502 */
503 for (unsigned i = 0; i < this->interface_type->length; i++)
504 assert(this->u.max_ifc_array_access[i] == 0);
505 #endif
506 ralloc_free(this->u.max_ifc_array_access);
507 this->u.max_ifc_array_access = NULL;
508 }
509 this->interface_type = NULL;
510 init_interface_type(type);
511 }
512
513 const glsl_type *get_interface_type() const
514 {
515 return this->interface_type;
516 }
517
518 /**
519 * Get the max_ifc_array_access pointer
520 *
521 * A "set" function is not needed because the array is dynmically allocated
522 * as necessary.
523 */
524 inline unsigned *get_max_ifc_array_access()
525 {
526 assert(this->data._num_state_slots == 0);
527 return this->u.max_ifc_array_access;
528 }
529
530 inline unsigned get_num_state_slots() const
531 {
532 assert(!this->is_interface_instance()
533 || this->data._num_state_slots == 0);
534 return this->data._num_state_slots;
535 }
536
537 inline void set_num_state_slots(unsigned n)
538 {
539 assert(!this->is_interface_instance()
540 || n == 0);
541 this->data._num_state_slots = n;
542 }
543
544 inline ir_state_slot *get_state_slots()
545 {
546 return this->is_interface_instance() ? NULL : this->u.state_slots;
547 }
548
549 inline const ir_state_slot *get_state_slots() const
550 {
551 return this->is_interface_instance() ? NULL : this->u.state_slots;
552 }
553
554 inline ir_state_slot *allocate_state_slots(unsigned n)
555 {
556 assert(!this->is_interface_instance());
557
558 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
559 this->data._num_state_slots = 0;
560
561 if (this->u.state_slots != NULL)
562 this->data._num_state_slots = n;
563
564 return this->u.state_slots;
565 }
566
567 inline bool is_name_ralloced() const
568 {
569 return this->name != ir_variable::tmp_name;
570 }
571
572 /**
573 * Enable emitting extension warnings for this variable
574 */
575 void enable_extension_warning(const char *extension);
576
577 /**
578 * Get the extension warning string for this variable
579 *
580 * If warnings are not enabled, \c NULL is returned.
581 */
582 const char *get_extension_warning() const;
583
584 /**
585 * Declared type of the variable
586 */
587 const struct glsl_type *type;
588
589 /**
590 * Declared name of the variable
591 */
592 const char *name;
593
594 struct ir_variable_data {
595
596 /**
597 * Is the variable read-only?
598 *
599 * This is set for variables declared as \c const, shader inputs,
600 * and uniforms.
601 */
602 unsigned read_only:1;
603 unsigned centroid:1;
604 unsigned sample:1;
605 unsigned invariant:1;
606 unsigned precise:1;
607
608 /**
609 * Has this variable been used for reading or writing?
610 *
611 * Several GLSL semantic checks require knowledge of whether or not a
612 * variable has been used. For example, it is an error to redeclare a
613 * variable as invariant after it has been used.
614 *
615 * This is only maintained in the ast_to_hir.cpp path, not in
616 * Mesa's fixed function or ARB program paths.
617 */
618 unsigned used:1;
619
620 /**
621 * Has this variable been statically assigned?
622 *
623 * This answers whether the variable was assigned in any path of
624 * the shader during ast_to_hir. This doesn't answer whether it is
625 * still written after dead code removal, nor is it maintained in
626 * non-ast_to_hir.cpp (GLSL parsing) paths.
627 */
628 unsigned assigned:1;
629
630 /**
631 * Enum indicating how the variable was declared. See
632 * ir_var_declaration_type.
633 *
634 * This is used to detect certain kinds of illegal variable redeclarations.
635 */
636 unsigned how_declared:2;
637
638 /**
639 * Storage class of the variable.
640 *
641 * \sa ir_variable_mode
642 */
643 unsigned mode:4;
644
645 /**
646 * Interpolation mode for shader inputs / outputs
647 *
648 * \sa ir_variable_interpolation
649 */
650 unsigned interpolation:2;
651
652 /**
653 * \name ARB_fragment_coord_conventions
654 * @{
655 */
656 unsigned origin_upper_left:1;
657 unsigned pixel_center_integer:1;
658 /*@}*/
659
660 /**
661 * Was the location explicitly set in the shader?
662 *
663 * If the location is explicitly set in the shader, it \b cannot be changed
664 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
665 * no effect).
666 */
667 unsigned explicit_location:1;
668 unsigned explicit_index:1;
669
670 /**
671 * Was an initial binding explicitly set in the shader?
672 *
673 * If so, constant_value contains an integer ir_constant representing the
674 * initial binding point.
675 */
676 unsigned explicit_binding:1;
677
678 /**
679 * Does this variable have an initializer?
680 *
681 * This is used by the linker to cross-validiate initializers of global
682 * variables.
683 */
684 unsigned has_initializer:1;
685
686 /**
687 * Is this variable a generic output or input that has not yet been matched
688 * up to a variable in another stage of the pipeline?
689 *
690 * This is used by the linker as scratch storage while assigning locations
691 * to generic inputs and outputs.
692 */
693 unsigned is_unmatched_generic_inout:1;
694
695 /**
696 * If non-zero, then this variable may be packed along with other variables
697 * into a single varying slot, so this offset should be applied when
698 * accessing components. For example, an offset of 1 means that the x
699 * component of this variable is actually stored in component y of the
700 * location specified by \c location.
701 */
702 unsigned location_frac:2;
703
704 /**
705 * Layout of the matrix. Uses glsl_matrix_layout values.
706 */
707 unsigned matrix_layout:2;
708
709 /**
710 * Non-zero if this variable was created by lowering a named interface
711 * block which was not an array.
712 *
713 * Note that this variable and \c from_named_ifc_block_array will never
714 * both be non-zero.
715 */
716 unsigned from_named_ifc_block_nonarray:1;
717
718 /**
719 * Non-zero if this variable was created by lowering a named interface
720 * block which was an array.
721 *
722 * Note that this variable and \c from_named_ifc_block_nonarray will never
723 * both be non-zero.
724 */
725 unsigned from_named_ifc_block_array:1;
726
727 /**
728 * Non-zero if the variable must be a shader input. This is useful for
729 * constraints on function parameters.
730 */
731 unsigned must_be_shader_input:1;
732
733 /**
734 * Output index for dual source blending.
735 *
736 * \note
737 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
738 * source blending.
739 */
740 unsigned index:1;
741
742 /**
743 * \brief Layout qualifier for gl_FragDepth.
744 *
745 * This is not equal to \c ir_depth_layout_none if and only if this
746 * variable is \c gl_FragDepth and a layout qualifier is specified.
747 */
748 ir_depth_layout depth_layout:3;
749
750 /**
751 * ARB_shader_image_load_store qualifiers.
752 */
753 unsigned image_read_only:1; /**< "readonly" qualifier. */
754 unsigned image_write_only:1; /**< "writeonly" qualifier. */
755 unsigned image_coherent:1;
756 unsigned image_volatile:1;
757 unsigned image_restrict:1;
758
759 /**
760 * Emit a warning if this variable is accessed.
761 */
762 private:
763 uint8_t warn_extension_index;
764
765 public:
766 /** Image internal format if specified explicitly, otherwise GL_NONE. */
767 uint16_t image_format;
768
769 private:
770 /**
771 * Number of state slots used
772 *
773 * \note
774 * This could be stored in as few as 7-bits, if necessary. If it is made
775 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
776 * be safe.
777 */
778 uint16_t _num_state_slots;
779
780 public:
781 /**
782 * Initial binding point for a sampler, atomic, or UBO.
783 *
784 * For array types, this represents the binding point for the first element.
785 */
786 int16_t binding;
787
788 /**
789 * Storage location of the base of this variable
790 *
791 * The precise meaning of this field depends on the nature of the variable.
792 *
793 * - Vertex shader input: one of the values from \c gl_vert_attrib.
794 * - Vertex shader output: one of the values from \c gl_varying_slot.
795 * - Geometry shader input: one of the values from \c gl_varying_slot.
796 * - Geometry shader output: one of the values from \c gl_varying_slot.
797 * - Fragment shader input: one of the values from \c gl_varying_slot.
798 * - Fragment shader output: one of the values from \c gl_frag_result.
799 * - Uniforms: Per-stage uniform slot number for default uniform block.
800 * - Uniforms: Index within the uniform block definition for UBO members.
801 * - Other: This field is not currently used.
802 *
803 * If the variable is a uniform, shader input, or shader output, and the
804 * slot has not been assigned, the value will be -1.
805 */
806 int location;
807
808 /**
809 * Vertex stream output identifier.
810 */
811 unsigned stream;
812
813 /**
814 * Location an atomic counter is stored at.
815 */
816 struct {
817 unsigned offset;
818 } atomic;
819
820 /**
821 * Highest element accessed with a constant expression array index
822 *
823 * Not used for non-array variables.
824 */
825 unsigned max_array_access;
826
827 /**
828 * Allow (only) ir_variable direct access private members.
829 */
830 friend class ir_variable;
831 } data;
832
833 /**
834 * Value assigned in the initializer of a variable declared "const"
835 */
836 ir_constant *constant_value;
837
838 /**
839 * Constant expression assigned in the initializer of the variable
840 *
841 * \warning
842 * This field and \c ::constant_value are distinct. Even if the two fields
843 * refer to constants with the same value, they must point to separate
844 * objects.
845 */
846 ir_constant *constant_initializer;
847
848 private:
849 static const char *const warn_extension_table[];
850
851 union {
852 /**
853 * For variables which satisfy the is_interface_instance() predicate,
854 * this points to an array of integers such that if the ith member of
855 * the interface block is an array, max_ifc_array_access[i] is the
856 * maximum array element of that member that has been accessed. If the
857 * ith member of the interface block is not an array,
858 * max_ifc_array_access[i] is unused.
859 *
860 * For variables whose type is not an interface block, this pointer is
861 * NULL.
862 */
863 unsigned *max_ifc_array_access;
864
865 /**
866 * Built-in state that backs this uniform
867 *
868 * Once set at variable creation, \c state_slots must remain invariant.
869 *
870 * If the variable is not a uniform, \c _num_state_slots will be zero
871 * and \c state_slots will be \c NULL.
872 */
873 ir_state_slot *state_slots;
874 } u;
875
876 /**
877 * For variables that are in an interface block or are an instance of an
878 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
879 *
880 * \sa ir_variable::location
881 */
882 const glsl_type *interface_type;
883
884 /**
885 * Name used for anonymous compiler temporaries
886 */
887 static const char tmp_name[];
888
889 public:
890 /**
891 * Should the construct keep names for ir_var_temporary variables?
892 *
893 * When this global is false, names passed to the constructor for
894 * \c ir_var_temporary variables will be dropped. Instead, the variable will
895 * be named "compiler_temp". This name will be in static storage.
896 *
897 * \warning
898 * \b NEVER change the mode of an \c ir_var_temporary.
899 *
900 * \warning
901 * This variable is \b not thread-safe. It is global, \b not
902 * per-context. It begins life false. A context can, at some point, make
903 * it true. From that point on, it will be true forever. This should be
904 * okay since it will only be set true while debugging.
905 */
906 static bool temporaries_allocate_names;
907 };
908
909 /**
910 * A function that returns whether a built-in function is available in the
911 * current shading language (based on version, ES or desktop, and extensions).
912 */
913 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
914
915 /*@{*/
916 /**
917 * The representation of a function instance; may be the full definition or
918 * simply a prototype.
919 */
920 class ir_function_signature : public ir_instruction {
921 /* An ir_function_signature will be part of the list of signatures in
922 * an ir_function.
923 */
924 public:
925 ir_function_signature(const glsl_type *return_type,
926 builtin_available_predicate builtin_avail = NULL);
927
928 virtual ir_function_signature *clone(void *mem_ctx,
929 struct hash_table *ht) const;
930 ir_function_signature *clone_prototype(void *mem_ctx,
931 struct hash_table *ht) const;
932
933 virtual void accept(ir_visitor *v)
934 {
935 v->visit(this);
936 }
937
938 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
939
940 /**
941 * Attempt to evaluate this function as a constant expression,
942 * given a list of the actual parameters and the variable context.
943 * Returns NULL for non-built-ins.
944 */
945 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
946
947 /**
948 * Get the name of the function for which this is a signature
949 */
950 const char *function_name() const;
951
952 /**
953 * Get a handle to the function for which this is a signature
954 *
955 * There is no setter function, this function returns a \c const pointer,
956 * and \c ir_function_signature::_function is private for a reason. The
957 * only way to make a connection between a function and function signature
958 * is via \c ir_function::add_signature. This helps ensure that certain
959 * invariants (i.e., a function signature is in the list of signatures for
960 * its \c _function) are met.
961 *
962 * \sa ir_function::add_signature
963 */
964 inline const class ir_function *function() const
965 {
966 return this->_function;
967 }
968
969 /**
970 * Check whether the qualifiers match between this signature's parameters
971 * and the supplied parameter list. If not, returns the name of the first
972 * parameter with mismatched qualifiers (for use in error messages).
973 */
974 const char *qualifiers_match(exec_list *params);
975
976 /**
977 * Replace the current parameter list with the given one. This is useful
978 * if the current information came from a prototype, and either has invalid
979 * or missing parameter names.
980 */
981 void replace_parameters(exec_list *new_params);
982
983 /**
984 * Function return type.
985 *
986 * \note This discards the optional precision qualifier.
987 */
988 const struct glsl_type *return_type;
989
990 /**
991 * List of ir_variable of function parameters.
992 *
993 * This represents the storage. The paramaters passed in a particular
994 * call will be in ir_call::actual_paramaters.
995 */
996 struct exec_list parameters;
997
998 /** Whether or not this function has a body (which may be empty). */
999 unsigned is_defined:1;
1000
1001 /** Whether or not this function signature is a built-in. */
1002 bool is_builtin() const;
1003
1004 /**
1005 * Whether or not this function is an intrinsic to be implemented
1006 * by the driver.
1007 */
1008 bool is_intrinsic;
1009
1010 /** Whether or not a built-in is available for this shader. */
1011 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1012
1013 /** Body of instructions in the function. */
1014 struct exec_list body;
1015
1016 private:
1017 /**
1018 * A function pointer to a predicate that answers whether a built-in
1019 * function is available in the current shader. NULL if not a built-in.
1020 */
1021 builtin_available_predicate builtin_avail;
1022
1023 /** Function of which this signature is one overload. */
1024 class ir_function *_function;
1025
1026 /** Function signature of which this one is a prototype clone */
1027 const ir_function_signature *origin;
1028
1029 friend class ir_function;
1030
1031 /**
1032 * Helper function to run a list of instructions for constant
1033 * expression evaluation.
1034 *
1035 * The hash table represents the values of the visible variables.
1036 * There are no scoping issues because the table is indexed on
1037 * ir_variable pointers, not variable names.
1038 *
1039 * Returns false if the expression is not constant, true otherwise,
1040 * and the value in *result if result is non-NULL.
1041 */
1042 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1043 struct hash_table *variable_context,
1044 ir_constant **result);
1045 };
1046
1047
1048 /**
1049 * Header for tracking multiple overloaded functions with the same name.
1050 * Contains a list of ir_function_signatures representing each of the
1051 * actual functions.
1052 */
1053 class ir_function : public ir_instruction {
1054 public:
1055 ir_function(const char *name);
1056
1057 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1058
1059 virtual void accept(ir_visitor *v)
1060 {
1061 v->visit(this);
1062 }
1063
1064 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1065
1066 void add_signature(ir_function_signature *sig)
1067 {
1068 sig->_function = this;
1069 this->signatures.push_tail(sig);
1070 }
1071
1072 /**
1073 * Find a signature that matches a set of actual parameters, taking implicit
1074 * conversions into account. Also flags whether the match was exact.
1075 */
1076 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1077 const exec_list *actual_param,
1078 bool allow_builtins,
1079 bool *match_is_exact);
1080
1081 /**
1082 * Find a signature that matches a set of actual parameters, taking implicit
1083 * conversions into account.
1084 */
1085 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1086 const exec_list *actual_param,
1087 bool allow_builtins);
1088
1089 /**
1090 * Find a signature that exactly matches a set of actual parameters without
1091 * any implicit type conversions.
1092 */
1093 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1094 const exec_list *actual_ps);
1095
1096 /**
1097 * Name of the function.
1098 */
1099 const char *name;
1100
1101 /** Whether or not this function has a signature that isn't a built-in. */
1102 bool has_user_signature();
1103
1104 /**
1105 * List of ir_function_signature for each overloaded function with this name.
1106 */
1107 struct exec_list signatures;
1108 };
1109
1110 inline const char *ir_function_signature::function_name() const
1111 {
1112 return this->_function->name;
1113 }
1114 /*@}*/
1115
1116
1117 /**
1118 * IR instruction representing high-level if-statements
1119 */
1120 class ir_if : public ir_instruction {
1121 public:
1122 ir_if(ir_rvalue *condition)
1123 : ir_instruction(ir_type_if), condition(condition)
1124 {
1125 }
1126
1127 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1128
1129 virtual void accept(ir_visitor *v)
1130 {
1131 v->visit(this);
1132 }
1133
1134 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1135
1136 ir_rvalue *condition;
1137 /** List of ir_instruction for the body of the then branch */
1138 exec_list then_instructions;
1139 /** List of ir_instruction for the body of the else branch */
1140 exec_list else_instructions;
1141 };
1142
1143
1144 /**
1145 * IR instruction representing a high-level loop structure.
1146 */
1147 class ir_loop : public ir_instruction {
1148 public:
1149 ir_loop();
1150
1151 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1152
1153 virtual void accept(ir_visitor *v)
1154 {
1155 v->visit(this);
1156 }
1157
1158 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1159
1160 /** List of ir_instruction that make up the body of the loop. */
1161 exec_list body_instructions;
1162 };
1163
1164
1165 class ir_assignment : public ir_instruction {
1166 public:
1167 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1168
1169 /**
1170 * Construct an assignment with an explicit write mask
1171 *
1172 * \note
1173 * Since a write mask is supplied, the LHS must already be a bare
1174 * \c ir_dereference. The cannot be any swizzles in the LHS.
1175 */
1176 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1177 unsigned write_mask);
1178
1179 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1180
1181 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1182
1183 virtual void accept(ir_visitor *v)
1184 {
1185 v->visit(this);
1186 }
1187
1188 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1189
1190 /**
1191 * Get a whole variable written by an assignment
1192 *
1193 * If the LHS of the assignment writes a whole variable, the variable is
1194 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1195 * assignment are:
1196 *
1197 * - Assigning to a scalar
1198 * - Assigning to all components of a vector
1199 * - Whole array (or matrix) assignment
1200 * - Whole structure assignment
1201 */
1202 ir_variable *whole_variable_written();
1203
1204 /**
1205 * Set the LHS of an assignment
1206 */
1207 void set_lhs(ir_rvalue *lhs);
1208
1209 /**
1210 * Left-hand side of the assignment.
1211 *
1212 * This should be treated as read only. If you need to set the LHS of an
1213 * assignment, use \c ir_assignment::set_lhs.
1214 */
1215 ir_dereference *lhs;
1216
1217 /**
1218 * Value being assigned
1219 */
1220 ir_rvalue *rhs;
1221
1222 /**
1223 * Optional condition for the assignment.
1224 */
1225 ir_rvalue *condition;
1226
1227
1228 /**
1229 * Component mask written
1230 *
1231 * For non-vector types in the LHS, this field will be zero. For vector
1232 * types, a bit will be set for each component that is written. Note that
1233 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1234 *
1235 * A partially-set write mask means that each enabled channel gets
1236 * the value from a consecutive channel of the rhs. For example,
1237 * to write just .xyw of gl_FrontColor with color:
1238 *
1239 * (assign (constant bool (1)) (xyw)
1240 * (var_ref gl_FragColor)
1241 * (swiz xyw (var_ref color)))
1242 */
1243 unsigned write_mask:4;
1244 };
1245
1246 /* Update ir_expression::get_num_operands() and operator_strs when
1247 * updating this list.
1248 */
1249 enum ir_expression_operation {
1250 ir_unop_bit_not,
1251 ir_unop_logic_not,
1252 ir_unop_neg,
1253 ir_unop_abs,
1254 ir_unop_sign,
1255 ir_unop_rcp,
1256 ir_unop_rsq,
1257 ir_unop_sqrt,
1258 ir_unop_exp, /**< Log base e on gentype */
1259 ir_unop_log, /**< Natural log on gentype */
1260 ir_unop_exp2,
1261 ir_unop_log2,
1262 ir_unop_f2i, /**< Float-to-integer conversion. */
1263 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1264 ir_unop_i2f, /**< Integer-to-float conversion. */
1265 ir_unop_f2b, /**< Float-to-boolean conversion */
1266 ir_unop_b2f, /**< Boolean-to-float conversion */
1267 ir_unop_i2b, /**< int-to-boolean conversion */
1268 ir_unop_b2i, /**< Boolean-to-int conversion */
1269 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1270 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1271 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1272 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1273 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1274 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1275 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1276 ir_unop_any,
1277
1278 /**
1279 * \name Unary floating-point rounding operations.
1280 */
1281 /*@{*/
1282 ir_unop_trunc,
1283 ir_unop_ceil,
1284 ir_unop_floor,
1285 ir_unop_fract,
1286 ir_unop_round_even,
1287 /*@}*/
1288
1289 /**
1290 * \name Trigonometric operations.
1291 */
1292 /*@{*/
1293 ir_unop_sin,
1294 ir_unop_cos,
1295 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1296 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1297 /*@}*/
1298
1299 /**
1300 * \name Partial derivatives.
1301 */
1302 /*@{*/
1303 ir_unop_dFdx,
1304 ir_unop_dFdx_coarse,
1305 ir_unop_dFdx_fine,
1306 ir_unop_dFdy,
1307 ir_unop_dFdy_coarse,
1308 ir_unop_dFdy_fine,
1309 /*@}*/
1310
1311 /**
1312 * \name Floating point pack and unpack operations.
1313 */
1314 /*@{*/
1315 ir_unop_pack_snorm_2x16,
1316 ir_unop_pack_snorm_4x8,
1317 ir_unop_pack_unorm_2x16,
1318 ir_unop_pack_unorm_4x8,
1319 ir_unop_pack_half_2x16,
1320 ir_unop_unpack_snorm_2x16,
1321 ir_unop_unpack_snorm_4x8,
1322 ir_unop_unpack_unorm_2x16,
1323 ir_unop_unpack_unorm_4x8,
1324 ir_unop_unpack_half_2x16,
1325 /*@}*/
1326
1327 /**
1328 * \name Lowered floating point unpacking operations.
1329 *
1330 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1331 */
1332 /*@{*/
1333 ir_unop_unpack_half_2x16_split_x,
1334 ir_unop_unpack_half_2x16_split_y,
1335 /*@}*/
1336
1337 /**
1338 * \name Bit operations, part of ARB_gpu_shader5.
1339 */
1340 /*@{*/
1341 ir_unop_bitfield_reverse,
1342 ir_unop_bit_count,
1343 ir_unop_find_msb,
1344 ir_unop_find_lsb,
1345 /*@}*/
1346
1347 ir_unop_saturate,
1348 ir_unop_noise,
1349
1350 /**
1351 * Interpolate fs input at centroid
1352 *
1353 * operand0 is the fs input.
1354 */
1355 ir_unop_interpolate_at_centroid,
1356
1357 /**
1358 * A sentinel marking the last of the unary operations.
1359 */
1360 ir_last_unop = ir_unop_interpolate_at_centroid,
1361
1362 ir_binop_add,
1363 ir_binop_sub,
1364 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1365 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1366 ir_binop_div,
1367
1368 /**
1369 * Returns the carry resulting from the addition of the two arguments.
1370 */
1371 /*@{*/
1372 ir_binop_carry,
1373 /*@}*/
1374
1375 /**
1376 * Returns the borrow resulting from the subtraction of the second argument
1377 * from the first argument.
1378 */
1379 /*@{*/
1380 ir_binop_borrow,
1381 /*@}*/
1382
1383 /**
1384 * Takes one of two combinations of arguments:
1385 *
1386 * - mod(vecN, vecN)
1387 * - mod(vecN, float)
1388 *
1389 * Does not take integer types.
1390 */
1391 ir_binop_mod,
1392
1393 /**
1394 * \name Binary comparison operators which return a boolean vector.
1395 * The type of both operands must be equal.
1396 */
1397 /*@{*/
1398 ir_binop_less,
1399 ir_binop_greater,
1400 ir_binop_lequal,
1401 ir_binop_gequal,
1402 ir_binop_equal,
1403 ir_binop_nequal,
1404 /**
1405 * Returns single boolean for whether all components of operands[0]
1406 * equal the components of operands[1].
1407 */
1408 ir_binop_all_equal,
1409 /**
1410 * Returns single boolean for whether any component of operands[0]
1411 * is not equal to the corresponding component of operands[1].
1412 */
1413 ir_binop_any_nequal,
1414 /*@}*/
1415
1416 /**
1417 * \name Bit-wise binary operations.
1418 */
1419 /*@{*/
1420 ir_binop_lshift,
1421 ir_binop_rshift,
1422 ir_binop_bit_and,
1423 ir_binop_bit_xor,
1424 ir_binop_bit_or,
1425 /*@}*/
1426
1427 ir_binop_logic_and,
1428 ir_binop_logic_xor,
1429 ir_binop_logic_or,
1430
1431 ir_binop_dot,
1432 ir_binop_min,
1433 ir_binop_max,
1434
1435 ir_binop_pow,
1436
1437 /**
1438 * \name Lowered floating point packing operations.
1439 *
1440 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1441 */
1442 /*@{*/
1443 ir_binop_pack_half_2x16_split,
1444 /*@}*/
1445
1446 /**
1447 * \name First half of a lowered bitfieldInsert() operation.
1448 *
1449 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1450 */
1451 /*@{*/
1452 ir_binop_bfm,
1453 /*@}*/
1454
1455 /**
1456 * Load a value the size of a given GLSL type from a uniform block.
1457 *
1458 * operand0 is the ir_constant uniform block index in the linked shader.
1459 * operand1 is a byte offset within the uniform block.
1460 */
1461 ir_binop_ubo_load,
1462
1463 /**
1464 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1465 */
1466 /*@{*/
1467 ir_binop_ldexp,
1468 /*@}*/
1469
1470 /**
1471 * Extract a scalar from a vector
1472 *
1473 * operand0 is the vector
1474 * operand1 is the index of the field to read from operand0
1475 */
1476 ir_binop_vector_extract,
1477
1478 /**
1479 * Interpolate fs input at offset
1480 *
1481 * operand0 is the fs input
1482 * operand1 is the offset from the pixel center
1483 */
1484 ir_binop_interpolate_at_offset,
1485
1486 /**
1487 * Interpolate fs input at sample position
1488 *
1489 * operand0 is the fs input
1490 * operand1 is the sample ID
1491 */
1492 ir_binop_interpolate_at_sample,
1493
1494 /**
1495 * A sentinel marking the last of the binary operations.
1496 */
1497 ir_last_binop = ir_binop_interpolate_at_sample,
1498
1499 /**
1500 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1501 */
1502 /*@{*/
1503 ir_triop_fma,
1504 /*@}*/
1505
1506 ir_triop_lrp,
1507
1508 /**
1509 * \name Conditional Select
1510 *
1511 * A vector conditional select instruction (like ?:, but operating per-
1512 * component on vectors).
1513 *
1514 * \see lower_instructions_visitor::ldexp_to_arith
1515 */
1516 /*@{*/
1517 ir_triop_csel,
1518 /*@}*/
1519
1520 /**
1521 * \name Second half of a lowered bitfieldInsert() operation.
1522 *
1523 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1524 */
1525 /*@{*/
1526 ir_triop_bfi,
1527 /*@}*/
1528
1529 ir_triop_bitfield_extract,
1530
1531 /**
1532 * Generate a value with one field of a vector changed
1533 *
1534 * operand0 is the vector
1535 * operand1 is the value to write into the vector result
1536 * operand2 is the index in operand0 to be modified
1537 */
1538 ir_triop_vector_insert,
1539
1540 /**
1541 * A sentinel marking the last of the ternary operations.
1542 */
1543 ir_last_triop = ir_triop_vector_insert,
1544
1545 ir_quadop_bitfield_insert,
1546
1547 ir_quadop_vector,
1548
1549 /**
1550 * A sentinel marking the last of the ternary operations.
1551 */
1552 ir_last_quadop = ir_quadop_vector,
1553
1554 /**
1555 * A sentinel marking the last of all operations.
1556 */
1557 ir_last_opcode = ir_quadop_vector
1558 };
1559
1560 class ir_expression : public ir_rvalue {
1561 public:
1562 ir_expression(int op, const struct glsl_type *type,
1563 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1564 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1565
1566 /**
1567 * Constructor for unary operation expressions
1568 */
1569 ir_expression(int op, ir_rvalue *);
1570
1571 /**
1572 * Constructor for binary operation expressions
1573 */
1574 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1575
1576 /**
1577 * Constructor for ternary operation expressions
1578 */
1579 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1580
1581 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1582
1583 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1584
1585 /**
1586 * Attempt to constant-fold the expression
1587 *
1588 * The "variable_context" hash table links ir_variable * to ir_constant *
1589 * that represent the variables' values. \c NULL represents an empty
1590 * context.
1591 *
1592 * If the expression cannot be constant folded, this method will return
1593 * \c NULL.
1594 */
1595 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1596
1597 /**
1598 * Determine the number of operands used by an expression
1599 */
1600 static unsigned int get_num_operands(ir_expression_operation);
1601
1602 /**
1603 * Determine the number of operands used by an expression
1604 */
1605 unsigned int get_num_operands() const
1606 {
1607 return (this->operation == ir_quadop_vector)
1608 ? this->type->vector_elements : get_num_operands(operation);
1609 }
1610
1611 /**
1612 * Return whether the expression operates on vectors horizontally.
1613 */
1614 bool is_horizontal() const
1615 {
1616 return operation == ir_binop_all_equal ||
1617 operation == ir_binop_any_nequal ||
1618 operation == ir_unop_any ||
1619 operation == ir_binop_dot ||
1620 operation == ir_quadop_vector;
1621 }
1622
1623 /**
1624 * Return a string representing this expression's operator.
1625 */
1626 const char *operator_string();
1627
1628 /**
1629 * Return a string representing this expression's operator.
1630 */
1631 static const char *operator_string(ir_expression_operation);
1632
1633
1634 /**
1635 * Do a reverse-lookup to translate the given string into an operator.
1636 */
1637 static ir_expression_operation get_operator(const char *);
1638
1639 virtual void accept(ir_visitor *v)
1640 {
1641 v->visit(this);
1642 }
1643
1644 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1645
1646 ir_expression_operation operation;
1647 ir_rvalue *operands[4];
1648 };
1649
1650
1651 /**
1652 * HIR instruction representing a high-level function call, containing a list
1653 * of parameters and returning a value in the supplied temporary.
1654 */
1655 class ir_call : public ir_instruction {
1656 public:
1657 ir_call(ir_function_signature *callee,
1658 ir_dereference_variable *return_deref,
1659 exec_list *actual_parameters)
1660 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1661 {
1662 assert(callee->return_type != NULL);
1663 actual_parameters->move_nodes_to(& this->actual_parameters);
1664 this->use_builtin = callee->is_builtin();
1665 }
1666
1667 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1668
1669 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1670
1671 virtual void accept(ir_visitor *v)
1672 {
1673 v->visit(this);
1674 }
1675
1676 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1677
1678 /**
1679 * Get the name of the function being called.
1680 */
1681 const char *callee_name() const
1682 {
1683 return callee->function_name();
1684 }
1685
1686 /**
1687 * Generates an inline version of the function before @ir,
1688 * storing the return value in return_deref.
1689 */
1690 void generate_inline(ir_instruction *ir);
1691
1692 /**
1693 * Storage for the function's return value.
1694 * This must be NULL if the return type is void.
1695 */
1696 ir_dereference_variable *return_deref;
1697
1698 /**
1699 * The specific function signature being called.
1700 */
1701 ir_function_signature *callee;
1702
1703 /* List of ir_rvalue of paramaters passed in this call. */
1704 exec_list actual_parameters;
1705
1706 /** Should this call only bind to a built-in function? */
1707 bool use_builtin;
1708 };
1709
1710
1711 /**
1712 * \name Jump-like IR instructions.
1713 *
1714 * These include \c break, \c continue, \c return, and \c discard.
1715 */
1716 /*@{*/
1717 class ir_jump : public ir_instruction {
1718 protected:
1719 ir_jump(enum ir_node_type t)
1720 : ir_instruction(t)
1721 {
1722 }
1723 };
1724
1725 class ir_return : public ir_jump {
1726 public:
1727 ir_return()
1728 : ir_jump(ir_type_return), value(NULL)
1729 {
1730 }
1731
1732 ir_return(ir_rvalue *value)
1733 : ir_jump(ir_type_return), value(value)
1734 {
1735 }
1736
1737 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1738
1739 ir_rvalue *get_value() const
1740 {
1741 return value;
1742 }
1743
1744 virtual void accept(ir_visitor *v)
1745 {
1746 v->visit(this);
1747 }
1748
1749 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1750
1751 ir_rvalue *value;
1752 };
1753
1754
1755 /**
1756 * Jump instructions used inside loops
1757 *
1758 * These include \c break and \c continue. The \c break within a loop is
1759 * different from the \c break within a switch-statement.
1760 *
1761 * \sa ir_switch_jump
1762 */
1763 class ir_loop_jump : public ir_jump {
1764 public:
1765 enum jump_mode {
1766 jump_break,
1767 jump_continue
1768 };
1769
1770 ir_loop_jump(jump_mode mode)
1771 : ir_jump(ir_type_loop_jump)
1772 {
1773 this->mode = mode;
1774 }
1775
1776 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1777
1778 virtual void accept(ir_visitor *v)
1779 {
1780 v->visit(this);
1781 }
1782
1783 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1784
1785 bool is_break() const
1786 {
1787 return mode == jump_break;
1788 }
1789
1790 bool is_continue() const
1791 {
1792 return mode == jump_continue;
1793 }
1794
1795 /** Mode selector for the jump instruction. */
1796 enum jump_mode mode;
1797 };
1798
1799 /**
1800 * IR instruction representing discard statements.
1801 */
1802 class ir_discard : public ir_jump {
1803 public:
1804 ir_discard()
1805 : ir_jump(ir_type_discard)
1806 {
1807 this->condition = NULL;
1808 }
1809
1810 ir_discard(ir_rvalue *cond)
1811 : ir_jump(ir_type_discard)
1812 {
1813 this->condition = cond;
1814 }
1815
1816 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1817
1818 virtual void accept(ir_visitor *v)
1819 {
1820 v->visit(this);
1821 }
1822
1823 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1824
1825 ir_rvalue *condition;
1826 };
1827 /*@}*/
1828
1829
1830 /**
1831 * Texture sampling opcodes used in ir_texture
1832 */
1833 enum ir_texture_opcode {
1834 ir_tex, /**< Regular texture look-up */
1835 ir_txb, /**< Texture look-up with LOD bias */
1836 ir_txl, /**< Texture look-up with explicit LOD */
1837 ir_txd, /**< Texture look-up with partial derivatvies */
1838 ir_txf, /**< Texel fetch with explicit LOD */
1839 ir_txf_ms, /**< Multisample texture fetch */
1840 ir_txs, /**< Texture size */
1841 ir_lod, /**< Texture lod query */
1842 ir_tg4, /**< Texture gather */
1843 ir_query_levels /**< Texture levels query */
1844 };
1845
1846
1847 /**
1848 * IR instruction to sample a texture
1849 *
1850 * The specific form of the IR instruction depends on the \c mode value
1851 * selected from \c ir_texture_opcodes. In the printed IR, these will
1852 * appear as:
1853 *
1854 * Texel offset (0 or an expression)
1855 * | Projection divisor
1856 * | | Shadow comparitor
1857 * | | |
1858 * v v v
1859 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1860 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1861 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1862 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1863 * (txf <type> <sampler> <coordinate> 0 <lod>)
1864 * (txf_ms
1865 * <type> <sampler> <coordinate> <sample_index>)
1866 * (txs <type> <sampler> <lod>)
1867 * (lod <type> <sampler> <coordinate>)
1868 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1869 * (query_levels <type> <sampler>)
1870 */
1871 class ir_texture : public ir_rvalue {
1872 public:
1873 ir_texture(enum ir_texture_opcode op)
1874 : ir_rvalue(ir_type_texture),
1875 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1876 shadow_comparitor(NULL), offset(NULL)
1877 {
1878 memset(&lod_info, 0, sizeof(lod_info));
1879 }
1880
1881 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1882
1883 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1884
1885 virtual void accept(ir_visitor *v)
1886 {
1887 v->visit(this);
1888 }
1889
1890 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1891
1892 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1893
1894 /**
1895 * Return a string representing the ir_texture_opcode.
1896 */
1897 const char *opcode_string();
1898
1899 /** Set the sampler and type. */
1900 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1901
1902 /**
1903 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1904 */
1905 static ir_texture_opcode get_opcode(const char *);
1906
1907 enum ir_texture_opcode op;
1908
1909 /** Sampler to use for the texture access. */
1910 ir_dereference *sampler;
1911
1912 /** Texture coordinate to sample */
1913 ir_rvalue *coordinate;
1914
1915 /**
1916 * Value used for projective divide.
1917 *
1918 * If there is no projective divide (the common case), this will be
1919 * \c NULL. Optimization passes should check for this to point to a constant
1920 * of 1.0 and replace that with \c NULL.
1921 */
1922 ir_rvalue *projector;
1923
1924 /**
1925 * Coordinate used for comparison on shadow look-ups.
1926 *
1927 * If there is no shadow comparison, this will be \c NULL. For the
1928 * \c ir_txf opcode, this *must* be \c NULL.
1929 */
1930 ir_rvalue *shadow_comparitor;
1931
1932 /** Texel offset. */
1933 ir_rvalue *offset;
1934
1935 union {
1936 ir_rvalue *lod; /**< Floating point LOD */
1937 ir_rvalue *bias; /**< Floating point LOD bias */
1938 ir_rvalue *sample_index; /**< MSAA sample index */
1939 ir_rvalue *component; /**< Gather component selector */
1940 struct {
1941 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1942 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1943 } grad;
1944 } lod_info;
1945 };
1946
1947
1948 struct ir_swizzle_mask {
1949 unsigned x:2;
1950 unsigned y:2;
1951 unsigned z:2;
1952 unsigned w:2;
1953
1954 /**
1955 * Number of components in the swizzle.
1956 */
1957 unsigned num_components:3;
1958
1959 /**
1960 * Does the swizzle contain duplicate components?
1961 *
1962 * L-value swizzles cannot contain duplicate components.
1963 */
1964 unsigned has_duplicates:1;
1965 };
1966
1967
1968 class ir_swizzle : public ir_rvalue {
1969 public:
1970 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1971 unsigned count);
1972
1973 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1974
1975 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1976
1977 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1978
1979 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1980
1981 /**
1982 * Construct an ir_swizzle from the textual representation. Can fail.
1983 */
1984 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1985
1986 virtual void accept(ir_visitor *v)
1987 {
1988 v->visit(this);
1989 }
1990
1991 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1992
1993 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1994
1995 bool is_lvalue() const
1996 {
1997 return val->is_lvalue() && !mask.has_duplicates;
1998 }
1999
2000 /**
2001 * Get the variable that is ultimately referenced by an r-value
2002 */
2003 virtual ir_variable *variable_referenced() const;
2004
2005 ir_rvalue *val;
2006 ir_swizzle_mask mask;
2007
2008 private:
2009 /**
2010 * Initialize the mask component of a swizzle
2011 *
2012 * This is used by the \c ir_swizzle constructors.
2013 */
2014 void init_mask(const unsigned *components, unsigned count);
2015 };
2016
2017
2018 class ir_dereference : public ir_rvalue {
2019 public:
2020 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2021
2022 bool is_lvalue() const;
2023
2024 /**
2025 * Get the variable that is ultimately referenced by an r-value
2026 */
2027 virtual ir_variable *variable_referenced() const = 0;
2028
2029 protected:
2030 ir_dereference(enum ir_node_type t)
2031 : ir_rvalue(t)
2032 {
2033 }
2034 };
2035
2036
2037 class ir_dereference_variable : public ir_dereference {
2038 public:
2039 ir_dereference_variable(ir_variable *var);
2040
2041 virtual ir_dereference_variable *clone(void *mem_ctx,
2042 struct hash_table *) const;
2043
2044 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2045
2046 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2047
2048 /**
2049 * Get the variable that is ultimately referenced by an r-value
2050 */
2051 virtual ir_variable *variable_referenced() const
2052 {
2053 return this->var;
2054 }
2055
2056 virtual ir_variable *whole_variable_referenced()
2057 {
2058 /* ir_dereference_variable objects always dereference the entire
2059 * variable. However, if this dereference is dereferenced by anything
2060 * else, the complete deferefernce chain is not a whole-variable
2061 * dereference. This method should only be called on the top most
2062 * ir_rvalue in a dereference chain.
2063 */
2064 return this->var;
2065 }
2066
2067 virtual void accept(ir_visitor *v)
2068 {
2069 v->visit(this);
2070 }
2071
2072 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2073
2074 /**
2075 * Object being dereferenced.
2076 */
2077 ir_variable *var;
2078 };
2079
2080
2081 class ir_dereference_array : public ir_dereference {
2082 public:
2083 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2084
2085 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2086
2087 virtual ir_dereference_array *clone(void *mem_ctx,
2088 struct hash_table *) const;
2089
2090 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2091
2092 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2093
2094 /**
2095 * Get the variable that is ultimately referenced by an r-value
2096 */
2097 virtual ir_variable *variable_referenced() const
2098 {
2099 return this->array->variable_referenced();
2100 }
2101
2102 virtual void accept(ir_visitor *v)
2103 {
2104 v->visit(this);
2105 }
2106
2107 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2108
2109 ir_rvalue *array;
2110 ir_rvalue *array_index;
2111
2112 private:
2113 void set_array(ir_rvalue *value);
2114 };
2115
2116
2117 class ir_dereference_record : public ir_dereference {
2118 public:
2119 ir_dereference_record(ir_rvalue *value, const char *field);
2120
2121 ir_dereference_record(ir_variable *var, const char *field);
2122
2123 virtual ir_dereference_record *clone(void *mem_ctx,
2124 struct hash_table *) const;
2125
2126 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2127
2128 /**
2129 * Get the variable that is ultimately referenced by an r-value
2130 */
2131 virtual ir_variable *variable_referenced() const
2132 {
2133 return this->record->variable_referenced();
2134 }
2135
2136 virtual void accept(ir_visitor *v)
2137 {
2138 v->visit(this);
2139 }
2140
2141 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2142
2143 ir_rvalue *record;
2144 const char *field;
2145 };
2146
2147
2148 /**
2149 * Data stored in an ir_constant
2150 */
2151 union ir_constant_data {
2152 unsigned u[16];
2153 int i[16];
2154 float f[16];
2155 bool b[16];
2156 };
2157
2158
2159 class ir_constant : public ir_rvalue {
2160 public:
2161 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2162 ir_constant(bool b, unsigned vector_elements=1);
2163 ir_constant(unsigned int u, unsigned vector_elements=1);
2164 ir_constant(int i, unsigned vector_elements=1);
2165 ir_constant(float f, unsigned vector_elements=1);
2166
2167 /**
2168 * Construct an ir_constant from a list of ir_constant values
2169 */
2170 ir_constant(const struct glsl_type *type, exec_list *values);
2171
2172 /**
2173 * Construct an ir_constant from a scalar component of another ir_constant
2174 *
2175 * The new \c ir_constant inherits the type of the component from the
2176 * source constant.
2177 *
2178 * \note
2179 * In the case of a matrix constant, the new constant is a scalar, \b not
2180 * a vector.
2181 */
2182 ir_constant(const ir_constant *c, unsigned i);
2183
2184 /**
2185 * Return a new ir_constant of the specified type containing all zeros.
2186 */
2187 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2188
2189 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2190
2191 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2192
2193 virtual void accept(ir_visitor *v)
2194 {
2195 v->visit(this);
2196 }
2197
2198 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2199
2200 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2201
2202 /**
2203 * Get a particular component of a constant as a specific type
2204 *
2205 * This is useful, for example, to get a value from an integer constant
2206 * as a float or bool. This appears frequently when constructors are
2207 * called with all constant parameters.
2208 */
2209 /*@{*/
2210 bool get_bool_component(unsigned i) const;
2211 float get_float_component(unsigned i) const;
2212 int get_int_component(unsigned i) const;
2213 unsigned get_uint_component(unsigned i) const;
2214 /*@}*/
2215
2216 ir_constant *get_array_element(unsigned i) const;
2217
2218 ir_constant *get_record_field(const char *name);
2219
2220 /**
2221 * Copy the values on another constant at a given offset.
2222 *
2223 * The offset is ignored for array or struct copies, it's only for
2224 * scalars or vectors into vectors or matrices.
2225 *
2226 * With identical types on both sides and zero offset it's clone()
2227 * without creating a new object.
2228 */
2229
2230 void copy_offset(ir_constant *src, int offset);
2231
2232 /**
2233 * Copy the values on another constant at a given offset and
2234 * following an assign-like mask.
2235 *
2236 * The mask is ignored for scalars.
2237 *
2238 * Note that this function only handles what assign can handle,
2239 * i.e. at most a vector as source and a column of a matrix as
2240 * destination.
2241 */
2242
2243 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2244
2245 /**
2246 * Determine whether a constant has the same value as another constant
2247 *
2248 * \sa ir_constant::is_zero, ir_constant::is_one,
2249 * ir_constant::is_negative_one
2250 */
2251 bool has_value(const ir_constant *) const;
2252
2253 /**
2254 * Return true if this ir_constant represents the given value.
2255 *
2256 * For vectors, this checks that each component is the given value.
2257 */
2258 virtual bool is_value(float f, int i) const;
2259 virtual bool is_zero() const;
2260 virtual bool is_one() const;
2261 virtual bool is_negative_one() const;
2262
2263 /**
2264 * Return true for constants that could be stored as 16-bit unsigned values.
2265 *
2266 * Note that this will return true even for signed integer ir_constants, as
2267 * long as the value is non-negative and fits in 16-bits.
2268 */
2269 virtual bool is_uint16_constant() const;
2270
2271 /**
2272 * Value of the constant.
2273 *
2274 * The field used to back the values supplied by the constant is determined
2275 * by the type associated with the \c ir_instruction. Constants may be
2276 * scalars, vectors, or matrices.
2277 */
2278 union ir_constant_data value;
2279
2280 /* Array elements */
2281 ir_constant **array_elements;
2282
2283 /* Structure fields */
2284 exec_list components;
2285
2286 private:
2287 /**
2288 * Parameterless constructor only used by the clone method
2289 */
2290 ir_constant(void);
2291 };
2292
2293 /**
2294 * IR instruction to emit a vertex in a geometry shader.
2295 */
2296 class ir_emit_vertex : public ir_instruction {
2297 public:
2298 ir_emit_vertex(ir_rvalue *stream)
2299 : ir_instruction(ir_type_emit_vertex),
2300 stream(stream)
2301 {
2302 assert(stream);
2303 }
2304
2305 virtual void accept(ir_visitor *v)
2306 {
2307 v->visit(this);
2308 }
2309
2310 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2311 {
2312 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2313 }
2314
2315 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2316
2317 int stream_id() const
2318 {
2319 return stream->as_constant()->value.i[0];
2320 }
2321
2322 ir_rvalue *stream;
2323 };
2324
2325 /**
2326 * IR instruction to complete the current primitive and start a new one in a
2327 * geometry shader.
2328 */
2329 class ir_end_primitive : public ir_instruction {
2330 public:
2331 ir_end_primitive(ir_rvalue *stream)
2332 : ir_instruction(ir_type_end_primitive),
2333 stream(stream)
2334 {
2335 assert(stream);
2336 }
2337
2338 virtual void accept(ir_visitor *v)
2339 {
2340 v->visit(this);
2341 }
2342
2343 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2344 {
2345 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2346 }
2347
2348 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2349
2350 int stream_id() const
2351 {
2352 return stream->as_constant()->value.i[0];
2353 }
2354
2355 ir_rvalue *stream;
2356 };
2357
2358 /*@}*/
2359
2360 /**
2361 * Apply a visitor to each IR node in a list
2362 */
2363 void
2364 visit_exec_list(exec_list *list, ir_visitor *visitor);
2365
2366 /**
2367 * Validate invariants on each IR node in a list
2368 */
2369 void validate_ir_tree(exec_list *instructions);
2370
2371 struct _mesa_glsl_parse_state;
2372 struct gl_shader_program;
2373
2374 /**
2375 * Detect whether an unlinked shader contains static recursion
2376 *
2377 * If the list of instructions is determined to contain static recursion,
2378 * \c _mesa_glsl_error will be called to emit error messages for each function
2379 * that is in the recursion cycle.
2380 */
2381 void
2382 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2383 exec_list *instructions);
2384
2385 /**
2386 * Detect whether a linked shader contains static recursion
2387 *
2388 * If the list of instructions is determined to contain static recursion,
2389 * \c link_error_printf will be called to emit error messages for each function
2390 * that is in the recursion cycle. In addition,
2391 * \c gl_shader_program::LinkStatus will be set to false.
2392 */
2393 void
2394 detect_recursion_linked(struct gl_shader_program *prog,
2395 exec_list *instructions);
2396
2397 /**
2398 * Make a clone of each IR instruction in a list
2399 *
2400 * \param in List of IR instructions that are to be cloned
2401 * \param out List to hold the cloned instructions
2402 */
2403 void
2404 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2405
2406 extern void
2407 _mesa_glsl_initialize_variables(exec_list *instructions,
2408 struct _mesa_glsl_parse_state *state);
2409
2410 extern void
2411 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2412
2413 extern void
2414 _mesa_glsl_initialize_builtin_functions();
2415
2416 extern ir_function_signature *
2417 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2418 const char *name, exec_list *actual_parameters);
2419
2420 extern gl_shader *
2421 _mesa_glsl_get_builtin_function_shader(void);
2422
2423 extern void
2424 _mesa_glsl_release_functions(void);
2425
2426 extern void
2427 _mesa_glsl_release_builtin_functions(void);
2428
2429 extern void
2430 reparent_ir(exec_list *list, void *mem_ctx);
2431
2432 struct glsl_symbol_table;
2433
2434 extern void
2435 import_prototypes(const exec_list *source, exec_list *dest,
2436 struct glsl_symbol_table *symbols, void *mem_ctx);
2437
2438 extern bool
2439 ir_has_call(ir_instruction *ir);
2440
2441 extern void
2442 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2443 gl_shader_stage shader_stage);
2444
2445 extern char *
2446 prototype_string(const glsl_type *return_type, const char *name,
2447 exec_list *parameters);
2448
2449 const char *
2450 mode_string(const ir_variable *var);
2451
2452 /**
2453 * Built-in / reserved GL variables names start with "gl_"
2454 */
2455 static inline bool
2456 is_gl_identifier(const char *s)
2457 {
2458 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2459 }
2460
2461 extern "C" {
2462 #endif /* __cplusplus */
2463
2464 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2465 struct _mesa_glsl_parse_state *state);
2466
2467 extern void
2468 fprint_ir(FILE *f, const void *instruction);
2469
2470 #ifdef __cplusplus
2471 } /* extern "C" */
2472 #endif
2473
2474 unsigned
2475 vertices_per_prim(GLenum prim);
2476
2477 #endif /* IR_H */