a3f9f058863c42bbbc6937206e5c712a64fa1aba
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
205 */
206 virtual bool is_zero() const;
207
208 /**
209 * Determine if an r-value has the value one
210 *
211 * The base implementation of this function always returns \c false. The
212 * \c ir_constant class over-rides this function to return \c true \b only
213 * for vector and scalar types that have all elements set to the value
214 * one (or \c true for booleans).
215 *
216 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
217 */
218 virtual bool is_one() const;
219
220 /**
221 * Determine if an r-value has the value negative one
222 *
223 * The base implementation of this function always returns \c false. The
224 * \c ir_constant class over-rides this function to return \c true \b only
225 * for vector and scalar types that have all elements set to the value
226 * negative one. For boolean times, the result is always \c false.
227 *
228 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
229 */
230 virtual bool is_negative_one() const;
231
232
233 /**
234 * Return a generic value of error_type.
235 *
236 * Allocation will be performed with 'mem_ctx' as ralloc owner.
237 */
238 static ir_rvalue *error_value(void *mem_ctx);
239
240 protected:
241 ir_rvalue();
242 };
243
244
245 /**
246 * Variable storage classes
247 */
248 enum ir_variable_mode {
249 ir_var_auto = 0, /**< Function local variables and globals. */
250 ir_var_uniform, /**< Variable declared as a uniform. */
251 ir_var_in,
252 ir_var_out,
253 ir_var_inout,
254 ir_var_const_in, /**< "in" param that must be a constant expression */
255 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
256 ir_var_temporary /**< Temporary variable generated during compilation. */
257 };
258
259 /**
260 * \brief Layout qualifiers for gl_FragDepth.
261 *
262 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
263 * with a layout qualifier.
264 */
265 enum ir_depth_layout {
266 ir_depth_layout_none, /**< No depth layout is specified. */
267 ir_depth_layout_any,
268 ir_depth_layout_greater,
269 ir_depth_layout_less,
270 ir_depth_layout_unchanged
271 };
272
273 /**
274 * \brief Convert depth layout qualifier to string.
275 */
276 const char*
277 depth_layout_string(ir_depth_layout layout);
278
279 /**
280 * Description of built-in state associated with a uniform
281 *
282 * \sa ir_variable::state_slots
283 */
284 struct ir_state_slot {
285 int tokens[5];
286 int swizzle;
287 };
288
289 class ir_variable : public ir_instruction {
290 public:
291 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
292
293 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
294
295 virtual ir_variable *as_variable()
296 {
297 return this;
298 }
299
300 virtual void accept(ir_visitor *v)
301 {
302 v->visit(this);
303 }
304
305 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
306
307
308 /**
309 * Get the string value for the interpolation qualifier
310 *
311 * \return The string that would be used in a shader to specify \c
312 * mode will be returned.
313 *
314 * This function is used to generate error messages of the form "shader
315 * uses %s interpolation qualifier", so in the case where there is no
316 * interpolation qualifier, it returns "no".
317 *
318 * This function should only be used on a shader input or output variable.
319 */
320 const char *interpolation_string() const;
321
322 /**
323 * Determine how this variable should be interpolated based on its
324 * interpolation qualifier (if present), whether it is gl_Color or
325 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
326 * state.
327 *
328 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
329 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
330 */
331 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
332
333 /**
334 * Declared type of the variable
335 */
336 const struct glsl_type *type;
337
338 /**
339 * Delcared name of the variable
340 */
341 const char *name;
342
343 /**
344 * Highest element accessed with a constant expression array index
345 *
346 * Not used for non-array variables.
347 */
348 unsigned max_array_access;
349
350 /**
351 * Is the variable read-only?
352 *
353 * This is set for variables declared as \c const, shader inputs,
354 * and uniforms.
355 */
356 unsigned read_only:1;
357 unsigned centroid:1;
358 unsigned invariant:1;
359
360 /**
361 * Has this variable been used for reading or writing?
362 *
363 * Several GLSL semantic checks require knowledge of whether or not a
364 * variable has been used. For example, it is an error to redeclare a
365 * variable as invariant after it has been used.
366 *
367 * This is only maintained in the ast_to_hir.cpp path, not in
368 * Mesa's fixed function or ARB program paths.
369 */
370 unsigned used:1;
371
372 /**
373 * Has this variable been statically assigned?
374 *
375 * This answers whether the variable was assigned in any path of
376 * the shader during ast_to_hir. This doesn't answer whether it is
377 * still written after dead code removal, nor is it maintained in
378 * non-ast_to_hir.cpp (GLSL parsing) paths.
379 */
380 unsigned assigned:1;
381
382 /**
383 * Storage class of the variable.
384 *
385 * \sa ir_variable_mode
386 */
387 unsigned mode:3;
388
389 /**
390 * Interpolation mode for shader inputs / outputs
391 *
392 * \sa ir_variable_interpolation
393 */
394 unsigned interpolation:2;
395
396 /**
397 * \name ARB_fragment_coord_conventions
398 * @{
399 */
400 unsigned origin_upper_left:1;
401 unsigned pixel_center_integer:1;
402 /*@}*/
403
404 /**
405 * Was the location explicitly set in the shader?
406 *
407 * If the location is explicitly set in the shader, it \b cannot be changed
408 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
409 * no effect).
410 */
411 unsigned explicit_location:1;
412 unsigned explicit_index:1;
413
414 /**
415 * Does this variable have an initializer?
416 *
417 * This is used by the linker to cross-validiate initializers of global
418 * variables.
419 */
420 unsigned has_initializer:1;
421
422 /**
423 * \brief Layout qualifier for gl_FragDepth.
424 *
425 * This is not equal to \c ir_depth_layout_none if and only if this
426 * variable is \c gl_FragDepth and a layout qualifier is specified.
427 */
428 ir_depth_layout depth_layout;
429
430 /**
431 * Storage location of the base of this variable
432 *
433 * The precise meaning of this field depends on the nature of the variable.
434 *
435 * - Vertex shader input: one of the values from \c gl_vert_attrib.
436 * - Vertex shader output: one of the values from \c gl_vert_result.
437 * - Fragment shader input: one of the values from \c gl_frag_attrib.
438 * - Fragment shader output: one of the values from \c gl_frag_result.
439 * - Uniforms: Per-stage uniform slot number.
440 * - Other: This field is not currently used.
441 *
442 * If the variable is a uniform, shader input, or shader output, and the
443 * slot has not been assigned, the value will be -1.
444 */
445 int location;
446
447 /**
448 * output index for dual source blending.
449 */
450 int index;
451
452 /**
453 * Built-in state that backs this uniform
454 *
455 * Once set at variable creation, \c state_slots must remain invariant.
456 * This is because, ideally, this array would be shared by all clones of
457 * this variable in the IR tree. In other words, we'd really like for it
458 * to be a fly-weight.
459 *
460 * If the variable is not a uniform, \c num_state_slots will be zero and
461 * \c state_slots will be \c NULL.
462 */
463 /*@{*/
464 unsigned num_state_slots; /**< Number of state slots used */
465 ir_state_slot *state_slots; /**< State descriptors. */
466 /*@}*/
467
468 /**
469 * Emit a warning if this variable is accessed.
470 */
471 const char *warn_extension;
472
473 /**
474 * Value assigned in the initializer of a variable declared "const"
475 */
476 ir_constant *constant_value;
477
478 /**
479 * Constant expression assigned in the initializer of the variable
480 *
481 * \warning
482 * This field and \c ::constant_value are distinct. Even if the two fields
483 * refer to constants with the same value, they must point to separate
484 * objects.
485 */
486 ir_constant *constant_initializer;
487 };
488
489
490 /*@{*/
491 /**
492 * The representation of a function instance; may be the full definition or
493 * simply a prototype.
494 */
495 class ir_function_signature : public ir_instruction {
496 /* An ir_function_signature will be part of the list of signatures in
497 * an ir_function.
498 */
499 public:
500 ir_function_signature(const glsl_type *return_type);
501
502 virtual ir_function_signature *clone(void *mem_ctx,
503 struct hash_table *ht) const;
504 ir_function_signature *clone_prototype(void *mem_ctx,
505 struct hash_table *ht) const;
506
507 virtual void accept(ir_visitor *v)
508 {
509 v->visit(this);
510 }
511
512 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
513
514 /**
515 * Attempt to evaluate this function as a constant expression,
516 * given a list of the actual parameters and the variable context.
517 * Returns NULL for non-built-ins.
518 */
519 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
520
521 /**
522 * Get the name of the function for which this is a signature
523 */
524 const char *function_name() const;
525
526 /**
527 * Get a handle to the function for which this is a signature
528 *
529 * There is no setter function, this function returns a \c const pointer,
530 * and \c ir_function_signature::_function is private for a reason. The
531 * only way to make a connection between a function and function signature
532 * is via \c ir_function::add_signature. This helps ensure that certain
533 * invariants (i.e., a function signature is in the list of signatures for
534 * its \c _function) are met.
535 *
536 * \sa ir_function::add_signature
537 */
538 inline const class ir_function *function() const
539 {
540 return this->_function;
541 }
542
543 /**
544 * Check whether the qualifiers match between this signature's parameters
545 * and the supplied parameter list. If not, returns the name of the first
546 * parameter with mismatched qualifiers (for use in error messages).
547 */
548 const char *qualifiers_match(exec_list *params);
549
550 /**
551 * Replace the current parameter list with the given one. This is useful
552 * if the current information came from a prototype, and either has invalid
553 * or missing parameter names.
554 */
555 void replace_parameters(exec_list *new_params);
556
557 /**
558 * Function return type.
559 *
560 * \note This discards the optional precision qualifier.
561 */
562 const struct glsl_type *return_type;
563
564 /**
565 * List of ir_variable of function parameters.
566 *
567 * This represents the storage. The paramaters passed in a particular
568 * call will be in ir_call::actual_paramaters.
569 */
570 struct exec_list parameters;
571
572 /** Whether or not this function has a body (which may be empty). */
573 unsigned is_defined:1;
574
575 /** Whether or not this function signature is a built-in. */
576 unsigned is_builtin:1;
577
578 /** Body of instructions in the function. */
579 struct exec_list body;
580
581 private:
582 /** Function of which this signature is one overload. */
583 class ir_function *_function;
584
585 /** Function signature of which this one is a prototype clone */
586 const ir_function_signature *origin;
587
588 friend class ir_function;
589
590 /**
591 * Helper function to run a list of instructions for constant
592 * expression evaluation.
593 *
594 * The hash table represents the values of the visible variables.
595 * There are no scoping issues because the table is indexed on
596 * ir_variable pointers, not variable names.
597 *
598 * Returns false if the expression is not constant, true otherwise,
599 * and the value in *result if result is non-NULL.
600 */
601 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
602 struct hash_table *variable_context,
603 ir_constant **result);
604 };
605
606
607 /**
608 * Header for tracking multiple overloaded functions with the same name.
609 * Contains a list of ir_function_signatures representing each of the
610 * actual functions.
611 */
612 class ir_function : public ir_instruction {
613 public:
614 ir_function(const char *name);
615
616 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
617
618 virtual ir_function *as_function()
619 {
620 return this;
621 }
622
623 virtual void accept(ir_visitor *v)
624 {
625 v->visit(this);
626 }
627
628 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
629
630 void add_signature(ir_function_signature *sig)
631 {
632 sig->_function = this;
633 this->signatures.push_tail(sig);
634 }
635
636 /**
637 * Get an iterator for the set of function signatures
638 */
639 exec_list_iterator iterator()
640 {
641 return signatures.iterator();
642 }
643
644 /**
645 * Find a signature that matches a set of actual parameters, taking implicit
646 * conversions into account. Also flags whether the match was exact.
647 */
648 ir_function_signature *matching_signature(const exec_list *actual_param,
649 bool *match_is_exact);
650
651 /**
652 * Find a signature that matches a set of actual parameters, taking implicit
653 * conversions into account.
654 */
655 ir_function_signature *matching_signature(const exec_list *actual_param);
656
657 /**
658 * Find a signature that exactly matches a set of actual parameters without
659 * any implicit type conversions.
660 */
661 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
662
663 /**
664 * Name of the function.
665 */
666 const char *name;
667
668 /** Whether or not this function has a signature that isn't a built-in. */
669 bool has_user_signature();
670
671 /**
672 * List of ir_function_signature for each overloaded function with this name.
673 */
674 struct exec_list signatures;
675 };
676
677 inline const char *ir_function_signature::function_name() const
678 {
679 return this->_function->name;
680 }
681 /*@}*/
682
683
684 /**
685 * IR instruction representing high-level if-statements
686 */
687 class ir_if : public ir_instruction {
688 public:
689 ir_if(ir_rvalue *condition)
690 : condition(condition)
691 {
692 ir_type = ir_type_if;
693 }
694
695 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
696
697 virtual ir_if *as_if()
698 {
699 return this;
700 }
701
702 virtual void accept(ir_visitor *v)
703 {
704 v->visit(this);
705 }
706
707 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
708
709 ir_rvalue *condition;
710 /** List of ir_instruction for the body of the then branch */
711 exec_list then_instructions;
712 /** List of ir_instruction for the body of the else branch */
713 exec_list else_instructions;
714 };
715
716
717 /**
718 * IR instruction representing a high-level loop structure.
719 */
720 class ir_loop : public ir_instruction {
721 public:
722 ir_loop();
723
724 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
725
726 virtual void accept(ir_visitor *v)
727 {
728 v->visit(this);
729 }
730
731 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
732
733 virtual ir_loop *as_loop()
734 {
735 return this;
736 }
737
738 /**
739 * Get an iterator for the instructions of the loop body
740 */
741 exec_list_iterator iterator()
742 {
743 return body_instructions.iterator();
744 }
745
746 /** List of ir_instruction that make up the body of the loop. */
747 exec_list body_instructions;
748
749 /**
750 * \name Loop counter and controls
751 *
752 * Represents a loop like a FORTRAN \c do-loop.
753 *
754 * \note
755 * If \c from and \c to are the same value, the loop will execute once.
756 */
757 /*@{*/
758 ir_rvalue *from; /** Value of the loop counter on the first
759 * iteration of the loop.
760 */
761 ir_rvalue *to; /** Value of the loop counter on the last
762 * iteration of the loop.
763 */
764 ir_rvalue *increment;
765 ir_variable *counter;
766
767 /**
768 * Comparison operation in the loop terminator.
769 *
770 * If any of the loop control fields are non-\c NULL, this field must be
771 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
772 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
773 */
774 int cmp;
775 /*@}*/
776 };
777
778
779 class ir_assignment : public ir_instruction {
780 public:
781 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
782
783 /**
784 * Construct an assignment with an explicit write mask
785 *
786 * \note
787 * Since a write mask is supplied, the LHS must already be a bare
788 * \c ir_dereference. The cannot be any swizzles in the LHS.
789 */
790 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
791 unsigned write_mask);
792
793 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
794
795 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
796
797 virtual void accept(ir_visitor *v)
798 {
799 v->visit(this);
800 }
801
802 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
803
804 virtual ir_assignment * as_assignment()
805 {
806 return this;
807 }
808
809 /**
810 * Get a whole variable written by an assignment
811 *
812 * If the LHS of the assignment writes a whole variable, the variable is
813 * returned. Otherwise \c NULL is returned. Examples of whole-variable
814 * assignment are:
815 *
816 * - Assigning to a scalar
817 * - Assigning to all components of a vector
818 * - Whole array (or matrix) assignment
819 * - Whole structure assignment
820 */
821 ir_variable *whole_variable_written();
822
823 /**
824 * Set the LHS of an assignment
825 */
826 void set_lhs(ir_rvalue *lhs);
827
828 /**
829 * Left-hand side of the assignment.
830 *
831 * This should be treated as read only. If you need to set the LHS of an
832 * assignment, use \c ir_assignment::set_lhs.
833 */
834 ir_dereference *lhs;
835
836 /**
837 * Value being assigned
838 */
839 ir_rvalue *rhs;
840
841 /**
842 * Optional condition for the assignment.
843 */
844 ir_rvalue *condition;
845
846
847 /**
848 * Component mask written
849 *
850 * For non-vector types in the LHS, this field will be zero. For vector
851 * types, a bit will be set for each component that is written. Note that
852 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
853 *
854 * A partially-set write mask means that each enabled channel gets
855 * the value from a consecutive channel of the rhs. For example,
856 * to write just .xyw of gl_FrontColor with color:
857 *
858 * (assign (constant bool (1)) (xyw)
859 * (var_ref gl_FragColor)
860 * (swiz xyw (var_ref color)))
861 */
862 unsigned write_mask:4;
863 };
864
865 /* Update ir_expression::num_operands() and operator_strs when
866 * updating this list.
867 */
868 enum ir_expression_operation {
869 ir_unop_bit_not,
870 ir_unop_logic_not,
871 ir_unop_neg,
872 ir_unop_abs,
873 ir_unop_sign,
874 ir_unop_rcp,
875 ir_unop_rsq,
876 ir_unop_sqrt,
877 ir_unop_exp, /**< Log base e on gentype */
878 ir_unop_log, /**< Natural log on gentype */
879 ir_unop_exp2,
880 ir_unop_log2,
881 ir_unop_f2i, /**< Float-to-integer conversion. */
882 ir_unop_i2f, /**< Integer-to-float conversion. */
883 ir_unop_f2b, /**< Float-to-boolean conversion */
884 ir_unop_b2f, /**< Boolean-to-float conversion */
885 ir_unop_i2b, /**< int-to-boolean conversion */
886 ir_unop_b2i, /**< Boolean-to-int conversion */
887 ir_unop_u2f, /**< Unsigned-to-float conversion. */
888 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
889 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
890 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
891 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
892 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
893 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
894 ir_unop_any,
895
896 /**
897 * \name Unary floating-point rounding operations.
898 */
899 /*@{*/
900 ir_unop_trunc,
901 ir_unop_ceil,
902 ir_unop_floor,
903 ir_unop_fract,
904 ir_unop_round_even,
905 /*@}*/
906
907 /**
908 * \name Trigonometric operations.
909 */
910 /*@{*/
911 ir_unop_sin,
912 ir_unop_cos,
913 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
914 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
915 /*@}*/
916
917 /**
918 * \name Partial derivatives.
919 */
920 /*@{*/
921 ir_unop_dFdx,
922 ir_unop_dFdy,
923 /*@}*/
924
925 ir_unop_noise,
926
927 /**
928 * A sentinel marking the last of the unary operations.
929 */
930 ir_last_unop = ir_unop_noise,
931
932 ir_binop_add,
933 ir_binop_sub,
934 ir_binop_mul,
935 ir_binop_div,
936
937 /**
938 * Takes one of two combinations of arguments:
939 *
940 * - mod(vecN, vecN)
941 * - mod(vecN, float)
942 *
943 * Does not take integer types.
944 */
945 ir_binop_mod,
946
947 /**
948 * \name Binary comparison operators which return a boolean vector.
949 * The type of both operands must be equal.
950 */
951 /*@{*/
952 ir_binop_less,
953 ir_binop_greater,
954 ir_binop_lequal,
955 ir_binop_gequal,
956 ir_binop_equal,
957 ir_binop_nequal,
958 /**
959 * Returns single boolean for whether all components of operands[0]
960 * equal the components of operands[1].
961 */
962 ir_binop_all_equal,
963 /**
964 * Returns single boolean for whether any component of operands[0]
965 * is not equal to the corresponding component of operands[1].
966 */
967 ir_binop_any_nequal,
968 /*@}*/
969
970 /**
971 * \name Bit-wise binary operations.
972 */
973 /*@{*/
974 ir_binop_lshift,
975 ir_binop_rshift,
976 ir_binop_bit_and,
977 ir_binop_bit_xor,
978 ir_binop_bit_or,
979 /*@}*/
980
981 ir_binop_logic_and,
982 ir_binop_logic_xor,
983 ir_binop_logic_or,
984
985 ir_binop_dot,
986 ir_binop_min,
987 ir_binop_max,
988
989 ir_binop_pow,
990
991 /**
992 * A sentinel marking the last of the binary operations.
993 */
994 ir_last_binop = ir_binop_pow,
995
996 ir_quadop_vector,
997
998 /**
999 * A sentinel marking the last of all operations.
1000 */
1001 ir_last_opcode = ir_last_binop
1002 };
1003
1004 class ir_expression : public ir_rvalue {
1005 public:
1006 /**
1007 * Constructor for unary operation expressions
1008 */
1009 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1010 ir_expression(int op, ir_rvalue *);
1011
1012 /**
1013 * Constructor for binary operation expressions
1014 */
1015 ir_expression(int op, const struct glsl_type *type,
1016 ir_rvalue *, ir_rvalue *);
1017 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1018
1019 /**
1020 * Constructor for quad operator expressions
1021 */
1022 ir_expression(int op, const struct glsl_type *type,
1023 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1024
1025 virtual ir_expression *as_expression()
1026 {
1027 return this;
1028 }
1029
1030 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1031
1032 /**
1033 * Attempt to constant-fold the expression
1034 *
1035 * The "variable_context" hash table links ir_variable * to ir_constant *
1036 * that represent the variables' values. \c NULL represents an empty
1037 * context.
1038 *
1039 * If the expression cannot be constant folded, this method will return
1040 * \c NULL.
1041 */
1042 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1043
1044 /**
1045 * Determine the number of operands used by an expression
1046 */
1047 static unsigned int get_num_operands(ir_expression_operation);
1048
1049 /**
1050 * Determine the number of operands used by an expression
1051 */
1052 unsigned int get_num_operands() const
1053 {
1054 return (this->operation == ir_quadop_vector)
1055 ? this->type->vector_elements : get_num_operands(operation);
1056 }
1057
1058 /**
1059 * Return a string representing this expression's operator.
1060 */
1061 const char *operator_string();
1062
1063 /**
1064 * Return a string representing this expression's operator.
1065 */
1066 static const char *operator_string(ir_expression_operation);
1067
1068
1069 /**
1070 * Do a reverse-lookup to translate the given string into an operator.
1071 */
1072 static ir_expression_operation get_operator(const char *);
1073
1074 virtual void accept(ir_visitor *v)
1075 {
1076 v->visit(this);
1077 }
1078
1079 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1080
1081 ir_expression_operation operation;
1082 ir_rvalue *operands[4];
1083 };
1084
1085
1086 /**
1087 * HIR instruction representing a high-level function call, containing a list
1088 * of parameters and returning a value in the supplied temporary.
1089 */
1090 class ir_call : public ir_instruction {
1091 public:
1092 ir_call(ir_function_signature *callee,
1093 ir_dereference_variable *return_deref,
1094 exec_list *actual_parameters)
1095 : return_deref(return_deref), callee(callee)
1096 {
1097 ir_type = ir_type_call;
1098 assert(callee->return_type != NULL);
1099 actual_parameters->move_nodes_to(& this->actual_parameters);
1100 this->use_builtin = callee->is_builtin;
1101 }
1102
1103 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1104
1105 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1106
1107 virtual ir_call *as_call()
1108 {
1109 return this;
1110 }
1111
1112 virtual void accept(ir_visitor *v)
1113 {
1114 v->visit(this);
1115 }
1116
1117 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1118
1119 /**
1120 * Get an iterator for the set of acutal parameters
1121 */
1122 exec_list_iterator iterator()
1123 {
1124 return actual_parameters.iterator();
1125 }
1126
1127 /**
1128 * Get the name of the function being called.
1129 */
1130 const char *callee_name() const
1131 {
1132 return callee->function_name();
1133 }
1134
1135 /**
1136 * Generates an inline version of the function before @ir,
1137 * storing the return value in return_deref.
1138 */
1139 void generate_inline(ir_instruction *ir);
1140
1141 /**
1142 * Storage for the function's return value.
1143 * This must be NULL if the return type is void.
1144 */
1145 ir_dereference_variable *return_deref;
1146
1147 /**
1148 * The specific function signature being called.
1149 */
1150 ir_function_signature *callee;
1151
1152 /* List of ir_rvalue of paramaters passed in this call. */
1153 exec_list actual_parameters;
1154
1155 /** Should this call only bind to a built-in function? */
1156 bool use_builtin;
1157 };
1158
1159
1160 /**
1161 * \name Jump-like IR instructions.
1162 *
1163 * These include \c break, \c continue, \c return, and \c discard.
1164 */
1165 /*@{*/
1166 class ir_jump : public ir_instruction {
1167 protected:
1168 ir_jump()
1169 {
1170 ir_type = ir_type_unset;
1171 }
1172 };
1173
1174 class ir_return : public ir_jump {
1175 public:
1176 ir_return()
1177 : value(NULL)
1178 {
1179 this->ir_type = ir_type_return;
1180 }
1181
1182 ir_return(ir_rvalue *value)
1183 : value(value)
1184 {
1185 this->ir_type = ir_type_return;
1186 }
1187
1188 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1189
1190 virtual ir_return *as_return()
1191 {
1192 return this;
1193 }
1194
1195 ir_rvalue *get_value() const
1196 {
1197 return value;
1198 }
1199
1200 virtual void accept(ir_visitor *v)
1201 {
1202 v->visit(this);
1203 }
1204
1205 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1206
1207 ir_rvalue *value;
1208 };
1209
1210
1211 /**
1212 * Jump instructions used inside loops
1213 *
1214 * These include \c break and \c continue. The \c break within a loop is
1215 * different from the \c break within a switch-statement.
1216 *
1217 * \sa ir_switch_jump
1218 */
1219 class ir_loop_jump : public ir_jump {
1220 public:
1221 enum jump_mode {
1222 jump_break,
1223 jump_continue
1224 };
1225
1226 ir_loop_jump(jump_mode mode)
1227 {
1228 this->ir_type = ir_type_loop_jump;
1229 this->mode = mode;
1230 this->loop = loop;
1231 }
1232
1233 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1234
1235 virtual void accept(ir_visitor *v)
1236 {
1237 v->visit(this);
1238 }
1239
1240 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1241
1242 bool is_break() const
1243 {
1244 return mode == jump_break;
1245 }
1246
1247 bool is_continue() const
1248 {
1249 return mode == jump_continue;
1250 }
1251
1252 /** Mode selector for the jump instruction. */
1253 enum jump_mode mode;
1254 private:
1255 /** Loop containing this break instruction. */
1256 ir_loop *loop;
1257 };
1258
1259 /**
1260 * IR instruction representing discard statements.
1261 */
1262 class ir_discard : public ir_jump {
1263 public:
1264 ir_discard()
1265 {
1266 this->ir_type = ir_type_discard;
1267 this->condition = NULL;
1268 }
1269
1270 ir_discard(ir_rvalue *cond)
1271 {
1272 this->ir_type = ir_type_discard;
1273 this->condition = cond;
1274 }
1275
1276 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1277
1278 virtual void accept(ir_visitor *v)
1279 {
1280 v->visit(this);
1281 }
1282
1283 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1284
1285 virtual ir_discard *as_discard()
1286 {
1287 return this;
1288 }
1289
1290 ir_rvalue *condition;
1291 };
1292 /*@}*/
1293
1294
1295 /**
1296 * Texture sampling opcodes used in ir_texture
1297 */
1298 enum ir_texture_opcode {
1299 ir_tex, /**< Regular texture look-up */
1300 ir_txb, /**< Texture look-up with LOD bias */
1301 ir_txl, /**< Texture look-up with explicit LOD */
1302 ir_txd, /**< Texture look-up with partial derivatvies */
1303 ir_txf, /**< Texel fetch with explicit LOD */
1304 ir_txs /**< Texture size */
1305 };
1306
1307
1308 /**
1309 * IR instruction to sample a texture
1310 *
1311 * The specific form of the IR instruction depends on the \c mode value
1312 * selected from \c ir_texture_opcodes. In the printed IR, these will
1313 * appear as:
1314 *
1315 * Texel offset (0 or an expression)
1316 * | Projection divisor
1317 * | | Shadow comparitor
1318 * | | |
1319 * v v v
1320 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1321 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1322 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1323 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1324 * (txf <type> <sampler> <coordinate> 0 <lod>)
1325 * (txs <type> <sampler> <lod>)
1326 */
1327 class ir_texture : public ir_rvalue {
1328 public:
1329 ir_texture(enum ir_texture_opcode op)
1330 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1331 {
1332 this->ir_type = ir_type_texture;
1333 }
1334
1335 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1336
1337 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1338
1339 virtual void accept(ir_visitor *v)
1340 {
1341 v->visit(this);
1342 }
1343
1344 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1345
1346 /**
1347 * Return a string representing the ir_texture_opcode.
1348 */
1349 const char *opcode_string();
1350
1351 /** Set the sampler and type. */
1352 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1353
1354 /**
1355 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1356 */
1357 static ir_texture_opcode get_opcode(const char *);
1358
1359 enum ir_texture_opcode op;
1360
1361 /** Sampler to use for the texture access. */
1362 ir_dereference *sampler;
1363
1364 /** Texture coordinate to sample */
1365 ir_rvalue *coordinate;
1366
1367 /**
1368 * Value used for projective divide.
1369 *
1370 * If there is no projective divide (the common case), this will be
1371 * \c NULL. Optimization passes should check for this to point to a constant
1372 * of 1.0 and replace that with \c NULL.
1373 */
1374 ir_rvalue *projector;
1375
1376 /**
1377 * Coordinate used for comparison on shadow look-ups.
1378 *
1379 * If there is no shadow comparison, this will be \c NULL. For the
1380 * \c ir_txf opcode, this *must* be \c NULL.
1381 */
1382 ir_rvalue *shadow_comparitor;
1383
1384 /** Texel offset. */
1385 ir_rvalue *offset;
1386
1387 union {
1388 ir_rvalue *lod; /**< Floating point LOD */
1389 ir_rvalue *bias; /**< Floating point LOD bias */
1390 struct {
1391 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1392 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1393 } grad;
1394 } lod_info;
1395 };
1396
1397
1398 struct ir_swizzle_mask {
1399 unsigned x:2;
1400 unsigned y:2;
1401 unsigned z:2;
1402 unsigned w:2;
1403
1404 /**
1405 * Number of components in the swizzle.
1406 */
1407 unsigned num_components:3;
1408
1409 /**
1410 * Does the swizzle contain duplicate components?
1411 *
1412 * L-value swizzles cannot contain duplicate components.
1413 */
1414 unsigned has_duplicates:1;
1415 };
1416
1417
1418 class ir_swizzle : public ir_rvalue {
1419 public:
1420 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1421 unsigned count);
1422
1423 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1424
1425 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1426
1427 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1428
1429 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1430
1431 virtual ir_swizzle *as_swizzle()
1432 {
1433 return this;
1434 }
1435
1436 /**
1437 * Construct an ir_swizzle from the textual representation. Can fail.
1438 */
1439 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1440
1441 virtual void accept(ir_visitor *v)
1442 {
1443 v->visit(this);
1444 }
1445
1446 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1447
1448 bool is_lvalue() const
1449 {
1450 return val->is_lvalue() && !mask.has_duplicates;
1451 }
1452
1453 /**
1454 * Get the variable that is ultimately referenced by an r-value
1455 */
1456 virtual ir_variable *variable_referenced() const;
1457
1458 ir_rvalue *val;
1459 ir_swizzle_mask mask;
1460
1461 private:
1462 /**
1463 * Initialize the mask component of a swizzle
1464 *
1465 * This is used by the \c ir_swizzle constructors.
1466 */
1467 void init_mask(const unsigned *components, unsigned count);
1468 };
1469
1470
1471 class ir_dereference : public ir_rvalue {
1472 public:
1473 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1474
1475 virtual ir_dereference *as_dereference()
1476 {
1477 return this;
1478 }
1479
1480 bool is_lvalue() const;
1481
1482 /**
1483 * Get the variable that is ultimately referenced by an r-value
1484 */
1485 virtual ir_variable *variable_referenced() const = 0;
1486
1487 /**
1488 * Get the constant that is ultimately referenced by an r-value,
1489 * in a constant expression evaluation context.
1490 *
1491 * The offset is used when the reference is to a specific column of
1492 * a matrix.
1493 */
1494 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1495 };
1496
1497
1498 class ir_dereference_variable : public ir_dereference {
1499 public:
1500 ir_dereference_variable(ir_variable *var);
1501
1502 virtual ir_dereference_variable *clone(void *mem_ctx,
1503 struct hash_table *) const;
1504
1505 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1506
1507 virtual ir_dereference_variable *as_dereference_variable()
1508 {
1509 return this;
1510 }
1511
1512 /**
1513 * Get the variable that is ultimately referenced by an r-value
1514 */
1515 virtual ir_variable *variable_referenced() const
1516 {
1517 return this->var;
1518 }
1519
1520 /**
1521 * Get the constant that is ultimately referenced by an r-value,
1522 * in a constant expression evaluation context.
1523 *
1524 * The offset is used when the reference is to a specific column of
1525 * a matrix.
1526 */
1527 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1528
1529 virtual ir_variable *whole_variable_referenced()
1530 {
1531 /* ir_dereference_variable objects always dereference the entire
1532 * variable. However, if this dereference is dereferenced by anything
1533 * else, the complete deferefernce chain is not a whole-variable
1534 * dereference. This method should only be called on the top most
1535 * ir_rvalue in a dereference chain.
1536 */
1537 return this->var;
1538 }
1539
1540 virtual void accept(ir_visitor *v)
1541 {
1542 v->visit(this);
1543 }
1544
1545 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1546
1547 /**
1548 * Object being dereferenced.
1549 */
1550 ir_variable *var;
1551 };
1552
1553
1554 class ir_dereference_array : public ir_dereference {
1555 public:
1556 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1557
1558 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1559
1560 virtual ir_dereference_array *clone(void *mem_ctx,
1561 struct hash_table *) const;
1562
1563 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1564
1565 virtual ir_dereference_array *as_dereference_array()
1566 {
1567 return this;
1568 }
1569
1570 /**
1571 * Get the variable that is ultimately referenced by an r-value
1572 */
1573 virtual ir_variable *variable_referenced() const
1574 {
1575 return this->array->variable_referenced();
1576 }
1577
1578 /**
1579 * Get the constant that is ultimately referenced by an r-value,
1580 * in a constant expression evaluation context.
1581 *
1582 * The offset is used when the reference is to a specific column of
1583 * a matrix.
1584 */
1585 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1586
1587 virtual void accept(ir_visitor *v)
1588 {
1589 v->visit(this);
1590 }
1591
1592 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1593
1594 ir_rvalue *array;
1595 ir_rvalue *array_index;
1596
1597 private:
1598 void set_array(ir_rvalue *value);
1599 };
1600
1601
1602 class ir_dereference_record : public ir_dereference {
1603 public:
1604 ir_dereference_record(ir_rvalue *value, const char *field);
1605
1606 ir_dereference_record(ir_variable *var, const char *field);
1607
1608 virtual ir_dereference_record *clone(void *mem_ctx,
1609 struct hash_table *) const;
1610
1611 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1612
1613 /**
1614 * Get the variable that is ultimately referenced by an r-value
1615 */
1616 virtual ir_variable *variable_referenced() const
1617 {
1618 return this->record->variable_referenced();
1619 }
1620
1621 /**
1622 * Get the constant that is ultimately referenced by an r-value,
1623 * in a constant expression evaluation context.
1624 *
1625 * The offset is used when the reference is to a specific column of
1626 * a matrix.
1627 */
1628 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1629
1630 virtual void accept(ir_visitor *v)
1631 {
1632 v->visit(this);
1633 }
1634
1635 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1636
1637 ir_rvalue *record;
1638 const char *field;
1639 };
1640
1641
1642 /**
1643 * Data stored in an ir_constant
1644 */
1645 union ir_constant_data {
1646 unsigned u[16];
1647 int i[16];
1648 float f[16];
1649 bool b[16];
1650 };
1651
1652
1653 class ir_constant : public ir_rvalue {
1654 public:
1655 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1656 ir_constant(bool b);
1657 ir_constant(unsigned int u);
1658 ir_constant(int i);
1659 ir_constant(float f);
1660
1661 /**
1662 * Construct an ir_constant from a list of ir_constant values
1663 */
1664 ir_constant(const struct glsl_type *type, exec_list *values);
1665
1666 /**
1667 * Construct an ir_constant from a scalar component of another ir_constant
1668 *
1669 * The new \c ir_constant inherits the type of the component from the
1670 * source constant.
1671 *
1672 * \note
1673 * In the case of a matrix constant, the new constant is a scalar, \b not
1674 * a vector.
1675 */
1676 ir_constant(const ir_constant *c, unsigned i);
1677
1678 /**
1679 * Return a new ir_constant of the specified type containing all zeros.
1680 */
1681 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1682
1683 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1684
1685 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1686
1687 virtual ir_constant *as_constant()
1688 {
1689 return this;
1690 }
1691
1692 virtual void accept(ir_visitor *v)
1693 {
1694 v->visit(this);
1695 }
1696
1697 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1698
1699 /**
1700 * Get a particular component of a constant as a specific type
1701 *
1702 * This is useful, for example, to get a value from an integer constant
1703 * as a float or bool. This appears frequently when constructors are
1704 * called with all constant parameters.
1705 */
1706 /*@{*/
1707 bool get_bool_component(unsigned i) const;
1708 float get_float_component(unsigned i) const;
1709 int get_int_component(unsigned i) const;
1710 unsigned get_uint_component(unsigned i) const;
1711 /*@}*/
1712
1713 ir_constant *get_array_element(unsigned i) const;
1714
1715 ir_constant *get_record_field(const char *name);
1716
1717 /**
1718 * Copy the values on another constant at a given offset.
1719 *
1720 * The offset is ignored for array or struct copies, it's only for
1721 * scalars or vectors into vectors or matrices.
1722 *
1723 * With identical types on both sides and zero offset it's clone()
1724 * without creating a new object.
1725 */
1726
1727 void copy_offset(ir_constant *src, int offset);
1728
1729 /**
1730 * Copy the values on another constant at a given offset and
1731 * following an assign-like mask.
1732 *
1733 * The mask is ignored for scalars.
1734 *
1735 * Note that this function only handles what assign can handle,
1736 * i.e. at most a vector as source and a column of a matrix as
1737 * destination.
1738 */
1739
1740 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1741
1742 /**
1743 * Determine whether a constant has the same value as another constant
1744 *
1745 * \sa ir_constant::is_zero, ir_constant::is_one,
1746 * ir_constant::is_negative_one
1747 */
1748 bool has_value(const ir_constant *) const;
1749
1750 virtual bool is_zero() const;
1751 virtual bool is_one() const;
1752 virtual bool is_negative_one() const;
1753
1754 /**
1755 * Value of the constant.
1756 *
1757 * The field used to back the values supplied by the constant is determined
1758 * by the type associated with the \c ir_instruction. Constants may be
1759 * scalars, vectors, or matrices.
1760 */
1761 union ir_constant_data value;
1762
1763 /* Array elements */
1764 ir_constant **array_elements;
1765
1766 /* Structure fields */
1767 exec_list components;
1768
1769 private:
1770 /**
1771 * Parameterless constructor only used by the clone method
1772 */
1773 ir_constant(void);
1774 };
1775
1776 /*@}*/
1777
1778 /**
1779 * Apply a visitor to each IR node in a list
1780 */
1781 void
1782 visit_exec_list(exec_list *list, ir_visitor *visitor);
1783
1784 /**
1785 * Validate invariants on each IR node in a list
1786 */
1787 void validate_ir_tree(exec_list *instructions);
1788
1789 struct _mesa_glsl_parse_state;
1790 struct gl_shader_program;
1791
1792 /**
1793 * Detect whether an unlinked shader contains static recursion
1794 *
1795 * If the list of instructions is determined to contain static recursion,
1796 * \c _mesa_glsl_error will be called to emit error messages for each function
1797 * that is in the recursion cycle.
1798 */
1799 void
1800 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1801 exec_list *instructions);
1802
1803 /**
1804 * Detect whether a linked shader contains static recursion
1805 *
1806 * If the list of instructions is determined to contain static recursion,
1807 * \c link_error_printf will be called to emit error messages for each function
1808 * that is in the recursion cycle. In addition,
1809 * \c gl_shader_program::LinkStatus will be set to false.
1810 */
1811 void
1812 detect_recursion_linked(struct gl_shader_program *prog,
1813 exec_list *instructions);
1814
1815 /**
1816 * Make a clone of each IR instruction in a list
1817 *
1818 * \param in List of IR instructions that are to be cloned
1819 * \param out List to hold the cloned instructions
1820 */
1821 void
1822 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1823
1824 extern void
1825 _mesa_glsl_initialize_variables(exec_list *instructions,
1826 struct _mesa_glsl_parse_state *state);
1827
1828 extern void
1829 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1830
1831 extern void
1832 _mesa_glsl_release_functions(void);
1833
1834 extern void
1835 reparent_ir(exec_list *list, void *mem_ctx);
1836
1837 struct glsl_symbol_table;
1838
1839 extern void
1840 import_prototypes(const exec_list *source, exec_list *dest,
1841 struct glsl_symbol_table *symbols, void *mem_ctx);
1842
1843 extern bool
1844 ir_has_call(ir_instruction *ir);
1845
1846 extern void
1847 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1848 bool is_fragment_shader);
1849
1850 extern char *
1851 prototype_string(const glsl_type *return_type, const char *name,
1852 exec_list *parameters);
1853
1854 #endif /* IR_H */