egl: fix uninitialized values
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /** ir_print_visitor helper for debugging. */
93 void print(void) const;
94
95 virtual void accept(ir_visitor *) = 0;
96 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97 virtual ir_instruction *clone(void *mem_ctx,
98 struct hash_table *ht) const = 0;
99
100 /**
101 * \name IR instruction downcast functions
102 *
103 * These functions either cast the object to a derived class or return
104 * \c NULL if the object's type does not match the specified derived class.
105 * Additional downcast functions will be added as needed.
106 */
107 /*@{*/
108 virtual class ir_variable * as_variable() { return NULL; }
109 virtual class ir_function * as_function() { return NULL; }
110 virtual class ir_dereference * as_dereference() { return NULL; }
111 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
112 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113 virtual class ir_expression * as_expression() { return NULL; }
114 virtual class ir_rvalue * as_rvalue() { return NULL; }
115 virtual class ir_loop * as_loop() { return NULL; }
116 virtual class ir_assignment * as_assignment() { return NULL; }
117 virtual class ir_call * as_call() { return NULL; }
118 virtual class ir_return * as_return() { return NULL; }
119 virtual class ir_if * as_if() { return NULL; }
120 virtual class ir_swizzle * as_swizzle() { return NULL; }
121 virtual class ir_constant * as_constant() { return NULL; }
122 virtual class ir_discard * as_discard() { return NULL; }
123 /*@}*/
124
125 protected:
126 ir_instruction()
127 {
128 ir_type = ir_type_unset;
129 }
130 };
131
132
133 /**
134 * The base class for all "values"/expression trees.
135 */
136 class ir_rvalue : public ir_instruction {
137 public:
138 const struct glsl_type *type;
139
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142 virtual void accept(ir_visitor *v)
143 {
144 v->visit(this);
145 }
146
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149 virtual ir_constant *constant_expression_value();
150
151 virtual ir_rvalue * as_rvalue()
152 {
153 return this;
154 }
155
156 ir_rvalue *as_rvalue_to_saturate();
157
158 virtual bool is_lvalue() const
159 {
160 return false;
161 }
162
163 /**
164 * Get the variable that is ultimately referenced by an r-value
165 */
166 virtual ir_variable *variable_referenced() const
167 {
168 return NULL;
169 }
170
171
172 /**
173 * If an r-value is a reference to a whole variable, get that variable
174 *
175 * \return
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
179 * is returned.
180 */
181 virtual ir_variable *whole_variable_referenced()
182 {
183 return NULL;
184 }
185
186 /**
187 * Determine if an r-value has the value zero
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195 */
196 virtual bool is_zero() const;
197
198 /**
199 * Determine if an r-value has the value one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207 */
208 virtual bool is_one() const;
209
210 /**
211 * Determine if an r-value has the value negative one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219 */
220 virtual bool is_negative_one() const;
221
222
223 /**
224 * Return a generic value of error_type.
225 *
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
227 */
228 static ir_rvalue *error_value(void *mem_ctx);
229
230 protected:
231 ir_rvalue();
232 };
233
234
235 /**
236 * Variable storage classes
237 */
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
241 ir_var_in,
242 ir_var_out,
243 ir_var_inout,
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
247 };
248
249 /**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
257 ir_depth_layout_any,
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
261 };
262
263 /**
264 * \brief Convert depth layout qualifier to string.
265 */
266 const char*
267 depth_layout_string(ir_depth_layout layout);
268
269 /**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274 struct ir_state_slot {
275 int tokens[5];
276 int swizzle;
277 };
278
279 class ir_variable : public ir_instruction {
280 public:
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285 virtual ir_variable *as_variable()
286 {
287 return this;
288 }
289
290 virtual void accept(ir_visitor *v)
291 {
292 v->visit(this);
293 }
294
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298 /**
299 * Get the string value for the interpolation qualifier
300 *
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
303 *
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
307 *
308 * This function should only be used on a shader input or output variable.
309 */
310 const char *interpolation_string() const;
311
312 /**
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316 * state.
317 *
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320 */
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323 /**
324 * Declared type of the variable
325 */
326 const struct glsl_type *type;
327
328 /**
329 * Delcared name of the variable
330 */
331 const char *name;
332
333 /**
334 * Highest element accessed with a constant expression array index
335 *
336 * Not used for non-array variables.
337 */
338 unsigned max_array_access;
339
340 /**
341 * Is the variable read-only?
342 *
343 * This is set for variables declared as \c const, shader inputs,
344 * and uniforms.
345 */
346 unsigned read_only:1;
347 unsigned centroid:1;
348 unsigned invariant:1;
349
350 /**
351 * Has this variable been used for reading or writing?
352 *
353 * Several GLSL semantic checks require knowledge of whether or not a
354 * variable has been used. For example, it is an error to redeclare a
355 * variable as invariant after it has been used.
356 */
357 unsigned used:1;
358
359 /**
360 * Storage class of the variable.
361 *
362 * \sa ir_variable_mode
363 */
364 unsigned mode:3;
365
366 /**
367 * Interpolation mode for shader inputs / outputs
368 *
369 * \sa ir_variable_interpolation
370 */
371 unsigned interpolation:2;
372
373 /**
374 * \name ARB_fragment_coord_conventions
375 * @{
376 */
377 unsigned origin_upper_left:1;
378 unsigned pixel_center_integer:1;
379 /*@}*/
380
381 /**
382 * Was the location explicitly set in the shader?
383 *
384 * If the location is explicitly set in the shader, it \b cannot be changed
385 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
386 * no effect).
387 */
388 unsigned explicit_location:1;
389
390 /**
391 * Does this variable have an initializer?
392 *
393 * This is used by the linker to cross-validiate initializers of global
394 * variables.
395 */
396 unsigned has_initializer:1;
397
398 /**
399 * \brief Layout qualifier for gl_FragDepth.
400 *
401 * This is not equal to \c ir_depth_layout_none if and only if this
402 * variable is \c gl_FragDepth and a layout qualifier is specified.
403 */
404 ir_depth_layout depth_layout;
405
406 /**
407 * Storage location of the base of this variable
408 *
409 * The precise meaning of this field depends on the nature of the variable.
410 *
411 * - Vertex shader input: one of the values from \c gl_vert_attrib.
412 * - Vertex shader output: one of the values from \c gl_vert_result.
413 * - Fragment shader input: one of the values from \c gl_frag_attrib.
414 * - Fragment shader output: one of the values from \c gl_frag_result.
415 * - Uniforms: Per-stage uniform slot number.
416 * - Other: This field is not currently used.
417 *
418 * If the variable is a uniform, shader input, or shader output, and the
419 * slot has not been assigned, the value will be -1.
420 */
421 int location;
422
423 /**
424 * Built-in state that backs this uniform
425 *
426 * Once set at variable creation, \c state_slots must remain invariant.
427 * This is because, ideally, this array would be shared by all clones of
428 * this variable in the IR tree. In other words, we'd really like for it
429 * to be a fly-weight.
430 *
431 * If the variable is not a uniform, \c num_state_slots will be zero and
432 * \c state_slots will be \c NULL.
433 */
434 /*@{*/
435 unsigned num_state_slots; /**< Number of state slots used */
436 ir_state_slot *state_slots; /**< State descriptors. */
437 /*@}*/
438
439 /**
440 * Emit a warning if this variable is accessed.
441 */
442 const char *warn_extension;
443
444 /**
445 * Value assigned in the initializer of a variable declared "const"
446 */
447 ir_constant *constant_value;
448
449 /**
450 * Constant expression assigned in the initializer of the variable
451 *
452 * \warning
453 * This field and \c ::constant_value are distinct. Even if the two fields
454 * refer to constants with the same value, they must point to separate
455 * objects.
456 */
457 ir_constant *constant_initializer;
458 };
459
460
461 /*@{*/
462 /**
463 * The representation of a function instance; may be the full definition or
464 * simply a prototype.
465 */
466 class ir_function_signature : public ir_instruction {
467 /* An ir_function_signature will be part of the list of signatures in
468 * an ir_function.
469 */
470 public:
471 ir_function_signature(const glsl_type *return_type);
472
473 virtual ir_function_signature *clone(void *mem_ctx,
474 struct hash_table *ht) const;
475 ir_function_signature *clone_prototype(void *mem_ctx,
476 struct hash_table *ht) const;
477
478 virtual void accept(ir_visitor *v)
479 {
480 v->visit(this);
481 }
482
483 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
484
485 /**
486 * Attempt to evaluate this function as a constant expression, given
487 * a list of the actual parameters. Returns NULL for non-built-ins.
488 */
489 ir_constant *constant_expression_value(exec_list *actual_parameters);
490
491 /**
492 * Get the name of the function for which this is a signature
493 */
494 const char *function_name() const;
495
496 /**
497 * Get a handle to the function for which this is a signature
498 *
499 * There is no setter function, this function returns a \c const pointer,
500 * and \c ir_function_signature::_function is private for a reason. The
501 * only way to make a connection between a function and function signature
502 * is via \c ir_function::add_signature. This helps ensure that certain
503 * invariants (i.e., a function signature is in the list of signatures for
504 * its \c _function) are met.
505 *
506 * \sa ir_function::add_signature
507 */
508 inline const class ir_function *function() const
509 {
510 return this->_function;
511 }
512
513 /**
514 * Check whether the qualifiers match between this signature's parameters
515 * and the supplied parameter list. If not, returns the name of the first
516 * parameter with mismatched qualifiers (for use in error messages).
517 */
518 const char *qualifiers_match(exec_list *params);
519
520 /**
521 * Replace the current parameter list with the given one. This is useful
522 * if the current information came from a prototype, and either has invalid
523 * or missing parameter names.
524 */
525 void replace_parameters(exec_list *new_params);
526
527 /**
528 * Function return type.
529 *
530 * \note This discards the optional precision qualifier.
531 */
532 const struct glsl_type *return_type;
533
534 /**
535 * List of ir_variable of function parameters.
536 *
537 * This represents the storage. The paramaters passed in a particular
538 * call will be in ir_call::actual_paramaters.
539 */
540 struct exec_list parameters;
541
542 /** Whether or not this function has a body (which may be empty). */
543 unsigned is_defined:1;
544
545 /** Whether or not this function signature is a built-in. */
546 unsigned is_builtin:1;
547
548 /** Body of instructions in the function. */
549 struct exec_list body;
550
551 private:
552 /** Function of which this signature is one overload. */
553 class ir_function *_function;
554
555 friend class ir_function;
556 };
557
558
559 /**
560 * Header for tracking multiple overloaded functions with the same name.
561 * Contains a list of ir_function_signatures representing each of the
562 * actual functions.
563 */
564 class ir_function : public ir_instruction {
565 public:
566 ir_function(const char *name);
567
568 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
569
570 virtual ir_function *as_function()
571 {
572 return this;
573 }
574
575 virtual void accept(ir_visitor *v)
576 {
577 v->visit(this);
578 }
579
580 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
581
582 void add_signature(ir_function_signature *sig)
583 {
584 sig->_function = this;
585 this->signatures.push_tail(sig);
586 }
587
588 /**
589 * Get an iterator for the set of function signatures
590 */
591 exec_list_iterator iterator()
592 {
593 return signatures.iterator();
594 }
595
596 /**
597 * Find a signature that matches a set of actual parameters, taking implicit
598 * conversions into account. Also flags whether the match was exact.
599 */
600 ir_function_signature *matching_signature(const exec_list *actual_param,
601 bool *match_is_exact);
602
603 /**
604 * Find a signature that matches a set of actual parameters, taking implicit
605 * conversions into account.
606 */
607 ir_function_signature *matching_signature(const exec_list *actual_param);
608
609 /**
610 * Find a signature that exactly matches a set of actual parameters without
611 * any implicit type conversions.
612 */
613 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
614
615 /**
616 * Name of the function.
617 */
618 const char *name;
619
620 /** Whether or not this function has a signature that isn't a built-in. */
621 bool has_user_signature();
622
623 /**
624 * List of ir_function_signature for each overloaded function with this name.
625 */
626 struct exec_list signatures;
627 };
628
629 inline const char *ir_function_signature::function_name() const
630 {
631 return this->_function->name;
632 }
633 /*@}*/
634
635
636 /**
637 * IR instruction representing high-level if-statements
638 */
639 class ir_if : public ir_instruction {
640 public:
641 ir_if(ir_rvalue *condition)
642 : condition(condition)
643 {
644 ir_type = ir_type_if;
645 }
646
647 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
648
649 virtual ir_if *as_if()
650 {
651 return this;
652 }
653
654 virtual void accept(ir_visitor *v)
655 {
656 v->visit(this);
657 }
658
659 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
660
661 ir_rvalue *condition;
662 /** List of ir_instruction for the body of the then branch */
663 exec_list then_instructions;
664 /** List of ir_instruction for the body of the else branch */
665 exec_list else_instructions;
666 };
667
668
669 /**
670 * IR instruction representing a high-level loop structure.
671 */
672 class ir_loop : public ir_instruction {
673 public:
674 ir_loop();
675
676 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
677
678 virtual void accept(ir_visitor *v)
679 {
680 v->visit(this);
681 }
682
683 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
684
685 virtual ir_loop *as_loop()
686 {
687 return this;
688 }
689
690 /**
691 * Get an iterator for the instructions of the loop body
692 */
693 exec_list_iterator iterator()
694 {
695 return body_instructions.iterator();
696 }
697
698 /** List of ir_instruction that make up the body of the loop. */
699 exec_list body_instructions;
700
701 /**
702 * \name Loop counter and controls
703 *
704 * Represents a loop like a FORTRAN \c do-loop.
705 *
706 * \note
707 * If \c from and \c to are the same value, the loop will execute once.
708 */
709 /*@{*/
710 ir_rvalue *from; /** Value of the loop counter on the first
711 * iteration of the loop.
712 */
713 ir_rvalue *to; /** Value of the loop counter on the last
714 * iteration of the loop.
715 */
716 ir_rvalue *increment;
717 ir_variable *counter;
718
719 /**
720 * Comparison operation in the loop terminator.
721 *
722 * If any of the loop control fields are non-\c NULL, this field must be
723 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
724 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
725 */
726 int cmp;
727 /*@}*/
728 };
729
730
731 class ir_assignment : public ir_instruction {
732 public:
733 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
734
735 /**
736 * Construct an assignment with an explicit write mask
737 *
738 * \note
739 * Since a write mask is supplied, the LHS must already be a bare
740 * \c ir_dereference. The cannot be any swizzles in the LHS.
741 */
742 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
743 unsigned write_mask);
744
745 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
746
747 virtual ir_constant *constant_expression_value();
748
749 virtual void accept(ir_visitor *v)
750 {
751 v->visit(this);
752 }
753
754 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
755
756 virtual ir_assignment * as_assignment()
757 {
758 return this;
759 }
760
761 /**
762 * Get a whole variable written by an assignment
763 *
764 * If the LHS of the assignment writes a whole variable, the variable is
765 * returned. Otherwise \c NULL is returned. Examples of whole-variable
766 * assignment are:
767 *
768 * - Assigning to a scalar
769 * - Assigning to all components of a vector
770 * - Whole array (or matrix) assignment
771 * - Whole structure assignment
772 */
773 ir_variable *whole_variable_written();
774
775 /**
776 * Set the LHS of an assignment
777 */
778 void set_lhs(ir_rvalue *lhs);
779
780 /**
781 * Left-hand side of the assignment.
782 *
783 * This should be treated as read only. If you need to set the LHS of an
784 * assignment, use \c ir_assignment::set_lhs.
785 */
786 ir_dereference *lhs;
787
788 /**
789 * Value being assigned
790 */
791 ir_rvalue *rhs;
792
793 /**
794 * Optional condition for the assignment.
795 */
796 ir_rvalue *condition;
797
798
799 /**
800 * Component mask written
801 *
802 * For non-vector types in the LHS, this field will be zero. For vector
803 * types, a bit will be set for each component that is written. Note that
804 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
805 *
806 * A partially-set write mask means that each enabled channel gets
807 * the value from a consecutive channel of the rhs. For example,
808 * to write just .xyw of gl_FrontColor with color:
809 *
810 * (assign (constant bool (1)) (xyw)
811 * (var_ref gl_FragColor)
812 * (swiz xyw (var_ref color)))
813 */
814 unsigned write_mask:4;
815 };
816
817 /* Update ir_expression::num_operands() and operator_strs when
818 * updating this list.
819 */
820 enum ir_expression_operation {
821 ir_unop_bit_not,
822 ir_unop_logic_not,
823 ir_unop_neg,
824 ir_unop_abs,
825 ir_unop_sign,
826 ir_unop_rcp,
827 ir_unop_rsq,
828 ir_unop_sqrt,
829 ir_unop_exp, /**< Log base e on gentype */
830 ir_unop_log, /**< Natural log on gentype */
831 ir_unop_exp2,
832 ir_unop_log2,
833 ir_unop_f2i, /**< Float-to-integer conversion. */
834 ir_unop_i2f, /**< Integer-to-float conversion. */
835 ir_unop_f2b, /**< Float-to-boolean conversion */
836 ir_unop_b2f, /**< Boolean-to-float conversion */
837 ir_unop_i2b, /**< int-to-boolean conversion */
838 ir_unop_b2i, /**< Boolean-to-int conversion */
839 ir_unop_u2f, /**< Unsigned-to-float conversion. */
840 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
841 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
842 ir_unop_any,
843
844 /**
845 * \name Unary floating-point rounding operations.
846 */
847 /*@{*/
848 ir_unop_trunc,
849 ir_unop_ceil,
850 ir_unop_floor,
851 ir_unop_fract,
852 ir_unop_round_even,
853 /*@}*/
854
855 /**
856 * \name Trigonometric operations.
857 */
858 /*@{*/
859 ir_unop_sin,
860 ir_unop_cos,
861 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
862 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
863 /*@}*/
864
865 /**
866 * \name Partial derivatives.
867 */
868 /*@{*/
869 ir_unop_dFdx,
870 ir_unop_dFdy,
871 /*@}*/
872
873 ir_unop_noise,
874
875 /**
876 * A sentinel marking the last of the unary operations.
877 */
878 ir_last_unop = ir_unop_noise,
879
880 ir_binop_add,
881 ir_binop_sub,
882 ir_binop_mul,
883 ir_binop_div,
884
885 /**
886 * Takes one of two combinations of arguments:
887 *
888 * - mod(vecN, vecN)
889 * - mod(vecN, float)
890 *
891 * Does not take integer types.
892 */
893 ir_binop_mod,
894
895 /**
896 * \name Binary comparison operators which return a boolean vector.
897 * The type of both operands must be equal.
898 */
899 /*@{*/
900 ir_binop_less,
901 ir_binop_greater,
902 ir_binop_lequal,
903 ir_binop_gequal,
904 ir_binop_equal,
905 ir_binop_nequal,
906 /**
907 * Returns single boolean for whether all components of operands[0]
908 * equal the components of operands[1].
909 */
910 ir_binop_all_equal,
911 /**
912 * Returns single boolean for whether any component of operands[0]
913 * is not equal to the corresponding component of operands[1].
914 */
915 ir_binop_any_nequal,
916 /*@}*/
917
918 /**
919 * \name Bit-wise binary operations.
920 */
921 /*@{*/
922 ir_binop_lshift,
923 ir_binop_rshift,
924 ir_binop_bit_and,
925 ir_binop_bit_xor,
926 ir_binop_bit_or,
927 /*@}*/
928
929 ir_binop_logic_and,
930 ir_binop_logic_xor,
931 ir_binop_logic_or,
932
933 ir_binop_dot,
934 ir_binop_min,
935 ir_binop_max,
936
937 ir_binop_pow,
938
939 /**
940 * A sentinel marking the last of the binary operations.
941 */
942 ir_last_binop = ir_binop_pow,
943
944 ir_quadop_vector,
945
946 /**
947 * A sentinel marking the last of all operations.
948 */
949 ir_last_opcode = ir_last_binop
950 };
951
952 class ir_expression : public ir_rvalue {
953 public:
954 /**
955 * Constructor for unary operation expressions
956 */
957 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
958 ir_expression(int op, ir_rvalue *);
959
960 /**
961 * Constructor for binary operation expressions
962 */
963 ir_expression(int op, const struct glsl_type *type,
964 ir_rvalue *, ir_rvalue *);
965 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
966
967 /**
968 * Constructor for quad operator expressions
969 */
970 ir_expression(int op, const struct glsl_type *type,
971 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
972
973 virtual ir_expression *as_expression()
974 {
975 return this;
976 }
977
978 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
979
980 /**
981 * Attempt to constant-fold the expression
982 *
983 * If the expression cannot be constant folded, this method will return
984 * \c NULL.
985 */
986 virtual ir_constant *constant_expression_value();
987
988 /**
989 * Determine the number of operands used by an expression
990 */
991 static unsigned int get_num_operands(ir_expression_operation);
992
993 /**
994 * Determine the number of operands used by an expression
995 */
996 unsigned int get_num_operands() const
997 {
998 return (this->operation == ir_quadop_vector)
999 ? this->type->vector_elements : get_num_operands(operation);
1000 }
1001
1002 /**
1003 * Return a string representing this expression's operator.
1004 */
1005 const char *operator_string();
1006
1007 /**
1008 * Return a string representing this expression's operator.
1009 */
1010 static const char *operator_string(ir_expression_operation);
1011
1012
1013 /**
1014 * Do a reverse-lookup to translate the given string into an operator.
1015 */
1016 static ir_expression_operation get_operator(const char *);
1017
1018 virtual void accept(ir_visitor *v)
1019 {
1020 v->visit(this);
1021 }
1022
1023 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1024
1025 ir_expression_operation operation;
1026 ir_rvalue *operands[4];
1027 };
1028
1029
1030 /**
1031 * HIR instruction representing a high-level function call, containing a list
1032 * of parameters and returning a value in the supplied temporary.
1033 */
1034 class ir_call : public ir_instruction {
1035 public:
1036 ir_call(ir_function_signature *callee,
1037 ir_dereference_variable *return_deref,
1038 exec_list *actual_parameters)
1039 : return_deref(return_deref), callee(callee)
1040 {
1041 ir_type = ir_type_call;
1042 assert(callee->return_type != NULL);
1043 actual_parameters->move_nodes_to(& this->actual_parameters);
1044 this->use_builtin = callee->is_builtin;
1045 }
1046
1047 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1048
1049 virtual ir_constant *constant_expression_value();
1050
1051 virtual ir_call *as_call()
1052 {
1053 return this;
1054 }
1055
1056 virtual void accept(ir_visitor *v)
1057 {
1058 v->visit(this);
1059 }
1060
1061 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1062
1063 /**
1064 * Get an iterator for the set of acutal parameters
1065 */
1066 exec_list_iterator iterator()
1067 {
1068 return actual_parameters.iterator();
1069 }
1070
1071 /**
1072 * Get the name of the function being called.
1073 */
1074 const char *callee_name() const
1075 {
1076 return callee->function_name();
1077 }
1078
1079 /**
1080 * Generates an inline version of the function before @ir,
1081 * storing the return value in return_deref.
1082 */
1083 void generate_inline(ir_instruction *ir);
1084
1085 /**
1086 * Storage for the function's return value.
1087 * This must be NULL if the return type is void.
1088 */
1089 ir_dereference_variable *return_deref;
1090
1091 /**
1092 * The specific function signature being called.
1093 */
1094 ir_function_signature *callee;
1095
1096 /* List of ir_rvalue of paramaters passed in this call. */
1097 exec_list actual_parameters;
1098
1099 /** Should this call only bind to a built-in function? */
1100 bool use_builtin;
1101 };
1102
1103
1104 /**
1105 * \name Jump-like IR instructions.
1106 *
1107 * These include \c break, \c continue, \c return, and \c discard.
1108 */
1109 /*@{*/
1110 class ir_jump : public ir_instruction {
1111 protected:
1112 ir_jump()
1113 {
1114 ir_type = ir_type_unset;
1115 }
1116 };
1117
1118 class ir_return : public ir_jump {
1119 public:
1120 ir_return()
1121 : value(NULL)
1122 {
1123 this->ir_type = ir_type_return;
1124 }
1125
1126 ir_return(ir_rvalue *value)
1127 : value(value)
1128 {
1129 this->ir_type = ir_type_return;
1130 }
1131
1132 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1133
1134 virtual ir_return *as_return()
1135 {
1136 return this;
1137 }
1138
1139 ir_rvalue *get_value() const
1140 {
1141 return value;
1142 }
1143
1144 virtual void accept(ir_visitor *v)
1145 {
1146 v->visit(this);
1147 }
1148
1149 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1150
1151 ir_rvalue *value;
1152 };
1153
1154
1155 /**
1156 * Jump instructions used inside loops
1157 *
1158 * These include \c break and \c continue. The \c break within a loop is
1159 * different from the \c break within a switch-statement.
1160 *
1161 * \sa ir_switch_jump
1162 */
1163 class ir_loop_jump : public ir_jump {
1164 public:
1165 enum jump_mode {
1166 jump_break,
1167 jump_continue
1168 };
1169
1170 ir_loop_jump(jump_mode mode)
1171 {
1172 this->ir_type = ir_type_loop_jump;
1173 this->mode = mode;
1174 this->loop = loop;
1175 }
1176
1177 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1178
1179 virtual void accept(ir_visitor *v)
1180 {
1181 v->visit(this);
1182 }
1183
1184 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1185
1186 bool is_break() const
1187 {
1188 return mode == jump_break;
1189 }
1190
1191 bool is_continue() const
1192 {
1193 return mode == jump_continue;
1194 }
1195
1196 /** Mode selector for the jump instruction. */
1197 enum jump_mode mode;
1198 private:
1199 /** Loop containing this break instruction. */
1200 ir_loop *loop;
1201 };
1202
1203 /**
1204 * IR instruction representing discard statements.
1205 */
1206 class ir_discard : public ir_jump {
1207 public:
1208 ir_discard()
1209 {
1210 this->ir_type = ir_type_discard;
1211 this->condition = NULL;
1212 }
1213
1214 ir_discard(ir_rvalue *cond)
1215 {
1216 this->ir_type = ir_type_discard;
1217 this->condition = cond;
1218 }
1219
1220 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1221
1222 virtual void accept(ir_visitor *v)
1223 {
1224 v->visit(this);
1225 }
1226
1227 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1228
1229 virtual ir_discard *as_discard()
1230 {
1231 return this;
1232 }
1233
1234 ir_rvalue *condition;
1235 };
1236 /*@}*/
1237
1238
1239 /**
1240 * Texture sampling opcodes used in ir_texture
1241 */
1242 enum ir_texture_opcode {
1243 ir_tex, /**< Regular texture look-up */
1244 ir_txb, /**< Texture look-up with LOD bias */
1245 ir_txl, /**< Texture look-up with explicit LOD */
1246 ir_txd, /**< Texture look-up with partial derivatvies */
1247 ir_txf, /**< Texel fetch with explicit LOD */
1248 ir_txs /**< Texture size */
1249 };
1250
1251
1252 /**
1253 * IR instruction to sample a texture
1254 *
1255 * The specific form of the IR instruction depends on the \c mode value
1256 * selected from \c ir_texture_opcodes. In the printed IR, these will
1257 * appear as:
1258 *
1259 * Texel offset (0 or an expression)
1260 * | Projection divisor
1261 * | | Shadow comparitor
1262 * | | |
1263 * v v v
1264 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1265 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1266 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1267 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1268 * (txf <type> <sampler> <coordinate> 0 <lod>)
1269 * (txs <type> <sampler> <lod>)
1270 */
1271 class ir_texture : public ir_rvalue {
1272 public:
1273 ir_texture(enum ir_texture_opcode op)
1274 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1275 {
1276 this->ir_type = ir_type_texture;
1277 }
1278
1279 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1280
1281 virtual ir_constant *constant_expression_value();
1282
1283 virtual void accept(ir_visitor *v)
1284 {
1285 v->visit(this);
1286 }
1287
1288 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1289
1290 /**
1291 * Return a string representing the ir_texture_opcode.
1292 */
1293 const char *opcode_string();
1294
1295 /** Set the sampler and type. */
1296 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1297
1298 /**
1299 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1300 */
1301 static ir_texture_opcode get_opcode(const char *);
1302
1303 enum ir_texture_opcode op;
1304
1305 /** Sampler to use for the texture access. */
1306 ir_dereference *sampler;
1307
1308 /** Texture coordinate to sample */
1309 ir_rvalue *coordinate;
1310
1311 /**
1312 * Value used for projective divide.
1313 *
1314 * If there is no projective divide (the common case), this will be
1315 * \c NULL. Optimization passes should check for this to point to a constant
1316 * of 1.0 and replace that with \c NULL.
1317 */
1318 ir_rvalue *projector;
1319
1320 /**
1321 * Coordinate used for comparison on shadow look-ups.
1322 *
1323 * If there is no shadow comparison, this will be \c NULL. For the
1324 * \c ir_txf opcode, this *must* be \c NULL.
1325 */
1326 ir_rvalue *shadow_comparitor;
1327
1328 /** Texel offset. */
1329 ir_rvalue *offset;
1330
1331 union {
1332 ir_rvalue *lod; /**< Floating point LOD */
1333 ir_rvalue *bias; /**< Floating point LOD bias */
1334 struct {
1335 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1336 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1337 } grad;
1338 } lod_info;
1339 };
1340
1341
1342 struct ir_swizzle_mask {
1343 unsigned x:2;
1344 unsigned y:2;
1345 unsigned z:2;
1346 unsigned w:2;
1347
1348 /**
1349 * Number of components in the swizzle.
1350 */
1351 unsigned num_components:3;
1352
1353 /**
1354 * Does the swizzle contain duplicate components?
1355 *
1356 * L-value swizzles cannot contain duplicate components.
1357 */
1358 unsigned has_duplicates:1;
1359 };
1360
1361
1362 class ir_swizzle : public ir_rvalue {
1363 public:
1364 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1365 unsigned count);
1366
1367 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1368
1369 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1370
1371 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1372
1373 virtual ir_constant *constant_expression_value();
1374
1375 virtual ir_swizzle *as_swizzle()
1376 {
1377 return this;
1378 }
1379
1380 /**
1381 * Construct an ir_swizzle from the textual representation. Can fail.
1382 */
1383 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1384
1385 virtual void accept(ir_visitor *v)
1386 {
1387 v->visit(this);
1388 }
1389
1390 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1391
1392 bool is_lvalue() const
1393 {
1394 return val->is_lvalue() && !mask.has_duplicates;
1395 }
1396
1397 /**
1398 * Get the variable that is ultimately referenced by an r-value
1399 */
1400 virtual ir_variable *variable_referenced() const;
1401
1402 ir_rvalue *val;
1403 ir_swizzle_mask mask;
1404
1405 private:
1406 /**
1407 * Initialize the mask component of a swizzle
1408 *
1409 * This is used by the \c ir_swizzle constructors.
1410 */
1411 void init_mask(const unsigned *components, unsigned count);
1412 };
1413
1414
1415 class ir_dereference : public ir_rvalue {
1416 public:
1417 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1418
1419 virtual ir_dereference *as_dereference()
1420 {
1421 return this;
1422 }
1423
1424 bool is_lvalue() const;
1425
1426 /**
1427 * Get the variable that is ultimately referenced by an r-value
1428 */
1429 virtual ir_variable *variable_referenced() const = 0;
1430 };
1431
1432
1433 class ir_dereference_variable : public ir_dereference {
1434 public:
1435 ir_dereference_variable(ir_variable *var);
1436
1437 virtual ir_dereference_variable *clone(void *mem_ctx,
1438 struct hash_table *) const;
1439
1440 virtual ir_constant *constant_expression_value();
1441
1442 virtual ir_dereference_variable *as_dereference_variable()
1443 {
1444 return this;
1445 }
1446
1447 /**
1448 * Get the variable that is ultimately referenced by an r-value
1449 */
1450 virtual ir_variable *variable_referenced() const
1451 {
1452 return this->var;
1453 }
1454
1455 virtual ir_variable *whole_variable_referenced()
1456 {
1457 /* ir_dereference_variable objects always dereference the entire
1458 * variable. However, if this dereference is dereferenced by anything
1459 * else, the complete deferefernce chain is not a whole-variable
1460 * dereference. This method should only be called on the top most
1461 * ir_rvalue in a dereference chain.
1462 */
1463 return this->var;
1464 }
1465
1466 virtual void accept(ir_visitor *v)
1467 {
1468 v->visit(this);
1469 }
1470
1471 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1472
1473 /**
1474 * Object being dereferenced.
1475 */
1476 ir_variable *var;
1477 };
1478
1479
1480 class ir_dereference_array : public ir_dereference {
1481 public:
1482 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1483
1484 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1485
1486 virtual ir_dereference_array *clone(void *mem_ctx,
1487 struct hash_table *) const;
1488
1489 virtual ir_constant *constant_expression_value();
1490
1491 virtual ir_dereference_array *as_dereference_array()
1492 {
1493 return this;
1494 }
1495
1496 /**
1497 * Get the variable that is ultimately referenced by an r-value
1498 */
1499 virtual ir_variable *variable_referenced() const
1500 {
1501 return this->array->variable_referenced();
1502 }
1503
1504 virtual void accept(ir_visitor *v)
1505 {
1506 v->visit(this);
1507 }
1508
1509 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1510
1511 ir_rvalue *array;
1512 ir_rvalue *array_index;
1513
1514 private:
1515 void set_array(ir_rvalue *value);
1516 };
1517
1518
1519 class ir_dereference_record : public ir_dereference {
1520 public:
1521 ir_dereference_record(ir_rvalue *value, const char *field);
1522
1523 ir_dereference_record(ir_variable *var, const char *field);
1524
1525 virtual ir_dereference_record *clone(void *mem_ctx,
1526 struct hash_table *) const;
1527
1528 virtual ir_constant *constant_expression_value();
1529
1530 /**
1531 * Get the variable that is ultimately referenced by an r-value
1532 */
1533 virtual ir_variable *variable_referenced() const
1534 {
1535 return this->record->variable_referenced();
1536 }
1537
1538 virtual void accept(ir_visitor *v)
1539 {
1540 v->visit(this);
1541 }
1542
1543 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1544
1545 ir_rvalue *record;
1546 const char *field;
1547 };
1548
1549
1550 /**
1551 * Data stored in an ir_constant
1552 */
1553 union ir_constant_data {
1554 unsigned u[16];
1555 int i[16];
1556 float f[16];
1557 bool b[16];
1558 };
1559
1560
1561 class ir_constant : public ir_rvalue {
1562 public:
1563 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1564 ir_constant(bool b);
1565 ir_constant(unsigned int u);
1566 ir_constant(int i);
1567 ir_constant(float f);
1568
1569 /**
1570 * Construct an ir_constant from a list of ir_constant values
1571 */
1572 ir_constant(const struct glsl_type *type, exec_list *values);
1573
1574 /**
1575 * Construct an ir_constant from a scalar component of another ir_constant
1576 *
1577 * The new \c ir_constant inherits the type of the component from the
1578 * source constant.
1579 *
1580 * \note
1581 * In the case of a matrix constant, the new constant is a scalar, \b not
1582 * a vector.
1583 */
1584 ir_constant(const ir_constant *c, unsigned i);
1585
1586 /**
1587 * Return a new ir_constant of the specified type containing all zeros.
1588 */
1589 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1590
1591 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1592
1593 virtual ir_constant *constant_expression_value();
1594
1595 virtual ir_constant *as_constant()
1596 {
1597 return this;
1598 }
1599
1600 virtual void accept(ir_visitor *v)
1601 {
1602 v->visit(this);
1603 }
1604
1605 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1606
1607 /**
1608 * Get a particular component of a constant as a specific type
1609 *
1610 * This is useful, for example, to get a value from an integer constant
1611 * as a float or bool. This appears frequently when constructors are
1612 * called with all constant parameters.
1613 */
1614 /*@{*/
1615 bool get_bool_component(unsigned i) const;
1616 float get_float_component(unsigned i) const;
1617 int get_int_component(unsigned i) const;
1618 unsigned get_uint_component(unsigned i) const;
1619 /*@}*/
1620
1621 ir_constant *get_array_element(unsigned i) const;
1622
1623 ir_constant *get_record_field(const char *name);
1624
1625 /**
1626 * Determine whether a constant has the same value as another constant
1627 *
1628 * \sa ir_constant::is_zero, ir_constant::is_one,
1629 * ir_constant::is_negative_one
1630 */
1631 bool has_value(const ir_constant *) const;
1632
1633 virtual bool is_zero() const;
1634 virtual bool is_one() const;
1635 virtual bool is_negative_one() const;
1636
1637 /**
1638 * Value of the constant.
1639 *
1640 * The field used to back the values supplied by the constant is determined
1641 * by the type associated with the \c ir_instruction. Constants may be
1642 * scalars, vectors, or matrices.
1643 */
1644 union ir_constant_data value;
1645
1646 /* Array elements */
1647 ir_constant **array_elements;
1648
1649 /* Structure fields */
1650 exec_list components;
1651
1652 private:
1653 /**
1654 * Parameterless constructor only used by the clone method
1655 */
1656 ir_constant(void);
1657 };
1658
1659 /*@}*/
1660
1661 /**
1662 * Apply a visitor to each IR node in a list
1663 */
1664 void
1665 visit_exec_list(exec_list *list, ir_visitor *visitor);
1666
1667 /**
1668 * Validate invariants on each IR node in a list
1669 */
1670 void validate_ir_tree(exec_list *instructions);
1671
1672 struct _mesa_glsl_parse_state;
1673 struct gl_shader_program;
1674
1675 /**
1676 * Detect whether an unlinked shader contains static recursion
1677 *
1678 * If the list of instructions is determined to contain static recursion,
1679 * \c _mesa_glsl_error will be called to emit error messages for each function
1680 * that is in the recursion cycle.
1681 */
1682 void
1683 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1684 exec_list *instructions);
1685
1686 /**
1687 * Detect whether a linked shader contains static recursion
1688 *
1689 * If the list of instructions is determined to contain static recursion,
1690 * \c link_error_printf will be called to emit error messages for each function
1691 * that is in the recursion cycle. In addition,
1692 * \c gl_shader_program::LinkStatus will be set to false.
1693 */
1694 void
1695 detect_recursion_linked(struct gl_shader_program *prog,
1696 exec_list *instructions);
1697
1698 /**
1699 * Make a clone of each IR instruction in a list
1700 *
1701 * \param in List of IR instructions that are to be cloned
1702 * \param out List to hold the cloned instructions
1703 */
1704 void
1705 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1706
1707 extern void
1708 _mesa_glsl_initialize_variables(exec_list *instructions,
1709 struct _mesa_glsl_parse_state *state);
1710
1711 extern void
1712 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1713
1714 extern void
1715 _mesa_glsl_release_functions(void);
1716
1717 extern void
1718 reparent_ir(exec_list *list, void *mem_ctx);
1719
1720 struct glsl_symbol_table;
1721
1722 extern void
1723 import_prototypes(const exec_list *source, exec_list *dest,
1724 struct glsl_symbol_table *symbols, void *mem_ctx);
1725
1726 extern bool
1727 ir_has_call(ir_instruction *ir);
1728
1729 extern void
1730 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1731 bool is_fragment_shader);
1732
1733 extern char *
1734 prototype_string(const glsl_type *return_type, const char *name,
1735 exec_list *parameters);
1736
1737 #endif /* IR_H */