glsl: add always_active_io attribute to ir_variable
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine how this variable should be interpolated based on its
436 * interpolation qualifier (if present), whether it is gl_Color or
437 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
438 * state.
439 *
440 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
441 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
442 */
443 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
444
445 /**
446 * Determine whether or not a variable is part of a uniform or
447 * shader storage block.
448 */
449 inline bool is_in_buffer_block() const
450 {
451 return (this->data.mode == ir_var_uniform ||
452 this->data.mode == ir_var_shader_storage) &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is part of a shader storage block.
458 */
459 inline bool is_in_shader_storage_block() const
460 {
461 return this->data.mode == ir_var_shader_storage &&
462 this->interface_type != NULL;
463 }
464
465 /**
466 * Determine whether or not a variable is the declaration of an interface
467 * block
468 *
469 * For the first declaration below, there will be an \c ir_variable named
470 * "instance" whose type and whose instance_type will be the same
471 * \cglsl_type. For the second declaration, there will be an \c ir_variable
472 * named "f" whose type is float and whose instance_type is B2.
473 *
474 * "instance" is an interface instance variable, but "f" is not.
475 *
476 * uniform B1 {
477 * float f;
478 * } instance;
479 *
480 * uniform B2 {
481 * float f;
482 * };
483 */
484 inline bool is_interface_instance() const
485 {
486 return this->type->without_array() == this->interface_type;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 rzalloc_array(this, unsigned, type->length);
499 }
500 }
501
502 /**
503 * Change this->interface_type on a variable that previously had a
504 * different, but compatible, interface_type. This is used during linking
505 * to set the size of arrays in interface blocks.
506 */
507 void change_interface_type(const struct glsl_type *type)
508 {
509 if (this->u.max_ifc_array_access != NULL) {
510 /* max_ifc_array_access has already been allocated, so make sure the
511 * new interface has the same number of fields as the old one.
512 */
513 assert(this->interface_type->length == type->length);
514 }
515 this->interface_type = type;
516 }
517
518 /**
519 * Change this->interface_type on a variable that previously had a
520 * different, and incompatible, interface_type. This is used during
521 * compilation to handle redeclaration of the built-in gl_PerVertex
522 * interface block.
523 */
524 void reinit_interface_type(const struct glsl_type *type)
525 {
526 if (this->u.max_ifc_array_access != NULL) {
527 #ifndef NDEBUG
528 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
529 * it defines have been accessed yet; so it's safe to throw away the
530 * old max_ifc_array_access pointer, since all of its values are
531 * zero.
532 */
533 for (unsigned i = 0; i < this->interface_type->length; i++)
534 assert(this->u.max_ifc_array_access[i] == 0);
535 #endif
536 ralloc_free(this->u.max_ifc_array_access);
537 this->u.max_ifc_array_access = NULL;
538 }
539 this->interface_type = NULL;
540 init_interface_type(type);
541 }
542
543 const glsl_type *get_interface_type() const
544 {
545 return this->interface_type;
546 }
547
548 /**
549 * Get the max_ifc_array_access pointer
550 *
551 * A "set" function is not needed because the array is dynmically allocated
552 * as necessary.
553 */
554 inline unsigned *get_max_ifc_array_access()
555 {
556 assert(this->data._num_state_slots == 0);
557 return this->u.max_ifc_array_access;
558 }
559
560 inline unsigned get_num_state_slots() const
561 {
562 assert(!this->is_interface_instance()
563 || this->data._num_state_slots == 0);
564 return this->data._num_state_slots;
565 }
566
567 inline void set_num_state_slots(unsigned n)
568 {
569 assert(!this->is_interface_instance()
570 || n == 0);
571 this->data._num_state_slots = n;
572 }
573
574 inline ir_state_slot *get_state_slots()
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline const ir_state_slot *get_state_slots() const
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
584 inline ir_state_slot *allocate_state_slots(unsigned n)
585 {
586 assert(!this->is_interface_instance());
587
588 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
589 this->data._num_state_slots = 0;
590
591 if (this->u.state_slots != NULL)
592 this->data._num_state_slots = n;
593
594 return this->u.state_slots;
595 }
596
597 inline bool is_name_ralloced() const
598 {
599 return this->name != ir_variable::tmp_name;
600 }
601
602 /**
603 * Enable emitting extension warnings for this variable
604 */
605 void enable_extension_warning(const char *extension);
606
607 /**
608 * Get the extension warning string for this variable
609 *
610 * If warnings are not enabled, \c NULL is returned.
611 */
612 const char *get_extension_warning() const;
613
614 /**
615 * Declared type of the variable
616 */
617 const struct glsl_type *type;
618
619 /**
620 * Declared name of the variable
621 */
622 const char *name;
623
624 struct ir_variable_data {
625
626 /**
627 * Is the variable read-only?
628 *
629 * This is set for variables declared as \c const, shader inputs,
630 * and uniforms.
631 */
632 unsigned read_only:1;
633 unsigned centroid:1;
634 unsigned sample:1;
635 unsigned patch:1;
636 unsigned invariant:1;
637 unsigned precise:1;
638
639 /**
640 * Has this variable been used for reading or writing?
641 *
642 * Several GLSL semantic checks require knowledge of whether or not a
643 * variable has been used. For example, it is an error to redeclare a
644 * variable as invariant after it has been used.
645 *
646 * This is only maintained in the ast_to_hir.cpp path, not in
647 * Mesa's fixed function or ARB program paths.
648 */
649 unsigned used:1;
650
651 /**
652 * Has this variable been statically assigned?
653 *
654 * This answers whether the variable was assigned in any path of
655 * the shader during ast_to_hir. This doesn't answer whether it is
656 * still written after dead code removal, nor is it maintained in
657 * non-ast_to_hir.cpp (GLSL parsing) paths.
658 */
659 unsigned assigned:1;
660
661 /**
662 * When separate shader programs are enabled, only input/outputs between
663 * the stages of a multi-stage separate program can be safely removed
664 * from the shader interface. Other input/outputs must remains active.
665 */
666 unsigned always_active_io:1;
667
668 /**
669 * Enum indicating how the variable was declared. See
670 * ir_var_declaration_type.
671 *
672 * This is used to detect certain kinds of illegal variable redeclarations.
673 */
674 unsigned how_declared:2;
675
676 /**
677 * Storage class of the variable.
678 *
679 * \sa ir_variable_mode
680 */
681 unsigned mode:4;
682
683 /**
684 * Interpolation mode for shader inputs / outputs
685 *
686 * \sa ir_variable_interpolation
687 */
688 unsigned interpolation:2;
689
690 /**
691 * \name ARB_fragment_coord_conventions
692 * @{
693 */
694 unsigned origin_upper_left:1;
695 unsigned pixel_center_integer:1;
696 /*@}*/
697
698 /**
699 * Was the location explicitly set in the shader?
700 *
701 * If the location is explicitly set in the shader, it \b cannot be changed
702 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
703 * no effect).
704 */
705 unsigned explicit_location:1;
706 unsigned explicit_index:1;
707
708 /**
709 * Was an initial binding explicitly set in the shader?
710 *
711 * If so, constant_value contains an integer ir_constant representing the
712 * initial binding point.
713 */
714 unsigned explicit_binding:1;
715
716 /**
717 * Does this variable have an initializer?
718 *
719 * This is used by the linker to cross-validiate initializers of global
720 * variables.
721 */
722 unsigned has_initializer:1;
723
724 /**
725 * Is this variable a generic output or input that has not yet been matched
726 * up to a variable in another stage of the pipeline?
727 *
728 * This is used by the linker as scratch storage while assigning locations
729 * to generic inputs and outputs.
730 */
731 unsigned is_unmatched_generic_inout:1;
732
733 /**
734 * If non-zero, then this variable may be packed along with other variables
735 * into a single varying slot, so this offset should be applied when
736 * accessing components. For example, an offset of 1 means that the x
737 * component of this variable is actually stored in component y of the
738 * location specified by \c location.
739 */
740 unsigned location_frac:2;
741
742 /**
743 * Layout of the matrix. Uses glsl_matrix_layout values.
744 */
745 unsigned matrix_layout:2;
746
747 /**
748 * Non-zero if this variable was created by lowering a named interface
749 * block which was not an array.
750 *
751 * Note that this variable and \c from_named_ifc_block_array will never
752 * both be non-zero.
753 */
754 unsigned from_named_ifc_block_nonarray:1;
755
756 /**
757 * Non-zero if this variable was created by lowering a named interface
758 * block which was an array.
759 *
760 * Note that this variable and \c from_named_ifc_block_nonarray will never
761 * both be non-zero.
762 */
763 unsigned from_named_ifc_block_array:1;
764
765 /**
766 * Non-zero if the variable must be a shader input. This is useful for
767 * constraints on function parameters.
768 */
769 unsigned must_be_shader_input:1;
770
771 /**
772 * Output index for dual source blending.
773 *
774 * \note
775 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
776 * source blending.
777 */
778 unsigned index:1;
779
780 /**
781 * Precision qualifier.
782 *
783 * In desktop GLSL we do not care about precision qualifiers at all, in
784 * fact, the spec says that precision qualifiers are ignored.
785 *
786 * To make things easy, we make it so that this field is always
787 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
788 * have the same precision value and the checks we add in the compiler
789 * for this field will never break a desktop shader compile.
790 */
791 unsigned precision:2;
792
793 /**
794 * \brief Layout qualifier for gl_FragDepth.
795 *
796 * This is not equal to \c ir_depth_layout_none if and only if this
797 * variable is \c gl_FragDepth and a layout qualifier is specified.
798 */
799 ir_depth_layout depth_layout:3;
800
801 /**
802 * ARB_shader_image_load_store qualifiers.
803 */
804 unsigned image_read_only:1; /**< "readonly" qualifier. */
805 unsigned image_write_only:1; /**< "writeonly" qualifier. */
806 unsigned image_coherent:1;
807 unsigned image_volatile:1;
808 unsigned image_restrict:1;
809
810 /**
811 * ARB_shader_storage_buffer_object
812 */
813 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
814
815 /**
816 * Emit a warning if this variable is accessed.
817 */
818 private:
819 uint8_t warn_extension_index;
820
821 public:
822 /** Image internal format if specified explicitly, otherwise GL_NONE. */
823 uint16_t image_format;
824
825 private:
826 /**
827 * Number of state slots used
828 *
829 * \note
830 * This could be stored in as few as 7-bits, if necessary. If it is made
831 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
832 * be safe.
833 */
834 uint16_t _num_state_slots;
835
836 public:
837 /**
838 * Initial binding point for a sampler, atomic, or UBO.
839 *
840 * For array types, this represents the binding point for the first element.
841 */
842 int16_t binding;
843
844 /**
845 * Storage location of the base of this variable
846 *
847 * The precise meaning of this field depends on the nature of the variable.
848 *
849 * - Vertex shader input: one of the values from \c gl_vert_attrib.
850 * - Vertex shader output: one of the values from \c gl_varying_slot.
851 * - Geometry shader input: one of the values from \c gl_varying_slot.
852 * - Geometry shader output: one of the values from \c gl_varying_slot.
853 * - Fragment shader input: one of the values from \c gl_varying_slot.
854 * - Fragment shader output: one of the values from \c gl_frag_result.
855 * - Uniforms: Per-stage uniform slot number for default uniform block.
856 * - Uniforms: Index within the uniform block definition for UBO members.
857 * - Non-UBO Uniforms: explicit location until linking then reused to
858 * store uniform slot number.
859 * - Other: This field is not currently used.
860 *
861 * If the variable is a uniform, shader input, or shader output, and the
862 * slot has not been assigned, the value will be -1.
863 */
864 int location;
865
866 /**
867 * Vertex stream output identifier.
868 */
869 unsigned stream;
870
871 /**
872 * Location an atomic counter is stored at.
873 */
874 struct {
875 unsigned offset;
876 } atomic;
877
878 /**
879 * Highest element accessed with a constant expression array index
880 *
881 * Not used for non-array variables.
882 */
883 unsigned max_array_access;
884
885 /**
886 * Allow (only) ir_variable direct access private members.
887 */
888 friend class ir_variable;
889 } data;
890
891 /**
892 * Value assigned in the initializer of a variable declared "const"
893 */
894 ir_constant *constant_value;
895
896 /**
897 * Constant expression assigned in the initializer of the variable
898 *
899 * \warning
900 * This field and \c ::constant_value are distinct. Even if the two fields
901 * refer to constants with the same value, they must point to separate
902 * objects.
903 */
904 ir_constant *constant_initializer;
905
906 private:
907 static const char *const warn_extension_table[];
908
909 union {
910 /**
911 * For variables which satisfy the is_interface_instance() predicate,
912 * this points to an array of integers such that if the ith member of
913 * the interface block is an array, max_ifc_array_access[i] is the
914 * maximum array element of that member that has been accessed. If the
915 * ith member of the interface block is not an array,
916 * max_ifc_array_access[i] is unused.
917 *
918 * For variables whose type is not an interface block, this pointer is
919 * NULL.
920 */
921 unsigned *max_ifc_array_access;
922
923 /**
924 * Built-in state that backs this uniform
925 *
926 * Once set at variable creation, \c state_slots must remain invariant.
927 *
928 * If the variable is not a uniform, \c _num_state_slots will be zero
929 * and \c state_slots will be \c NULL.
930 */
931 ir_state_slot *state_slots;
932 } u;
933
934 /**
935 * For variables that are in an interface block or are an instance of an
936 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
937 *
938 * \sa ir_variable::location
939 */
940 const glsl_type *interface_type;
941
942 /**
943 * Name used for anonymous compiler temporaries
944 */
945 static const char tmp_name[];
946
947 public:
948 /**
949 * Should the construct keep names for ir_var_temporary variables?
950 *
951 * When this global is false, names passed to the constructor for
952 * \c ir_var_temporary variables will be dropped. Instead, the variable will
953 * be named "compiler_temp". This name will be in static storage.
954 *
955 * \warning
956 * \b NEVER change the mode of an \c ir_var_temporary.
957 *
958 * \warning
959 * This variable is \b not thread-safe. It is global, \b not
960 * per-context. It begins life false. A context can, at some point, make
961 * it true. From that point on, it will be true forever. This should be
962 * okay since it will only be set true while debugging.
963 */
964 static bool temporaries_allocate_names;
965 };
966
967 /**
968 * A function that returns whether a built-in function is available in the
969 * current shading language (based on version, ES or desktop, and extensions).
970 */
971 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
972
973 /*@{*/
974 /**
975 * The representation of a function instance; may be the full definition or
976 * simply a prototype.
977 */
978 class ir_function_signature : public ir_instruction {
979 /* An ir_function_signature will be part of the list of signatures in
980 * an ir_function.
981 */
982 public:
983 ir_function_signature(const glsl_type *return_type,
984 builtin_available_predicate builtin_avail = NULL);
985
986 virtual ir_function_signature *clone(void *mem_ctx,
987 struct hash_table *ht) const;
988 ir_function_signature *clone_prototype(void *mem_ctx,
989 struct hash_table *ht) const;
990
991 virtual void accept(ir_visitor *v)
992 {
993 v->visit(this);
994 }
995
996 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
997
998 /**
999 * Attempt to evaluate this function as a constant expression,
1000 * given a list of the actual parameters and the variable context.
1001 * Returns NULL for non-built-ins.
1002 */
1003 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
1004
1005 /**
1006 * Get the name of the function for which this is a signature
1007 */
1008 const char *function_name() const;
1009
1010 /**
1011 * Get a handle to the function for which this is a signature
1012 *
1013 * There is no setter function, this function returns a \c const pointer,
1014 * and \c ir_function_signature::_function is private for a reason. The
1015 * only way to make a connection between a function and function signature
1016 * is via \c ir_function::add_signature. This helps ensure that certain
1017 * invariants (i.e., a function signature is in the list of signatures for
1018 * its \c _function) are met.
1019 *
1020 * \sa ir_function::add_signature
1021 */
1022 inline const class ir_function *function() const
1023 {
1024 return this->_function;
1025 }
1026
1027 /**
1028 * Check whether the qualifiers match between this signature's parameters
1029 * and the supplied parameter list. If not, returns the name of the first
1030 * parameter with mismatched qualifiers (for use in error messages).
1031 */
1032 const char *qualifiers_match(exec_list *params);
1033
1034 /**
1035 * Replace the current parameter list with the given one. This is useful
1036 * if the current information came from a prototype, and either has invalid
1037 * or missing parameter names.
1038 */
1039 void replace_parameters(exec_list *new_params);
1040
1041 /**
1042 * Function return type.
1043 *
1044 * \note This discards the optional precision qualifier.
1045 */
1046 const struct glsl_type *return_type;
1047
1048 /**
1049 * List of ir_variable of function parameters.
1050 *
1051 * This represents the storage. The paramaters passed in a particular
1052 * call will be in ir_call::actual_paramaters.
1053 */
1054 struct exec_list parameters;
1055
1056 /** Whether or not this function has a body (which may be empty). */
1057 unsigned is_defined:1;
1058
1059 /** Whether or not this function signature is a built-in. */
1060 bool is_builtin() const;
1061
1062 /**
1063 * Whether or not this function is an intrinsic to be implemented
1064 * by the driver.
1065 */
1066 bool is_intrinsic;
1067
1068 /** Whether or not a built-in is available for this shader. */
1069 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1070
1071 /** Body of instructions in the function. */
1072 struct exec_list body;
1073
1074 private:
1075 /**
1076 * A function pointer to a predicate that answers whether a built-in
1077 * function is available in the current shader. NULL if not a built-in.
1078 */
1079 builtin_available_predicate builtin_avail;
1080
1081 /** Function of which this signature is one overload. */
1082 class ir_function *_function;
1083
1084 /** Function signature of which this one is a prototype clone */
1085 const ir_function_signature *origin;
1086
1087 friend class ir_function;
1088
1089 /**
1090 * Helper function to run a list of instructions for constant
1091 * expression evaluation.
1092 *
1093 * The hash table represents the values of the visible variables.
1094 * There are no scoping issues because the table is indexed on
1095 * ir_variable pointers, not variable names.
1096 *
1097 * Returns false if the expression is not constant, true otherwise,
1098 * and the value in *result if result is non-NULL.
1099 */
1100 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1101 struct hash_table *variable_context,
1102 ir_constant **result);
1103 };
1104
1105
1106 /**
1107 * Header for tracking multiple overloaded functions with the same name.
1108 * Contains a list of ir_function_signatures representing each of the
1109 * actual functions.
1110 */
1111 class ir_function : public ir_instruction {
1112 public:
1113 ir_function(const char *name);
1114
1115 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1116
1117 virtual void accept(ir_visitor *v)
1118 {
1119 v->visit(this);
1120 }
1121
1122 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1123
1124 void add_signature(ir_function_signature *sig)
1125 {
1126 sig->_function = this;
1127 this->signatures.push_tail(sig);
1128 }
1129
1130 /**
1131 * Find a signature that matches a set of actual parameters, taking implicit
1132 * conversions into account. Also flags whether the match was exact.
1133 */
1134 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1135 const exec_list *actual_param,
1136 bool allow_builtins,
1137 bool *match_is_exact);
1138
1139 /**
1140 * Find a signature that matches a set of actual parameters, taking implicit
1141 * conversions into account.
1142 */
1143 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1144 const exec_list *actual_param,
1145 bool allow_builtins);
1146
1147 /**
1148 * Find a signature that exactly matches a set of actual parameters without
1149 * any implicit type conversions.
1150 */
1151 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1152 const exec_list *actual_ps);
1153
1154 /**
1155 * Name of the function.
1156 */
1157 const char *name;
1158
1159 /** Whether or not this function has a signature that isn't a built-in. */
1160 bool has_user_signature();
1161
1162 /**
1163 * List of ir_function_signature for each overloaded function with this name.
1164 */
1165 struct exec_list signatures;
1166
1167 /**
1168 * is this function a subroutine type declaration
1169 * e.g. subroutine void type1(float arg1);
1170 */
1171 bool is_subroutine;
1172
1173 /**
1174 * is this function associated to a subroutine type
1175 * e.g. subroutine (type1, type2) function_name { function_body };
1176 * would have num_subroutine_types 2,
1177 * and pointers to the type1 and type2 types.
1178 */
1179 int num_subroutine_types;
1180 const struct glsl_type **subroutine_types;
1181
1182 int subroutine_index;
1183 };
1184
1185 inline const char *ir_function_signature::function_name() const
1186 {
1187 return this->_function->name;
1188 }
1189 /*@}*/
1190
1191
1192 /**
1193 * IR instruction representing high-level if-statements
1194 */
1195 class ir_if : public ir_instruction {
1196 public:
1197 ir_if(ir_rvalue *condition)
1198 : ir_instruction(ir_type_if), condition(condition)
1199 {
1200 }
1201
1202 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1203
1204 virtual void accept(ir_visitor *v)
1205 {
1206 v->visit(this);
1207 }
1208
1209 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1210
1211 ir_rvalue *condition;
1212 /** List of ir_instruction for the body of the then branch */
1213 exec_list then_instructions;
1214 /** List of ir_instruction for the body of the else branch */
1215 exec_list else_instructions;
1216 };
1217
1218
1219 /**
1220 * IR instruction representing a high-level loop structure.
1221 */
1222 class ir_loop : public ir_instruction {
1223 public:
1224 ir_loop();
1225
1226 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1227
1228 virtual void accept(ir_visitor *v)
1229 {
1230 v->visit(this);
1231 }
1232
1233 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1234
1235 /** List of ir_instruction that make up the body of the loop. */
1236 exec_list body_instructions;
1237 };
1238
1239
1240 class ir_assignment : public ir_instruction {
1241 public:
1242 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1243
1244 /**
1245 * Construct an assignment with an explicit write mask
1246 *
1247 * \note
1248 * Since a write mask is supplied, the LHS must already be a bare
1249 * \c ir_dereference. The cannot be any swizzles in the LHS.
1250 */
1251 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1252 unsigned write_mask);
1253
1254 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1255
1256 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1257
1258 virtual void accept(ir_visitor *v)
1259 {
1260 v->visit(this);
1261 }
1262
1263 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1264
1265 /**
1266 * Get a whole variable written by an assignment
1267 *
1268 * If the LHS of the assignment writes a whole variable, the variable is
1269 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1270 * assignment are:
1271 *
1272 * - Assigning to a scalar
1273 * - Assigning to all components of a vector
1274 * - Whole array (or matrix) assignment
1275 * - Whole structure assignment
1276 */
1277 ir_variable *whole_variable_written();
1278
1279 /**
1280 * Set the LHS of an assignment
1281 */
1282 void set_lhs(ir_rvalue *lhs);
1283
1284 /**
1285 * Left-hand side of the assignment.
1286 *
1287 * This should be treated as read only. If you need to set the LHS of an
1288 * assignment, use \c ir_assignment::set_lhs.
1289 */
1290 ir_dereference *lhs;
1291
1292 /**
1293 * Value being assigned
1294 */
1295 ir_rvalue *rhs;
1296
1297 /**
1298 * Optional condition for the assignment.
1299 */
1300 ir_rvalue *condition;
1301
1302
1303 /**
1304 * Component mask written
1305 *
1306 * For non-vector types in the LHS, this field will be zero. For vector
1307 * types, a bit will be set for each component that is written. Note that
1308 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1309 *
1310 * A partially-set write mask means that each enabled channel gets
1311 * the value from a consecutive channel of the rhs. For example,
1312 * to write just .xyw of gl_FrontColor with color:
1313 *
1314 * (assign (constant bool (1)) (xyw)
1315 * (var_ref gl_FragColor)
1316 * (swiz xyw (var_ref color)))
1317 */
1318 unsigned write_mask:4;
1319 };
1320
1321 /* Update ir_expression::get_num_operands() and operator_strs when
1322 * updating this list.
1323 */
1324 enum ir_expression_operation {
1325 ir_unop_bit_not,
1326 ir_unop_logic_not,
1327 ir_unop_neg,
1328 ir_unop_abs,
1329 ir_unop_sign,
1330 ir_unop_rcp,
1331 ir_unop_rsq,
1332 ir_unop_sqrt,
1333 ir_unop_exp, /**< Log base e on gentype */
1334 ir_unop_log, /**< Natural log on gentype */
1335 ir_unop_exp2,
1336 ir_unop_log2,
1337 ir_unop_f2i, /**< Float-to-integer conversion. */
1338 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1339 ir_unop_i2f, /**< Integer-to-float conversion. */
1340 ir_unop_f2b, /**< Float-to-boolean conversion */
1341 ir_unop_b2f, /**< Boolean-to-float conversion */
1342 ir_unop_i2b, /**< int-to-boolean conversion */
1343 ir_unop_b2i, /**< Boolean-to-int conversion */
1344 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1345 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1346 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1347 ir_unop_d2f, /**< Double-to-float conversion. */
1348 ir_unop_f2d, /**< Float-to-double conversion. */
1349 ir_unop_d2i, /**< Double-to-integer conversion. */
1350 ir_unop_i2d, /**< Integer-to-double conversion. */
1351 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1352 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1353 ir_unop_d2b, /**< Double-to-boolean conversion. */
1354 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1355 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1356 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1357 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1358 ir_unop_any,
1359
1360 /**
1361 * \name Unary floating-point rounding operations.
1362 */
1363 /*@{*/
1364 ir_unop_trunc,
1365 ir_unop_ceil,
1366 ir_unop_floor,
1367 ir_unop_fract,
1368 ir_unop_round_even,
1369 /*@}*/
1370
1371 /**
1372 * \name Trigonometric operations.
1373 */
1374 /*@{*/
1375 ir_unop_sin,
1376 ir_unop_cos,
1377 /*@}*/
1378
1379 /**
1380 * \name Partial derivatives.
1381 */
1382 /*@{*/
1383 ir_unop_dFdx,
1384 ir_unop_dFdx_coarse,
1385 ir_unop_dFdx_fine,
1386 ir_unop_dFdy,
1387 ir_unop_dFdy_coarse,
1388 ir_unop_dFdy_fine,
1389 /*@}*/
1390
1391 /**
1392 * \name Floating point pack and unpack operations.
1393 */
1394 /*@{*/
1395 ir_unop_pack_snorm_2x16,
1396 ir_unop_pack_snorm_4x8,
1397 ir_unop_pack_unorm_2x16,
1398 ir_unop_pack_unorm_4x8,
1399 ir_unop_pack_half_2x16,
1400 ir_unop_unpack_snorm_2x16,
1401 ir_unop_unpack_snorm_4x8,
1402 ir_unop_unpack_unorm_2x16,
1403 ir_unop_unpack_unorm_4x8,
1404 ir_unop_unpack_half_2x16,
1405 /*@}*/
1406
1407 /**
1408 * \name Lowered floating point unpacking operations.
1409 *
1410 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1411 */
1412 /*@{*/
1413 ir_unop_unpack_half_2x16_split_x,
1414 ir_unop_unpack_half_2x16_split_y,
1415 /*@}*/
1416
1417 /**
1418 * \name Bit operations, part of ARB_gpu_shader5.
1419 */
1420 /*@{*/
1421 ir_unop_bitfield_reverse,
1422 ir_unop_bit_count,
1423 ir_unop_find_msb,
1424 ir_unop_find_lsb,
1425 /*@}*/
1426
1427 ir_unop_saturate,
1428
1429 /**
1430 * \name Double packing, part of ARB_gpu_shader_fp64.
1431 */
1432 /*@{*/
1433 ir_unop_pack_double_2x32,
1434 ir_unop_unpack_double_2x32,
1435 /*@}*/
1436
1437 ir_unop_frexp_sig,
1438 ir_unop_frexp_exp,
1439
1440 ir_unop_noise,
1441
1442 ir_unop_subroutine_to_int,
1443 /**
1444 * Interpolate fs input at centroid
1445 *
1446 * operand0 is the fs input.
1447 */
1448 ir_unop_interpolate_at_centroid,
1449
1450 /**
1451 * Ask the driver for the total size of a buffer block.
1452 *
1453 * operand0 is the ir_constant buffer block index in the linked shader.
1454 */
1455 ir_unop_get_buffer_size,
1456
1457 /**
1458 * Calculate length of an unsized array inside a buffer block.
1459 * This opcode is going to be replaced in a lowering pass inside
1460 * the linker.
1461 *
1462 * operand0 is the unsized array's ir_value for the calculation
1463 * of its length.
1464 */
1465 ir_unop_ssbo_unsized_array_length,
1466
1467 /**
1468 * A sentinel marking the last of the unary operations.
1469 */
1470 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1471
1472 ir_binop_add,
1473 ir_binop_sub,
1474 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1475 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1476 ir_binop_div,
1477
1478 /**
1479 * Returns the carry resulting from the addition of the two arguments.
1480 */
1481 /*@{*/
1482 ir_binop_carry,
1483 /*@}*/
1484
1485 /**
1486 * Returns the borrow resulting from the subtraction of the second argument
1487 * from the first argument.
1488 */
1489 /*@{*/
1490 ir_binop_borrow,
1491 /*@}*/
1492
1493 /**
1494 * Takes one of two combinations of arguments:
1495 *
1496 * - mod(vecN, vecN)
1497 * - mod(vecN, float)
1498 *
1499 * Does not take integer types.
1500 */
1501 ir_binop_mod,
1502
1503 /**
1504 * \name Binary comparison operators which return a boolean vector.
1505 * The type of both operands must be equal.
1506 */
1507 /*@{*/
1508 ir_binop_less,
1509 ir_binop_greater,
1510 ir_binop_lequal,
1511 ir_binop_gequal,
1512 ir_binop_equal,
1513 ir_binop_nequal,
1514 /**
1515 * Returns single boolean for whether all components of operands[0]
1516 * equal the components of operands[1].
1517 */
1518 ir_binop_all_equal,
1519 /**
1520 * Returns single boolean for whether any component of operands[0]
1521 * is not equal to the corresponding component of operands[1].
1522 */
1523 ir_binop_any_nequal,
1524 /*@}*/
1525
1526 /**
1527 * \name Bit-wise binary operations.
1528 */
1529 /*@{*/
1530 ir_binop_lshift,
1531 ir_binop_rshift,
1532 ir_binop_bit_and,
1533 ir_binop_bit_xor,
1534 ir_binop_bit_or,
1535 /*@}*/
1536
1537 ir_binop_logic_and,
1538 ir_binop_logic_xor,
1539 ir_binop_logic_or,
1540
1541 ir_binop_dot,
1542 ir_binop_min,
1543 ir_binop_max,
1544
1545 ir_binop_pow,
1546
1547 /**
1548 * \name Lowered floating point packing operations.
1549 *
1550 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1551 */
1552 /*@{*/
1553 ir_binop_pack_half_2x16_split,
1554 /*@}*/
1555
1556 /**
1557 * \name First half of a lowered bitfieldInsert() operation.
1558 *
1559 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1560 */
1561 /*@{*/
1562 ir_binop_bfm,
1563 /*@}*/
1564
1565 /**
1566 * Load a value the size of a given GLSL type from a uniform block.
1567 *
1568 * operand0 is the ir_constant uniform block index in the linked shader.
1569 * operand1 is a byte offset within the uniform block.
1570 */
1571 ir_binop_ubo_load,
1572
1573 /**
1574 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1575 */
1576 /*@{*/
1577 ir_binop_ldexp,
1578 /*@}*/
1579
1580 /**
1581 * Extract a scalar from a vector
1582 *
1583 * operand0 is the vector
1584 * operand1 is the index of the field to read from operand0
1585 */
1586 ir_binop_vector_extract,
1587
1588 /**
1589 * Interpolate fs input at offset
1590 *
1591 * operand0 is the fs input
1592 * operand1 is the offset from the pixel center
1593 */
1594 ir_binop_interpolate_at_offset,
1595
1596 /**
1597 * Interpolate fs input at sample position
1598 *
1599 * operand0 is the fs input
1600 * operand1 is the sample ID
1601 */
1602 ir_binop_interpolate_at_sample,
1603
1604 /**
1605 * A sentinel marking the last of the binary operations.
1606 */
1607 ir_last_binop = ir_binop_interpolate_at_sample,
1608
1609 /**
1610 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1611 */
1612 /*@{*/
1613 ir_triop_fma,
1614 /*@}*/
1615
1616 ir_triop_lrp,
1617
1618 /**
1619 * \name Conditional Select
1620 *
1621 * A vector conditional select instruction (like ?:, but operating per-
1622 * component on vectors).
1623 *
1624 * \see lower_instructions_visitor::ldexp_to_arith
1625 */
1626 /*@{*/
1627 ir_triop_csel,
1628 /*@}*/
1629
1630 /**
1631 * \name Second half of a lowered bitfieldInsert() operation.
1632 *
1633 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1634 */
1635 /*@{*/
1636 ir_triop_bfi,
1637 /*@}*/
1638
1639 ir_triop_bitfield_extract,
1640
1641 /**
1642 * Generate a value with one field of a vector changed
1643 *
1644 * operand0 is the vector
1645 * operand1 is the value to write into the vector result
1646 * operand2 is the index in operand0 to be modified
1647 */
1648 ir_triop_vector_insert,
1649
1650 /**
1651 * A sentinel marking the last of the ternary operations.
1652 */
1653 ir_last_triop = ir_triop_vector_insert,
1654
1655 ir_quadop_bitfield_insert,
1656
1657 ir_quadop_vector,
1658
1659 /**
1660 * A sentinel marking the last of the ternary operations.
1661 */
1662 ir_last_quadop = ir_quadop_vector,
1663
1664 /**
1665 * A sentinel marking the last of all operations.
1666 */
1667 ir_last_opcode = ir_quadop_vector
1668 };
1669
1670 class ir_expression : public ir_rvalue {
1671 public:
1672 ir_expression(int op, const struct glsl_type *type,
1673 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1674 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1675
1676 /**
1677 * Constructor for unary operation expressions
1678 */
1679 ir_expression(int op, ir_rvalue *);
1680
1681 /**
1682 * Constructor for binary operation expressions
1683 */
1684 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1685
1686 /**
1687 * Constructor for ternary operation expressions
1688 */
1689 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1690
1691 virtual bool equals(const ir_instruction *ir,
1692 enum ir_node_type ignore = ir_type_unset) const;
1693
1694 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1695
1696 /**
1697 * Attempt to constant-fold the expression
1698 *
1699 * The "variable_context" hash table links ir_variable * to ir_constant *
1700 * that represent the variables' values. \c NULL represents an empty
1701 * context.
1702 *
1703 * If the expression cannot be constant folded, this method will return
1704 * \c NULL.
1705 */
1706 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1707
1708 /**
1709 * Determine the number of operands used by an expression
1710 */
1711 static unsigned int get_num_operands(ir_expression_operation);
1712
1713 /**
1714 * Determine the number of operands used by an expression
1715 */
1716 unsigned int get_num_operands() const
1717 {
1718 return (this->operation == ir_quadop_vector)
1719 ? this->type->vector_elements : get_num_operands(operation);
1720 }
1721
1722 /**
1723 * Return whether the expression operates on vectors horizontally.
1724 */
1725 bool is_horizontal() const
1726 {
1727 return operation == ir_binop_all_equal ||
1728 operation == ir_binop_any_nequal ||
1729 operation == ir_unop_any ||
1730 operation == ir_binop_dot ||
1731 operation == ir_quadop_vector;
1732 }
1733
1734 /**
1735 * Return a string representing this expression's operator.
1736 */
1737 const char *operator_string();
1738
1739 /**
1740 * Return a string representing this expression's operator.
1741 */
1742 static const char *operator_string(ir_expression_operation);
1743
1744
1745 /**
1746 * Do a reverse-lookup to translate the given string into an operator.
1747 */
1748 static ir_expression_operation get_operator(const char *);
1749
1750 virtual void accept(ir_visitor *v)
1751 {
1752 v->visit(this);
1753 }
1754
1755 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1756
1757 virtual ir_variable *variable_referenced() const;
1758
1759 ir_expression_operation operation;
1760 ir_rvalue *operands[4];
1761 };
1762
1763
1764 /**
1765 * HIR instruction representing a high-level function call, containing a list
1766 * of parameters and returning a value in the supplied temporary.
1767 */
1768 class ir_call : public ir_instruction {
1769 public:
1770 ir_call(ir_function_signature *callee,
1771 ir_dereference_variable *return_deref,
1772 exec_list *actual_parameters)
1773 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1774 {
1775 assert(callee->return_type != NULL);
1776 actual_parameters->move_nodes_to(& this->actual_parameters);
1777 this->use_builtin = callee->is_builtin();
1778 }
1779
1780 ir_call(ir_function_signature *callee,
1781 ir_dereference_variable *return_deref,
1782 exec_list *actual_parameters,
1783 ir_variable *var, ir_rvalue *array_idx)
1784 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1785 {
1786 assert(callee->return_type != NULL);
1787 actual_parameters->move_nodes_to(& this->actual_parameters);
1788 this->use_builtin = callee->is_builtin();
1789 }
1790
1791 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1792
1793 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1794
1795 virtual void accept(ir_visitor *v)
1796 {
1797 v->visit(this);
1798 }
1799
1800 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1801
1802 /**
1803 * Get the name of the function being called.
1804 */
1805 const char *callee_name() const
1806 {
1807 return callee->function_name();
1808 }
1809
1810 /**
1811 * Generates an inline version of the function before @ir,
1812 * storing the return value in return_deref.
1813 */
1814 void generate_inline(ir_instruction *ir);
1815
1816 /**
1817 * Storage for the function's return value.
1818 * This must be NULL if the return type is void.
1819 */
1820 ir_dereference_variable *return_deref;
1821
1822 /**
1823 * The specific function signature being called.
1824 */
1825 ir_function_signature *callee;
1826
1827 /* List of ir_rvalue of paramaters passed in this call. */
1828 exec_list actual_parameters;
1829
1830 /** Should this call only bind to a built-in function? */
1831 bool use_builtin;
1832
1833 /*
1834 * ARB_shader_subroutine support -
1835 * the subroutine uniform variable and array index
1836 * rvalue to be used in the lowering pass later.
1837 */
1838 ir_variable *sub_var;
1839 ir_rvalue *array_idx;
1840 };
1841
1842
1843 /**
1844 * \name Jump-like IR instructions.
1845 *
1846 * These include \c break, \c continue, \c return, and \c discard.
1847 */
1848 /*@{*/
1849 class ir_jump : public ir_instruction {
1850 protected:
1851 ir_jump(enum ir_node_type t)
1852 : ir_instruction(t)
1853 {
1854 }
1855 };
1856
1857 class ir_return : public ir_jump {
1858 public:
1859 ir_return()
1860 : ir_jump(ir_type_return), value(NULL)
1861 {
1862 }
1863
1864 ir_return(ir_rvalue *value)
1865 : ir_jump(ir_type_return), value(value)
1866 {
1867 }
1868
1869 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1870
1871 ir_rvalue *get_value() const
1872 {
1873 return value;
1874 }
1875
1876 virtual void accept(ir_visitor *v)
1877 {
1878 v->visit(this);
1879 }
1880
1881 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1882
1883 ir_rvalue *value;
1884 };
1885
1886
1887 /**
1888 * Jump instructions used inside loops
1889 *
1890 * These include \c break and \c continue. The \c break within a loop is
1891 * different from the \c break within a switch-statement.
1892 *
1893 * \sa ir_switch_jump
1894 */
1895 class ir_loop_jump : public ir_jump {
1896 public:
1897 enum jump_mode {
1898 jump_break,
1899 jump_continue
1900 };
1901
1902 ir_loop_jump(jump_mode mode)
1903 : ir_jump(ir_type_loop_jump)
1904 {
1905 this->mode = mode;
1906 }
1907
1908 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1909
1910 virtual void accept(ir_visitor *v)
1911 {
1912 v->visit(this);
1913 }
1914
1915 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1916
1917 bool is_break() const
1918 {
1919 return mode == jump_break;
1920 }
1921
1922 bool is_continue() const
1923 {
1924 return mode == jump_continue;
1925 }
1926
1927 /** Mode selector for the jump instruction. */
1928 enum jump_mode mode;
1929 };
1930
1931 /**
1932 * IR instruction representing discard statements.
1933 */
1934 class ir_discard : public ir_jump {
1935 public:
1936 ir_discard()
1937 : ir_jump(ir_type_discard)
1938 {
1939 this->condition = NULL;
1940 }
1941
1942 ir_discard(ir_rvalue *cond)
1943 : ir_jump(ir_type_discard)
1944 {
1945 this->condition = cond;
1946 }
1947
1948 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1949
1950 virtual void accept(ir_visitor *v)
1951 {
1952 v->visit(this);
1953 }
1954
1955 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1956
1957 ir_rvalue *condition;
1958 };
1959 /*@}*/
1960
1961
1962 /**
1963 * Texture sampling opcodes used in ir_texture
1964 */
1965 enum ir_texture_opcode {
1966 ir_tex, /**< Regular texture look-up */
1967 ir_txb, /**< Texture look-up with LOD bias */
1968 ir_txl, /**< Texture look-up with explicit LOD */
1969 ir_txd, /**< Texture look-up with partial derivatvies */
1970 ir_txf, /**< Texel fetch with explicit LOD */
1971 ir_txf_ms, /**< Multisample texture fetch */
1972 ir_txs, /**< Texture size */
1973 ir_lod, /**< Texture lod query */
1974 ir_tg4, /**< Texture gather */
1975 ir_query_levels, /**< Texture levels query */
1976 ir_texture_samples, /**< Texture samples query */
1977 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1978 };
1979
1980
1981 /**
1982 * IR instruction to sample a texture
1983 *
1984 * The specific form of the IR instruction depends on the \c mode value
1985 * selected from \c ir_texture_opcodes. In the printed IR, these will
1986 * appear as:
1987 *
1988 * Texel offset (0 or an expression)
1989 * | Projection divisor
1990 * | | Shadow comparitor
1991 * | | |
1992 * v v v
1993 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1994 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1995 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1996 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1997 * (txf <type> <sampler> <coordinate> 0 <lod>)
1998 * (txf_ms
1999 * <type> <sampler> <coordinate> <sample_index>)
2000 * (txs <type> <sampler> <lod>)
2001 * (lod <type> <sampler> <coordinate>)
2002 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
2003 * (query_levels <type> <sampler>)
2004 * (samples_identical <sampler> <coordinate>)
2005 */
2006 class ir_texture : public ir_rvalue {
2007 public:
2008 ir_texture(enum ir_texture_opcode op)
2009 : ir_rvalue(ir_type_texture),
2010 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2011 shadow_comparitor(NULL), offset(NULL)
2012 {
2013 memset(&lod_info, 0, sizeof(lod_info));
2014 }
2015
2016 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2017
2018 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2019
2020 virtual void accept(ir_visitor *v)
2021 {
2022 v->visit(this);
2023 }
2024
2025 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2026
2027 virtual bool equals(const ir_instruction *ir,
2028 enum ir_node_type ignore = ir_type_unset) const;
2029
2030 /**
2031 * Return a string representing the ir_texture_opcode.
2032 */
2033 const char *opcode_string();
2034
2035 /** Set the sampler and type. */
2036 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2037
2038 /**
2039 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2040 */
2041 static ir_texture_opcode get_opcode(const char *);
2042
2043 enum ir_texture_opcode op;
2044
2045 /** Sampler to use for the texture access. */
2046 ir_dereference *sampler;
2047
2048 /** Texture coordinate to sample */
2049 ir_rvalue *coordinate;
2050
2051 /**
2052 * Value used for projective divide.
2053 *
2054 * If there is no projective divide (the common case), this will be
2055 * \c NULL. Optimization passes should check for this to point to a constant
2056 * of 1.0 and replace that with \c NULL.
2057 */
2058 ir_rvalue *projector;
2059
2060 /**
2061 * Coordinate used for comparison on shadow look-ups.
2062 *
2063 * If there is no shadow comparison, this will be \c NULL. For the
2064 * \c ir_txf opcode, this *must* be \c NULL.
2065 */
2066 ir_rvalue *shadow_comparitor;
2067
2068 /** Texel offset. */
2069 ir_rvalue *offset;
2070
2071 union {
2072 ir_rvalue *lod; /**< Floating point LOD */
2073 ir_rvalue *bias; /**< Floating point LOD bias */
2074 ir_rvalue *sample_index; /**< MSAA sample index */
2075 ir_rvalue *component; /**< Gather component selector */
2076 struct {
2077 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2078 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2079 } grad;
2080 } lod_info;
2081 };
2082
2083
2084 struct ir_swizzle_mask {
2085 unsigned x:2;
2086 unsigned y:2;
2087 unsigned z:2;
2088 unsigned w:2;
2089
2090 /**
2091 * Number of components in the swizzle.
2092 */
2093 unsigned num_components:3;
2094
2095 /**
2096 * Does the swizzle contain duplicate components?
2097 *
2098 * L-value swizzles cannot contain duplicate components.
2099 */
2100 unsigned has_duplicates:1;
2101 };
2102
2103
2104 class ir_swizzle : public ir_rvalue {
2105 public:
2106 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2107 unsigned count);
2108
2109 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2110
2111 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2112
2113 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2114
2115 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2116
2117 /**
2118 * Construct an ir_swizzle from the textual representation. Can fail.
2119 */
2120 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2121
2122 virtual void accept(ir_visitor *v)
2123 {
2124 v->visit(this);
2125 }
2126
2127 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2128
2129 virtual bool equals(const ir_instruction *ir,
2130 enum ir_node_type ignore = ir_type_unset) const;
2131
2132 bool is_lvalue() const
2133 {
2134 return val->is_lvalue() && !mask.has_duplicates;
2135 }
2136
2137 /**
2138 * Get the variable that is ultimately referenced by an r-value
2139 */
2140 virtual ir_variable *variable_referenced() const;
2141
2142 ir_rvalue *val;
2143 ir_swizzle_mask mask;
2144
2145 private:
2146 /**
2147 * Initialize the mask component of a swizzle
2148 *
2149 * This is used by the \c ir_swizzle constructors.
2150 */
2151 void init_mask(const unsigned *components, unsigned count);
2152 };
2153
2154
2155 class ir_dereference : public ir_rvalue {
2156 public:
2157 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2158
2159 bool is_lvalue() const;
2160
2161 /**
2162 * Get the variable that is ultimately referenced by an r-value
2163 */
2164 virtual ir_variable *variable_referenced() const = 0;
2165
2166 protected:
2167 ir_dereference(enum ir_node_type t)
2168 : ir_rvalue(t)
2169 {
2170 }
2171 };
2172
2173
2174 class ir_dereference_variable : public ir_dereference {
2175 public:
2176 ir_dereference_variable(ir_variable *var);
2177
2178 virtual ir_dereference_variable *clone(void *mem_ctx,
2179 struct hash_table *) const;
2180
2181 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2182
2183 virtual bool equals(const ir_instruction *ir,
2184 enum ir_node_type ignore = ir_type_unset) const;
2185
2186 /**
2187 * Get the variable that is ultimately referenced by an r-value
2188 */
2189 virtual ir_variable *variable_referenced() const
2190 {
2191 return this->var;
2192 }
2193
2194 virtual ir_variable *whole_variable_referenced()
2195 {
2196 /* ir_dereference_variable objects always dereference the entire
2197 * variable. However, if this dereference is dereferenced by anything
2198 * else, the complete deferefernce chain is not a whole-variable
2199 * dereference. This method should only be called on the top most
2200 * ir_rvalue in a dereference chain.
2201 */
2202 return this->var;
2203 }
2204
2205 virtual void accept(ir_visitor *v)
2206 {
2207 v->visit(this);
2208 }
2209
2210 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2211
2212 /**
2213 * Object being dereferenced.
2214 */
2215 ir_variable *var;
2216 };
2217
2218
2219 class ir_dereference_array : public ir_dereference {
2220 public:
2221 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2222
2223 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2224
2225 virtual ir_dereference_array *clone(void *mem_ctx,
2226 struct hash_table *) const;
2227
2228 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2229
2230 virtual bool equals(const ir_instruction *ir,
2231 enum ir_node_type ignore = ir_type_unset) const;
2232
2233 /**
2234 * Get the variable that is ultimately referenced by an r-value
2235 */
2236 virtual ir_variable *variable_referenced() const
2237 {
2238 return this->array->variable_referenced();
2239 }
2240
2241 virtual void accept(ir_visitor *v)
2242 {
2243 v->visit(this);
2244 }
2245
2246 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2247
2248 ir_rvalue *array;
2249 ir_rvalue *array_index;
2250
2251 private:
2252 void set_array(ir_rvalue *value);
2253 };
2254
2255
2256 class ir_dereference_record : public ir_dereference {
2257 public:
2258 ir_dereference_record(ir_rvalue *value, const char *field);
2259
2260 ir_dereference_record(ir_variable *var, const char *field);
2261
2262 virtual ir_dereference_record *clone(void *mem_ctx,
2263 struct hash_table *) const;
2264
2265 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2266
2267 /**
2268 * Get the variable that is ultimately referenced by an r-value
2269 */
2270 virtual ir_variable *variable_referenced() const
2271 {
2272 return this->record->variable_referenced();
2273 }
2274
2275 virtual void accept(ir_visitor *v)
2276 {
2277 v->visit(this);
2278 }
2279
2280 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2281
2282 ir_rvalue *record;
2283 const char *field;
2284 };
2285
2286
2287 /**
2288 * Data stored in an ir_constant
2289 */
2290 union ir_constant_data {
2291 unsigned u[16];
2292 int i[16];
2293 float f[16];
2294 bool b[16];
2295 double d[16];
2296 };
2297
2298
2299 class ir_constant : public ir_rvalue {
2300 public:
2301 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2302 ir_constant(bool b, unsigned vector_elements=1);
2303 ir_constant(unsigned int u, unsigned vector_elements=1);
2304 ir_constant(int i, unsigned vector_elements=1);
2305 ir_constant(float f, unsigned vector_elements=1);
2306 ir_constant(double d, unsigned vector_elements=1);
2307
2308 /**
2309 * Construct an ir_constant from a list of ir_constant values
2310 */
2311 ir_constant(const struct glsl_type *type, exec_list *values);
2312
2313 /**
2314 * Construct an ir_constant from a scalar component of another ir_constant
2315 *
2316 * The new \c ir_constant inherits the type of the component from the
2317 * source constant.
2318 *
2319 * \note
2320 * In the case of a matrix constant, the new constant is a scalar, \b not
2321 * a vector.
2322 */
2323 ir_constant(const ir_constant *c, unsigned i);
2324
2325 /**
2326 * Return a new ir_constant of the specified type containing all zeros.
2327 */
2328 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2329
2330 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2331
2332 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2333
2334 virtual void accept(ir_visitor *v)
2335 {
2336 v->visit(this);
2337 }
2338
2339 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2340
2341 virtual bool equals(const ir_instruction *ir,
2342 enum ir_node_type ignore = ir_type_unset) const;
2343
2344 /**
2345 * Get a particular component of a constant as a specific type
2346 *
2347 * This is useful, for example, to get a value from an integer constant
2348 * as a float or bool. This appears frequently when constructors are
2349 * called with all constant parameters.
2350 */
2351 /*@{*/
2352 bool get_bool_component(unsigned i) const;
2353 float get_float_component(unsigned i) const;
2354 double get_double_component(unsigned i) const;
2355 int get_int_component(unsigned i) const;
2356 unsigned get_uint_component(unsigned i) const;
2357 /*@}*/
2358
2359 ir_constant *get_array_element(unsigned i) const;
2360
2361 ir_constant *get_record_field(const char *name);
2362
2363 /**
2364 * Copy the values on another constant at a given offset.
2365 *
2366 * The offset is ignored for array or struct copies, it's only for
2367 * scalars or vectors into vectors or matrices.
2368 *
2369 * With identical types on both sides and zero offset it's clone()
2370 * without creating a new object.
2371 */
2372
2373 void copy_offset(ir_constant *src, int offset);
2374
2375 /**
2376 * Copy the values on another constant at a given offset and
2377 * following an assign-like mask.
2378 *
2379 * The mask is ignored for scalars.
2380 *
2381 * Note that this function only handles what assign can handle,
2382 * i.e. at most a vector as source and a column of a matrix as
2383 * destination.
2384 */
2385
2386 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2387
2388 /**
2389 * Determine whether a constant has the same value as another constant
2390 *
2391 * \sa ir_constant::is_zero, ir_constant::is_one,
2392 * ir_constant::is_negative_one
2393 */
2394 bool has_value(const ir_constant *) const;
2395
2396 /**
2397 * Return true if this ir_constant represents the given value.
2398 *
2399 * For vectors, this checks that each component is the given value.
2400 */
2401 virtual bool is_value(float f, int i) const;
2402 virtual bool is_zero() const;
2403 virtual bool is_one() const;
2404 virtual bool is_negative_one() const;
2405
2406 /**
2407 * Return true for constants that could be stored as 16-bit unsigned values.
2408 *
2409 * Note that this will return true even for signed integer ir_constants, as
2410 * long as the value is non-negative and fits in 16-bits.
2411 */
2412 virtual bool is_uint16_constant() const;
2413
2414 /**
2415 * Value of the constant.
2416 *
2417 * The field used to back the values supplied by the constant is determined
2418 * by the type associated with the \c ir_instruction. Constants may be
2419 * scalars, vectors, or matrices.
2420 */
2421 union ir_constant_data value;
2422
2423 /* Array elements */
2424 ir_constant **array_elements;
2425
2426 /* Structure fields */
2427 exec_list components;
2428
2429 private:
2430 /**
2431 * Parameterless constructor only used by the clone method
2432 */
2433 ir_constant(void);
2434 };
2435
2436 /**
2437 * IR instruction to emit a vertex in a geometry shader.
2438 */
2439 class ir_emit_vertex : public ir_instruction {
2440 public:
2441 ir_emit_vertex(ir_rvalue *stream)
2442 : ir_instruction(ir_type_emit_vertex),
2443 stream(stream)
2444 {
2445 assert(stream);
2446 }
2447
2448 virtual void accept(ir_visitor *v)
2449 {
2450 v->visit(this);
2451 }
2452
2453 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2454 {
2455 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2456 }
2457
2458 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2459
2460 int stream_id() const
2461 {
2462 return stream->as_constant()->value.i[0];
2463 }
2464
2465 ir_rvalue *stream;
2466 };
2467
2468 /**
2469 * IR instruction to complete the current primitive and start a new one in a
2470 * geometry shader.
2471 */
2472 class ir_end_primitive : public ir_instruction {
2473 public:
2474 ir_end_primitive(ir_rvalue *stream)
2475 : ir_instruction(ir_type_end_primitive),
2476 stream(stream)
2477 {
2478 assert(stream);
2479 }
2480
2481 virtual void accept(ir_visitor *v)
2482 {
2483 v->visit(this);
2484 }
2485
2486 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2487 {
2488 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2489 }
2490
2491 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2492
2493 int stream_id() const
2494 {
2495 return stream->as_constant()->value.i[0];
2496 }
2497
2498 ir_rvalue *stream;
2499 };
2500
2501 /**
2502 * IR instruction for tessellation control and compute shader barrier.
2503 */
2504 class ir_barrier : public ir_instruction {
2505 public:
2506 ir_barrier()
2507 : ir_instruction(ir_type_barrier)
2508 {
2509 }
2510
2511 virtual void accept(ir_visitor *v)
2512 {
2513 v->visit(this);
2514 }
2515
2516 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2517 {
2518 return new(mem_ctx) ir_barrier();
2519 }
2520
2521 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2522 };
2523
2524 /*@}*/
2525
2526 /**
2527 * Apply a visitor to each IR node in a list
2528 */
2529 void
2530 visit_exec_list(exec_list *list, ir_visitor *visitor);
2531
2532 /**
2533 * Validate invariants on each IR node in a list
2534 */
2535 void validate_ir_tree(exec_list *instructions);
2536
2537 struct _mesa_glsl_parse_state;
2538 struct gl_shader_program;
2539
2540 /**
2541 * Detect whether an unlinked shader contains static recursion
2542 *
2543 * If the list of instructions is determined to contain static recursion,
2544 * \c _mesa_glsl_error will be called to emit error messages for each function
2545 * that is in the recursion cycle.
2546 */
2547 void
2548 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2549 exec_list *instructions);
2550
2551 /**
2552 * Detect whether a linked shader contains static recursion
2553 *
2554 * If the list of instructions is determined to contain static recursion,
2555 * \c link_error_printf will be called to emit error messages for each function
2556 * that is in the recursion cycle. In addition,
2557 * \c gl_shader_program::LinkStatus will be set to false.
2558 */
2559 void
2560 detect_recursion_linked(struct gl_shader_program *prog,
2561 exec_list *instructions);
2562
2563 /**
2564 * Make a clone of each IR instruction in a list
2565 *
2566 * \param in List of IR instructions that are to be cloned
2567 * \param out List to hold the cloned instructions
2568 */
2569 void
2570 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2571
2572 extern void
2573 _mesa_glsl_initialize_variables(exec_list *instructions,
2574 struct _mesa_glsl_parse_state *state);
2575
2576 extern void
2577 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2578
2579 extern void
2580 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2581
2582 extern void
2583 _mesa_glsl_initialize_builtin_functions();
2584
2585 extern ir_function_signature *
2586 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2587 const char *name, exec_list *actual_parameters);
2588
2589 extern ir_function *
2590 _mesa_glsl_find_builtin_function_by_name(const char *name);
2591
2592 extern gl_shader *
2593 _mesa_glsl_get_builtin_function_shader(void);
2594
2595 extern ir_function_signature *
2596 _mesa_get_main_function_signature(gl_shader *sh);
2597
2598 extern void
2599 _mesa_glsl_release_functions(void);
2600
2601 extern void
2602 _mesa_glsl_release_builtin_functions(void);
2603
2604 extern void
2605 reparent_ir(exec_list *list, void *mem_ctx);
2606
2607 struct glsl_symbol_table;
2608
2609 extern void
2610 import_prototypes(const exec_list *source, exec_list *dest,
2611 struct glsl_symbol_table *symbols, void *mem_ctx);
2612
2613 extern bool
2614 ir_has_call(ir_instruction *ir);
2615
2616 extern void
2617 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2618 gl_shader_stage shader_stage);
2619
2620 extern char *
2621 prototype_string(const glsl_type *return_type, const char *name,
2622 exec_list *parameters);
2623
2624 const char *
2625 mode_string(const ir_variable *var);
2626
2627 /**
2628 * Built-in / reserved GL variables names start with "gl_"
2629 */
2630 static inline bool
2631 is_gl_identifier(const char *s)
2632 {
2633 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2634 }
2635
2636 extern "C" {
2637 #endif /* __cplusplus */
2638
2639 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2640 struct _mesa_glsl_parse_state *state);
2641
2642 extern void
2643 fprint_ir(FILE *f, const void *instruction);
2644
2645 #ifdef __cplusplus
2646 } /* extern "C" */
2647 #endif
2648
2649 unsigned
2650 vertices_per_prim(GLenum prim);
2651
2652 #endif /* IR_H */