e1109eec1d3da8649eadd947570d3c0b6d3ba831
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine how this variable should be interpolated based on its
436 * interpolation qualifier (if present), whether it is gl_Color or
437 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
438 * state.
439 *
440 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
441 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
442 */
443 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
444
445 /**
446 * Determine whether or not a variable is part of a uniform or
447 * shader storage block.
448 */
449 inline bool is_in_buffer_block() const
450 {
451 return (this->data.mode == ir_var_uniform ||
452 this->data.mode == ir_var_shader_storage) &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is part of a shader storage block.
458 */
459 inline bool is_in_shader_storage_block() const
460 {
461 return this->data.mode == ir_var_shader_storage &&
462 this->interface_type != NULL;
463 }
464
465 /**
466 * Determine whether or not a variable is the declaration of an interface
467 * block
468 *
469 * For the first declaration below, there will be an \c ir_variable named
470 * "instance" whose type and whose instance_type will be the same
471 * \cglsl_type. For the second declaration, there will be an \c ir_variable
472 * named "f" whose type is float and whose instance_type is B2.
473 *
474 * "instance" is an interface instance variable, but "f" is not.
475 *
476 * uniform B1 {
477 * float f;
478 * } instance;
479 *
480 * uniform B2 {
481 * float f;
482 * };
483 */
484 inline bool is_interface_instance() const
485 {
486 return this->type->without_array() == this->interface_type;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 rzalloc_array(this, unsigned, type->length);
499 }
500 }
501
502 /**
503 * Change this->interface_type on a variable that previously had a
504 * different, but compatible, interface_type. This is used during linking
505 * to set the size of arrays in interface blocks.
506 */
507 void change_interface_type(const struct glsl_type *type)
508 {
509 if (this->u.max_ifc_array_access != NULL) {
510 /* max_ifc_array_access has already been allocated, so make sure the
511 * new interface has the same number of fields as the old one.
512 */
513 assert(this->interface_type->length == type->length);
514 }
515 this->interface_type = type;
516 }
517
518 /**
519 * Change this->interface_type on a variable that previously had a
520 * different, and incompatible, interface_type. This is used during
521 * compilation to handle redeclaration of the built-in gl_PerVertex
522 * interface block.
523 */
524 void reinit_interface_type(const struct glsl_type *type)
525 {
526 if (this->u.max_ifc_array_access != NULL) {
527 #ifndef NDEBUG
528 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
529 * it defines have been accessed yet; so it's safe to throw away the
530 * old max_ifc_array_access pointer, since all of its values are
531 * zero.
532 */
533 for (unsigned i = 0; i < this->interface_type->length; i++)
534 assert(this->u.max_ifc_array_access[i] == 0);
535 #endif
536 ralloc_free(this->u.max_ifc_array_access);
537 this->u.max_ifc_array_access = NULL;
538 }
539 this->interface_type = NULL;
540 init_interface_type(type);
541 }
542
543 const glsl_type *get_interface_type() const
544 {
545 return this->interface_type;
546 }
547
548 /**
549 * Get the max_ifc_array_access pointer
550 *
551 * A "set" function is not needed because the array is dynmically allocated
552 * as necessary.
553 */
554 inline unsigned *get_max_ifc_array_access()
555 {
556 assert(this->data._num_state_slots == 0);
557 return this->u.max_ifc_array_access;
558 }
559
560 inline unsigned get_num_state_slots() const
561 {
562 assert(!this->is_interface_instance()
563 || this->data._num_state_slots == 0);
564 return this->data._num_state_slots;
565 }
566
567 inline void set_num_state_slots(unsigned n)
568 {
569 assert(!this->is_interface_instance()
570 || n == 0);
571 this->data._num_state_slots = n;
572 }
573
574 inline ir_state_slot *get_state_slots()
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline const ir_state_slot *get_state_slots() const
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
584 inline ir_state_slot *allocate_state_slots(unsigned n)
585 {
586 assert(!this->is_interface_instance());
587
588 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
589 this->data._num_state_slots = 0;
590
591 if (this->u.state_slots != NULL)
592 this->data._num_state_slots = n;
593
594 return this->u.state_slots;
595 }
596
597 inline bool is_name_ralloced() const
598 {
599 return this->name != ir_variable::tmp_name;
600 }
601
602 /**
603 * Enable emitting extension warnings for this variable
604 */
605 void enable_extension_warning(const char *extension);
606
607 /**
608 * Get the extension warning string for this variable
609 *
610 * If warnings are not enabled, \c NULL is returned.
611 */
612 const char *get_extension_warning() const;
613
614 /**
615 * Declared type of the variable
616 */
617 const struct glsl_type *type;
618
619 /**
620 * Declared name of the variable
621 */
622 const char *name;
623
624 struct ir_variable_data {
625
626 /**
627 * Is the variable read-only?
628 *
629 * This is set for variables declared as \c const, shader inputs,
630 * and uniforms.
631 */
632 unsigned read_only:1;
633 unsigned centroid:1;
634 unsigned sample:1;
635 unsigned patch:1;
636 unsigned invariant:1;
637 unsigned precise:1;
638
639 /**
640 * Has this variable been used for reading or writing?
641 *
642 * Several GLSL semantic checks require knowledge of whether or not a
643 * variable has been used. For example, it is an error to redeclare a
644 * variable as invariant after it has been used.
645 *
646 * This is only maintained in the ast_to_hir.cpp path, not in
647 * Mesa's fixed function or ARB program paths.
648 */
649 unsigned used:1;
650
651 /**
652 * Has this variable been statically assigned?
653 *
654 * This answers whether the variable was assigned in any path of
655 * the shader during ast_to_hir. This doesn't answer whether it is
656 * still written after dead code removal, nor is it maintained in
657 * non-ast_to_hir.cpp (GLSL parsing) paths.
658 */
659 unsigned assigned:1;
660
661 /**
662 * Enum indicating how the variable was declared. See
663 * ir_var_declaration_type.
664 *
665 * This is used to detect certain kinds of illegal variable redeclarations.
666 */
667 unsigned how_declared:2;
668
669 /**
670 * Storage class of the variable.
671 *
672 * \sa ir_variable_mode
673 */
674 unsigned mode:4;
675
676 /**
677 * Interpolation mode for shader inputs / outputs
678 *
679 * \sa ir_variable_interpolation
680 */
681 unsigned interpolation:2;
682
683 /**
684 * \name ARB_fragment_coord_conventions
685 * @{
686 */
687 unsigned origin_upper_left:1;
688 unsigned pixel_center_integer:1;
689 /*@}*/
690
691 /**
692 * Was the location explicitly set in the shader?
693 *
694 * If the location is explicitly set in the shader, it \b cannot be changed
695 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
696 * no effect).
697 */
698 unsigned explicit_location:1;
699 unsigned explicit_index:1;
700
701 /**
702 * Was an initial binding explicitly set in the shader?
703 *
704 * If so, constant_value contains an integer ir_constant representing the
705 * initial binding point.
706 */
707 unsigned explicit_binding:1;
708
709 /**
710 * Does this variable have an initializer?
711 *
712 * This is used by the linker to cross-validiate initializers of global
713 * variables.
714 */
715 unsigned has_initializer:1;
716
717 /**
718 * Is this variable a generic output or input that has not yet been matched
719 * up to a variable in another stage of the pipeline?
720 *
721 * This is used by the linker as scratch storage while assigning locations
722 * to generic inputs and outputs.
723 */
724 unsigned is_unmatched_generic_inout:1;
725
726 /**
727 * If non-zero, then this variable may be packed along with other variables
728 * into a single varying slot, so this offset should be applied when
729 * accessing components. For example, an offset of 1 means that the x
730 * component of this variable is actually stored in component y of the
731 * location specified by \c location.
732 */
733 unsigned location_frac:2;
734
735 /**
736 * Layout of the matrix. Uses glsl_matrix_layout values.
737 */
738 unsigned matrix_layout:2;
739
740 /**
741 * Non-zero if this variable was created by lowering a named interface
742 * block which was not an array.
743 *
744 * Note that this variable and \c from_named_ifc_block_array will never
745 * both be non-zero.
746 */
747 unsigned from_named_ifc_block_nonarray:1;
748
749 /**
750 * Non-zero if this variable was created by lowering a named interface
751 * block which was an array.
752 *
753 * Note that this variable and \c from_named_ifc_block_nonarray will never
754 * both be non-zero.
755 */
756 unsigned from_named_ifc_block_array:1;
757
758 /**
759 * Non-zero if the variable must be a shader input. This is useful for
760 * constraints on function parameters.
761 */
762 unsigned must_be_shader_input:1;
763
764 /**
765 * Output index for dual source blending.
766 *
767 * \note
768 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
769 * source blending.
770 */
771 unsigned index:1;
772
773 /**
774 * Precision qualifier.
775 *
776 * In desktop GLSL we do not care about precision qualifiers at all, in
777 * fact, the spec says that precision qualifiers are ignored.
778 *
779 * To make things easy, we make it so that this field is always
780 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
781 * have the same precision value and the checks we add in the compiler
782 * for this field will never break a desktop shader compile.
783 */
784 unsigned precision:2;
785
786 /**
787 * \brief Layout qualifier for gl_FragDepth.
788 *
789 * This is not equal to \c ir_depth_layout_none if and only if this
790 * variable is \c gl_FragDepth and a layout qualifier is specified.
791 */
792 ir_depth_layout depth_layout:3;
793
794 /**
795 * ARB_shader_image_load_store qualifiers.
796 */
797 unsigned image_read_only:1; /**< "readonly" qualifier. */
798 unsigned image_write_only:1; /**< "writeonly" qualifier. */
799 unsigned image_coherent:1;
800 unsigned image_volatile:1;
801 unsigned image_restrict:1;
802
803 /**
804 * ARB_shader_storage_buffer_object
805 */
806 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
807
808 /**
809 * Emit a warning if this variable is accessed.
810 */
811 private:
812 uint8_t warn_extension_index;
813
814 public:
815 /** Image internal format if specified explicitly, otherwise GL_NONE. */
816 uint16_t image_format;
817
818 private:
819 /**
820 * Number of state slots used
821 *
822 * \note
823 * This could be stored in as few as 7-bits, if necessary. If it is made
824 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
825 * be safe.
826 */
827 uint16_t _num_state_slots;
828
829 public:
830 /**
831 * Initial binding point for a sampler, atomic, or UBO.
832 *
833 * For array types, this represents the binding point for the first element.
834 */
835 int16_t binding;
836
837 /**
838 * Storage location of the base of this variable
839 *
840 * The precise meaning of this field depends on the nature of the variable.
841 *
842 * - Vertex shader input: one of the values from \c gl_vert_attrib.
843 * - Vertex shader output: one of the values from \c gl_varying_slot.
844 * - Geometry shader input: one of the values from \c gl_varying_slot.
845 * - Geometry shader output: one of the values from \c gl_varying_slot.
846 * - Fragment shader input: one of the values from \c gl_varying_slot.
847 * - Fragment shader output: one of the values from \c gl_frag_result.
848 * - Uniforms: Per-stage uniform slot number for default uniform block.
849 * - Uniforms: Index within the uniform block definition for UBO members.
850 * - Non-UBO Uniforms: explicit location until linking then reused to
851 * store uniform slot number.
852 * - Other: This field is not currently used.
853 *
854 * If the variable is a uniform, shader input, or shader output, and the
855 * slot has not been assigned, the value will be -1.
856 */
857 int location;
858
859 /**
860 * Vertex stream output identifier.
861 */
862 unsigned stream;
863
864 /**
865 * Location an atomic counter is stored at.
866 */
867 struct {
868 unsigned offset;
869 } atomic;
870
871 /**
872 * Highest element accessed with a constant expression array index
873 *
874 * Not used for non-array variables.
875 */
876 unsigned max_array_access;
877
878 /**
879 * Allow (only) ir_variable direct access private members.
880 */
881 friend class ir_variable;
882 } data;
883
884 /**
885 * Value assigned in the initializer of a variable declared "const"
886 */
887 ir_constant *constant_value;
888
889 /**
890 * Constant expression assigned in the initializer of the variable
891 *
892 * \warning
893 * This field and \c ::constant_value are distinct. Even if the two fields
894 * refer to constants with the same value, they must point to separate
895 * objects.
896 */
897 ir_constant *constant_initializer;
898
899 private:
900 static const char *const warn_extension_table[];
901
902 union {
903 /**
904 * For variables which satisfy the is_interface_instance() predicate,
905 * this points to an array of integers such that if the ith member of
906 * the interface block is an array, max_ifc_array_access[i] is the
907 * maximum array element of that member that has been accessed. If the
908 * ith member of the interface block is not an array,
909 * max_ifc_array_access[i] is unused.
910 *
911 * For variables whose type is not an interface block, this pointer is
912 * NULL.
913 */
914 unsigned *max_ifc_array_access;
915
916 /**
917 * Built-in state that backs this uniform
918 *
919 * Once set at variable creation, \c state_slots must remain invariant.
920 *
921 * If the variable is not a uniform, \c _num_state_slots will be zero
922 * and \c state_slots will be \c NULL.
923 */
924 ir_state_slot *state_slots;
925 } u;
926
927 /**
928 * For variables that are in an interface block or are an instance of an
929 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
930 *
931 * \sa ir_variable::location
932 */
933 const glsl_type *interface_type;
934
935 /**
936 * Name used for anonymous compiler temporaries
937 */
938 static const char tmp_name[];
939
940 public:
941 /**
942 * Should the construct keep names for ir_var_temporary variables?
943 *
944 * When this global is false, names passed to the constructor for
945 * \c ir_var_temporary variables will be dropped. Instead, the variable will
946 * be named "compiler_temp". This name will be in static storage.
947 *
948 * \warning
949 * \b NEVER change the mode of an \c ir_var_temporary.
950 *
951 * \warning
952 * This variable is \b not thread-safe. It is global, \b not
953 * per-context. It begins life false. A context can, at some point, make
954 * it true. From that point on, it will be true forever. This should be
955 * okay since it will only be set true while debugging.
956 */
957 static bool temporaries_allocate_names;
958 };
959
960 /**
961 * A function that returns whether a built-in function is available in the
962 * current shading language (based on version, ES or desktop, and extensions).
963 */
964 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
965
966 /*@{*/
967 /**
968 * The representation of a function instance; may be the full definition or
969 * simply a prototype.
970 */
971 class ir_function_signature : public ir_instruction {
972 /* An ir_function_signature will be part of the list of signatures in
973 * an ir_function.
974 */
975 public:
976 ir_function_signature(const glsl_type *return_type,
977 builtin_available_predicate builtin_avail = NULL);
978
979 virtual ir_function_signature *clone(void *mem_ctx,
980 struct hash_table *ht) const;
981 ir_function_signature *clone_prototype(void *mem_ctx,
982 struct hash_table *ht) const;
983
984 virtual void accept(ir_visitor *v)
985 {
986 v->visit(this);
987 }
988
989 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
990
991 /**
992 * Attempt to evaluate this function as a constant expression,
993 * given a list of the actual parameters and the variable context.
994 * Returns NULL for non-built-ins.
995 */
996 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
997
998 /**
999 * Get the name of the function for which this is a signature
1000 */
1001 const char *function_name() const;
1002
1003 /**
1004 * Get a handle to the function for which this is a signature
1005 *
1006 * There is no setter function, this function returns a \c const pointer,
1007 * and \c ir_function_signature::_function is private for a reason. The
1008 * only way to make a connection between a function and function signature
1009 * is via \c ir_function::add_signature. This helps ensure that certain
1010 * invariants (i.e., a function signature is in the list of signatures for
1011 * its \c _function) are met.
1012 *
1013 * \sa ir_function::add_signature
1014 */
1015 inline const class ir_function *function() const
1016 {
1017 return this->_function;
1018 }
1019
1020 /**
1021 * Check whether the qualifiers match between this signature's parameters
1022 * and the supplied parameter list. If not, returns the name of the first
1023 * parameter with mismatched qualifiers (for use in error messages).
1024 */
1025 const char *qualifiers_match(exec_list *params);
1026
1027 /**
1028 * Replace the current parameter list with the given one. This is useful
1029 * if the current information came from a prototype, and either has invalid
1030 * or missing parameter names.
1031 */
1032 void replace_parameters(exec_list *new_params);
1033
1034 /**
1035 * Function return type.
1036 *
1037 * \note This discards the optional precision qualifier.
1038 */
1039 const struct glsl_type *return_type;
1040
1041 /**
1042 * List of ir_variable of function parameters.
1043 *
1044 * This represents the storage. The paramaters passed in a particular
1045 * call will be in ir_call::actual_paramaters.
1046 */
1047 struct exec_list parameters;
1048
1049 /** Whether or not this function has a body (which may be empty). */
1050 unsigned is_defined:1;
1051
1052 /** Whether or not this function signature is a built-in. */
1053 bool is_builtin() const;
1054
1055 /**
1056 * Whether or not this function is an intrinsic to be implemented
1057 * by the driver.
1058 */
1059 bool is_intrinsic;
1060
1061 /** Whether or not a built-in is available for this shader. */
1062 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1063
1064 /** Body of instructions in the function. */
1065 struct exec_list body;
1066
1067 private:
1068 /**
1069 * A function pointer to a predicate that answers whether a built-in
1070 * function is available in the current shader. NULL if not a built-in.
1071 */
1072 builtin_available_predicate builtin_avail;
1073
1074 /** Function of which this signature is one overload. */
1075 class ir_function *_function;
1076
1077 /** Function signature of which this one is a prototype clone */
1078 const ir_function_signature *origin;
1079
1080 friend class ir_function;
1081
1082 /**
1083 * Helper function to run a list of instructions for constant
1084 * expression evaluation.
1085 *
1086 * The hash table represents the values of the visible variables.
1087 * There are no scoping issues because the table is indexed on
1088 * ir_variable pointers, not variable names.
1089 *
1090 * Returns false if the expression is not constant, true otherwise,
1091 * and the value in *result if result is non-NULL.
1092 */
1093 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1094 struct hash_table *variable_context,
1095 ir_constant **result);
1096 };
1097
1098
1099 /**
1100 * Header for tracking multiple overloaded functions with the same name.
1101 * Contains a list of ir_function_signatures representing each of the
1102 * actual functions.
1103 */
1104 class ir_function : public ir_instruction {
1105 public:
1106 ir_function(const char *name);
1107
1108 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1109
1110 virtual void accept(ir_visitor *v)
1111 {
1112 v->visit(this);
1113 }
1114
1115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1116
1117 void add_signature(ir_function_signature *sig)
1118 {
1119 sig->_function = this;
1120 this->signatures.push_tail(sig);
1121 }
1122
1123 /**
1124 * Find a signature that matches a set of actual parameters, taking implicit
1125 * conversions into account. Also flags whether the match was exact.
1126 */
1127 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1128 const exec_list *actual_param,
1129 bool allow_builtins,
1130 bool *match_is_exact);
1131
1132 /**
1133 * Find a signature that matches a set of actual parameters, taking implicit
1134 * conversions into account.
1135 */
1136 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1137 const exec_list *actual_param,
1138 bool allow_builtins);
1139
1140 /**
1141 * Find a signature that exactly matches a set of actual parameters without
1142 * any implicit type conversions.
1143 */
1144 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1145 const exec_list *actual_ps);
1146
1147 /**
1148 * Name of the function.
1149 */
1150 const char *name;
1151
1152 /** Whether or not this function has a signature that isn't a built-in. */
1153 bool has_user_signature();
1154
1155 /**
1156 * List of ir_function_signature for each overloaded function with this name.
1157 */
1158 struct exec_list signatures;
1159
1160 /**
1161 * is this function a subroutine type declaration
1162 * e.g. subroutine void type1(float arg1);
1163 */
1164 bool is_subroutine;
1165
1166 /**
1167 * is this function associated to a subroutine type
1168 * e.g. subroutine (type1, type2) function_name { function_body };
1169 * would have num_subroutine_types 2,
1170 * and pointers to the type1 and type2 types.
1171 */
1172 int num_subroutine_types;
1173 const struct glsl_type **subroutine_types;
1174
1175 int subroutine_index;
1176 };
1177
1178 inline const char *ir_function_signature::function_name() const
1179 {
1180 return this->_function->name;
1181 }
1182 /*@}*/
1183
1184
1185 /**
1186 * IR instruction representing high-level if-statements
1187 */
1188 class ir_if : public ir_instruction {
1189 public:
1190 ir_if(ir_rvalue *condition)
1191 : ir_instruction(ir_type_if), condition(condition)
1192 {
1193 }
1194
1195 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1196
1197 virtual void accept(ir_visitor *v)
1198 {
1199 v->visit(this);
1200 }
1201
1202 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1203
1204 ir_rvalue *condition;
1205 /** List of ir_instruction for the body of the then branch */
1206 exec_list then_instructions;
1207 /** List of ir_instruction for the body of the else branch */
1208 exec_list else_instructions;
1209 };
1210
1211
1212 /**
1213 * IR instruction representing a high-level loop structure.
1214 */
1215 class ir_loop : public ir_instruction {
1216 public:
1217 ir_loop();
1218
1219 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1220
1221 virtual void accept(ir_visitor *v)
1222 {
1223 v->visit(this);
1224 }
1225
1226 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1227
1228 /** List of ir_instruction that make up the body of the loop. */
1229 exec_list body_instructions;
1230 };
1231
1232
1233 class ir_assignment : public ir_instruction {
1234 public:
1235 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1236
1237 /**
1238 * Construct an assignment with an explicit write mask
1239 *
1240 * \note
1241 * Since a write mask is supplied, the LHS must already be a bare
1242 * \c ir_dereference. The cannot be any swizzles in the LHS.
1243 */
1244 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1245 unsigned write_mask);
1246
1247 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1248
1249 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1250
1251 virtual void accept(ir_visitor *v)
1252 {
1253 v->visit(this);
1254 }
1255
1256 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1257
1258 /**
1259 * Get a whole variable written by an assignment
1260 *
1261 * If the LHS of the assignment writes a whole variable, the variable is
1262 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1263 * assignment are:
1264 *
1265 * - Assigning to a scalar
1266 * - Assigning to all components of a vector
1267 * - Whole array (or matrix) assignment
1268 * - Whole structure assignment
1269 */
1270 ir_variable *whole_variable_written();
1271
1272 /**
1273 * Set the LHS of an assignment
1274 */
1275 void set_lhs(ir_rvalue *lhs);
1276
1277 /**
1278 * Left-hand side of the assignment.
1279 *
1280 * This should be treated as read only. If you need to set the LHS of an
1281 * assignment, use \c ir_assignment::set_lhs.
1282 */
1283 ir_dereference *lhs;
1284
1285 /**
1286 * Value being assigned
1287 */
1288 ir_rvalue *rhs;
1289
1290 /**
1291 * Optional condition for the assignment.
1292 */
1293 ir_rvalue *condition;
1294
1295
1296 /**
1297 * Component mask written
1298 *
1299 * For non-vector types in the LHS, this field will be zero. For vector
1300 * types, a bit will be set for each component that is written. Note that
1301 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1302 *
1303 * A partially-set write mask means that each enabled channel gets
1304 * the value from a consecutive channel of the rhs. For example,
1305 * to write just .xyw of gl_FrontColor with color:
1306 *
1307 * (assign (constant bool (1)) (xyw)
1308 * (var_ref gl_FragColor)
1309 * (swiz xyw (var_ref color)))
1310 */
1311 unsigned write_mask:4;
1312 };
1313
1314 /* Update ir_expression::get_num_operands() and operator_strs when
1315 * updating this list.
1316 */
1317 enum ir_expression_operation {
1318 ir_unop_bit_not,
1319 ir_unop_logic_not,
1320 ir_unop_neg,
1321 ir_unop_abs,
1322 ir_unop_sign,
1323 ir_unop_rcp,
1324 ir_unop_rsq,
1325 ir_unop_sqrt,
1326 ir_unop_exp, /**< Log base e on gentype */
1327 ir_unop_log, /**< Natural log on gentype */
1328 ir_unop_exp2,
1329 ir_unop_log2,
1330 ir_unop_f2i, /**< Float-to-integer conversion. */
1331 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1332 ir_unop_i2f, /**< Integer-to-float conversion. */
1333 ir_unop_f2b, /**< Float-to-boolean conversion */
1334 ir_unop_b2f, /**< Boolean-to-float conversion */
1335 ir_unop_i2b, /**< int-to-boolean conversion */
1336 ir_unop_b2i, /**< Boolean-to-int conversion */
1337 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1338 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1339 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1340 ir_unop_d2f, /**< Double-to-float conversion. */
1341 ir_unop_f2d, /**< Float-to-double conversion. */
1342 ir_unop_d2i, /**< Double-to-integer conversion. */
1343 ir_unop_i2d, /**< Integer-to-double conversion. */
1344 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1345 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1346 ir_unop_d2b, /**< Double-to-boolean conversion. */
1347 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1348 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1349 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1350 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1351 ir_unop_any,
1352
1353 /**
1354 * \name Unary floating-point rounding operations.
1355 */
1356 /*@{*/
1357 ir_unop_trunc,
1358 ir_unop_ceil,
1359 ir_unop_floor,
1360 ir_unop_fract,
1361 ir_unop_round_even,
1362 /*@}*/
1363
1364 /**
1365 * \name Trigonometric operations.
1366 */
1367 /*@{*/
1368 ir_unop_sin,
1369 ir_unop_cos,
1370 /*@}*/
1371
1372 /**
1373 * \name Partial derivatives.
1374 */
1375 /*@{*/
1376 ir_unop_dFdx,
1377 ir_unop_dFdx_coarse,
1378 ir_unop_dFdx_fine,
1379 ir_unop_dFdy,
1380 ir_unop_dFdy_coarse,
1381 ir_unop_dFdy_fine,
1382 /*@}*/
1383
1384 /**
1385 * \name Floating point pack and unpack operations.
1386 */
1387 /*@{*/
1388 ir_unop_pack_snorm_2x16,
1389 ir_unop_pack_snorm_4x8,
1390 ir_unop_pack_unorm_2x16,
1391 ir_unop_pack_unorm_4x8,
1392 ir_unop_pack_half_2x16,
1393 ir_unop_unpack_snorm_2x16,
1394 ir_unop_unpack_snorm_4x8,
1395 ir_unop_unpack_unorm_2x16,
1396 ir_unop_unpack_unorm_4x8,
1397 ir_unop_unpack_half_2x16,
1398 /*@}*/
1399
1400 /**
1401 * \name Lowered floating point unpacking operations.
1402 *
1403 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1404 */
1405 /*@{*/
1406 ir_unop_unpack_half_2x16_split_x,
1407 ir_unop_unpack_half_2x16_split_y,
1408 /*@}*/
1409
1410 /**
1411 * \name Bit operations, part of ARB_gpu_shader5.
1412 */
1413 /*@{*/
1414 ir_unop_bitfield_reverse,
1415 ir_unop_bit_count,
1416 ir_unop_find_msb,
1417 ir_unop_find_lsb,
1418 /*@}*/
1419
1420 ir_unop_saturate,
1421
1422 /**
1423 * \name Double packing, part of ARB_gpu_shader_fp64.
1424 */
1425 /*@{*/
1426 ir_unop_pack_double_2x32,
1427 ir_unop_unpack_double_2x32,
1428 /*@}*/
1429
1430 ir_unop_frexp_sig,
1431 ir_unop_frexp_exp,
1432
1433 ir_unop_noise,
1434
1435 ir_unop_subroutine_to_int,
1436 /**
1437 * Interpolate fs input at centroid
1438 *
1439 * operand0 is the fs input.
1440 */
1441 ir_unop_interpolate_at_centroid,
1442
1443 /**
1444 * Ask the driver for the total size of a buffer block.
1445 *
1446 * operand0 is the ir_constant buffer block index in the linked shader.
1447 */
1448 ir_unop_get_buffer_size,
1449
1450 /**
1451 * Calculate length of an unsized array inside a buffer block.
1452 * This opcode is going to be replaced in a lowering pass inside
1453 * the linker.
1454 *
1455 * operand0 is the unsized array's ir_value for the calculation
1456 * of its length.
1457 */
1458 ir_unop_ssbo_unsized_array_length,
1459
1460 /**
1461 * A sentinel marking the last of the unary operations.
1462 */
1463 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1464
1465 ir_binop_add,
1466 ir_binop_sub,
1467 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1468 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1469 ir_binop_div,
1470
1471 /**
1472 * Returns the carry resulting from the addition of the two arguments.
1473 */
1474 /*@{*/
1475 ir_binop_carry,
1476 /*@}*/
1477
1478 /**
1479 * Returns the borrow resulting from the subtraction of the second argument
1480 * from the first argument.
1481 */
1482 /*@{*/
1483 ir_binop_borrow,
1484 /*@}*/
1485
1486 /**
1487 * Takes one of two combinations of arguments:
1488 *
1489 * - mod(vecN, vecN)
1490 * - mod(vecN, float)
1491 *
1492 * Does not take integer types.
1493 */
1494 ir_binop_mod,
1495
1496 /**
1497 * \name Binary comparison operators which return a boolean vector.
1498 * The type of both operands must be equal.
1499 */
1500 /*@{*/
1501 ir_binop_less,
1502 ir_binop_greater,
1503 ir_binop_lequal,
1504 ir_binop_gequal,
1505 ir_binop_equal,
1506 ir_binop_nequal,
1507 /**
1508 * Returns single boolean for whether all components of operands[0]
1509 * equal the components of operands[1].
1510 */
1511 ir_binop_all_equal,
1512 /**
1513 * Returns single boolean for whether any component of operands[0]
1514 * is not equal to the corresponding component of operands[1].
1515 */
1516 ir_binop_any_nequal,
1517 /*@}*/
1518
1519 /**
1520 * \name Bit-wise binary operations.
1521 */
1522 /*@{*/
1523 ir_binop_lshift,
1524 ir_binop_rshift,
1525 ir_binop_bit_and,
1526 ir_binop_bit_xor,
1527 ir_binop_bit_or,
1528 /*@}*/
1529
1530 ir_binop_logic_and,
1531 ir_binop_logic_xor,
1532 ir_binop_logic_or,
1533
1534 ir_binop_dot,
1535 ir_binop_min,
1536 ir_binop_max,
1537
1538 ir_binop_pow,
1539
1540 /**
1541 * \name Lowered floating point packing operations.
1542 *
1543 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1544 */
1545 /*@{*/
1546 ir_binop_pack_half_2x16_split,
1547 /*@}*/
1548
1549 /**
1550 * \name First half of a lowered bitfieldInsert() operation.
1551 *
1552 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1553 */
1554 /*@{*/
1555 ir_binop_bfm,
1556 /*@}*/
1557
1558 /**
1559 * Load a value the size of a given GLSL type from a uniform block.
1560 *
1561 * operand0 is the ir_constant uniform block index in the linked shader.
1562 * operand1 is a byte offset within the uniform block.
1563 */
1564 ir_binop_ubo_load,
1565
1566 /**
1567 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1568 */
1569 /*@{*/
1570 ir_binop_ldexp,
1571 /*@}*/
1572
1573 /**
1574 * Extract a scalar from a vector
1575 *
1576 * operand0 is the vector
1577 * operand1 is the index of the field to read from operand0
1578 */
1579 ir_binop_vector_extract,
1580
1581 /**
1582 * Interpolate fs input at offset
1583 *
1584 * operand0 is the fs input
1585 * operand1 is the offset from the pixel center
1586 */
1587 ir_binop_interpolate_at_offset,
1588
1589 /**
1590 * Interpolate fs input at sample position
1591 *
1592 * operand0 is the fs input
1593 * operand1 is the sample ID
1594 */
1595 ir_binop_interpolate_at_sample,
1596
1597 /**
1598 * A sentinel marking the last of the binary operations.
1599 */
1600 ir_last_binop = ir_binop_interpolate_at_sample,
1601
1602 /**
1603 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1604 */
1605 /*@{*/
1606 ir_triop_fma,
1607 /*@}*/
1608
1609 ir_triop_lrp,
1610
1611 /**
1612 * \name Conditional Select
1613 *
1614 * A vector conditional select instruction (like ?:, but operating per-
1615 * component on vectors).
1616 *
1617 * \see lower_instructions_visitor::ldexp_to_arith
1618 */
1619 /*@{*/
1620 ir_triop_csel,
1621 /*@}*/
1622
1623 /**
1624 * \name Second half of a lowered bitfieldInsert() operation.
1625 *
1626 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1627 */
1628 /*@{*/
1629 ir_triop_bfi,
1630 /*@}*/
1631
1632 ir_triop_bitfield_extract,
1633
1634 /**
1635 * Generate a value with one field of a vector changed
1636 *
1637 * operand0 is the vector
1638 * operand1 is the value to write into the vector result
1639 * operand2 is the index in operand0 to be modified
1640 */
1641 ir_triop_vector_insert,
1642
1643 /**
1644 * A sentinel marking the last of the ternary operations.
1645 */
1646 ir_last_triop = ir_triop_vector_insert,
1647
1648 ir_quadop_bitfield_insert,
1649
1650 ir_quadop_vector,
1651
1652 /**
1653 * A sentinel marking the last of the ternary operations.
1654 */
1655 ir_last_quadop = ir_quadop_vector,
1656
1657 /**
1658 * A sentinel marking the last of all operations.
1659 */
1660 ir_last_opcode = ir_quadop_vector
1661 };
1662
1663 class ir_expression : public ir_rvalue {
1664 public:
1665 ir_expression(int op, const struct glsl_type *type,
1666 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1667 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1668
1669 /**
1670 * Constructor for unary operation expressions
1671 */
1672 ir_expression(int op, ir_rvalue *);
1673
1674 /**
1675 * Constructor for binary operation expressions
1676 */
1677 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1678
1679 /**
1680 * Constructor for ternary operation expressions
1681 */
1682 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1683
1684 virtual bool equals(const ir_instruction *ir,
1685 enum ir_node_type ignore = ir_type_unset) const;
1686
1687 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1688
1689 /**
1690 * Attempt to constant-fold the expression
1691 *
1692 * The "variable_context" hash table links ir_variable * to ir_constant *
1693 * that represent the variables' values. \c NULL represents an empty
1694 * context.
1695 *
1696 * If the expression cannot be constant folded, this method will return
1697 * \c NULL.
1698 */
1699 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1700
1701 /**
1702 * Determine the number of operands used by an expression
1703 */
1704 static unsigned int get_num_operands(ir_expression_operation);
1705
1706 /**
1707 * Determine the number of operands used by an expression
1708 */
1709 unsigned int get_num_operands() const
1710 {
1711 return (this->operation == ir_quadop_vector)
1712 ? this->type->vector_elements : get_num_operands(operation);
1713 }
1714
1715 /**
1716 * Return whether the expression operates on vectors horizontally.
1717 */
1718 bool is_horizontal() const
1719 {
1720 return operation == ir_binop_all_equal ||
1721 operation == ir_binop_any_nequal ||
1722 operation == ir_unop_any ||
1723 operation == ir_binop_dot ||
1724 operation == ir_quadop_vector;
1725 }
1726
1727 /**
1728 * Return a string representing this expression's operator.
1729 */
1730 const char *operator_string();
1731
1732 /**
1733 * Return a string representing this expression's operator.
1734 */
1735 static const char *operator_string(ir_expression_operation);
1736
1737
1738 /**
1739 * Do a reverse-lookup to translate the given string into an operator.
1740 */
1741 static ir_expression_operation get_operator(const char *);
1742
1743 virtual void accept(ir_visitor *v)
1744 {
1745 v->visit(this);
1746 }
1747
1748 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1749
1750 virtual ir_variable *variable_referenced() const;
1751
1752 ir_expression_operation operation;
1753 ir_rvalue *operands[4];
1754 };
1755
1756
1757 /**
1758 * HIR instruction representing a high-level function call, containing a list
1759 * of parameters and returning a value in the supplied temporary.
1760 */
1761 class ir_call : public ir_instruction {
1762 public:
1763 ir_call(ir_function_signature *callee,
1764 ir_dereference_variable *return_deref,
1765 exec_list *actual_parameters)
1766 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1767 {
1768 assert(callee->return_type != NULL);
1769 actual_parameters->move_nodes_to(& this->actual_parameters);
1770 this->use_builtin = callee->is_builtin();
1771 }
1772
1773 ir_call(ir_function_signature *callee,
1774 ir_dereference_variable *return_deref,
1775 exec_list *actual_parameters,
1776 ir_variable *var, ir_rvalue *array_idx)
1777 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1778 {
1779 assert(callee->return_type != NULL);
1780 actual_parameters->move_nodes_to(& this->actual_parameters);
1781 this->use_builtin = callee->is_builtin();
1782 }
1783
1784 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1785
1786 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1787
1788 virtual void accept(ir_visitor *v)
1789 {
1790 v->visit(this);
1791 }
1792
1793 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1794
1795 /**
1796 * Get the name of the function being called.
1797 */
1798 const char *callee_name() const
1799 {
1800 return callee->function_name();
1801 }
1802
1803 /**
1804 * Generates an inline version of the function before @ir,
1805 * storing the return value in return_deref.
1806 */
1807 void generate_inline(ir_instruction *ir);
1808
1809 /**
1810 * Storage for the function's return value.
1811 * This must be NULL if the return type is void.
1812 */
1813 ir_dereference_variable *return_deref;
1814
1815 /**
1816 * The specific function signature being called.
1817 */
1818 ir_function_signature *callee;
1819
1820 /* List of ir_rvalue of paramaters passed in this call. */
1821 exec_list actual_parameters;
1822
1823 /** Should this call only bind to a built-in function? */
1824 bool use_builtin;
1825
1826 /*
1827 * ARB_shader_subroutine support -
1828 * the subroutine uniform variable and array index
1829 * rvalue to be used in the lowering pass later.
1830 */
1831 ir_variable *sub_var;
1832 ir_rvalue *array_idx;
1833 };
1834
1835
1836 /**
1837 * \name Jump-like IR instructions.
1838 *
1839 * These include \c break, \c continue, \c return, and \c discard.
1840 */
1841 /*@{*/
1842 class ir_jump : public ir_instruction {
1843 protected:
1844 ir_jump(enum ir_node_type t)
1845 : ir_instruction(t)
1846 {
1847 }
1848 };
1849
1850 class ir_return : public ir_jump {
1851 public:
1852 ir_return()
1853 : ir_jump(ir_type_return), value(NULL)
1854 {
1855 }
1856
1857 ir_return(ir_rvalue *value)
1858 : ir_jump(ir_type_return), value(value)
1859 {
1860 }
1861
1862 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1863
1864 ir_rvalue *get_value() const
1865 {
1866 return value;
1867 }
1868
1869 virtual void accept(ir_visitor *v)
1870 {
1871 v->visit(this);
1872 }
1873
1874 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1875
1876 ir_rvalue *value;
1877 };
1878
1879
1880 /**
1881 * Jump instructions used inside loops
1882 *
1883 * These include \c break and \c continue. The \c break within a loop is
1884 * different from the \c break within a switch-statement.
1885 *
1886 * \sa ir_switch_jump
1887 */
1888 class ir_loop_jump : public ir_jump {
1889 public:
1890 enum jump_mode {
1891 jump_break,
1892 jump_continue
1893 };
1894
1895 ir_loop_jump(jump_mode mode)
1896 : ir_jump(ir_type_loop_jump)
1897 {
1898 this->mode = mode;
1899 }
1900
1901 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1902
1903 virtual void accept(ir_visitor *v)
1904 {
1905 v->visit(this);
1906 }
1907
1908 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1909
1910 bool is_break() const
1911 {
1912 return mode == jump_break;
1913 }
1914
1915 bool is_continue() const
1916 {
1917 return mode == jump_continue;
1918 }
1919
1920 /** Mode selector for the jump instruction. */
1921 enum jump_mode mode;
1922 };
1923
1924 /**
1925 * IR instruction representing discard statements.
1926 */
1927 class ir_discard : public ir_jump {
1928 public:
1929 ir_discard()
1930 : ir_jump(ir_type_discard)
1931 {
1932 this->condition = NULL;
1933 }
1934
1935 ir_discard(ir_rvalue *cond)
1936 : ir_jump(ir_type_discard)
1937 {
1938 this->condition = cond;
1939 }
1940
1941 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1942
1943 virtual void accept(ir_visitor *v)
1944 {
1945 v->visit(this);
1946 }
1947
1948 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1949
1950 ir_rvalue *condition;
1951 };
1952 /*@}*/
1953
1954
1955 /**
1956 * Texture sampling opcodes used in ir_texture
1957 */
1958 enum ir_texture_opcode {
1959 ir_tex, /**< Regular texture look-up */
1960 ir_txb, /**< Texture look-up with LOD bias */
1961 ir_txl, /**< Texture look-up with explicit LOD */
1962 ir_txd, /**< Texture look-up with partial derivatvies */
1963 ir_txf, /**< Texel fetch with explicit LOD */
1964 ir_txf_ms, /**< Multisample texture fetch */
1965 ir_txs, /**< Texture size */
1966 ir_lod, /**< Texture lod query */
1967 ir_tg4, /**< Texture gather */
1968 ir_query_levels, /**< Texture levels query */
1969 ir_texture_samples, /**< Texture samples query */
1970 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1971 };
1972
1973
1974 /**
1975 * IR instruction to sample a texture
1976 *
1977 * The specific form of the IR instruction depends on the \c mode value
1978 * selected from \c ir_texture_opcodes. In the printed IR, these will
1979 * appear as:
1980 *
1981 * Texel offset (0 or an expression)
1982 * | Projection divisor
1983 * | | Shadow comparitor
1984 * | | |
1985 * v v v
1986 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1987 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1988 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1989 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1990 * (txf <type> <sampler> <coordinate> 0 <lod>)
1991 * (txf_ms
1992 * <type> <sampler> <coordinate> <sample_index>)
1993 * (txs <type> <sampler> <lod>)
1994 * (lod <type> <sampler> <coordinate>)
1995 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1996 * (query_levels <type> <sampler>)
1997 * (samples_identical <sampler> <coordinate>)
1998 */
1999 class ir_texture : public ir_rvalue {
2000 public:
2001 ir_texture(enum ir_texture_opcode op)
2002 : ir_rvalue(ir_type_texture),
2003 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2004 shadow_comparitor(NULL), offset(NULL)
2005 {
2006 memset(&lod_info, 0, sizeof(lod_info));
2007 }
2008
2009 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2010
2011 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2012
2013 virtual void accept(ir_visitor *v)
2014 {
2015 v->visit(this);
2016 }
2017
2018 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2019
2020 virtual bool equals(const ir_instruction *ir,
2021 enum ir_node_type ignore = ir_type_unset) const;
2022
2023 /**
2024 * Return a string representing the ir_texture_opcode.
2025 */
2026 const char *opcode_string();
2027
2028 /** Set the sampler and type. */
2029 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2030
2031 /**
2032 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2033 */
2034 static ir_texture_opcode get_opcode(const char *);
2035
2036 enum ir_texture_opcode op;
2037
2038 /** Sampler to use for the texture access. */
2039 ir_dereference *sampler;
2040
2041 /** Texture coordinate to sample */
2042 ir_rvalue *coordinate;
2043
2044 /**
2045 * Value used for projective divide.
2046 *
2047 * If there is no projective divide (the common case), this will be
2048 * \c NULL. Optimization passes should check for this to point to a constant
2049 * of 1.0 and replace that with \c NULL.
2050 */
2051 ir_rvalue *projector;
2052
2053 /**
2054 * Coordinate used for comparison on shadow look-ups.
2055 *
2056 * If there is no shadow comparison, this will be \c NULL. For the
2057 * \c ir_txf opcode, this *must* be \c NULL.
2058 */
2059 ir_rvalue *shadow_comparitor;
2060
2061 /** Texel offset. */
2062 ir_rvalue *offset;
2063
2064 union {
2065 ir_rvalue *lod; /**< Floating point LOD */
2066 ir_rvalue *bias; /**< Floating point LOD bias */
2067 ir_rvalue *sample_index; /**< MSAA sample index */
2068 ir_rvalue *component; /**< Gather component selector */
2069 struct {
2070 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2071 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2072 } grad;
2073 } lod_info;
2074 };
2075
2076
2077 struct ir_swizzle_mask {
2078 unsigned x:2;
2079 unsigned y:2;
2080 unsigned z:2;
2081 unsigned w:2;
2082
2083 /**
2084 * Number of components in the swizzle.
2085 */
2086 unsigned num_components:3;
2087
2088 /**
2089 * Does the swizzle contain duplicate components?
2090 *
2091 * L-value swizzles cannot contain duplicate components.
2092 */
2093 unsigned has_duplicates:1;
2094 };
2095
2096
2097 class ir_swizzle : public ir_rvalue {
2098 public:
2099 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2100 unsigned count);
2101
2102 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2103
2104 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2105
2106 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2107
2108 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2109
2110 /**
2111 * Construct an ir_swizzle from the textual representation. Can fail.
2112 */
2113 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2114
2115 virtual void accept(ir_visitor *v)
2116 {
2117 v->visit(this);
2118 }
2119
2120 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2121
2122 virtual bool equals(const ir_instruction *ir,
2123 enum ir_node_type ignore = ir_type_unset) const;
2124
2125 bool is_lvalue() const
2126 {
2127 return val->is_lvalue() && !mask.has_duplicates;
2128 }
2129
2130 /**
2131 * Get the variable that is ultimately referenced by an r-value
2132 */
2133 virtual ir_variable *variable_referenced() const;
2134
2135 ir_rvalue *val;
2136 ir_swizzle_mask mask;
2137
2138 private:
2139 /**
2140 * Initialize the mask component of a swizzle
2141 *
2142 * This is used by the \c ir_swizzle constructors.
2143 */
2144 void init_mask(const unsigned *components, unsigned count);
2145 };
2146
2147
2148 class ir_dereference : public ir_rvalue {
2149 public:
2150 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2151
2152 bool is_lvalue() const;
2153
2154 /**
2155 * Get the variable that is ultimately referenced by an r-value
2156 */
2157 virtual ir_variable *variable_referenced() const = 0;
2158
2159 protected:
2160 ir_dereference(enum ir_node_type t)
2161 : ir_rvalue(t)
2162 {
2163 }
2164 };
2165
2166
2167 class ir_dereference_variable : public ir_dereference {
2168 public:
2169 ir_dereference_variable(ir_variable *var);
2170
2171 virtual ir_dereference_variable *clone(void *mem_ctx,
2172 struct hash_table *) const;
2173
2174 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2175
2176 virtual bool equals(const ir_instruction *ir,
2177 enum ir_node_type ignore = ir_type_unset) const;
2178
2179 /**
2180 * Get the variable that is ultimately referenced by an r-value
2181 */
2182 virtual ir_variable *variable_referenced() const
2183 {
2184 return this->var;
2185 }
2186
2187 virtual ir_variable *whole_variable_referenced()
2188 {
2189 /* ir_dereference_variable objects always dereference the entire
2190 * variable. However, if this dereference is dereferenced by anything
2191 * else, the complete deferefernce chain is not a whole-variable
2192 * dereference. This method should only be called on the top most
2193 * ir_rvalue in a dereference chain.
2194 */
2195 return this->var;
2196 }
2197
2198 virtual void accept(ir_visitor *v)
2199 {
2200 v->visit(this);
2201 }
2202
2203 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2204
2205 /**
2206 * Object being dereferenced.
2207 */
2208 ir_variable *var;
2209 };
2210
2211
2212 class ir_dereference_array : public ir_dereference {
2213 public:
2214 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2215
2216 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2217
2218 virtual ir_dereference_array *clone(void *mem_ctx,
2219 struct hash_table *) const;
2220
2221 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2222
2223 virtual bool equals(const ir_instruction *ir,
2224 enum ir_node_type ignore = ir_type_unset) const;
2225
2226 /**
2227 * Get the variable that is ultimately referenced by an r-value
2228 */
2229 virtual ir_variable *variable_referenced() const
2230 {
2231 return this->array->variable_referenced();
2232 }
2233
2234 virtual void accept(ir_visitor *v)
2235 {
2236 v->visit(this);
2237 }
2238
2239 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2240
2241 ir_rvalue *array;
2242 ir_rvalue *array_index;
2243
2244 private:
2245 void set_array(ir_rvalue *value);
2246 };
2247
2248
2249 class ir_dereference_record : public ir_dereference {
2250 public:
2251 ir_dereference_record(ir_rvalue *value, const char *field);
2252
2253 ir_dereference_record(ir_variable *var, const char *field);
2254
2255 virtual ir_dereference_record *clone(void *mem_ctx,
2256 struct hash_table *) const;
2257
2258 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2259
2260 /**
2261 * Get the variable that is ultimately referenced by an r-value
2262 */
2263 virtual ir_variable *variable_referenced() const
2264 {
2265 return this->record->variable_referenced();
2266 }
2267
2268 virtual void accept(ir_visitor *v)
2269 {
2270 v->visit(this);
2271 }
2272
2273 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2274
2275 ir_rvalue *record;
2276 const char *field;
2277 };
2278
2279
2280 /**
2281 * Data stored in an ir_constant
2282 */
2283 union ir_constant_data {
2284 unsigned u[16];
2285 int i[16];
2286 float f[16];
2287 bool b[16];
2288 double d[16];
2289 };
2290
2291
2292 class ir_constant : public ir_rvalue {
2293 public:
2294 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2295 ir_constant(bool b, unsigned vector_elements=1);
2296 ir_constant(unsigned int u, unsigned vector_elements=1);
2297 ir_constant(int i, unsigned vector_elements=1);
2298 ir_constant(float f, unsigned vector_elements=1);
2299 ir_constant(double d, unsigned vector_elements=1);
2300
2301 /**
2302 * Construct an ir_constant from a list of ir_constant values
2303 */
2304 ir_constant(const struct glsl_type *type, exec_list *values);
2305
2306 /**
2307 * Construct an ir_constant from a scalar component of another ir_constant
2308 *
2309 * The new \c ir_constant inherits the type of the component from the
2310 * source constant.
2311 *
2312 * \note
2313 * In the case of a matrix constant, the new constant is a scalar, \b not
2314 * a vector.
2315 */
2316 ir_constant(const ir_constant *c, unsigned i);
2317
2318 /**
2319 * Return a new ir_constant of the specified type containing all zeros.
2320 */
2321 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2322
2323 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2324
2325 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2326
2327 virtual void accept(ir_visitor *v)
2328 {
2329 v->visit(this);
2330 }
2331
2332 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2333
2334 virtual bool equals(const ir_instruction *ir,
2335 enum ir_node_type ignore = ir_type_unset) const;
2336
2337 /**
2338 * Get a particular component of a constant as a specific type
2339 *
2340 * This is useful, for example, to get a value from an integer constant
2341 * as a float or bool. This appears frequently when constructors are
2342 * called with all constant parameters.
2343 */
2344 /*@{*/
2345 bool get_bool_component(unsigned i) const;
2346 float get_float_component(unsigned i) const;
2347 double get_double_component(unsigned i) const;
2348 int get_int_component(unsigned i) const;
2349 unsigned get_uint_component(unsigned i) const;
2350 /*@}*/
2351
2352 ir_constant *get_array_element(unsigned i) const;
2353
2354 ir_constant *get_record_field(const char *name);
2355
2356 /**
2357 * Copy the values on another constant at a given offset.
2358 *
2359 * The offset is ignored for array or struct copies, it's only for
2360 * scalars or vectors into vectors or matrices.
2361 *
2362 * With identical types on both sides and zero offset it's clone()
2363 * without creating a new object.
2364 */
2365
2366 void copy_offset(ir_constant *src, int offset);
2367
2368 /**
2369 * Copy the values on another constant at a given offset and
2370 * following an assign-like mask.
2371 *
2372 * The mask is ignored for scalars.
2373 *
2374 * Note that this function only handles what assign can handle,
2375 * i.e. at most a vector as source and a column of a matrix as
2376 * destination.
2377 */
2378
2379 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2380
2381 /**
2382 * Determine whether a constant has the same value as another constant
2383 *
2384 * \sa ir_constant::is_zero, ir_constant::is_one,
2385 * ir_constant::is_negative_one
2386 */
2387 bool has_value(const ir_constant *) const;
2388
2389 /**
2390 * Return true if this ir_constant represents the given value.
2391 *
2392 * For vectors, this checks that each component is the given value.
2393 */
2394 virtual bool is_value(float f, int i) const;
2395 virtual bool is_zero() const;
2396 virtual bool is_one() const;
2397 virtual bool is_negative_one() const;
2398
2399 /**
2400 * Return true for constants that could be stored as 16-bit unsigned values.
2401 *
2402 * Note that this will return true even for signed integer ir_constants, as
2403 * long as the value is non-negative and fits in 16-bits.
2404 */
2405 virtual bool is_uint16_constant() const;
2406
2407 /**
2408 * Value of the constant.
2409 *
2410 * The field used to back the values supplied by the constant is determined
2411 * by the type associated with the \c ir_instruction. Constants may be
2412 * scalars, vectors, or matrices.
2413 */
2414 union ir_constant_data value;
2415
2416 /* Array elements */
2417 ir_constant **array_elements;
2418
2419 /* Structure fields */
2420 exec_list components;
2421
2422 private:
2423 /**
2424 * Parameterless constructor only used by the clone method
2425 */
2426 ir_constant(void);
2427 };
2428
2429 /**
2430 * IR instruction to emit a vertex in a geometry shader.
2431 */
2432 class ir_emit_vertex : public ir_instruction {
2433 public:
2434 ir_emit_vertex(ir_rvalue *stream)
2435 : ir_instruction(ir_type_emit_vertex),
2436 stream(stream)
2437 {
2438 assert(stream);
2439 }
2440
2441 virtual void accept(ir_visitor *v)
2442 {
2443 v->visit(this);
2444 }
2445
2446 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2447 {
2448 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2449 }
2450
2451 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2452
2453 int stream_id() const
2454 {
2455 return stream->as_constant()->value.i[0];
2456 }
2457
2458 ir_rvalue *stream;
2459 };
2460
2461 /**
2462 * IR instruction to complete the current primitive and start a new one in a
2463 * geometry shader.
2464 */
2465 class ir_end_primitive : public ir_instruction {
2466 public:
2467 ir_end_primitive(ir_rvalue *stream)
2468 : ir_instruction(ir_type_end_primitive),
2469 stream(stream)
2470 {
2471 assert(stream);
2472 }
2473
2474 virtual void accept(ir_visitor *v)
2475 {
2476 v->visit(this);
2477 }
2478
2479 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2480 {
2481 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2482 }
2483
2484 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2485
2486 int stream_id() const
2487 {
2488 return stream->as_constant()->value.i[0];
2489 }
2490
2491 ir_rvalue *stream;
2492 };
2493
2494 /**
2495 * IR instruction for tessellation control and compute shader barrier.
2496 */
2497 class ir_barrier : public ir_instruction {
2498 public:
2499 ir_barrier()
2500 : ir_instruction(ir_type_barrier)
2501 {
2502 }
2503
2504 virtual void accept(ir_visitor *v)
2505 {
2506 v->visit(this);
2507 }
2508
2509 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2510 {
2511 return new(mem_ctx) ir_barrier();
2512 }
2513
2514 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2515 };
2516
2517 /*@}*/
2518
2519 /**
2520 * Apply a visitor to each IR node in a list
2521 */
2522 void
2523 visit_exec_list(exec_list *list, ir_visitor *visitor);
2524
2525 /**
2526 * Validate invariants on each IR node in a list
2527 */
2528 void validate_ir_tree(exec_list *instructions);
2529
2530 struct _mesa_glsl_parse_state;
2531 struct gl_shader_program;
2532
2533 /**
2534 * Detect whether an unlinked shader contains static recursion
2535 *
2536 * If the list of instructions is determined to contain static recursion,
2537 * \c _mesa_glsl_error will be called to emit error messages for each function
2538 * that is in the recursion cycle.
2539 */
2540 void
2541 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2542 exec_list *instructions);
2543
2544 /**
2545 * Detect whether a linked shader contains static recursion
2546 *
2547 * If the list of instructions is determined to contain static recursion,
2548 * \c link_error_printf will be called to emit error messages for each function
2549 * that is in the recursion cycle. In addition,
2550 * \c gl_shader_program::LinkStatus will be set to false.
2551 */
2552 void
2553 detect_recursion_linked(struct gl_shader_program *prog,
2554 exec_list *instructions);
2555
2556 /**
2557 * Make a clone of each IR instruction in a list
2558 *
2559 * \param in List of IR instructions that are to be cloned
2560 * \param out List to hold the cloned instructions
2561 */
2562 void
2563 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2564
2565 extern void
2566 _mesa_glsl_initialize_variables(exec_list *instructions,
2567 struct _mesa_glsl_parse_state *state);
2568
2569 extern void
2570 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2571
2572 extern void
2573 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2574
2575 extern void
2576 _mesa_glsl_initialize_builtin_functions();
2577
2578 extern ir_function_signature *
2579 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2580 const char *name, exec_list *actual_parameters);
2581
2582 extern ir_function *
2583 _mesa_glsl_find_builtin_function_by_name(const char *name);
2584
2585 extern gl_shader *
2586 _mesa_glsl_get_builtin_function_shader(void);
2587
2588 extern ir_function_signature *
2589 _mesa_get_main_function_signature(gl_shader *sh);
2590
2591 extern void
2592 _mesa_glsl_release_functions(void);
2593
2594 extern void
2595 _mesa_glsl_release_builtin_functions(void);
2596
2597 extern void
2598 reparent_ir(exec_list *list, void *mem_ctx);
2599
2600 struct glsl_symbol_table;
2601
2602 extern void
2603 import_prototypes(const exec_list *source, exec_list *dest,
2604 struct glsl_symbol_table *symbols, void *mem_ctx);
2605
2606 extern bool
2607 ir_has_call(ir_instruction *ir);
2608
2609 extern void
2610 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2611 gl_shader_stage shader_stage);
2612
2613 extern char *
2614 prototype_string(const glsl_type *return_type, const char *name,
2615 exec_list *parameters);
2616
2617 const char *
2618 mode_string(const ir_variable *var);
2619
2620 /**
2621 * Built-in / reserved GL variables names start with "gl_"
2622 */
2623 static inline bool
2624 is_gl_identifier(const char *s)
2625 {
2626 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2627 }
2628
2629 extern "C" {
2630 #endif /* __cplusplus */
2631
2632 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2633 struct _mesa_glsl_parse_state *state);
2634
2635 extern void
2636 fprint_ir(FILE *f, const void *instruction);
2637
2638 #ifdef __cplusplus
2639 } /* extern "C" */
2640 #endif
2641
2642 unsigned
2643 vertices_per_prim(GLenum prim);
2644
2645 #endif /* IR_H */