i965/fs: Reorder fs_inst's fields for better packing.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_emit_vertex,
85 ir_type_end_primitive,
86 ir_type_max /**< maximum ir_type enum number, for validation */
87 };
88
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96
97 /**
98 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
99 * there's a virtual destructor present. Because we almost
100 * universally use ralloc for our memory management of
101 * ir_instructions, the destructor doesn't need to do any work.
102 */
103 virtual ~ir_instruction()
104 {
105 }
106
107 /** ir_print_visitor helper for debugging. */
108 void print(void) const;
109
110 virtual void accept(ir_visitor *) = 0;
111 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
112 virtual ir_instruction *clone(void *mem_ctx,
113 struct hash_table *ht) const = 0;
114
115 /**
116 * \name IR instruction downcast functions
117 *
118 * These functions either cast the object to a derived class or return
119 * \c NULL if the object's type does not match the specified derived class.
120 * Additional downcast functions will be added as needed.
121 */
122 /*@{*/
123 virtual class ir_variable * as_variable() { return NULL; }
124 virtual class ir_function * as_function() { return NULL; }
125 virtual class ir_dereference * as_dereference() { return NULL; }
126 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
127 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
128 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
129 virtual class ir_expression * as_expression() { return NULL; }
130 virtual class ir_rvalue * as_rvalue() { return NULL; }
131 virtual class ir_loop * as_loop() { return NULL; }
132 virtual class ir_assignment * as_assignment() { return NULL; }
133 virtual class ir_call * as_call() { return NULL; }
134 virtual class ir_return * as_return() { return NULL; }
135 virtual class ir_if * as_if() { return NULL; }
136 virtual class ir_swizzle * as_swizzle() { return NULL; }
137 virtual class ir_texture * as_texture() { return NULL; }
138 virtual class ir_constant * as_constant() { return NULL; }
139 virtual class ir_discard * as_discard() { return NULL; }
140 virtual class ir_jump * as_jump() { return NULL; }
141 /*@}*/
142
143 /**
144 * IR equality method: Return true if the referenced instruction would
145 * return the same value as this one.
146 *
147 * This intended to be used for CSE and algebraic optimizations, on rvalues
148 * in particular. No support for other instruction types (assignments,
149 * jumps, calls, etc.) is planned.
150 */
151 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
152
153 protected:
154 ir_instruction()
155 {
156 ir_type = ir_type_unset;
157 }
158 };
159
160
161 /**
162 * The base class for all "values"/expression trees.
163 */
164 class ir_rvalue : public ir_instruction {
165 public:
166 const struct glsl_type *type;
167
168 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
169
170 virtual void accept(ir_visitor *v)
171 {
172 v->visit(this);
173 }
174
175 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
176
177 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
178
179 virtual ir_rvalue * as_rvalue()
180 {
181 return this;
182 }
183
184 ir_rvalue *as_rvalue_to_saturate();
185
186 virtual bool is_lvalue() const
187 {
188 return false;
189 }
190
191 /**
192 * Get the variable that is ultimately referenced by an r-value
193 */
194 virtual ir_variable *variable_referenced() const
195 {
196 return NULL;
197 }
198
199
200 /**
201 * If an r-value is a reference to a whole variable, get that variable
202 *
203 * \return
204 * Pointer to a variable that is completely dereferenced by the r-value. If
205 * the r-value is not a dereference or the dereference does not access the
206 * entire variable (i.e., it's just one array element, struct field), \c NULL
207 * is returned.
208 */
209 virtual ir_variable *whole_variable_referenced()
210 {
211 return NULL;
212 }
213
214 /**
215 * Determine if an r-value has the value zero
216 *
217 * The base implementation of this function always returns \c false. The
218 * \c ir_constant class over-rides this function to return \c true \b only
219 * for vector and scalar types that have all elements set to the value
220 * zero (or \c false for booleans).
221 *
222 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
223 * ir_constant::is_basis
224 */
225 virtual bool is_zero() const;
226
227 /**
228 * Determine if an r-value has the value one
229 *
230 * The base implementation of this function always returns \c false. The
231 * \c ir_constant class over-rides this function to return \c true \b only
232 * for vector and scalar types that have all elements set to the value
233 * one (or \c true for booleans).
234 *
235 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
236 * ir_constant::is_basis
237 */
238 virtual bool is_one() const;
239
240 /**
241 * Determine if an r-value has the value negative one
242 *
243 * The base implementation of this function always returns \c false. The
244 * \c ir_constant class over-rides this function to return \c true \b only
245 * for vector and scalar types that have all elements set to the value
246 * negative one. For boolean types, the result is always \c false.
247 *
248 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
249 * ir_constant::is_basis
250 */
251 virtual bool is_negative_one() const;
252
253 /**
254 * Determine if an r-value is a basis vector
255 *
256 * The base implementation of this function always returns \c false. The
257 * \c ir_constant class over-rides this function to return \c true \b only
258 * for vector and scalar types that have one element set to the value one,
259 * and the other elements set to the value zero. For boolean types, the
260 * result is always \c false.
261 *
262 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
263 * is_constant::is_negative_one
264 */
265 virtual bool is_basis() const;
266
267
268 /**
269 * Return a generic value of error_type.
270 *
271 * Allocation will be performed with 'mem_ctx' as ralloc owner.
272 */
273 static ir_rvalue *error_value(void *mem_ctx);
274
275 protected:
276 ir_rvalue();
277 };
278
279
280 /**
281 * Variable storage classes
282 */
283 enum ir_variable_mode {
284 ir_var_auto = 0, /**< Function local variables and globals. */
285 ir_var_uniform, /**< Variable declared as a uniform. */
286 ir_var_shader_in,
287 ir_var_shader_out,
288 ir_var_function_in,
289 ir_var_function_out,
290 ir_var_function_inout,
291 ir_var_const_in, /**< "in" param that must be a constant expression */
292 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
293 ir_var_temporary, /**< Temporary variable generated during compilation. */
294 ir_var_mode_count /**< Number of variable modes */
295 };
296
297 /**
298 * Enum keeping track of how a variable was declared. For error checking of
299 * the gl_PerVertex redeclaration rules.
300 */
301 enum ir_var_declaration_type {
302 /**
303 * Normal declaration (for most variables, this means an explicit
304 * declaration. Exception: temporaries are always implicitly declared, but
305 * they still use ir_var_declared_normally).
306 *
307 * Note: an ir_variable that represents a named interface block uses
308 * ir_var_declared_normally.
309 */
310 ir_var_declared_normally = 0,
311
312 /**
313 * Variable was explicitly declared (or re-declared) in an unnamed
314 * interface block.
315 */
316 ir_var_declared_in_block,
317
318 /**
319 * Variable is an implicitly declared built-in that has not been explicitly
320 * re-declared by the shader.
321 */
322 ir_var_declared_implicitly,
323 };
324
325 /**
326 * \brief Layout qualifiers for gl_FragDepth.
327 *
328 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
329 * with a layout qualifier.
330 */
331 enum ir_depth_layout {
332 ir_depth_layout_none, /**< No depth layout is specified. */
333 ir_depth_layout_any,
334 ir_depth_layout_greater,
335 ir_depth_layout_less,
336 ir_depth_layout_unchanged
337 };
338
339 /**
340 * \brief Convert depth layout qualifier to string.
341 */
342 const char*
343 depth_layout_string(ir_depth_layout layout);
344
345 /**
346 * Description of built-in state associated with a uniform
347 *
348 * \sa ir_variable::state_slots
349 */
350 struct ir_state_slot {
351 int tokens[5];
352 int swizzle;
353 };
354
355
356 /**
357 * Get the string value for an interpolation qualifier
358 *
359 * \return The string that would be used in a shader to specify \c
360 * mode will be returned.
361 *
362 * This function is used to generate error messages of the form "shader
363 * uses %s interpolation qualifier", so in the case where there is no
364 * interpolation qualifier, it returns "no".
365 *
366 * This function should only be used on a shader input or output variable.
367 */
368 const char *interpolation_string(unsigned interpolation);
369
370
371 class ir_variable : public ir_instruction {
372 public:
373 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
374
375 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
376
377 virtual ir_variable *as_variable()
378 {
379 return this;
380 }
381
382 virtual void accept(ir_visitor *v)
383 {
384 v->visit(this);
385 }
386
387 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
388
389
390 /**
391 * Determine how this variable should be interpolated based on its
392 * interpolation qualifier (if present), whether it is gl_Color or
393 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
394 * state.
395 *
396 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
397 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
398 */
399 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
400
401 /**
402 * Determine whether or not a variable is part of a uniform block.
403 */
404 inline bool is_in_uniform_block() const
405 {
406 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
407 }
408
409 /**
410 * Determine whether or not a variable is the declaration of an interface
411 * block
412 *
413 * For the first declaration below, there will be an \c ir_variable named
414 * "instance" whose type and whose instance_type will be the same
415 * \cglsl_type. For the second declaration, there will be an \c ir_variable
416 * named "f" whose type is float and whose instance_type is B2.
417 *
418 * "instance" is an interface instance variable, but "f" is not.
419 *
420 * uniform B1 {
421 * float f;
422 * } instance;
423 *
424 * uniform B2 {
425 * float f;
426 * };
427 */
428 inline bool is_interface_instance() const
429 {
430 const glsl_type *const t = this->type;
431
432 return (t == this->interface_type)
433 || (t->is_array() && t->fields.array == this->interface_type);
434 }
435
436 /**
437 * Set this->interface_type on a newly created variable.
438 */
439 void init_interface_type(const struct glsl_type *type)
440 {
441 assert(this->interface_type == NULL);
442 this->interface_type = type;
443 if (this->is_interface_instance()) {
444 this->max_ifc_array_access =
445 rzalloc_array(this, unsigned, type->length);
446 }
447 }
448
449 /**
450 * Change this->interface_type on a variable that previously had a
451 * different, but compatible, interface_type. This is used during linking
452 * to set the size of arrays in interface blocks.
453 */
454 void change_interface_type(const struct glsl_type *type)
455 {
456 if (this->max_ifc_array_access != NULL) {
457 /* max_ifc_array_access has already been allocated, so make sure the
458 * new interface has the same number of fields as the old one.
459 */
460 assert(this->interface_type->length == type->length);
461 }
462 this->interface_type = type;
463 }
464
465 /**
466 * Change this->interface_type on a variable that previously had a
467 * different, and incompatible, interface_type. This is used during
468 * compilation to handle redeclaration of the built-in gl_PerVertex
469 * interface block.
470 */
471 void reinit_interface_type(const struct glsl_type *type)
472 {
473 if (this->max_ifc_array_access != NULL) {
474 #ifndef NDEBUG
475 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
476 * it defines have been accessed yet; so it's safe to throw away the
477 * old max_ifc_array_access pointer, since all of its values are
478 * zero.
479 */
480 for (unsigned i = 0; i < this->interface_type->length; i++)
481 assert(this->max_ifc_array_access[i] == 0);
482 #endif
483 ralloc_free(this->max_ifc_array_access);
484 this->max_ifc_array_access = NULL;
485 }
486 this->interface_type = NULL;
487 init_interface_type(type);
488 }
489
490 const glsl_type *get_interface_type() const
491 {
492 return this->interface_type;
493 }
494
495 /**
496 * Declared type of the variable
497 */
498 const struct glsl_type *type;
499
500 /**
501 * Declared name of the variable
502 */
503 const char *name;
504
505 /**
506 * For variables which satisfy the is_interface_instance() predicate, this
507 * points to an array of integers such that if the ith member of the
508 * interface block is an array, max_ifc_array_access[i] is the maximum
509 * array element of that member that has been accessed. If the ith member
510 * of the interface block is not an array, max_ifc_array_access[i] is
511 * unused.
512 *
513 * For variables whose type is not an interface block, this pointer is
514 * NULL.
515 */
516 unsigned *max_ifc_array_access;
517
518 struct ir_variable_data {
519
520 /**
521 * Is the variable read-only?
522 *
523 * This is set for variables declared as \c const, shader inputs,
524 * and uniforms.
525 */
526 unsigned read_only:1;
527 unsigned centroid:1;
528 unsigned sample:1;
529 unsigned invariant:1;
530
531 /**
532 * Has this variable been used for reading or writing?
533 *
534 * Several GLSL semantic checks require knowledge of whether or not a
535 * variable has been used. For example, it is an error to redeclare a
536 * variable as invariant after it has been used.
537 *
538 * This is only maintained in the ast_to_hir.cpp path, not in
539 * Mesa's fixed function or ARB program paths.
540 */
541 unsigned used:1;
542
543 /**
544 * Has this variable been statically assigned?
545 *
546 * This answers whether the variable was assigned in any path of
547 * the shader during ast_to_hir. This doesn't answer whether it is
548 * still written after dead code removal, nor is it maintained in
549 * non-ast_to_hir.cpp (GLSL parsing) paths.
550 */
551 unsigned assigned:1;
552
553 /**
554 * Enum indicating how the variable was declared. See
555 * ir_var_declaration_type.
556 *
557 * This is used to detect certain kinds of illegal variable redeclarations.
558 */
559 unsigned how_declared:2;
560
561 /**
562 * Storage class of the variable.
563 *
564 * \sa ir_variable_mode
565 */
566 unsigned mode:4;
567
568 /**
569 * Interpolation mode for shader inputs / outputs
570 *
571 * \sa ir_variable_interpolation
572 */
573 unsigned interpolation:2;
574
575 /**
576 * \name ARB_fragment_coord_conventions
577 * @{
578 */
579 unsigned origin_upper_left:1;
580 unsigned pixel_center_integer:1;
581 /*@}*/
582
583 /**
584 * Was the location explicitly set in the shader?
585 *
586 * If the location is explicitly set in the shader, it \b cannot be changed
587 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
588 * no effect).
589 */
590 unsigned explicit_location:1;
591 unsigned explicit_index:1;
592
593 /**
594 * Was an initial binding explicitly set in the shader?
595 *
596 * If so, constant_value contains an integer ir_constant representing the
597 * initial binding point.
598 */
599 unsigned explicit_binding:1;
600
601 /**
602 * Does this variable have an initializer?
603 *
604 * This is used by the linker to cross-validiate initializers of global
605 * variables.
606 */
607 unsigned has_initializer:1;
608
609 /**
610 * Is this variable a generic output or input that has not yet been matched
611 * up to a variable in another stage of the pipeline?
612 *
613 * This is used by the linker as scratch storage while assigning locations
614 * to generic inputs and outputs.
615 */
616 unsigned is_unmatched_generic_inout:1;
617
618 /**
619 * If non-zero, then this variable may be packed along with other variables
620 * into a single varying slot, so this offset should be applied when
621 * accessing components. For example, an offset of 1 means that the x
622 * component of this variable is actually stored in component y of the
623 * location specified by \c location.
624 */
625 unsigned location_frac:2;
626
627 /**
628 * Non-zero if this variable was created by lowering a named interface
629 * block which was not an array.
630 *
631 * Note that this variable and \c from_named_ifc_block_array will never
632 * both be non-zero.
633 */
634 unsigned from_named_ifc_block_nonarray:1;
635
636 /**
637 * Non-zero if this variable was created by lowering a named interface
638 * block which was an array.
639 *
640 * Note that this variable and \c from_named_ifc_block_nonarray will never
641 * both be non-zero.
642 */
643 unsigned from_named_ifc_block_array:1;
644
645 /**
646 * \brief Layout qualifier for gl_FragDepth.
647 *
648 * This is not equal to \c ir_depth_layout_none if and only if this
649 * variable is \c gl_FragDepth and a layout qualifier is specified.
650 */
651 ir_depth_layout depth_layout;
652
653 /**
654 * Storage location of the base of this variable
655 *
656 * The precise meaning of this field depends on the nature of the variable.
657 *
658 * - Vertex shader input: one of the values from \c gl_vert_attrib.
659 * - Vertex shader output: one of the values from \c gl_varying_slot.
660 * - Geometry shader input: one of the values from \c gl_varying_slot.
661 * - Geometry shader output: one of the values from \c gl_varying_slot.
662 * - Fragment shader input: one of the values from \c gl_varying_slot.
663 * - Fragment shader output: one of the values from \c gl_frag_result.
664 * - Uniforms: Per-stage uniform slot number for default uniform block.
665 * - Uniforms: Index within the uniform block definition for UBO members.
666 * - Other: This field is not currently used.
667 *
668 * If the variable is a uniform, shader input, or shader output, and the
669 * slot has not been assigned, the value will be -1.
670 */
671 int location;
672
673 /**
674 * output index for dual source blending.
675 */
676 int index;
677
678 /**
679 * Initial binding point for a sampler or UBO.
680 *
681 * For array types, this represents the binding point for the first element.
682 */
683 int binding;
684
685 /**
686 * Location an atomic counter is stored at.
687 */
688 struct {
689 unsigned buffer_index;
690 unsigned offset;
691 } atomic;
692
693 /**
694 * ARB_shader_image_load_store qualifiers.
695 */
696 struct {
697 bool read_only; /**< "readonly" qualifier. */
698 bool write_only; /**< "writeonly" qualifier. */
699 bool coherent;
700 bool _volatile;
701 bool restrict_flag;
702
703 /** Image internal format if specified explicitly, otherwise GL_NONE. */
704 GLenum format;
705 } image;
706
707 /**
708 * Highest element accessed with a constant expression array index
709 *
710 * Not used for non-array variables.
711 */
712 unsigned max_array_access;
713
714 } data;
715
716 /**
717 * Built-in state that backs this uniform
718 *
719 * Once set at variable creation, \c state_slots must remain invariant.
720 * This is because, ideally, this array would be shared by all clones of
721 * this variable in the IR tree. In other words, we'd really like for it
722 * to be a fly-weight.
723 *
724 * If the variable is not a uniform, \c num_state_slots will be zero and
725 * \c state_slots will be \c NULL.
726 */
727 /*@{*/
728 unsigned num_state_slots; /**< Number of state slots used */
729 ir_state_slot *state_slots; /**< State descriptors. */
730 /*@}*/
731
732 /**
733 * Emit a warning if this variable is accessed.
734 */
735 const char *warn_extension;
736
737 /**
738 * Value assigned in the initializer of a variable declared "const"
739 */
740 ir_constant *constant_value;
741
742 /**
743 * Constant expression assigned in the initializer of the variable
744 *
745 * \warning
746 * This field and \c ::constant_value are distinct. Even if the two fields
747 * refer to constants with the same value, they must point to separate
748 * objects.
749 */
750 ir_constant *constant_initializer;
751
752 private:
753 /**
754 * For variables that are in an interface block or are an instance of an
755 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
756 *
757 * \sa ir_variable::location
758 */
759 const glsl_type *interface_type;
760 };
761
762 /**
763 * A function that returns whether a built-in function is available in the
764 * current shading language (based on version, ES or desktop, and extensions).
765 */
766 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
767
768 /*@{*/
769 /**
770 * The representation of a function instance; may be the full definition or
771 * simply a prototype.
772 */
773 class ir_function_signature : public ir_instruction {
774 /* An ir_function_signature will be part of the list of signatures in
775 * an ir_function.
776 */
777 public:
778 ir_function_signature(const glsl_type *return_type,
779 builtin_available_predicate builtin_avail = NULL);
780
781 virtual ir_function_signature *clone(void *mem_ctx,
782 struct hash_table *ht) const;
783 ir_function_signature *clone_prototype(void *mem_ctx,
784 struct hash_table *ht) const;
785
786 virtual void accept(ir_visitor *v)
787 {
788 v->visit(this);
789 }
790
791 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
792
793 /**
794 * Attempt to evaluate this function as a constant expression,
795 * given a list of the actual parameters and the variable context.
796 * Returns NULL for non-built-ins.
797 */
798 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
799
800 /**
801 * Get the name of the function for which this is a signature
802 */
803 const char *function_name() const;
804
805 /**
806 * Get a handle to the function for which this is a signature
807 *
808 * There is no setter function, this function returns a \c const pointer,
809 * and \c ir_function_signature::_function is private for a reason. The
810 * only way to make a connection between a function and function signature
811 * is via \c ir_function::add_signature. This helps ensure that certain
812 * invariants (i.e., a function signature is in the list of signatures for
813 * its \c _function) are met.
814 *
815 * \sa ir_function::add_signature
816 */
817 inline const class ir_function *function() const
818 {
819 return this->_function;
820 }
821
822 /**
823 * Check whether the qualifiers match between this signature's parameters
824 * and the supplied parameter list. If not, returns the name of the first
825 * parameter with mismatched qualifiers (for use in error messages).
826 */
827 const char *qualifiers_match(exec_list *params);
828
829 /**
830 * Replace the current parameter list with the given one. This is useful
831 * if the current information came from a prototype, and either has invalid
832 * or missing parameter names.
833 */
834 void replace_parameters(exec_list *new_params);
835
836 /**
837 * Function return type.
838 *
839 * \note This discards the optional precision qualifier.
840 */
841 const struct glsl_type *return_type;
842
843 /**
844 * List of ir_variable of function parameters.
845 *
846 * This represents the storage. The paramaters passed in a particular
847 * call will be in ir_call::actual_paramaters.
848 */
849 struct exec_list parameters;
850
851 /** Whether or not this function has a body (which may be empty). */
852 unsigned is_defined:1;
853
854 /** Whether or not this function signature is a built-in. */
855 bool is_builtin() const;
856
857 /**
858 * Whether or not this function is an intrinsic to be implemented
859 * by the driver.
860 */
861 bool is_intrinsic;
862
863 /** Whether or not a built-in is available for this shader. */
864 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
865
866 /** Body of instructions in the function. */
867 struct exec_list body;
868
869 private:
870 /**
871 * A function pointer to a predicate that answers whether a built-in
872 * function is available in the current shader. NULL if not a built-in.
873 */
874 builtin_available_predicate builtin_avail;
875
876 /** Function of which this signature is one overload. */
877 class ir_function *_function;
878
879 /** Function signature of which this one is a prototype clone */
880 const ir_function_signature *origin;
881
882 friend class ir_function;
883
884 /**
885 * Helper function to run a list of instructions for constant
886 * expression evaluation.
887 *
888 * The hash table represents the values of the visible variables.
889 * There are no scoping issues because the table is indexed on
890 * ir_variable pointers, not variable names.
891 *
892 * Returns false if the expression is not constant, true otherwise,
893 * and the value in *result if result is non-NULL.
894 */
895 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
896 struct hash_table *variable_context,
897 ir_constant **result);
898 };
899
900
901 /**
902 * Header for tracking multiple overloaded functions with the same name.
903 * Contains a list of ir_function_signatures representing each of the
904 * actual functions.
905 */
906 class ir_function : public ir_instruction {
907 public:
908 ir_function(const char *name);
909
910 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
911
912 virtual ir_function *as_function()
913 {
914 return this;
915 }
916
917 virtual void accept(ir_visitor *v)
918 {
919 v->visit(this);
920 }
921
922 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
923
924 void add_signature(ir_function_signature *sig)
925 {
926 sig->_function = this;
927 this->signatures.push_tail(sig);
928 }
929
930 /**
931 * Find a signature that matches a set of actual parameters, taking implicit
932 * conversions into account. Also flags whether the match was exact.
933 */
934 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
935 const exec_list *actual_param,
936 bool *match_is_exact);
937
938 /**
939 * Find a signature that matches a set of actual parameters, taking implicit
940 * conversions into account.
941 */
942 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
943 const exec_list *actual_param);
944
945 /**
946 * Find a signature that exactly matches a set of actual parameters without
947 * any implicit type conversions.
948 */
949 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
950 const exec_list *actual_ps);
951
952 /**
953 * Name of the function.
954 */
955 const char *name;
956
957 /** Whether or not this function has a signature that isn't a built-in. */
958 bool has_user_signature();
959
960 /**
961 * List of ir_function_signature for each overloaded function with this name.
962 */
963 struct exec_list signatures;
964 };
965
966 inline const char *ir_function_signature::function_name() const
967 {
968 return this->_function->name;
969 }
970 /*@}*/
971
972
973 /**
974 * IR instruction representing high-level if-statements
975 */
976 class ir_if : public ir_instruction {
977 public:
978 ir_if(ir_rvalue *condition)
979 : condition(condition)
980 {
981 ir_type = ir_type_if;
982 }
983
984 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
985
986 virtual ir_if *as_if()
987 {
988 return this;
989 }
990
991 virtual void accept(ir_visitor *v)
992 {
993 v->visit(this);
994 }
995
996 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
997
998 ir_rvalue *condition;
999 /** List of ir_instruction for the body of the then branch */
1000 exec_list then_instructions;
1001 /** List of ir_instruction for the body of the else branch */
1002 exec_list else_instructions;
1003 };
1004
1005
1006 /**
1007 * IR instruction representing a high-level loop structure.
1008 */
1009 class ir_loop : public ir_instruction {
1010 public:
1011 ir_loop();
1012
1013 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1014
1015 virtual void accept(ir_visitor *v)
1016 {
1017 v->visit(this);
1018 }
1019
1020 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1021
1022 virtual ir_loop *as_loop()
1023 {
1024 return this;
1025 }
1026
1027 /** List of ir_instruction that make up the body of the loop. */
1028 exec_list body_instructions;
1029 };
1030
1031
1032 class ir_assignment : public ir_instruction {
1033 public:
1034 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1035
1036 /**
1037 * Construct an assignment with an explicit write mask
1038 *
1039 * \note
1040 * Since a write mask is supplied, the LHS must already be a bare
1041 * \c ir_dereference. The cannot be any swizzles in the LHS.
1042 */
1043 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1044 unsigned write_mask);
1045
1046 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1047
1048 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1049
1050 virtual void accept(ir_visitor *v)
1051 {
1052 v->visit(this);
1053 }
1054
1055 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1056
1057 virtual ir_assignment * as_assignment()
1058 {
1059 return this;
1060 }
1061
1062 /**
1063 * Get a whole variable written by an assignment
1064 *
1065 * If the LHS of the assignment writes a whole variable, the variable is
1066 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1067 * assignment are:
1068 *
1069 * - Assigning to a scalar
1070 * - Assigning to all components of a vector
1071 * - Whole array (or matrix) assignment
1072 * - Whole structure assignment
1073 */
1074 ir_variable *whole_variable_written();
1075
1076 /**
1077 * Set the LHS of an assignment
1078 */
1079 void set_lhs(ir_rvalue *lhs);
1080
1081 /**
1082 * Left-hand side of the assignment.
1083 *
1084 * This should be treated as read only. If you need to set the LHS of an
1085 * assignment, use \c ir_assignment::set_lhs.
1086 */
1087 ir_dereference *lhs;
1088
1089 /**
1090 * Value being assigned
1091 */
1092 ir_rvalue *rhs;
1093
1094 /**
1095 * Optional condition for the assignment.
1096 */
1097 ir_rvalue *condition;
1098
1099
1100 /**
1101 * Component mask written
1102 *
1103 * For non-vector types in the LHS, this field will be zero. For vector
1104 * types, a bit will be set for each component that is written. Note that
1105 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1106 *
1107 * A partially-set write mask means that each enabled channel gets
1108 * the value from a consecutive channel of the rhs. For example,
1109 * to write just .xyw of gl_FrontColor with color:
1110 *
1111 * (assign (constant bool (1)) (xyw)
1112 * (var_ref gl_FragColor)
1113 * (swiz xyw (var_ref color)))
1114 */
1115 unsigned write_mask:4;
1116 };
1117
1118 /* Update ir_expression::get_num_operands() and operator_strs when
1119 * updating this list.
1120 */
1121 enum ir_expression_operation {
1122 ir_unop_bit_not,
1123 ir_unop_logic_not,
1124 ir_unop_neg,
1125 ir_unop_abs,
1126 ir_unop_sign,
1127 ir_unop_rcp,
1128 ir_unop_rsq,
1129 ir_unop_sqrt,
1130 ir_unop_exp, /**< Log base e on gentype */
1131 ir_unop_log, /**< Natural log on gentype */
1132 ir_unop_exp2,
1133 ir_unop_log2,
1134 ir_unop_f2i, /**< Float-to-integer conversion. */
1135 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1136 ir_unop_i2f, /**< Integer-to-float conversion. */
1137 ir_unop_f2b, /**< Float-to-boolean conversion */
1138 ir_unop_b2f, /**< Boolean-to-float conversion */
1139 ir_unop_i2b, /**< int-to-boolean conversion */
1140 ir_unop_b2i, /**< Boolean-to-int conversion */
1141 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1142 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1143 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1144 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1145 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1146 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1147 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1148 ir_unop_any,
1149
1150 /**
1151 * \name Unary floating-point rounding operations.
1152 */
1153 /*@{*/
1154 ir_unop_trunc,
1155 ir_unop_ceil,
1156 ir_unop_floor,
1157 ir_unop_fract,
1158 ir_unop_round_even,
1159 /*@}*/
1160
1161 /**
1162 * \name Trigonometric operations.
1163 */
1164 /*@{*/
1165 ir_unop_sin,
1166 ir_unop_cos,
1167 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1168 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1169 /*@}*/
1170
1171 /**
1172 * \name Partial derivatives.
1173 */
1174 /*@{*/
1175 ir_unop_dFdx,
1176 ir_unop_dFdy,
1177 /*@}*/
1178
1179 /**
1180 * \name Floating point pack and unpack operations.
1181 */
1182 /*@{*/
1183 ir_unop_pack_snorm_2x16,
1184 ir_unop_pack_snorm_4x8,
1185 ir_unop_pack_unorm_2x16,
1186 ir_unop_pack_unorm_4x8,
1187 ir_unop_pack_half_2x16,
1188 ir_unop_unpack_snorm_2x16,
1189 ir_unop_unpack_snorm_4x8,
1190 ir_unop_unpack_unorm_2x16,
1191 ir_unop_unpack_unorm_4x8,
1192 ir_unop_unpack_half_2x16,
1193 /*@}*/
1194
1195 /**
1196 * \name Lowered floating point unpacking operations.
1197 *
1198 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1199 */
1200 /*@{*/
1201 ir_unop_unpack_half_2x16_split_x,
1202 ir_unop_unpack_half_2x16_split_y,
1203 /*@}*/
1204
1205 /**
1206 * \name Bit operations, part of ARB_gpu_shader5.
1207 */
1208 /*@{*/
1209 ir_unop_bitfield_reverse,
1210 ir_unop_bit_count,
1211 ir_unop_find_msb,
1212 ir_unop_find_lsb,
1213 /*@}*/
1214
1215 ir_unop_noise,
1216
1217 /**
1218 * A sentinel marking the last of the unary operations.
1219 */
1220 ir_last_unop = ir_unop_noise,
1221
1222 ir_binop_add,
1223 ir_binop_sub,
1224 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1225 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1226 ir_binop_div,
1227
1228 /**
1229 * Returns the carry resulting from the addition of the two arguments.
1230 */
1231 /*@{*/
1232 ir_binop_carry,
1233 /*@}*/
1234
1235 /**
1236 * Returns the borrow resulting from the subtraction of the second argument
1237 * from the first argument.
1238 */
1239 /*@{*/
1240 ir_binop_borrow,
1241 /*@}*/
1242
1243 /**
1244 * Takes one of two combinations of arguments:
1245 *
1246 * - mod(vecN, vecN)
1247 * - mod(vecN, float)
1248 *
1249 * Does not take integer types.
1250 */
1251 ir_binop_mod,
1252
1253 /**
1254 * \name Binary comparison operators which return a boolean vector.
1255 * The type of both operands must be equal.
1256 */
1257 /*@{*/
1258 ir_binop_less,
1259 ir_binop_greater,
1260 ir_binop_lequal,
1261 ir_binop_gequal,
1262 ir_binop_equal,
1263 ir_binop_nequal,
1264 /**
1265 * Returns single boolean for whether all components of operands[0]
1266 * equal the components of operands[1].
1267 */
1268 ir_binop_all_equal,
1269 /**
1270 * Returns single boolean for whether any component of operands[0]
1271 * is not equal to the corresponding component of operands[1].
1272 */
1273 ir_binop_any_nequal,
1274 /*@}*/
1275
1276 /**
1277 * \name Bit-wise binary operations.
1278 */
1279 /*@{*/
1280 ir_binop_lshift,
1281 ir_binop_rshift,
1282 ir_binop_bit_and,
1283 ir_binop_bit_xor,
1284 ir_binop_bit_or,
1285 /*@}*/
1286
1287 ir_binop_logic_and,
1288 ir_binop_logic_xor,
1289 ir_binop_logic_or,
1290
1291 ir_binop_dot,
1292 ir_binop_min,
1293 ir_binop_max,
1294
1295 ir_binop_pow,
1296
1297 /**
1298 * \name Lowered floating point packing operations.
1299 *
1300 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1301 */
1302 /*@{*/
1303 ir_binop_pack_half_2x16_split,
1304 /*@}*/
1305
1306 /**
1307 * \name First half of a lowered bitfieldInsert() operation.
1308 *
1309 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1310 */
1311 /*@{*/
1312 ir_binop_bfm,
1313 /*@}*/
1314
1315 /**
1316 * Load a value the size of a given GLSL type from a uniform block.
1317 *
1318 * operand0 is the ir_constant uniform block index in the linked shader.
1319 * operand1 is a byte offset within the uniform block.
1320 */
1321 ir_binop_ubo_load,
1322
1323 /**
1324 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1325 */
1326 /*@{*/
1327 ir_binop_ldexp,
1328 /*@}*/
1329
1330 /**
1331 * Extract a scalar from a vector
1332 *
1333 * operand0 is the vector
1334 * operand1 is the index of the field to read from operand0
1335 */
1336 ir_binop_vector_extract,
1337
1338 /**
1339 * A sentinel marking the last of the binary operations.
1340 */
1341 ir_last_binop = ir_binop_vector_extract,
1342
1343 /**
1344 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1345 */
1346 /*@{*/
1347 ir_triop_fma,
1348 /*@}*/
1349
1350 ir_triop_lrp,
1351
1352 /**
1353 * \name Conditional Select
1354 *
1355 * A vector conditional select instruction (like ?:, but operating per-
1356 * component on vectors).
1357 *
1358 * \see lower_instructions_visitor::ldexp_to_arith
1359 */
1360 /*@{*/
1361 ir_triop_csel,
1362 /*@}*/
1363
1364 /**
1365 * \name Second half of a lowered bitfieldInsert() operation.
1366 *
1367 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1368 */
1369 /*@{*/
1370 ir_triop_bfi,
1371 /*@}*/
1372
1373 ir_triop_bitfield_extract,
1374
1375 /**
1376 * Generate a value with one field of a vector changed
1377 *
1378 * operand0 is the vector
1379 * operand1 is the value to write into the vector result
1380 * operand2 is the index in operand0 to be modified
1381 */
1382 ir_triop_vector_insert,
1383
1384 /**
1385 * A sentinel marking the last of the ternary operations.
1386 */
1387 ir_last_triop = ir_triop_vector_insert,
1388
1389 ir_quadop_bitfield_insert,
1390
1391 ir_quadop_vector,
1392
1393 /**
1394 * A sentinel marking the last of the ternary operations.
1395 */
1396 ir_last_quadop = ir_quadop_vector,
1397
1398 /**
1399 * A sentinel marking the last of all operations.
1400 */
1401 ir_last_opcode = ir_quadop_vector
1402 };
1403
1404 class ir_expression : public ir_rvalue {
1405 public:
1406 ir_expression(int op, const struct glsl_type *type,
1407 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1408 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1409
1410 /**
1411 * Constructor for unary operation expressions
1412 */
1413 ir_expression(int op, ir_rvalue *);
1414
1415 /**
1416 * Constructor for binary operation expressions
1417 */
1418 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1419
1420 /**
1421 * Constructor for ternary operation expressions
1422 */
1423 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1424
1425 virtual ir_expression *as_expression()
1426 {
1427 return this;
1428 }
1429
1430 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1431
1432 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1433
1434 /**
1435 * Attempt to constant-fold the expression
1436 *
1437 * The "variable_context" hash table links ir_variable * to ir_constant *
1438 * that represent the variables' values. \c NULL represents an empty
1439 * context.
1440 *
1441 * If the expression cannot be constant folded, this method will return
1442 * \c NULL.
1443 */
1444 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1445
1446 /**
1447 * Determine the number of operands used by an expression
1448 */
1449 static unsigned int get_num_operands(ir_expression_operation);
1450
1451 /**
1452 * Determine the number of operands used by an expression
1453 */
1454 unsigned int get_num_operands() const
1455 {
1456 return (this->operation == ir_quadop_vector)
1457 ? this->type->vector_elements : get_num_operands(operation);
1458 }
1459
1460 /**
1461 * Return a string representing this expression's operator.
1462 */
1463 const char *operator_string();
1464
1465 /**
1466 * Return a string representing this expression's operator.
1467 */
1468 static const char *operator_string(ir_expression_operation);
1469
1470
1471 /**
1472 * Do a reverse-lookup to translate the given string into an operator.
1473 */
1474 static ir_expression_operation get_operator(const char *);
1475
1476 virtual void accept(ir_visitor *v)
1477 {
1478 v->visit(this);
1479 }
1480
1481 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1482
1483 ir_expression_operation operation;
1484 ir_rvalue *operands[4];
1485 };
1486
1487
1488 /**
1489 * HIR instruction representing a high-level function call, containing a list
1490 * of parameters and returning a value in the supplied temporary.
1491 */
1492 class ir_call : public ir_instruction {
1493 public:
1494 ir_call(ir_function_signature *callee,
1495 ir_dereference_variable *return_deref,
1496 exec_list *actual_parameters)
1497 : return_deref(return_deref), callee(callee)
1498 {
1499 ir_type = ir_type_call;
1500 assert(callee->return_type != NULL);
1501 actual_parameters->move_nodes_to(& this->actual_parameters);
1502 this->use_builtin = callee->is_builtin();
1503 }
1504
1505 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1506
1507 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1508
1509 virtual ir_call *as_call()
1510 {
1511 return this;
1512 }
1513
1514 virtual void accept(ir_visitor *v)
1515 {
1516 v->visit(this);
1517 }
1518
1519 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1520
1521 /**
1522 * Get the name of the function being called.
1523 */
1524 const char *callee_name() const
1525 {
1526 return callee->function_name();
1527 }
1528
1529 /**
1530 * Generates an inline version of the function before @ir,
1531 * storing the return value in return_deref.
1532 */
1533 void generate_inline(ir_instruction *ir);
1534
1535 /**
1536 * Storage for the function's return value.
1537 * This must be NULL if the return type is void.
1538 */
1539 ir_dereference_variable *return_deref;
1540
1541 /**
1542 * The specific function signature being called.
1543 */
1544 ir_function_signature *callee;
1545
1546 /* List of ir_rvalue of paramaters passed in this call. */
1547 exec_list actual_parameters;
1548
1549 /** Should this call only bind to a built-in function? */
1550 bool use_builtin;
1551 };
1552
1553
1554 /**
1555 * \name Jump-like IR instructions.
1556 *
1557 * These include \c break, \c continue, \c return, and \c discard.
1558 */
1559 /*@{*/
1560 class ir_jump : public ir_instruction {
1561 protected:
1562 ir_jump()
1563 {
1564 ir_type = ir_type_unset;
1565 }
1566
1567 public:
1568 virtual ir_jump *as_jump()
1569 {
1570 return this;
1571 }
1572 };
1573
1574 class ir_return : public ir_jump {
1575 public:
1576 ir_return()
1577 : value(NULL)
1578 {
1579 this->ir_type = ir_type_return;
1580 }
1581
1582 ir_return(ir_rvalue *value)
1583 : value(value)
1584 {
1585 this->ir_type = ir_type_return;
1586 }
1587
1588 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1589
1590 virtual ir_return *as_return()
1591 {
1592 return this;
1593 }
1594
1595 ir_rvalue *get_value() const
1596 {
1597 return value;
1598 }
1599
1600 virtual void accept(ir_visitor *v)
1601 {
1602 v->visit(this);
1603 }
1604
1605 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1606
1607 ir_rvalue *value;
1608 };
1609
1610
1611 /**
1612 * Jump instructions used inside loops
1613 *
1614 * These include \c break and \c continue. The \c break within a loop is
1615 * different from the \c break within a switch-statement.
1616 *
1617 * \sa ir_switch_jump
1618 */
1619 class ir_loop_jump : public ir_jump {
1620 public:
1621 enum jump_mode {
1622 jump_break,
1623 jump_continue
1624 };
1625
1626 ir_loop_jump(jump_mode mode)
1627 {
1628 this->ir_type = ir_type_loop_jump;
1629 this->mode = mode;
1630 }
1631
1632 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1633
1634 virtual void accept(ir_visitor *v)
1635 {
1636 v->visit(this);
1637 }
1638
1639 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1640
1641 bool is_break() const
1642 {
1643 return mode == jump_break;
1644 }
1645
1646 bool is_continue() const
1647 {
1648 return mode == jump_continue;
1649 }
1650
1651 /** Mode selector for the jump instruction. */
1652 enum jump_mode mode;
1653 };
1654
1655 /**
1656 * IR instruction representing discard statements.
1657 */
1658 class ir_discard : public ir_jump {
1659 public:
1660 ir_discard()
1661 {
1662 this->ir_type = ir_type_discard;
1663 this->condition = NULL;
1664 }
1665
1666 ir_discard(ir_rvalue *cond)
1667 {
1668 this->ir_type = ir_type_discard;
1669 this->condition = cond;
1670 }
1671
1672 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1673
1674 virtual void accept(ir_visitor *v)
1675 {
1676 v->visit(this);
1677 }
1678
1679 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1680
1681 virtual ir_discard *as_discard()
1682 {
1683 return this;
1684 }
1685
1686 ir_rvalue *condition;
1687 };
1688 /*@}*/
1689
1690
1691 /**
1692 * Texture sampling opcodes used in ir_texture
1693 */
1694 enum ir_texture_opcode {
1695 ir_tex, /**< Regular texture look-up */
1696 ir_txb, /**< Texture look-up with LOD bias */
1697 ir_txl, /**< Texture look-up with explicit LOD */
1698 ir_txd, /**< Texture look-up with partial derivatvies */
1699 ir_txf, /**< Texel fetch with explicit LOD */
1700 ir_txf_ms, /**< Multisample texture fetch */
1701 ir_txs, /**< Texture size */
1702 ir_lod, /**< Texture lod query */
1703 ir_tg4, /**< Texture gather */
1704 ir_query_levels /**< Texture levels query */
1705 };
1706
1707
1708 /**
1709 * IR instruction to sample a texture
1710 *
1711 * The specific form of the IR instruction depends on the \c mode value
1712 * selected from \c ir_texture_opcodes. In the printed IR, these will
1713 * appear as:
1714 *
1715 * Texel offset (0 or an expression)
1716 * | Projection divisor
1717 * | | Shadow comparitor
1718 * | | |
1719 * v v v
1720 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1721 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1722 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1723 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1724 * (txf <type> <sampler> <coordinate> 0 <lod>)
1725 * (txf_ms
1726 * <type> <sampler> <coordinate> <sample_index>)
1727 * (txs <type> <sampler> <lod>)
1728 * (lod <type> <sampler> <coordinate>)
1729 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1730 * (query_levels <type> <sampler>)
1731 */
1732 class ir_texture : public ir_rvalue {
1733 public:
1734 ir_texture(enum ir_texture_opcode op)
1735 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1736 shadow_comparitor(NULL), offset(NULL)
1737 {
1738 this->ir_type = ir_type_texture;
1739 memset(&lod_info, 0, sizeof(lod_info));
1740 }
1741
1742 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1743
1744 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1745
1746 virtual void accept(ir_visitor *v)
1747 {
1748 v->visit(this);
1749 }
1750
1751 virtual ir_texture *as_texture()
1752 {
1753 return this;
1754 }
1755
1756 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1757
1758 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1759
1760 /**
1761 * Return a string representing the ir_texture_opcode.
1762 */
1763 const char *opcode_string();
1764
1765 /** Set the sampler and type. */
1766 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1767
1768 /**
1769 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1770 */
1771 static ir_texture_opcode get_opcode(const char *);
1772
1773 enum ir_texture_opcode op;
1774
1775 /** Sampler to use for the texture access. */
1776 ir_dereference *sampler;
1777
1778 /** Texture coordinate to sample */
1779 ir_rvalue *coordinate;
1780
1781 /**
1782 * Value used for projective divide.
1783 *
1784 * If there is no projective divide (the common case), this will be
1785 * \c NULL. Optimization passes should check for this to point to a constant
1786 * of 1.0 and replace that with \c NULL.
1787 */
1788 ir_rvalue *projector;
1789
1790 /**
1791 * Coordinate used for comparison on shadow look-ups.
1792 *
1793 * If there is no shadow comparison, this will be \c NULL. For the
1794 * \c ir_txf opcode, this *must* be \c NULL.
1795 */
1796 ir_rvalue *shadow_comparitor;
1797
1798 /** Texel offset. */
1799 ir_rvalue *offset;
1800
1801 union {
1802 ir_rvalue *lod; /**< Floating point LOD */
1803 ir_rvalue *bias; /**< Floating point LOD bias */
1804 ir_rvalue *sample_index; /**< MSAA sample index */
1805 ir_rvalue *component; /**< Gather component selector */
1806 struct {
1807 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1808 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1809 } grad;
1810 } lod_info;
1811 };
1812
1813
1814 struct ir_swizzle_mask {
1815 unsigned x:2;
1816 unsigned y:2;
1817 unsigned z:2;
1818 unsigned w:2;
1819
1820 /**
1821 * Number of components in the swizzle.
1822 */
1823 unsigned num_components:3;
1824
1825 /**
1826 * Does the swizzle contain duplicate components?
1827 *
1828 * L-value swizzles cannot contain duplicate components.
1829 */
1830 unsigned has_duplicates:1;
1831 };
1832
1833
1834 class ir_swizzle : public ir_rvalue {
1835 public:
1836 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1837 unsigned count);
1838
1839 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1840
1841 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1842
1843 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1844
1845 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1846
1847 virtual ir_swizzle *as_swizzle()
1848 {
1849 return this;
1850 }
1851
1852 /**
1853 * Construct an ir_swizzle from the textual representation. Can fail.
1854 */
1855 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1856
1857 virtual void accept(ir_visitor *v)
1858 {
1859 v->visit(this);
1860 }
1861
1862 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1863
1864 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1865
1866 bool is_lvalue() const
1867 {
1868 return val->is_lvalue() && !mask.has_duplicates;
1869 }
1870
1871 /**
1872 * Get the variable that is ultimately referenced by an r-value
1873 */
1874 virtual ir_variable *variable_referenced() const;
1875
1876 ir_rvalue *val;
1877 ir_swizzle_mask mask;
1878
1879 private:
1880 /**
1881 * Initialize the mask component of a swizzle
1882 *
1883 * This is used by the \c ir_swizzle constructors.
1884 */
1885 void init_mask(const unsigned *components, unsigned count);
1886 };
1887
1888
1889 class ir_dereference : public ir_rvalue {
1890 public:
1891 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1892
1893 virtual ir_dereference *as_dereference()
1894 {
1895 return this;
1896 }
1897
1898 bool is_lvalue() const;
1899
1900 /**
1901 * Get the variable that is ultimately referenced by an r-value
1902 */
1903 virtual ir_variable *variable_referenced() const = 0;
1904
1905 /**
1906 * Get the constant that is ultimately referenced by an r-value,
1907 * in a constant expression evaluation context.
1908 *
1909 * The offset is used when the reference is to a specific column of
1910 * a matrix.
1911 */
1912 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1913 };
1914
1915
1916 class ir_dereference_variable : public ir_dereference {
1917 public:
1918 ir_dereference_variable(ir_variable *var);
1919
1920 virtual ir_dereference_variable *clone(void *mem_ctx,
1921 struct hash_table *) const;
1922
1923 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1924
1925 virtual ir_dereference_variable *as_dereference_variable()
1926 {
1927 return this;
1928 }
1929
1930 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1931
1932 /**
1933 * Get the variable that is ultimately referenced by an r-value
1934 */
1935 virtual ir_variable *variable_referenced() const
1936 {
1937 return this->var;
1938 }
1939
1940 /**
1941 * Get the constant that is ultimately referenced by an r-value,
1942 * in a constant expression evaluation context.
1943 *
1944 * The offset is used when the reference is to a specific column of
1945 * a matrix.
1946 */
1947 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1948
1949 virtual ir_variable *whole_variable_referenced()
1950 {
1951 /* ir_dereference_variable objects always dereference the entire
1952 * variable. However, if this dereference is dereferenced by anything
1953 * else, the complete deferefernce chain is not a whole-variable
1954 * dereference. This method should only be called on the top most
1955 * ir_rvalue in a dereference chain.
1956 */
1957 return this->var;
1958 }
1959
1960 virtual void accept(ir_visitor *v)
1961 {
1962 v->visit(this);
1963 }
1964
1965 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1966
1967 /**
1968 * Object being dereferenced.
1969 */
1970 ir_variable *var;
1971 };
1972
1973
1974 class ir_dereference_array : public ir_dereference {
1975 public:
1976 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1977
1978 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1979
1980 virtual ir_dereference_array *clone(void *mem_ctx,
1981 struct hash_table *) const;
1982
1983 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1984
1985 virtual ir_dereference_array *as_dereference_array()
1986 {
1987 return this;
1988 }
1989
1990 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1991
1992 /**
1993 * Get the variable that is ultimately referenced by an r-value
1994 */
1995 virtual ir_variable *variable_referenced() const
1996 {
1997 return this->array->variable_referenced();
1998 }
1999
2000 /**
2001 * Get the constant that is ultimately referenced by an r-value,
2002 * in a constant expression evaluation context.
2003 *
2004 * The offset is used when the reference is to a specific column of
2005 * a matrix.
2006 */
2007 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2008
2009 virtual void accept(ir_visitor *v)
2010 {
2011 v->visit(this);
2012 }
2013
2014 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2015
2016 ir_rvalue *array;
2017 ir_rvalue *array_index;
2018
2019 private:
2020 void set_array(ir_rvalue *value);
2021 };
2022
2023
2024 class ir_dereference_record : public ir_dereference {
2025 public:
2026 ir_dereference_record(ir_rvalue *value, const char *field);
2027
2028 ir_dereference_record(ir_variable *var, const char *field);
2029
2030 virtual ir_dereference_record *clone(void *mem_ctx,
2031 struct hash_table *) const;
2032
2033 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2034
2035 virtual ir_dereference_record *as_dereference_record()
2036 {
2037 return this;
2038 }
2039
2040 /**
2041 * Get the variable that is ultimately referenced by an r-value
2042 */
2043 virtual ir_variable *variable_referenced() const
2044 {
2045 return this->record->variable_referenced();
2046 }
2047
2048 /**
2049 * Get the constant that is ultimately referenced by an r-value,
2050 * in a constant expression evaluation context.
2051 *
2052 * The offset is used when the reference is to a specific column of
2053 * a matrix.
2054 */
2055 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2056
2057 virtual void accept(ir_visitor *v)
2058 {
2059 v->visit(this);
2060 }
2061
2062 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2063
2064 ir_rvalue *record;
2065 const char *field;
2066 };
2067
2068
2069 /**
2070 * Data stored in an ir_constant
2071 */
2072 union ir_constant_data {
2073 unsigned u[16];
2074 int i[16];
2075 float f[16];
2076 bool b[16];
2077 };
2078
2079
2080 class ir_constant : public ir_rvalue {
2081 public:
2082 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2083 ir_constant(bool b, unsigned vector_elements=1);
2084 ir_constant(unsigned int u, unsigned vector_elements=1);
2085 ir_constant(int i, unsigned vector_elements=1);
2086 ir_constant(float f, unsigned vector_elements=1);
2087
2088 /**
2089 * Construct an ir_constant from a list of ir_constant values
2090 */
2091 ir_constant(const struct glsl_type *type, exec_list *values);
2092
2093 /**
2094 * Construct an ir_constant from a scalar component of another ir_constant
2095 *
2096 * The new \c ir_constant inherits the type of the component from the
2097 * source constant.
2098 *
2099 * \note
2100 * In the case of a matrix constant, the new constant is a scalar, \b not
2101 * a vector.
2102 */
2103 ir_constant(const ir_constant *c, unsigned i);
2104
2105 /**
2106 * Return a new ir_constant of the specified type containing all zeros.
2107 */
2108 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2109
2110 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2111
2112 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2113
2114 virtual ir_constant *as_constant()
2115 {
2116 return this;
2117 }
2118
2119 virtual void accept(ir_visitor *v)
2120 {
2121 v->visit(this);
2122 }
2123
2124 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2125
2126 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2127
2128 /**
2129 * Get a particular component of a constant as a specific type
2130 *
2131 * This is useful, for example, to get a value from an integer constant
2132 * as a float or bool. This appears frequently when constructors are
2133 * called with all constant parameters.
2134 */
2135 /*@{*/
2136 bool get_bool_component(unsigned i) const;
2137 float get_float_component(unsigned i) const;
2138 int get_int_component(unsigned i) const;
2139 unsigned get_uint_component(unsigned i) const;
2140 /*@}*/
2141
2142 ir_constant *get_array_element(unsigned i) const;
2143
2144 ir_constant *get_record_field(const char *name);
2145
2146 /**
2147 * Copy the values on another constant at a given offset.
2148 *
2149 * The offset is ignored for array or struct copies, it's only for
2150 * scalars or vectors into vectors or matrices.
2151 *
2152 * With identical types on both sides and zero offset it's clone()
2153 * without creating a new object.
2154 */
2155
2156 void copy_offset(ir_constant *src, int offset);
2157
2158 /**
2159 * Copy the values on another constant at a given offset and
2160 * following an assign-like mask.
2161 *
2162 * The mask is ignored for scalars.
2163 *
2164 * Note that this function only handles what assign can handle,
2165 * i.e. at most a vector as source and a column of a matrix as
2166 * destination.
2167 */
2168
2169 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2170
2171 /**
2172 * Determine whether a constant has the same value as another constant
2173 *
2174 * \sa ir_constant::is_zero, ir_constant::is_one,
2175 * ir_constant::is_negative_one, ir_constant::is_basis
2176 */
2177 bool has_value(const ir_constant *) const;
2178
2179 /**
2180 * Return true if this ir_constant represents the given value.
2181 *
2182 * For vectors, this checks that each component is the given value.
2183 */
2184 virtual bool is_value(float f, int i) const;
2185 virtual bool is_zero() const;
2186 virtual bool is_one() const;
2187 virtual bool is_negative_one() const;
2188 virtual bool is_basis() const;
2189
2190 /**
2191 * Value of the constant.
2192 *
2193 * The field used to back the values supplied by the constant is determined
2194 * by the type associated with the \c ir_instruction. Constants may be
2195 * scalars, vectors, or matrices.
2196 */
2197 union ir_constant_data value;
2198
2199 /* Array elements */
2200 ir_constant **array_elements;
2201
2202 /* Structure fields */
2203 exec_list components;
2204
2205 private:
2206 /**
2207 * Parameterless constructor only used by the clone method
2208 */
2209 ir_constant(void);
2210 };
2211
2212 /*@}*/
2213
2214 /**
2215 * IR instruction to emit a vertex in a geometry shader.
2216 */
2217 class ir_emit_vertex : public ir_instruction {
2218 public:
2219 ir_emit_vertex()
2220 {
2221 ir_type = ir_type_emit_vertex;
2222 }
2223
2224 virtual void accept(ir_visitor *v)
2225 {
2226 v->visit(this);
2227 }
2228
2229 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *) const
2230 {
2231 return new(mem_ctx) ir_emit_vertex();
2232 }
2233
2234 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2235 };
2236
2237 /**
2238 * IR instruction to complete the current primitive and start a new one in a
2239 * geometry shader.
2240 */
2241 class ir_end_primitive : public ir_instruction {
2242 public:
2243 ir_end_primitive()
2244 {
2245 ir_type = ir_type_end_primitive;
2246 }
2247
2248 virtual void accept(ir_visitor *v)
2249 {
2250 v->visit(this);
2251 }
2252
2253 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *) const
2254 {
2255 return new(mem_ctx) ir_end_primitive();
2256 }
2257
2258 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2259 };
2260
2261 /**
2262 * Apply a visitor to each IR node in a list
2263 */
2264 void
2265 visit_exec_list(exec_list *list, ir_visitor *visitor);
2266
2267 /**
2268 * Validate invariants on each IR node in a list
2269 */
2270 void validate_ir_tree(exec_list *instructions);
2271
2272 struct _mesa_glsl_parse_state;
2273 struct gl_shader_program;
2274
2275 /**
2276 * Detect whether an unlinked shader contains static recursion
2277 *
2278 * If the list of instructions is determined to contain static recursion,
2279 * \c _mesa_glsl_error will be called to emit error messages for each function
2280 * that is in the recursion cycle.
2281 */
2282 void
2283 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2284 exec_list *instructions);
2285
2286 /**
2287 * Detect whether a linked shader contains static recursion
2288 *
2289 * If the list of instructions is determined to contain static recursion,
2290 * \c link_error_printf will be called to emit error messages for each function
2291 * that is in the recursion cycle. In addition,
2292 * \c gl_shader_program::LinkStatus will be set to false.
2293 */
2294 void
2295 detect_recursion_linked(struct gl_shader_program *prog,
2296 exec_list *instructions);
2297
2298 /**
2299 * Make a clone of each IR instruction in a list
2300 *
2301 * \param in List of IR instructions that are to be cloned
2302 * \param out List to hold the cloned instructions
2303 */
2304 void
2305 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2306
2307 extern void
2308 _mesa_glsl_initialize_variables(exec_list *instructions,
2309 struct _mesa_glsl_parse_state *state);
2310
2311 extern void
2312 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2313
2314 extern void
2315 _mesa_glsl_initialize_builtin_functions();
2316
2317 extern ir_function_signature *
2318 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2319 const char *name, exec_list *actual_parameters);
2320
2321 extern gl_shader *
2322 _mesa_glsl_get_builtin_function_shader(void);
2323
2324 extern void
2325 _mesa_glsl_release_functions(void);
2326
2327 extern void
2328 _mesa_glsl_release_builtin_functions(void);
2329
2330 extern void
2331 reparent_ir(exec_list *list, void *mem_ctx);
2332
2333 struct glsl_symbol_table;
2334
2335 extern void
2336 import_prototypes(const exec_list *source, exec_list *dest,
2337 struct glsl_symbol_table *symbols, void *mem_ctx);
2338
2339 extern bool
2340 ir_has_call(ir_instruction *ir);
2341
2342 extern void
2343 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2344 gl_shader_stage shader_stage);
2345
2346 extern char *
2347 prototype_string(const glsl_type *return_type, const char *name,
2348 exec_list *parameters);
2349
2350 const char *
2351 mode_string(const ir_variable *var);
2352
2353 extern "C" {
2354 #endif /* __cplusplus */
2355
2356 extern void _mesa_print_ir(struct exec_list *instructions,
2357 struct _mesa_glsl_parse_state *state);
2358
2359 #ifdef __cplusplus
2360 } /* extern "C" */
2361 #endif
2362
2363 unsigned
2364 vertices_per_prim(GLenum prim);
2365
2366 #endif /* IR_H */