mapi: automake: rework the source generation rules
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine how this variable should be interpolated based on its
435 * interpolation qualifier (if present), whether it is gl_Color or
436 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
437 * state.
438 *
439 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
440 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
441 */
442 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
443
444 /**
445 * Determine whether or not a variable is part of a uniform or
446 * shader storage block.
447 */
448 inline bool is_in_buffer_block() const
449 {
450 return (this->data.mode == ir_var_uniform ||
451 this->data.mode == ir_var_shader_storage) &&
452 this->interface_type != NULL;
453 }
454
455 /**
456 * Determine whether or not a variable is the declaration of an interface
457 * block
458 *
459 * For the first declaration below, there will be an \c ir_variable named
460 * "instance" whose type and whose instance_type will be the same
461 * \cglsl_type. For the second declaration, there will be an \c ir_variable
462 * named "f" whose type is float and whose instance_type is B2.
463 *
464 * "instance" is an interface instance variable, but "f" is not.
465 *
466 * uniform B1 {
467 * float f;
468 * } instance;
469 *
470 * uniform B2 {
471 * float f;
472 * };
473 */
474 inline bool is_interface_instance() const
475 {
476 return this->type->without_array() == this->interface_type;
477 }
478
479 /**
480 * Set this->interface_type on a newly created variable.
481 */
482 void init_interface_type(const struct glsl_type *type)
483 {
484 assert(this->interface_type == NULL);
485 this->interface_type = type;
486 if (this->is_interface_instance()) {
487 this->u.max_ifc_array_access =
488 rzalloc_array(this, unsigned, type->length);
489 }
490 }
491
492 /**
493 * Change this->interface_type on a variable that previously had a
494 * different, but compatible, interface_type. This is used during linking
495 * to set the size of arrays in interface blocks.
496 */
497 void change_interface_type(const struct glsl_type *type)
498 {
499 if (this->u.max_ifc_array_access != NULL) {
500 /* max_ifc_array_access has already been allocated, so make sure the
501 * new interface has the same number of fields as the old one.
502 */
503 assert(this->interface_type->length == type->length);
504 }
505 this->interface_type = type;
506 }
507
508 /**
509 * Change this->interface_type on a variable that previously had a
510 * different, and incompatible, interface_type. This is used during
511 * compilation to handle redeclaration of the built-in gl_PerVertex
512 * interface block.
513 */
514 void reinit_interface_type(const struct glsl_type *type)
515 {
516 if (this->u.max_ifc_array_access != NULL) {
517 #ifndef NDEBUG
518 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
519 * it defines have been accessed yet; so it's safe to throw away the
520 * old max_ifc_array_access pointer, since all of its values are
521 * zero.
522 */
523 for (unsigned i = 0; i < this->interface_type->length; i++)
524 assert(this->u.max_ifc_array_access[i] == 0);
525 #endif
526 ralloc_free(this->u.max_ifc_array_access);
527 this->u.max_ifc_array_access = NULL;
528 }
529 this->interface_type = NULL;
530 init_interface_type(type);
531 }
532
533 const glsl_type *get_interface_type() const
534 {
535 return this->interface_type;
536 }
537
538 /**
539 * Get the max_ifc_array_access pointer
540 *
541 * A "set" function is not needed because the array is dynmically allocated
542 * as necessary.
543 */
544 inline unsigned *get_max_ifc_array_access()
545 {
546 assert(this->data._num_state_slots == 0);
547 return this->u.max_ifc_array_access;
548 }
549
550 inline unsigned get_num_state_slots() const
551 {
552 assert(!this->is_interface_instance()
553 || this->data._num_state_slots == 0);
554 return this->data._num_state_slots;
555 }
556
557 inline void set_num_state_slots(unsigned n)
558 {
559 assert(!this->is_interface_instance()
560 || n == 0);
561 this->data._num_state_slots = n;
562 }
563
564 inline ir_state_slot *get_state_slots()
565 {
566 return this->is_interface_instance() ? NULL : this->u.state_slots;
567 }
568
569 inline const ir_state_slot *get_state_slots() const
570 {
571 return this->is_interface_instance() ? NULL : this->u.state_slots;
572 }
573
574 inline ir_state_slot *allocate_state_slots(unsigned n)
575 {
576 assert(!this->is_interface_instance());
577
578 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
579 this->data._num_state_slots = 0;
580
581 if (this->u.state_slots != NULL)
582 this->data._num_state_slots = n;
583
584 return this->u.state_slots;
585 }
586
587 inline bool is_name_ralloced() const
588 {
589 return this->name != ir_variable::tmp_name;
590 }
591
592 /**
593 * Enable emitting extension warnings for this variable
594 */
595 void enable_extension_warning(const char *extension);
596
597 /**
598 * Get the extension warning string for this variable
599 *
600 * If warnings are not enabled, \c NULL is returned.
601 */
602 const char *get_extension_warning() const;
603
604 /**
605 * Declared type of the variable
606 */
607 const struct glsl_type *type;
608
609 /**
610 * Declared name of the variable
611 */
612 const char *name;
613
614 struct ir_variable_data {
615
616 /**
617 * Is the variable read-only?
618 *
619 * This is set for variables declared as \c const, shader inputs,
620 * and uniforms.
621 */
622 unsigned read_only:1;
623 unsigned centroid:1;
624 unsigned sample:1;
625 unsigned patch:1;
626 unsigned invariant:1;
627 unsigned precise:1;
628
629 /**
630 * Has this variable been used for reading or writing?
631 *
632 * Several GLSL semantic checks require knowledge of whether or not a
633 * variable has been used. For example, it is an error to redeclare a
634 * variable as invariant after it has been used.
635 *
636 * This is only maintained in the ast_to_hir.cpp path, not in
637 * Mesa's fixed function or ARB program paths.
638 */
639 unsigned used:1;
640
641 /**
642 * Has this variable been statically assigned?
643 *
644 * This answers whether the variable was assigned in any path of
645 * the shader during ast_to_hir. This doesn't answer whether it is
646 * still written after dead code removal, nor is it maintained in
647 * non-ast_to_hir.cpp (GLSL parsing) paths.
648 */
649 unsigned assigned:1;
650
651 /**
652 * Enum indicating how the variable was declared. See
653 * ir_var_declaration_type.
654 *
655 * This is used to detect certain kinds of illegal variable redeclarations.
656 */
657 unsigned how_declared:2;
658
659 /**
660 * Storage class of the variable.
661 *
662 * \sa ir_variable_mode
663 */
664 unsigned mode:4;
665
666 /**
667 * Interpolation mode for shader inputs / outputs
668 *
669 * \sa ir_variable_interpolation
670 */
671 unsigned interpolation:2;
672
673 /**
674 * \name ARB_fragment_coord_conventions
675 * @{
676 */
677 unsigned origin_upper_left:1;
678 unsigned pixel_center_integer:1;
679 /*@}*/
680
681 /**
682 * Was the location explicitly set in the shader?
683 *
684 * If the location is explicitly set in the shader, it \b cannot be changed
685 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
686 * no effect).
687 */
688 unsigned explicit_location:1;
689 unsigned explicit_index:1;
690
691 /**
692 * Was an initial binding explicitly set in the shader?
693 *
694 * If so, constant_value contains an integer ir_constant representing the
695 * initial binding point.
696 */
697 unsigned explicit_binding:1;
698
699 /**
700 * Does this variable have an initializer?
701 *
702 * This is used by the linker to cross-validiate initializers of global
703 * variables.
704 */
705 unsigned has_initializer:1;
706
707 /**
708 * Is this variable a generic output or input that has not yet been matched
709 * up to a variable in another stage of the pipeline?
710 *
711 * This is used by the linker as scratch storage while assigning locations
712 * to generic inputs and outputs.
713 */
714 unsigned is_unmatched_generic_inout:1;
715
716 /**
717 * If non-zero, then this variable may be packed along with other variables
718 * into a single varying slot, so this offset should be applied when
719 * accessing components. For example, an offset of 1 means that the x
720 * component of this variable is actually stored in component y of the
721 * location specified by \c location.
722 */
723 unsigned location_frac:2;
724
725 /**
726 * Layout of the matrix. Uses glsl_matrix_layout values.
727 */
728 unsigned matrix_layout:2;
729
730 /**
731 * Non-zero if this variable was created by lowering a named interface
732 * block which was not an array.
733 *
734 * Note that this variable and \c from_named_ifc_block_array will never
735 * both be non-zero.
736 */
737 unsigned from_named_ifc_block_nonarray:1;
738
739 /**
740 * Non-zero if this variable was created by lowering a named interface
741 * block which was an array.
742 *
743 * Note that this variable and \c from_named_ifc_block_nonarray will never
744 * both be non-zero.
745 */
746 unsigned from_named_ifc_block_array:1;
747
748 /**
749 * Non-zero if the variable must be a shader input. This is useful for
750 * constraints on function parameters.
751 */
752 unsigned must_be_shader_input:1;
753
754 /**
755 * Output index for dual source blending.
756 *
757 * \note
758 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
759 * source blending.
760 */
761 unsigned index:1;
762
763 /**
764 * \brief Layout qualifier for gl_FragDepth.
765 *
766 * This is not equal to \c ir_depth_layout_none if and only if this
767 * variable is \c gl_FragDepth and a layout qualifier is specified.
768 */
769 ir_depth_layout depth_layout:3;
770
771 /**
772 * ARB_shader_image_load_store qualifiers.
773 */
774 unsigned image_read_only:1; /**< "readonly" qualifier. */
775 unsigned image_write_only:1; /**< "writeonly" qualifier. */
776 unsigned image_coherent:1;
777 unsigned image_volatile:1;
778 unsigned image_restrict:1;
779
780 /**
781 * Emit a warning if this variable is accessed.
782 */
783 private:
784 uint8_t warn_extension_index;
785
786 public:
787 /** Image internal format if specified explicitly, otherwise GL_NONE. */
788 uint16_t image_format;
789
790 private:
791 /**
792 * Number of state slots used
793 *
794 * \note
795 * This could be stored in as few as 7-bits, if necessary. If it is made
796 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
797 * be safe.
798 */
799 uint16_t _num_state_slots;
800
801 public:
802 /**
803 * Initial binding point for a sampler, atomic, or UBO.
804 *
805 * For array types, this represents the binding point for the first element.
806 */
807 int16_t binding;
808
809 /**
810 * Storage location of the base of this variable
811 *
812 * The precise meaning of this field depends on the nature of the variable.
813 *
814 * - Vertex shader input: one of the values from \c gl_vert_attrib.
815 * - Vertex shader output: one of the values from \c gl_varying_slot.
816 * - Geometry shader input: one of the values from \c gl_varying_slot.
817 * - Geometry shader output: one of the values from \c gl_varying_slot.
818 * - Fragment shader input: one of the values from \c gl_varying_slot.
819 * - Fragment shader output: one of the values from \c gl_frag_result.
820 * - Uniforms: Per-stage uniform slot number for default uniform block.
821 * - Uniforms: Index within the uniform block definition for UBO members.
822 * - Other: This field is not currently used.
823 *
824 * If the variable is a uniform, shader input, or shader output, and the
825 * slot has not been assigned, the value will be -1.
826 */
827 int location;
828
829 /**
830 * Vertex stream output identifier.
831 */
832 unsigned stream;
833
834 /**
835 * Location an atomic counter is stored at.
836 */
837 struct {
838 unsigned offset;
839 } atomic;
840
841 /**
842 * Highest element accessed with a constant expression array index
843 *
844 * Not used for non-array variables.
845 */
846 unsigned max_array_access;
847
848 /**
849 * Allow (only) ir_variable direct access private members.
850 */
851 friend class ir_variable;
852 } data;
853
854 /**
855 * Value assigned in the initializer of a variable declared "const"
856 */
857 ir_constant *constant_value;
858
859 /**
860 * Constant expression assigned in the initializer of the variable
861 *
862 * \warning
863 * This field and \c ::constant_value are distinct. Even if the two fields
864 * refer to constants with the same value, they must point to separate
865 * objects.
866 */
867 ir_constant *constant_initializer;
868
869 private:
870 static const char *const warn_extension_table[];
871
872 union {
873 /**
874 * For variables which satisfy the is_interface_instance() predicate,
875 * this points to an array of integers such that if the ith member of
876 * the interface block is an array, max_ifc_array_access[i] is the
877 * maximum array element of that member that has been accessed. If the
878 * ith member of the interface block is not an array,
879 * max_ifc_array_access[i] is unused.
880 *
881 * For variables whose type is not an interface block, this pointer is
882 * NULL.
883 */
884 unsigned *max_ifc_array_access;
885
886 /**
887 * Built-in state that backs this uniform
888 *
889 * Once set at variable creation, \c state_slots must remain invariant.
890 *
891 * If the variable is not a uniform, \c _num_state_slots will be zero
892 * and \c state_slots will be \c NULL.
893 */
894 ir_state_slot *state_slots;
895 } u;
896
897 /**
898 * For variables that are in an interface block or are an instance of an
899 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
900 *
901 * \sa ir_variable::location
902 */
903 const glsl_type *interface_type;
904
905 /**
906 * Name used for anonymous compiler temporaries
907 */
908 static const char tmp_name[];
909
910 public:
911 /**
912 * Should the construct keep names for ir_var_temporary variables?
913 *
914 * When this global is false, names passed to the constructor for
915 * \c ir_var_temporary variables will be dropped. Instead, the variable will
916 * be named "compiler_temp". This name will be in static storage.
917 *
918 * \warning
919 * \b NEVER change the mode of an \c ir_var_temporary.
920 *
921 * \warning
922 * This variable is \b not thread-safe. It is global, \b not
923 * per-context. It begins life false. A context can, at some point, make
924 * it true. From that point on, it will be true forever. This should be
925 * okay since it will only be set true while debugging.
926 */
927 static bool temporaries_allocate_names;
928 };
929
930 /**
931 * A function that returns whether a built-in function is available in the
932 * current shading language (based on version, ES or desktop, and extensions).
933 */
934 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
935
936 /*@{*/
937 /**
938 * The representation of a function instance; may be the full definition or
939 * simply a prototype.
940 */
941 class ir_function_signature : public ir_instruction {
942 /* An ir_function_signature will be part of the list of signatures in
943 * an ir_function.
944 */
945 public:
946 ir_function_signature(const glsl_type *return_type,
947 builtin_available_predicate builtin_avail = NULL);
948
949 virtual ir_function_signature *clone(void *mem_ctx,
950 struct hash_table *ht) const;
951 ir_function_signature *clone_prototype(void *mem_ctx,
952 struct hash_table *ht) const;
953
954 virtual void accept(ir_visitor *v)
955 {
956 v->visit(this);
957 }
958
959 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
960
961 /**
962 * Attempt to evaluate this function as a constant expression,
963 * given a list of the actual parameters and the variable context.
964 * Returns NULL for non-built-ins.
965 */
966 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
967
968 /**
969 * Get the name of the function for which this is a signature
970 */
971 const char *function_name() const;
972
973 /**
974 * Get a handle to the function for which this is a signature
975 *
976 * There is no setter function, this function returns a \c const pointer,
977 * and \c ir_function_signature::_function is private for a reason. The
978 * only way to make a connection between a function and function signature
979 * is via \c ir_function::add_signature. This helps ensure that certain
980 * invariants (i.e., a function signature is in the list of signatures for
981 * its \c _function) are met.
982 *
983 * \sa ir_function::add_signature
984 */
985 inline const class ir_function *function() const
986 {
987 return this->_function;
988 }
989
990 /**
991 * Check whether the qualifiers match between this signature's parameters
992 * and the supplied parameter list. If not, returns the name of the first
993 * parameter with mismatched qualifiers (for use in error messages).
994 */
995 const char *qualifiers_match(exec_list *params);
996
997 /**
998 * Replace the current parameter list with the given one. This is useful
999 * if the current information came from a prototype, and either has invalid
1000 * or missing parameter names.
1001 */
1002 void replace_parameters(exec_list *new_params);
1003
1004 /**
1005 * Function return type.
1006 *
1007 * \note This discards the optional precision qualifier.
1008 */
1009 const struct glsl_type *return_type;
1010
1011 /**
1012 * List of ir_variable of function parameters.
1013 *
1014 * This represents the storage. The paramaters passed in a particular
1015 * call will be in ir_call::actual_paramaters.
1016 */
1017 struct exec_list parameters;
1018
1019 /** Whether or not this function has a body (which may be empty). */
1020 unsigned is_defined:1;
1021
1022 /** Whether or not this function signature is a built-in. */
1023 bool is_builtin() const;
1024
1025 /**
1026 * Whether or not this function is an intrinsic to be implemented
1027 * by the driver.
1028 */
1029 bool is_intrinsic;
1030
1031 /** Whether or not a built-in is available for this shader. */
1032 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1033
1034 /** Body of instructions in the function. */
1035 struct exec_list body;
1036
1037 private:
1038 /**
1039 * A function pointer to a predicate that answers whether a built-in
1040 * function is available in the current shader. NULL if not a built-in.
1041 */
1042 builtin_available_predicate builtin_avail;
1043
1044 /** Function of which this signature is one overload. */
1045 class ir_function *_function;
1046
1047 /** Function signature of which this one is a prototype clone */
1048 const ir_function_signature *origin;
1049
1050 friend class ir_function;
1051
1052 /**
1053 * Helper function to run a list of instructions for constant
1054 * expression evaluation.
1055 *
1056 * The hash table represents the values of the visible variables.
1057 * There are no scoping issues because the table is indexed on
1058 * ir_variable pointers, not variable names.
1059 *
1060 * Returns false if the expression is not constant, true otherwise,
1061 * and the value in *result if result is non-NULL.
1062 */
1063 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1064 struct hash_table *variable_context,
1065 ir_constant **result);
1066 };
1067
1068
1069 /**
1070 * Header for tracking multiple overloaded functions with the same name.
1071 * Contains a list of ir_function_signatures representing each of the
1072 * actual functions.
1073 */
1074 class ir_function : public ir_instruction {
1075 public:
1076 ir_function(const char *name);
1077
1078 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1079
1080 virtual void accept(ir_visitor *v)
1081 {
1082 v->visit(this);
1083 }
1084
1085 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1086
1087 void add_signature(ir_function_signature *sig)
1088 {
1089 sig->_function = this;
1090 this->signatures.push_tail(sig);
1091 }
1092
1093 /**
1094 * Find a signature that matches a set of actual parameters, taking implicit
1095 * conversions into account. Also flags whether the match was exact.
1096 */
1097 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1098 const exec_list *actual_param,
1099 bool allow_builtins,
1100 bool *match_is_exact);
1101
1102 /**
1103 * Find a signature that matches a set of actual parameters, taking implicit
1104 * conversions into account.
1105 */
1106 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1107 const exec_list *actual_param,
1108 bool allow_builtins);
1109
1110 /**
1111 * Find a signature that exactly matches a set of actual parameters without
1112 * any implicit type conversions.
1113 */
1114 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1115 const exec_list *actual_ps);
1116
1117 /**
1118 * Name of the function.
1119 */
1120 const char *name;
1121
1122 /** Whether or not this function has a signature that isn't a built-in. */
1123 bool has_user_signature();
1124
1125 /**
1126 * List of ir_function_signature for each overloaded function with this name.
1127 */
1128 struct exec_list signatures;
1129
1130 /**
1131 * is this function a subroutine type declaration
1132 * e.g. subroutine void type1(float arg1);
1133 */
1134 bool is_subroutine;
1135
1136 /**
1137 * is this function associated to a subroutine type
1138 * e.g. subroutine (type1, type2) function_name { function_body };
1139 * would have num_subroutine_types 2,
1140 * and pointers to the type1 and type2 types.
1141 */
1142 int num_subroutine_types;
1143 const struct glsl_type **subroutine_types;
1144 };
1145
1146 inline const char *ir_function_signature::function_name() const
1147 {
1148 return this->_function->name;
1149 }
1150 /*@}*/
1151
1152
1153 /**
1154 * IR instruction representing high-level if-statements
1155 */
1156 class ir_if : public ir_instruction {
1157 public:
1158 ir_if(ir_rvalue *condition)
1159 : ir_instruction(ir_type_if), condition(condition)
1160 {
1161 }
1162
1163 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1164
1165 virtual void accept(ir_visitor *v)
1166 {
1167 v->visit(this);
1168 }
1169
1170 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1171
1172 ir_rvalue *condition;
1173 /** List of ir_instruction for the body of the then branch */
1174 exec_list then_instructions;
1175 /** List of ir_instruction for the body of the else branch */
1176 exec_list else_instructions;
1177 };
1178
1179
1180 /**
1181 * IR instruction representing a high-level loop structure.
1182 */
1183 class ir_loop : public ir_instruction {
1184 public:
1185 ir_loop();
1186
1187 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1188
1189 virtual void accept(ir_visitor *v)
1190 {
1191 v->visit(this);
1192 }
1193
1194 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1195
1196 /** List of ir_instruction that make up the body of the loop. */
1197 exec_list body_instructions;
1198 };
1199
1200
1201 class ir_assignment : public ir_instruction {
1202 public:
1203 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1204
1205 /**
1206 * Construct an assignment with an explicit write mask
1207 *
1208 * \note
1209 * Since a write mask is supplied, the LHS must already be a bare
1210 * \c ir_dereference. The cannot be any swizzles in the LHS.
1211 */
1212 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1213 unsigned write_mask);
1214
1215 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1216
1217 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1218
1219 virtual void accept(ir_visitor *v)
1220 {
1221 v->visit(this);
1222 }
1223
1224 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1225
1226 /**
1227 * Get a whole variable written by an assignment
1228 *
1229 * If the LHS of the assignment writes a whole variable, the variable is
1230 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1231 * assignment are:
1232 *
1233 * - Assigning to a scalar
1234 * - Assigning to all components of a vector
1235 * - Whole array (or matrix) assignment
1236 * - Whole structure assignment
1237 */
1238 ir_variable *whole_variable_written();
1239
1240 /**
1241 * Set the LHS of an assignment
1242 */
1243 void set_lhs(ir_rvalue *lhs);
1244
1245 /**
1246 * Left-hand side of the assignment.
1247 *
1248 * This should be treated as read only. If you need to set the LHS of an
1249 * assignment, use \c ir_assignment::set_lhs.
1250 */
1251 ir_dereference *lhs;
1252
1253 /**
1254 * Value being assigned
1255 */
1256 ir_rvalue *rhs;
1257
1258 /**
1259 * Optional condition for the assignment.
1260 */
1261 ir_rvalue *condition;
1262
1263
1264 /**
1265 * Component mask written
1266 *
1267 * For non-vector types in the LHS, this field will be zero. For vector
1268 * types, a bit will be set for each component that is written. Note that
1269 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1270 *
1271 * A partially-set write mask means that each enabled channel gets
1272 * the value from a consecutive channel of the rhs. For example,
1273 * to write just .xyw of gl_FrontColor with color:
1274 *
1275 * (assign (constant bool (1)) (xyw)
1276 * (var_ref gl_FragColor)
1277 * (swiz xyw (var_ref color)))
1278 */
1279 unsigned write_mask:4;
1280 };
1281
1282 /* Update ir_expression::get_num_operands() and operator_strs when
1283 * updating this list.
1284 */
1285 enum ir_expression_operation {
1286 ir_unop_bit_not,
1287 ir_unop_logic_not,
1288 ir_unop_neg,
1289 ir_unop_abs,
1290 ir_unop_sign,
1291 ir_unop_rcp,
1292 ir_unop_rsq,
1293 ir_unop_sqrt,
1294 ir_unop_exp, /**< Log base e on gentype */
1295 ir_unop_log, /**< Natural log on gentype */
1296 ir_unop_exp2,
1297 ir_unop_log2,
1298 ir_unop_f2i, /**< Float-to-integer conversion. */
1299 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1300 ir_unop_i2f, /**< Integer-to-float conversion. */
1301 ir_unop_f2b, /**< Float-to-boolean conversion */
1302 ir_unop_b2f, /**< Boolean-to-float conversion */
1303 ir_unop_i2b, /**< int-to-boolean conversion */
1304 ir_unop_b2i, /**< Boolean-to-int conversion */
1305 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1306 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1307 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1308 ir_unop_d2f, /**< Double-to-float conversion. */
1309 ir_unop_f2d, /**< Float-to-double conversion. */
1310 ir_unop_d2i, /**< Double-to-integer conversion. */
1311 ir_unop_i2d, /**< Integer-to-double conversion. */
1312 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1313 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1314 ir_unop_d2b, /**< Double-to-boolean conversion. */
1315 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1316 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1317 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1318 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1319 ir_unop_any,
1320
1321 /**
1322 * \name Unary floating-point rounding operations.
1323 */
1324 /*@{*/
1325 ir_unop_trunc,
1326 ir_unop_ceil,
1327 ir_unop_floor,
1328 ir_unop_fract,
1329 ir_unop_round_even,
1330 /*@}*/
1331
1332 /**
1333 * \name Trigonometric operations.
1334 */
1335 /*@{*/
1336 ir_unop_sin,
1337 ir_unop_cos,
1338 /*@}*/
1339
1340 /**
1341 * \name Partial derivatives.
1342 */
1343 /*@{*/
1344 ir_unop_dFdx,
1345 ir_unop_dFdx_coarse,
1346 ir_unop_dFdx_fine,
1347 ir_unop_dFdy,
1348 ir_unop_dFdy_coarse,
1349 ir_unop_dFdy_fine,
1350 /*@}*/
1351
1352 /**
1353 * \name Floating point pack and unpack operations.
1354 */
1355 /*@{*/
1356 ir_unop_pack_snorm_2x16,
1357 ir_unop_pack_snorm_4x8,
1358 ir_unop_pack_unorm_2x16,
1359 ir_unop_pack_unorm_4x8,
1360 ir_unop_pack_half_2x16,
1361 ir_unop_unpack_snorm_2x16,
1362 ir_unop_unpack_snorm_4x8,
1363 ir_unop_unpack_unorm_2x16,
1364 ir_unop_unpack_unorm_4x8,
1365 ir_unop_unpack_half_2x16,
1366 /*@}*/
1367
1368 /**
1369 * \name Lowered floating point unpacking operations.
1370 *
1371 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1372 */
1373 /*@{*/
1374 ir_unop_unpack_half_2x16_split_x,
1375 ir_unop_unpack_half_2x16_split_y,
1376 /*@}*/
1377
1378 /**
1379 * \name Bit operations, part of ARB_gpu_shader5.
1380 */
1381 /*@{*/
1382 ir_unop_bitfield_reverse,
1383 ir_unop_bit_count,
1384 ir_unop_find_msb,
1385 ir_unop_find_lsb,
1386 /*@}*/
1387
1388 ir_unop_saturate,
1389
1390 /**
1391 * \name Double packing, part of ARB_gpu_shader_fp64.
1392 */
1393 /*@{*/
1394 ir_unop_pack_double_2x32,
1395 ir_unop_unpack_double_2x32,
1396 /*@}*/
1397
1398 ir_unop_frexp_sig,
1399 ir_unop_frexp_exp,
1400
1401 ir_unop_noise,
1402
1403 ir_unop_subroutine_to_int,
1404 /**
1405 * Interpolate fs input at centroid
1406 *
1407 * operand0 is the fs input.
1408 */
1409 ir_unop_interpolate_at_centroid,
1410
1411 /**
1412 * A sentinel marking the last of the unary operations.
1413 */
1414 ir_last_unop = ir_unop_interpolate_at_centroid,
1415
1416 ir_binop_add,
1417 ir_binop_sub,
1418 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1419 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1420 ir_binop_div,
1421
1422 /**
1423 * Returns the carry resulting from the addition of the two arguments.
1424 */
1425 /*@{*/
1426 ir_binop_carry,
1427 /*@}*/
1428
1429 /**
1430 * Returns the borrow resulting from the subtraction of the second argument
1431 * from the first argument.
1432 */
1433 /*@{*/
1434 ir_binop_borrow,
1435 /*@}*/
1436
1437 /**
1438 * Takes one of two combinations of arguments:
1439 *
1440 * - mod(vecN, vecN)
1441 * - mod(vecN, float)
1442 *
1443 * Does not take integer types.
1444 */
1445 ir_binop_mod,
1446
1447 /**
1448 * \name Binary comparison operators which return a boolean vector.
1449 * The type of both operands must be equal.
1450 */
1451 /*@{*/
1452 ir_binop_less,
1453 ir_binop_greater,
1454 ir_binop_lequal,
1455 ir_binop_gequal,
1456 ir_binop_equal,
1457 ir_binop_nequal,
1458 /**
1459 * Returns single boolean for whether all components of operands[0]
1460 * equal the components of operands[1].
1461 */
1462 ir_binop_all_equal,
1463 /**
1464 * Returns single boolean for whether any component of operands[0]
1465 * is not equal to the corresponding component of operands[1].
1466 */
1467 ir_binop_any_nequal,
1468 /*@}*/
1469
1470 /**
1471 * \name Bit-wise binary operations.
1472 */
1473 /*@{*/
1474 ir_binop_lshift,
1475 ir_binop_rshift,
1476 ir_binop_bit_and,
1477 ir_binop_bit_xor,
1478 ir_binop_bit_or,
1479 /*@}*/
1480
1481 ir_binop_logic_and,
1482 ir_binop_logic_xor,
1483 ir_binop_logic_or,
1484
1485 ir_binop_dot,
1486 ir_binop_min,
1487 ir_binop_max,
1488
1489 ir_binop_pow,
1490
1491 /**
1492 * \name Lowered floating point packing operations.
1493 *
1494 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1495 */
1496 /*@{*/
1497 ir_binop_pack_half_2x16_split,
1498 /*@}*/
1499
1500 /**
1501 * \name First half of a lowered bitfieldInsert() operation.
1502 *
1503 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1504 */
1505 /*@{*/
1506 ir_binop_bfm,
1507 /*@}*/
1508
1509 /**
1510 * Load a value the size of a given GLSL type from a uniform block.
1511 *
1512 * operand0 is the ir_constant uniform block index in the linked shader.
1513 * operand1 is a byte offset within the uniform block.
1514 */
1515 ir_binop_ubo_load,
1516
1517 /**
1518 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1519 */
1520 /*@{*/
1521 ir_binop_ldexp,
1522 /*@}*/
1523
1524 /**
1525 * Extract a scalar from a vector
1526 *
1527 * operand0 is the vector
1528 * operand1 is the index of the field to read from operand0
1529 */
1530 ir_binop_vector_extract,
1531
1532 /**
1533 * Interpolate fs input at offset
1534 *
1535 * operand0 is the fs input
1536 * operand1 is the offset from the pixel center
1537 */
1538 ir_binop_interpolate_at_offset,
1539
1540 /**
1541 * Interpolate fs input at sample position
1542 *
1543 * operand0 is the fs input
1544 * operand1 is the sample ID
1545 */
1546 ir_binop_interpolate_at_sample,
1547
1548 /**
1549 * A sentinel marking the last of the binary operations.
1550 */
1551 ir_last_binop = ir_binop_interpolate_at_sample,
1552
1553 /**
1554 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1555 */
1556 /*@{*/
1557 ir_triop_fma,
1558 /*@}*/
1559
1560 ir_triop_lrp,
1561
1562 /**
1563 * \name Conditional Select
1564 *
1565 * A vector conditional select instruction (like ?:, but operating per-
1566 * component on vectors).
1567 *
1568 * \see lower_instructions_visitor::ldexp_to_arith
1569 */
1570 /*@{*/
1571 ir_triop_csel,
1572 /*@}*/
1573
1574 /**
1575 * \name Second half of a lowered bitfieldInsert() operation.
1576 *
1577 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1578 */
1579 /*@{*/
1580 ir_triop_bfi,
1581 /*@}*/
1582
1583 ir_triop_bitfield_extract,
1584
1585 /**
1586 * Generate a value with one field of a vector changed
1587 *
1588 * operand0 is the vector
1589 * operand1 is the value to write into the vector result
1590 * operand2 is the index in operand0 to be modified
1591 */
1592 ir_triop_vector_insert,
1593
1594 /**
1595 * A sentinel marking the last of the ternary operations.
1596 */
1597 ir_last_triop = ir_triop_vector_insert,
1598
1599 ir_quadop_bitfield_insert,
1600
1601 ir_quadop_vector,
1602
1603 /**
1604 * A sentinel marking the last of the ternary operations.
1605 */
1606 ir_last_quadop = ir_quadop_vector,
1607
1608 /**
1609 * A sentinel marking the last of all operations.
1610 */
1611 ir_last_opcode = ir_quadop_vector
1612 };
1613
1614 class ir_expression : public ir_rvalue {
1615 public:
1616 ir_expression(int op, const struct glsl_type *type,
1617 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1618 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1619
1620 /**
1621 * Constructor for unary operation expressions
1622 */
1623 ir_expression(int op, ir_rvalue *);
1624
1625 /**
1626 * Constructor for binary operation expressions
1627 */
1628 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1629
1630 /**
1631 * Constructor for ternary operation expressions
1632 */
1633 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1634
1635 virtual bool equals(const ir_instruction *ir,
1636 enum ir_node_type ignore = ir_type_unset) const;
1637
1638 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1639
1640 /**
1641 * Attempt to constant-fold the expression
1642 *
1643 * The "variable_context" hash table links ir_variable * to ir_constant *
1644 * that represent the variables' values. \c NULL represents an empty
1645 * context.
1646 *
1647 * If the expression cannot be constant folded, this method will return
1648 * \c NULL.
1649 */
1650 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1651
1652 /**
1653 * Determine the number of operands used by an expression
1654 */
1655 static unsigned int get_num_operands(ir_expression_operation);
1656
1657 /**
1658 * Determine the number of operands used by an expression
1659 */
1660 unsigned int get_num_operands() const
1661 {
1662 return (this->operation == ir_quadop_vector)
1663 ? this->type->vector_elements : get_num_operands(operation);
1664 }
1665
1666 /**
1667 * Return whether the expression operates on vectors horizontally.
1668 */
1669 bool is_horizontal() const
1670 {
1671 return operation == ir_binop_all_equal ||
1672 operation == ir_binop_any_nequal ||
1673 operation == ir_unop_any ||
1674 operation == ir_binop_dot ||
1675 operation == ir_quadop_vector;
1676 }
1677
1678 /**
1679 * Return a string representing this expression's operator.
1680 */
1681 const char *operator_string();
1682
1683 /**
1684 * Return a string representing this expression's operator.
1685 */
1686 static const char *operator_string(ir_expression_operation);
1687
1688
1689 /**
1690 * Do a reverse-lookup to translate the given string into an operator.
1691 */
1692 static ir_expression_operation get_operator(const char *);
1693
1694 virtual void accept(ir_visitor *v)
1695 {
1696 v->visit(this);
1697 }
1698
1699 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1700
1701 ir_expression_operation operation;
1702 ir_rvalue *operands[4];
1703 };
1704
1705
1706 /**
1707 * HIR instruction representing a high-level function call, containing a list
1708 * of parameters and returning a value in the supplied temporary.
1709 */
1710 class ir_call : public ir_instruction {
1711 public:
1712 ir_call(ir_function_signature *callee,
1713 ir_dereference_variable *return_deref,
1714 exec_list *actual_parameters)
1715 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1716 {
1717 assert(callee->return_type != NULL);
1718 actual_parameters->move_nodes_to(& this->actual_parameters);
1719 this->use_builtin = callee->is_builtin();
1720 }
1721
1722 ir_call(ir_function_signature *callee,
1723 ir_dereference_variable *return_deref,
1724 exec_list *actual_parameters,
1725 ir_variable *var, ir_rvalue *array_idx)
1726 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1727 {
1728 assert(callee->return_type != NULL);
1729 actual_parameters->move_nodes_to(& this->actual_parameters);
1730 this->use_builtin = callee->is_builtin();
1731 }
1732
1733 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1734
1735 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1736
1737 virtual void accept(ir_visitor *v)
1738 {
1739 v->visit(this);
1740 }
1741
1742 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1743
1744 /**
1745 * Get the name of the function being called.
1746 */
1747 const char *callee_name() const
1748 {
1749 return callee->function_name();
1750 }
1751
1752 /**
1753 * Generates an inline version of the function before @ir,
1754 * storing the return value in return_deref.
1755 */
1756 void generate_inline(ir_instruction *ir);
1757
1758 /**
1759 * Storage for the function's return value.
1760 * This must be NULL if the return type is void.
1761 */
1762 ir_dereference_variable *return_deref;
1763
1764 /**
1765 * The specific function signature being called.
1766 */
1767 ir_function_signature *callee;
1768
1769 /* List of ir_rvalue of paramaters passed in this call. */
1770 exec_list actual_parameters;
1771
1772 /** Should this call only bind to a built-in function? */
1773 bool use_builtin;
1774
1775 /*
1776 * ARB_shader_subroutine support -
1777 * the subroutine uniform variable and array index
1778 * rvalue to be used in the lowering pass later.
1779 */
1780 ir_variable *sub_var;
1781 ir_rvalue *array_idx;
1782 };
1783
1784
1785 /**
1786 * \name Jump-like IR instructions.
1787 *
1788 * These include \c break, \c continue, \c return, and \c discard.
1789 */
1790 /*@{*/
1791 class ir_jump : public ir_instruction {
1792 protected:
1793 ir_jump(enum ir_node_type t)
1794 : ir_instruction(t)
1795 {
1796 }
1797 };
1798
1799 class ir_return : public ir_jump {
1800 public:
1801 ir_return()
1802 : ir_jump(ir_type_return), value(NULL)
1803 {
1804 }
1805
1806 ir_return(ir_rvalue *value)
1807 : ir_jump(ir_type_return), value(value)
1808 {
1809 }
1810
1811 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1812
1813 ir_rvalue *get_value() const
1814 {
1815 return value;
1816 }
1817
1818 virtual void accept(ir_visitor *v)
1819 {
1820 v->visit(this);
1821 }
1822
1823 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1824
1825 ir_rvalue *value;
1826 };
1827
1828
1829 /**
1830 * Jump instructions used inside loops
1831 *
1832 * These include \c break and \c continue. The \c break within a loop is
1833 * different from the \c break within a switch-statement.
1834 *
1835 * \sa ir_switch_jump
1836 */
1837 class ir_loop_jump : public ir_jump {
1838 public:
1839 enum jump_mode {
1840 jump_break,
1841 jump_continue
1842 };
1843
1844 ir_loop_jump(jump_mode mode)
1845 : ir_jump(ir_type_loop_jump)
1846 {
1847 this->mode = mode;
1848 }
1849
1850 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1851
1852 virtual void accept(ir_visitor *v)
1853 {
1854 v->visit(this);
1855 }
1856
1857 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1858
1859 bool is_break() const
1860 {
1861 return mode == jump_break;
1862 }
1863
1864 bool is_continue() const
1865 {
1866 return mode == jump_continue;
1867 }
1868
1869 /** Mode selector for the jump instruction. */
1870 enum jump_mode mode;
1871 };
1872
1873 /**
1874 * IR instruction representing discard statements.
1875 */
1876 class ir_discard : public ir_jump {
1877 public:
1878 ir_discard()
1879 : ir_jump(ir_type_discard)
1880 {
1881 this->condition = NULL;
1882 }
1883
1884 ir_discard(ir_rvalue *cond)
1885 : ir_jump(ir_type_discard)
1886 {
1887 this->condition = cond;
1888 }
1889
1890 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1891
1892 virtual void accept(ir_visitor *v)
1893 {
1894 v->visit(this);
1895 }
1896
1897 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1898
1899 ir_rvalue *condition;
1900 };
1901 /*@}*/
1902
1903
1904 /**
1905 * Texture sampling opcodes used in ir_texture
1906 */
1907 enum ir_texture_opcode {
1908 ir_tex, /**< Regular texture look-up */
1909 ir_txb, /**< Texture look-up with LOD bias */
1910 ir_txl, /**< Texture look-up with explicit LOD */
1911 ir_txd, /**< Texture look-up with partial derivatvies */
1912 ir_txf, /**< Texel fetch with explicit LOD */
1913 ir_txf_ms, /**< Multisample texture fetch */
1914 ir_txs, /**< Texture size */
1915 ir_lod, /**< Texture lod query */
1916 ir_tg4, /**< Texture gather */
1917 ir_query_levels /**< Texture levels query */
1918 };
1919
1920
1921 /**
1922 * IR instruction to sample a texture
1923 *
1924 * The specific form of the IR instruction depends on the \c mode value
1925 * selected from \c ir_texture_opcodes. In the printed IR, these will
1926 * appear as:
1927 *
1928 * Texel offset (0 or an expression)
1929 * | Projection divisor
1930 * | | Shadow comparitor
1931 * | | |
1932 * v v v
1933 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1934 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1935 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1936 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1937 * (txf <type> <sampler> <coordinate> 0 <lod>)
1938 * (txf_ms
1939 * <type> <sampler> <coordinate> <sample_index>)
1940 * (txs <type> <sampler> <lod>)
1941 * (lod <type> <sampler> <coordinate>)
1942 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1943 * (query_levels <type> <sampler>)
1944 */
1945 class ir_texture : public ir_rvalue {
1946 public:
1947 ir_texture(enum ir_texture_opcode op)
1948 : ir_rvalue(ir_type_texture),
1949 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1950 shadow_comparitor(NULL), offset(NULL)
1951 {
1952 memset(&lod_info, 0, sizeof(lod_info));
1953 }
1954
1955 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1956
1957 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1958
1959 virtual void accept(ir_visitor *v)
1960 {
1961 v->visit(this);
1962 }
1963
1964 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1965
1966 virtual bool equals(const ir_instruction *ir,
1967 enum ir_node_type ignore = ir_type_unset) const;
1968
1969 /**
1970 * Return a string representing the ir_texture_opcode.
1971 */
1972 const char *opcode_string();
1973
1974 /** Set the sampler and type. */
1975 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1976
1977 /**
1978 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1979 */
1980 static ir_texture_opcode get_opcode(const char *);
1981
1982 enum ir_texture_opcode op;
1983
1984 /** Sampler to use for the texture access. */
1985 ir_dereference *sampler;
1986
1987 /** Texture coordinate to sample */
1988 ir_rvalue *coordinate;
1989
1990 /**
1991 * Value used for projective divide.
1992 *
1993 * If there is no projective divide (the common case), this will be
1994 * \c NULL. Optimization passes should check for this to point to a constant
1995 * of 1.0 and replace that with \c NULL.
1996 */
1997 ir_rvalue *projector;
1998
1999 /**
2000 * Coordinate used for comparison on shadow look-ups.
2001 *
2002 * If there is no shadow comparison, this will be \c NULL. For the
2003 * \c ir_txf opcode, this *must* be \c NULL.
2004 */
2005 ir_rvalue *shadow_comparitor;
2006
2007 /** Texel offset. */
2008 ir_rvalue *offset;
2009
2010 union {
2011 ir_rvalue *lod; /**< Floating point LOD */
2012 ir_rvalue *bias; /**< Floating point LOD bias */
2013 ir_rvalue *sample_index; /**< MSAA sample index */
2014 ir_rvalue *component; /**< Gather component selector */
2015 struct {
2016 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2017 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2018 } grad;
2019 } lod_info;
2020 };
2021
2022
2023 struct ir_swizzle_mask {
2024 unsigned x:2;
2025 unsigned y:2;
2026 unsigned z:2;
2027 unsigned w:2;
2028
2029 /**
2030 * Number of components in the swizzle.
2031 */
2032 unsigned num_components:3;
2033
2034 /**
2035 * Does the swizzle contain duplicate components?
2036 *
2037 * L-value swizzles cannot contain duplicate components.
2038 */
2039 unsigned has_duplicates:1;
2040 };
2041
2042
2043 class ir_swizzle : public ir_rvalue {
2044 public:
2045 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2046 unsigned count);
2047
2048 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2049
2050 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2051
2052 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2053
2054 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2055
2056 /**
2057 * Construct an ir_swizzle from the textual representation. Can fail.
2058 */
2059 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2060
2061 virtual void accept(ir_visitor *v)
2062 {
2063 v->visit(this);
2064 }
2065
2066 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2067
2068 virtual bool equals(const ir_instruction *ir,
2069 enum ir_node_type ignore = ir_type_unset) const;
2070
2071 bool is_lvalue() const
2072 {
2073 return val->is_lvalue() && !mask.has_duplicates;
2074 }
2075
2076 /**
2077 * Get the variable that is ultimately referenced by an r-value
2078 */
2079 virtual ir_variable *variable_referenced() const;
2080
2081 ir_rvalue *val;
2082 ir_swizzle_mask mask;
2083
2084 private:
2085 /**
2086 * Initialize the mask component of a swizzle
2087 *
2088 * This is used by the \c ir_swizzle constructors.
2089 */
2090 void init_mask(const unsigned *components, unsigned count);
2091 };
2092
2093
2094 class ir_dereference : public ir_rvalue {
2095 public:
2096 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2097
2098 bool is_lvalue() const;
2099
2100 /**
2101 * Get the variable that is ultimately referenced by an r-value
2102 */
2103 virtual ir_variable *variable_referenced() const = 0;
2104
2105 protected:
2106 ir_dereference(enum ir_node_type t)
2107 : ir_rvalue(t)
2108 {
2109 }
2110 };
2111
2112
2113 class ir_dereference_variable : public ir_dereference {
2114 public:
2115 ir_dereference_variable(ir_variable *var);
2116
2117 virtual ir_dereference_variable *clone(void *mem_ctx,
2118 struct hash_table *) const;
2119
2120 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2121
2122 virtual bool equals(const ir_instruction *ir,
2123 enum ir_node_type ignore = ir_type_unset) const;
2124
2125 /**
2126 * Get the variable that is ultimately referenced by an r-value
2127 */
2128 virtual ir_variable *variable_referenced() const
2129 {
2130 return this->var;
2131 }
2132
2133 virtual ir_variable *whole_variable_referenced()
2134 {
2135 /* ir_dereference_variable objects always dereference the entire
2136 * variable. However, if this dereference is dereferenced by anything
2137 * else, the complete deferefernce chain is not a whole-variable
2138 * dereference. This method should only be called on the top most
2139 * ir_rvalue in a dereference chain.
2140 */
2141 return this->var;
2142 }
2143
2144 virtual void accept(ir_visitor *v)
2145 {
2146 v->visit(this);
2147 }
2148
2149 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2150
2151 /**
2152 * Object being dereferenced.
2153 */
2154 ir_variable *var;
2155 };
2156
2157
2158 class ir_dereference_array : public ir_dereference {
2159 public:
2160 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2161
2162 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2163
2164 virtual ir_dereference_array *clone(void *mem_ctx,
2165 struct hash_table *) const;
2166
2167 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2168
2169 virtual bool equals(const ir_instruction *ir,
2170 enum ir_node_type ignore = ir_type_unset) const;
2171
2172 /**
2173 * Get the variable that is ultimately referenced by an r-value
2174 */
2175 virtual ir_variable *variable_referenced() const
2176 {
2177 return this->array->variable_referenced();
2178 }
2179
2180 virtual void accept(ir_visitor *v)
2181 {
2182 v->visit(this);
2183 }
2184
2185 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2186
2187 ir_rvalue *array;
2188 ir_rvalue *array_index;
2189
2190 private:
2191 void set_array(ir_rvalue *value);
2192 };
2193
2194
2195 class ir_dereference_record : public ir_dereference {
2196 public:
2197 ir_dereference_record(ir_rvalue *value, const char *field);
2198
2199 ir_dereference_record(ir_variable *var, const char *field);
2200
2201 virtual ir_dereference_record *clone(void *mem_ctx,
2202 struct hash_table *) const;
2203
2204 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2205
2206 /**
2207 * Get the variable that is ultimately referenced by an r-value
2208 */
2209 virtual ir_variable *variable_referenced() const
2210 {
2211 return this->record->variable_referenced();
2212 }
2213
2214 virtual void accept(ir_visitor *v)
2215 {
2216 v->visit(this);
2217 }
2218
2219 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2220
2221 ir_rvalue *record;
2222 const char *field;
2223 };
2224
2225
2226 /**
2227 * Data stored in an ir_constant
2228 */
2229 union ir_constant_data {
2230 unsigned u[16];
2231 int i[16];
2232 float f[16];
2233 bool b[16];
2234 double d[16];
2235 };
2236
2237
2238 class ir_constant : public ir_rvalue {
2239 public:
2240 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2241 ir_constant(bool b, unsigned vector_elements=1);
2242 ir_constant(unsigned int u, unsigned vector_elements=1);
2243 ir_constant(int i, unsigned vector_elements=1);
2244 ir_constant(float f, unsigned vector_elements=1);
2245 ir_constant(double d, unsigned vector_elements=1);
2246
2247 /**
2248 * Construct an ir_constant from a list of ir_constant values
2249 */
2250 ir_constant(const struct glsl_type *type, exec_list *values);
2251
2252 /**
2253 * Construct an ir_constant from a scalar component of another ir_constant
2254 *
2255 * The new \c ir_constant inherits the type of the component from the
2256 * source constant.
2257 *
2258 * \note
2259 * In the case of a matrix constant, the new constant is a scalar, \b not
2260 * a vector.
2261 */
2262 ir_constant(const ir_constant *c, unsigned i);
2263
2264 /**
2265 * Return a new ir_constant of the specified type containing all zeros.
2266 */
2267 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2268
2269 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2270
2271 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2272
2273 virtual void accept(ir_visitor *v)
2274 {
2275 v->visit(this);
2276 }
2277
2278 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2279
2280 virtual bool equals(const ir_instruction *ir,
2281 enum ir_node_type ignore = ir_type_unset) const;
2282
2283 /**
2284 * Get a particular component of a constant as a specific type
2285 *
2286 * This is useful, for example, to get a value from an integer constant
2287 * as a float or bool. This appears frequently when constructors are
2288 * called with all constant parameters.
2289 */
2290 /*@{*/
2291 bool get_bool_component(unsigned i) const;
2292 float get_float_component(unsigned i) const;
2293 double get_double_component(unsigned i) const;
2294 int get_int_component(unsigned i) const;
2295 unsigned get_uint_component(unsigned i) const;
2296 /*@}*/
2297
2298 ir_constant *get_array_element(unsigned i) const;
2299
2300 ir_constant *get_record_field(const char *name);
2301
2302 /**
2303 * Copy the values on another constant at a given offset.
2304 *
2305 * The offset is ignored for array or struct copies, it's only for
2306 * scalars or vectors into vectors or matrices.
2307 *
2308 * With identical types on both sides and zero offset it's clone()
2309 * without creating a new object.
2310 */
2311
2312 void copy_offset(ir_constant *src, int offset);
2313
2314 /**
2315 * Copy the values on another constant at a given offset and
2316 * following an assign-like mask.
2317 *
2318 * The mask is ignored for scalars.
2319 *
2320 * Note that this function only handles what assign can handle,
2321 * i.e. at most a vector as source and a column of a matrix as
2322 * destination.
2323 */
2324
2325 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2326
2327 /**
2328 * Determine whether a constant has the same value as another constant
2329 *
2330 * \sa ir_constant::is_zero, ir_constant::is_one,
2331 * ir_constant::is_negative_one
2332 */
2333 bool has_value(const ir_constant *) const;
2334
2335 /**
2336 * Return true if this ir_constant represents the given value.
2337 *
2338 * For vectors, this checks that each component is the given value.
2339 */
2340 virtual bool is_value(float f, int i) const;
2341 virtual bool is_zero() const;
2342 virtual bool is_one() const;
2343 virtual bool is_negative_one() const;
2344
2345 /**
2346 * Return true for constants that could be stored as 16-bit unsigned values.
2347 *
2348 * Note that this will return true even for signed integer ir_constants, as
2349 * long as the value is non-negative and fits in 16-bits.
2350 */
2351 virtual bool is_uint16_constant() const;
2352
2353 /**
2354 * Value of the constant.
2355 *
2356 * The field used to back the values supplied by the constant is determined
2357 * by the type associated with the \c ir_instruction. Constants may be
2358 * scalars, vectors, or matrices.
2359 */
2360 union ir_constant_data value;
2361
2362 /* Array elements */
2363 ir_constant **array_elements;
2364
2365 /* Structure fields */
2366 exec_list components;
2367
2368 private:
2369 /**
2370 * Parameterless constructor only used by the clone method
2371 */
2372 ir_constant(void);
2373 };
2374
2375 /**
2376 * IR instruction to emit a vertex in a geometry shader.
2377 */
2378 class ir_emit_vertex : public ir_instruction {
2379 public:
2380 ir_emit_vertex(ir_rvalue *stream)
2381 : ir_instruction(ir_type_emit_vertex),
2382 stream(stream)
2383 {
2384 assert(stream);
2385 }
2386
2387 virtual void accept(ir_visitor *v)
2388 {
2389 v->visit(this);
2390 }
2391
2392 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2393 {
2394 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2395 }
2396
2397 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2398
2399 int stream_id() const
2400 {
2401 return stream->as_constant()->value.i[0];
2402 }
2403
2404 ir_rvalue *stream;
2405 };
2406
2407 /**
2408 * IR instruction to complete the current primitive and start a new one in a
2409 * geometry shader.
2410 */
2411 class ir_end_primitive : public ir_instruction {
2412 public:
2413 ir_end_primitive(ir_rvalue *stream)
2414 : ir_instruction(ir_type_end_primitive),
2415 stream(stream)
2416 {
2417 assert(stream);
2418 }
2419
2420 virtual void accept(ir_visitor *v)
2421 {
2422 v->visit(this);
2423 }
2424
2425 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2426 {
2427 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2428 }
2429
2430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2431
2432 int stream_id() const
2433 {
2434 return stream->as_constant()->value.i[0];
2435 }
2436
2437 ir_rvalue *stream;
2438 };
2439
2440 /**
2441 * IR instruction for tessellation control and compute shader barrier.
2442 */
2443 class ir_barrier : public ir_instruction {
2444 public:
2445 ir_barrier()
2446 : ir_instruction(ir_type_barrier)
2447 {
2448 }
2449
2450 virtual void accept(ir_visitor *v)
2451 {
2452 v->visit(this);
2453 }
2454
2455 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2456 {
2457 return new(mem_ctx) ir_barrier();
2458 }
2459
2460 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2461 };
2462
2463 /*@}*/
2464
2465 /**
2466 * Apply a visitor to each IR node in a list
2467 */
2468 void
2469 visit_exec_list(exec_list *list, ir_visitor *visitor);
2470
2471 /**
2472 * Validate invariants on each IR node in a list
2473 */
2474 void validate_ir_tree(exec_list *instructions);
2475
2476 struct _mesa_glsl_parse_state;
2477 struct gl_shader_program;
2478
2479 /**
2480 * Detect whether an unlinked shader contains static recursion
2481 *
2482 * If the list of instructions is determined to contain static recursion,
2483 * \c _mesa_glsl_error will be called to emit error messages for each function
2484 * that is in the recursion cycle.
2485 */
2486 void
2487 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2488 exec_list *instructions);
2489
2490 /**
2491 * Detect whether a linked shader contains static recursion
2492 *
2493 * If the list of instructions is determined to contain static recursion,
2494 * \c link_error_printf will be called to emit error messages for each function
2495 * that is in the recursion cycle. In addition,
2496 * \c gl_shader_program::LinkStatus will be set to false.
2497 */
2498 void
2499 detect_recursion_linked(struct gl_shader_program *prog,
2500 exec_list *instructions);
2501
2502 /**
2503 * Make a clone of each IR instruction in a list
2504 *
2505 * \param in List of IR instructions that are to be cloned
2506 * \param out List to hold the cloned instructions
2507 */
2508 void
2509 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2510
2511 extern void
2512 _mesa_glsl_initialize_variables(exec_list *instructions,
2513 struct _mesa_glsl_parse_state *state);
2514
2515 extern void
2516 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2517
2518 extern void
2519 _mesa_glsl_initialize_builtin_functions();
2520
2521 extern ir_function_signature *
2522 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2523 const char *name, exec_list *actual_parameters);
2524
2525 extern ir_function *
2526 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2527 const char *name);
2528
2529 extern gl_shader *
2530 _mesa_glsl_get_builtin_function_shader(void);
2531
2532 extern void
2533 _mesa_glsl_release_functions(void);
2534
2535 extern void
2536 _mesa_glsl_release_builtin_functions(void);
2537
2538 extern void
2539 reparent_ir(exec_list *list, void *mem_ctx);
2540
2541 struct glsl_symbol_table;
2542
2543 extern void
2544 import_prototypes(const exec_list *source, exec_list *dest,
2545 struct glsl_symbol_table *symbols, void *mem_ctx);
2546
2547 extern bool
2548 ir_has_call(ir_instruction *ir);
2549
2550 extern void
2551 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2552 gl_shader_stage shader_stage);
2553
2554 extern char *
2555 prototype_string(const glsl_type *return_type, const char *name,
2556 exec_list *parameters);
2557
2558 const char *
2559 mode_string(const ir_variable *var);
2560
2561 /**
2562 * Built-in / reserved GL variables names start with "gl_"
2563 */
2564 static inline bool
2565 is_gl_identifier(const char *s)
2566 {
2567 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2568 }
2569
2570 extern "C" {
2571 #endif /* __cplusplus */
2572
2573 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2574 struct _mesa_glsl_parse_state *state);
2575
2576 extern void
2577 fprint_ir(FILE *f, const void *instruction);
2578
2579 #ifdef __cplusplus
2580 } /* extern "C" */
2581 #endif
2582
2583 unsigned
2584 vertices_per_prim(GLenum prim);
2585
2586 #endif /* IR_H */