glsl: Store ir_variable_data::_num_state_slots and ::binding in 16-bits each
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 /**
113 * \name IR instruction downcast functions
114 *
115 * These functions either cast the object to a derived class or return
116 * \c NULL if the object's type does not match the specified derived class.
117 * Additional downcast functions will be added as needed.
118 */
119 /*@{*/
120 class ir_rvalue *as_rvalue()
121 {
122 if (ir_type == ir_type_dereference_array ||
123 ir_type == ir_type_dereference_record ||
124 ir_type == ir_type_dereference_variable ||
125 ir_type == ir_type_constant ||
126 ir_type == ir_type_expression ||
127 ir_type == ir_type_swizzle ||
128 ir_type == ir_type_texture)
129 return (class ir_rvalue *) this;
130 return NULL;
131 }
132
133 class ir_dereference *as_dereference()
134 {
135 if (ir_type == ir_type_dereference_array ||
136 ir_type == ir_type_dereference_record ||
137 ir_type == ir_type_dereference_variable)
138 return (class ir_dereference *) this;
139 return NULL;
140 }
141
142 class ir_jump *as_jump()
143 {
144 if (ir_type == ir_type_loop_jump ||
145 ir_type == ir_type_return ||
146 ir_type == ir_type_discard)
147 return (class ir_jump *) this;
148 return NULL;
149 }
150
151 #define AS_CHILD(TYPE) \
152 class ir_##TYPE * as_##TYPE() \
153 { \
154 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
155 }
156 AS_CHILD(variable)
157 AS_CHILD(function)
158 AS_CHILD(dereference_array)
159 AS_CHILD(dereference_variable)
160 AS_CHILD(dereference_record)
161 AS_CHILD(expression)
162 AS_CHILD(loop)
163 AS_CHILD(assignment)
164 AS_CHILD(call)
165 AS_CHILD(return)
166 AS_CHILD(if)
167 AS_CHILD(swizzle)
168 AS_CHILD(texture)
169 AS_CHILD(constant)
170 AS_CHILD(discard)
171 #undef AS_CHILD
172 /*@}*/
173
174 /**
175 * IR equality method: Return true if the referenced instruction would
176 * return the same value as this one.
177 *
178 * This intended to be used for CSE and algebraic optimizations, on rvalues
179 * in particular. No support for other instruction types (assignments,
180 * jumps, calls, etc.) is planned.
181 */
182 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
183
184 protected:
185 ir_instruction(enum ir_node_type t)
186 : ir_type(t)
187 {
188 }
189
190 private:
191 ir_instruction()
192 {
193 assert(!"Should not get here.");
194 }
195 };
196
197
198 /**
199 * The base class for all "values"/expression trees.
200 */
201 class ir_rvalue : public ir_instruction {
202 public:
203 const struct glsl_type *type;
204
205 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
206
207 virtual void accept(ir_visitor *v)
208 {
209 v->visit(this);
210 }
211
212 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
213
214 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
215
216 ir_rvalue *as_rvalue_to_saturate();
217
218 virtual bool is_lvalue() const
219 {
220 return false;
221 }
222
223 /**
224 * Get the variable that is ultimately referenced by an r-value
225 */
226 virtual ir_variable *variable_referenced() const
227 {
228 return NULL;
229 }
230
231
232 /**
233 * If an r-value is a reference to a whole variable, get that variable
234 *
235 * \return
236 * Pointer to a variable that is completely dereferenced by the r-value. If
237 * the r-value is not a dereference or the dereference does not access the
238 * entire variable (i.e., it's just one array element, struct field), \c NULL
239 * is returned.
240 */
241 virtual ir_variable *whole_variable_referenced()
242 {
243 return NULL;
244 }
245
246 /**
247 * Determine if an r-value has the value zero
248 *
249 * The base implementation of this function always returns \c false. The
250 * \c ir_constant class over-rides this function to return \c true \b only
251 * for vector and scalar types that have all elements set to the value
252 * zero (or \c false for booleans).
253 *
254 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
255 * ir_constant::is_basis
256 */
257 virtual bool is_zero() const;
258
259 /**
260 * Determine if an r-value has the value one
261 *
262 * The base implementation of this function always returns \c false. The
263 * \c ir_constant class over-rides this function to return \c true \b only
264 * for vector and scalar types that have all elements set to the value
265 * one (or \c true for booleans).
266 *
267 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
268 * ir_constant::is_basis
269 */
270 virtual bool is_one() const;
271
272 /**
273 * Determine if an r-value has the value negative one
274 *
275 * The base implementation of this function always returns \c false. The
276 * \c ir_constant class over-rides this function to return \c true \b only
277 * for vector and scalar types that have all elements set to the value
278 * negative one. For boolean types, the result is always \c false.
279 *
280 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
281 * ir_constant::is_basis
282 */
283 virtual bool is_negative_one() const;
284
285 /**
286 * Determine if an r-value is a basis vector
287 *
288 * The base implementation of this function always returns \c false. The
289 * \c ir_constant class over-rides this function to return \c true \b only
290 * for vector and scalar types that have one element set to the value one,
291 * and the other elements set to the value zero. For boolean types, the
292 * result is always \c false.
293 *
294 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
295 * is_constant::is_negative_one
296 */
297 virtual bool is_basis() const;
298
299 /**
300 * Determine if an r-value is an unsigned integer constant which can be
301 * stored in 16 bits.
302 *
303 * \sa ir_constant::is_uint16_constant.
304 */
305 virtual bool is_uint16_constant() const { return false; }
306
307 /**
308 * Return a generic value of error_type.
309 *
310 * Allocation will be performed with 'mem_ctx' as ralloc owner.
311 */
312 static ir_rvalue *error_value(void *mem_ctx);
313
314 protected:
315 ir_rvalue(enum ir_node_type t);
316 };
317
318
319 /**
320 * Variable storage classes
321 */
322 enum ir_variable_mode {
323 ir_var_auto = 0, /**< Function local variables and globals. */
324 ir_var_uniform, /**< Variable declared as a uniform. */
325 ir_var_shader_in,
326 ir_var_shader_out,
327 ir_var_function_in,
328 ir_var_function_out,
329 ir_var_function_inout,
330 ir_var_const_in, /**< "in" param that must be a constant expression */
331 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
332 ir_var_temporary, /**< Temporary variable generated during compilation. */
333 ir_var_mode_count /**< Number of variable modes */
334 };
335
336 /**
337 * Enum keeping track of how a variable was declared. For error checking of
338 * the gl_PerVertex redeclaration rules.
339 */
340 enum ir_var_declaration_type {
341 /**
342 * Normal declaration (for most variables, this means an explicit
343 * declaration. Exception: temporaries are always implicitly declared, but
344 * they still use ir_var_declared_normally).
345 *
346 * Note: an ir_variable that represents a named interface block uses
347 * ir_var_declared_normally.
348 */
349 ir_var_declared_normally = 0,
350
351 /**
352 * Variable was explicitly declared (or re-declared) in an unnamed
353 * interface block.
354 */
355 ir_var_declared_in_block,
356
357 /**
358 * Variable is an implicitly declared built-in that has not been explicitly
359 * re-declared by the shader.
360 */
361 ir_var_declared_implicitly,
362 };
363
364 /**
365 * \brief Layout qualifiers for gl_FragDepth.
366 *
367 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
368 * with a layout qualifier.
369 */
370 enum ir_depth_layout {
371 ir_depth_layout_none, /**< No depth layout is specified. */
372 ir_depth_layout_any,
373 ir_depth_layout_greater,
374 ir_depth_layout_less,
375 ir_depth_layout_unchanged
376 };
377
378 /**
379 * \brief Convert depth layout qualifier to string.
380 */
381 const char*
382 depth_layout_string(ir_depth_layout layout);
383
384 /**
385 * Description of built-in state associated with a uniform
386 *
387 * \sa ir_variable::state_slots
388 */
389 struct ir_state_slot {
390 int tokens[5];
391 int swizzle;
392 };
393
394
395 /**
396 * Get the string value for an interpolation qualifier
397 *
398 * \return The string that would be used in a shader to specify \c
399 * mode will be returned.
400 *
401 * This function is used to generate error messages of the form "shader
402 * uses %s interpolation qualifier", so in the case where there is no
403 * interpolation qualifier, it returns "no".
404 *
405 * This function should only be used on a shader input or output variable.
406 */
407 const char *interpolation_string(unsigned interpolation);
408
409
410 class ir_variable : public ir_instruction {
411 public:
412 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
413
414 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
415
416 virtual void accept(ir_visitor *v)
417 {
418 v->visit(this);
419 }
420
421 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
422
423
424 /**
425 * Determine how this variable should be interpolated based on its
426 * interpolation qualifier (if present), whether it is gl_Color or
427 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
428 * state.
429 *
430 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
431 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
432 */
433 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
434
435 /**
436 * Determine whether or not a variable is part of a uniform block.
437 */
438 inline bool is_in_uniform_block() const
439 {
440 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
441 }
442
443 /**
444 * Determine whether or not a variable is the declaration of an interface
445 * block
446 *
447 * For the first declaration below, there will be an \c ir_variable named
448 * "instance" whose type and whose instance_type will be the same
449 * \cglsl_type. For the second declaration, there will be an \c ir_variable
450 * named "f" whose type is float and whose instance_type is B2.
451 *
452 * "instance" is an interface instance variable, but "f" is not.
453 *
454 * uniform B1 {
455 * float f;
456 * } instance;
457 *
458 * uniform B2 {
459 * float f;
460 * };
461 */
462 inline bool is_interface_instance() const
463 {
464 const glsl_type *const t = this->type;
465
466 return (t == this->interface_type)
467 || (t->is_array() && t->fields.array == this->interface_type);
468 }
469
470 /**
471 * Set this->interface_type on a newly created variable.
472 */
473 void init_interface_type(const struct glsl_type *type)
474 {
475 assert(this->interface_type == NULL);
476 this->interface_type = type;
477 if (this->is_interface_instance()) {
478 this->u.max_ifc_array_access =
479 rzalloc_array(this, unsigned, type->length);
480 }
481 }
482
483 /**
484 * Change this->interface_type on a variable that previously had a
485 * different, but compatible, interface_type. This is used during linking
486 * to set the size of arrays in interface blocks.
487 */
488 void change_interface_type(const struct glsl_type *type)
489 {
490 if (this->u.max_ifc_array_access != NULL) {
491 /* max_ifc_array_access has already been allocated, so make sure the
492 * new interface has the same number of fields as the old one.
493 */
494 assert(this->interface_type->length == type->length);
495 }
496 this->interface_type = type;
497 }
498
499 /**
500 * Change this->interface_type on a variable that previously had a
501 * different, and incompatible, interface_type. This is used during
502 * compilation to handle redeclaration of the built-in gl_PerVertex
503 * interface block.
504 */
505 void reinit_interface_type(const struct glsl_type *type)
506 {
507 if (this->u.max_ifc_array_access != NULL) {
508 #ifndef NDEBUG
509 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
510 * it defines have been accessed yet; so it's safe to throw away the
511 * old max_ifc_array_access pointer, since all of its values are
512 * zero.
513 */
514 for (unsigned i = 0; i < this->interface_type->length; i++)
515 assert(this->u.max_ifc_array_access[i] == 0);
516 #endif
517 ralloc_free(this->u.max_ifc_array_access);
518 this->u.max_ifc_array_access = NULL;
519 }
520 this->interface_type = NULL;
521 init_interface_type(type);
522 }
523
524 const glsl_type *get_interface_type() const
525 {
526 return this->interface_type;
527 }
528
529 /**
530 * Get the max_ifc_array_access pointer
531 *
532 * A "set" function is not needed because the array is dynmically allocated
533 * as necessary.
534 */
535 inline unsigned *get_max_ifc_array_access()
536 {
537 assert(this->data._num_state_slots == 0);
538 return this->u.max_ifc_array_access;
539 }
540
541 inline unsigned get_num_state_slots() const
542 {
543 assert(!this->is_interface_instance()
544 || this->data._num_state_slots == 0);
545 return this->data._num_state_slots;
546 }
547
548 inline void set_num_state_slots(unsigned n)
549 {
550 assert(!this->is_interface_instance()
551 || n == 0);
552 this->data._num_state_slots = n;
553 }
554
555 inline ir_state_slot *get_state_slots()
556 {
557 return this->is_interface_instance() ? NULL : this->u.state_slots;
558 }
559
560 inline const ir_state_slot *get_state_slots() const
561 {
562 return this->is_interface_instance() ? NULL : this->u.state_slots;
563 }
564
565 inline ir_state_slot *allocate_state_slots(unsigned n)
566 {
567 assert(!this->is_interface_instance());
568
569 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
570 this->data._num_state_slots = 0;
571
572 if (this->u.state_slots != NULL)
573 this->data._num_state_slots = n;
574
575 return this->u.state_slots;
576 }
577
578 /**
579 * Enable emitting extension warnings for this variable
580 */
581 void enable_extension_warning(const char *extension);
582
583 /**
584 * Get the extension warning string for this variable
585 *
586 * If warnings are not enabled, \c NULL is returned.
587 */
588 const char *get_extension_warning() const;
589
590 /**
591 * Declared type of the variable
592 */
593 const struct glsl_type *type;
594
595 /**
596 * Declared name of the variable
597 */
598 const char *name;
599
600 struct ir_variable_data {
601
602 /**
603 * Is the variable read-only?
604 *
605 * This is set for variables declared as \c const, shader inputs,
606 * and uniforms.
607 */
608 unsigned read_only:1;
609 unsigned centroid:1;
610 unsigned sample:1;
611 unsigned invariant:1;
612 unsigned precise:1;
613
614 /**
615 * Has this variable been used for reading or writing?
616 *
617 * Several GLSL semantic checks require knowledge of whether or not a
618 * variable has been used. For example, it is an error to redeclare a
619 * variable as invariant after it has been used.
620 *
621 * This is only maintained in the ast_to_hir.cpp path, not in
622 * Mesa's fixed function or ARB program paths.
623 */
624 unsigned used:1;
625
626 /**
627 * Has this variable been statically assigned?
628 *
629 * This answers whether the variable was assigned in any path of
630 * the shader during ast_to_hir. This doesn't answer whether it is
631 * still written after dead code removal, nor is it maintained in
632 * non-ast_to_hir.cpp (GLSL parsing) paths.
633 */
634 unsigned assigned:1;
635
636 /**
637 * Enum indicating how the variable was declared. See
638 * ir_var_declaration_type.
639 *
640 * This is used to detect certain kinds of illegal variable redeclarations.
641 */
642 unsigned how_declared:2;
643
644 /**
645 * Storage class of the variable.
646 *
647 * \sa ir_variable_mode
648 */
649 unsigned mode:4;
650
651 /**
652 * Interpolation mode for shader inputs / outputs
653 *
654 * \sa ir_variable_interpolation
655 */
656 unsigned interpolation:2;
657
658 /**
659 * \name ARB_fragment_coord_conventions
660 * @{
661 */
662 unsigned origin_upper_left:1;
663 unsigned pixel_center_integer:1;
664 /*@}*/
665
666 /**
667 * Was the location explicitly set in the shader?
668 *
669 * If the location is explicitly set in the shader, it \b cannot be changed
670 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
671 * no effect).
672 */
673 unsigned explicit_location:1;
674 unsigned explicit_index:1;
675
676 /**
677 * Was an initial binding explicitly set in the shader?
678 *
679 * If so, constant_value contains an integer ir_constant representing the
680 * initial binding point.
681 */
682 unsigned explicit_binding:1;
683
684 /**
685 * Does this variable have an initializer?
686 *
687 * This is used by the linker to cross-validiate initializers of global
688 * variables.
689 */
690 unsigned has_initializer:1;
691
692 /**
693 * Is this variable a generic output or input that has not yet been matched
694 * up to a variable in another stage of the pipeline?
695 *
696 * This is used by the linker as scratch storage while assigning locations
697 * to generic inputs and outputs.
698 */
699 unsigned is_unmatched_generic_inout:1;
700
701 /**
702 * If non-zero, then this variable may be packed along with other variables
703 * into a single varying slot, so this offset should be applied when
704 * accessing components. For example, an offset of 1 means that the x
705 * component of this variable is actually stored in component y of the
706 * location specified by \c location.
707 */
708 unsigned location_frac:2;
709
710 /**
711 * Layout of the matrix. Uses glsl_matrix_layout values.
712 */
713 unsigned matrix_layout:2;
714
715 /**
716 * Non-zero if this variable was created by lowering a named interface
717 * block which was not an array.
718 *
719 * Note that this variable and \c from_named_ifc_block_array will never
720 * both be non-zero.
721 */
722 unsigned from_named_ifc_block_nonarray:1;
723
724 /**
725 * Non-zero if this variable was created by lowering a named interface
726 * block which was an array.
727 *
728 * Note that this variable and \c from_named_ifc_block_nonarray will never
729 * both be non-zero.
730 */
731 unsigned from_named_ifc_block_array:1;
732
733 /**
734 * Non-zero if the variable must be a shader input. This is useful for
735 * constraints on function parameters.
736 */
737 unsigned must_be_shader_input:1;
738
739 /**
740 * Output index for dual source blending.
741 *
742 * \note
743 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
744 * source blending.
745 */
746 unsigned index:1;
747
748 /**
749 * \brief Layout qualifier for gl_FragDepth.
750 *
751 * This is not equal to \c ir_depth_layout_none if and only if this
752 * variable is \c gl_FragDepth and a layout qualifier is specified.
753 */
754 ir_depth_layout depth_layout:3;
755
756 /**
757 * ARB_shader_image_load_store qualifiers.
758 */
759 unsigned image_read_only:1; /**< "readonly" qualifier. */
760 unsigned image_write_only:1; /**< "writeonly" qualifier. */
761 unsigned image_coherent:1;
762 unsigned image_volatile:1;
763 unsigned image_restrict:1;
764
765 /**
766 * Emit a warning if this variable is accessed.
767 */
768 private:
769 uint8_t warn_extension_index;
770
771 public:
772 /** Image internal format if specified explicitly, otherwise GL_NONE. */
773 uint16_t image_format;
774
775 private:
776 /**
777 * Number of state slots used
778 *
779 * \note
780 * This could be stored in as few as 7-bits, if necessary. If it is made
781 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
782 * be safe.
783 */
784 uint16_t _num_state_slots;
785
786 public:
787 /**
788 * Initial binding point for a sampler, atomic, or UBO.
789 *
790 * For array types, this represents the binding point for the first element.
791 */
792 int16_t binding;
793
794 /**
795 * Storage location of the base of this variable
796 *
797 * The precise meaning of this field depends on the nature of the variable.
798 *
799 * - Vertex shader input: one of the values from \c gl_vert_attrib.
800 * - Vertex shader output: one of the values from \c gl_varying_slot.
801 * - Geometry shader input: one of the values from \c gl_varying_slot.
802 * - Geometry shader output: one of the values from \c gl_varying_slot.
803 * - Fragment shader input: one of the values from \c gl_varying_slot.
804 * - Fragment shader output: one of the values from \c gl_frag_result.
805 * - Uniforms: Per-stage uniform slot number for default uniform block.
806 * - Uniforms: Index within the uniform block definition for UBO members.
807 * - Other: This field is not currently used.
808 *
809 * If the variable is a uniform, shader input, or shader output, and the
810 * slot has not been assigned, the value will be -1.
811 */
812 int location;
813
814 /**
815 * Vertex stream output identifier.
816 */
817 unsigned stream;
818
819 /**
820 * Location an atomic counter is stored at.
821 */
822 struct {
823 unsigned offset;
824 } atomic;
825
826 /**
827 * Highest element accessed with a constant expression array index
828 *
829 * Not used for non-array variables.
830 */
831 unsigned max_array_access;
832
833 /**
834 * Allow (only) ir_variable direct access private members.
835 */
836 friend class ir_variable;
837 } data;
838
839 /**
840 * Value assigned in the initializer of a variable declared "const"
841 */
842 ir_constant *constant_value;
843
844 /**
845 * Constant expression assigned in the initializer of the variable
846 *
847 * \warning
848 * This field and \c ::constant_value are distinct. Even if the two fields
849 * refer to constants with the same value, they must point to separate
850 * objects.
851 */
852 ir_constant *constant_initializer;
853
854 private:
855 static const char *const warn_extension_table[];
856
857 union {
858 /**
859 * For variables which satisfy the is_interface_instance() predicate,
860 * this points to an array of integers such that if the ith member of
861 * the interface block is an array, max_ifc_array_access[i] is the
862 * maximum array element of that member that has been accessed. If the
863 * ith member of the interface block is not an array,
864 * max_ifc_array_access[i] is unused.
865 *
866 * For variables whose type is not an interface block, this pointer is
867 * NULL.
868 */
869 unsigned *max_ifc_array_access;
870
871 /**
872 * Built-in state that backs this uniform
873 *
874 * Once set at variable creation, \c state_slots must remain invariant.
875 *
876 * If the variable is not a uniform, \c _num_state_slots will be zero
877 * and \c state_slots will be \c NULL.
878 */
879 ir_state_slot *state_slots;
880 } u;
881
882 /**
883 * For variables that are in an interface block or are an instance of an
884 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
885 *
886 * \sa ir_variable::location
887 */
888 const glsl_type *interface_type;
889 };
890
891 /**
892 * A function that returns whether a built-in function is available in the
893 * current shading language (based on version, ES or desktop, and extensions).
894 */
895 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
896
897 /*@{*/
898 /**
899 * The representation of a function instance; may be the full definition or
900 * simply a prototype.
901 */
902 class ir_function_signature : public ir_instruction {
903 /* An ir_function_signature will be part of the list of signatures in
904 * an ir_function.
905 */
906 public:
907 ir_function_signature(const glsl_type *return_type,
908 builtin_available_predicate builtin_avail = NULL);
909
910 virtual ir_function_signature *clone(void *mem_ctx,
911 struct hash_table *ht) const;
912 ir_function_signature *clone_prototype(void *mem_ctx,
913 struct hash_table *ht) const;
914
915 virtual void accept(ir_visitor *v)
916 {
917 v->visit(this);
918 }
919
920 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
921
922 /**
923 * Attempt to evaluate this function as a constant expression,
924 * given a list of the actual parameters and the variable context.
925 * Returns NULL for non-built-ins.
926 */
927 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
928
929 /**
930 * Get the name of the function for which this is a signature
931 */
932 const char *function_name() const;
933
934 /**
935 * Get a handle to the function for which this is a signature
936 *
937 * There is no setter function, this function returns a \c const pointer,
938 * and \c ir_function_signature::_function is private for a reason. The
939 * only way to make a connection between a function and function signature
940 * is via \c ir_function::add_signature. This helps ensure that certain
941 * invariants (i.e., a function signature is in the list of signatures for
942 * its \c _function) are met.
943 *
944 * \sa ir_function::add_signature
945 */
946 inline const class ir_function *function() const
947 {
948 return this->_function;
949 }
950
951 /**
952 * Check whether the qualifiers match between this signature's parameters
953 * and the supplied parameter list. If not, returns the name of the first
954 * parameter with mismatched qualifiers (for use in error messages).
955 */
956 const char *qualifiers_match(exec_list *params);
957
958 /**
959 * Replace the current parameter list with the given one. This is useful
960 * if the current information came from a prototype, and either has invalid
961 * or missing parameter names.
962 */
963 void replace_parameters(exec_list *new_params);
964
965 /**
966 * Function return type.
967 *
968 * \note This discards the optional precision qualifier.
969 */
970 const struct glsl_type *return_type;
971
972 /**
973 * List of ir_variable of function parameters.
974 *
975 * This represents the storage. The paramaters passed in a particular
976 * call will be in ir_call::actual_paramaters.
977 */
978 struct exec_list parameters;
979
980 /** Whether or not this function has a body (which may be empty). */
981 unsigned is_defined:1;
982
983 /** Whether or not this function signature is a built-in. */
984 bool is_builtin() const;
985
986 /**
987 * Whether or not this function is an intrinsic to be implemented
988 * by the driver.
989 */
990 bool is_intrinsic;
991
992 /** Whether or not a built-in is available for this shader. */
993 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
994
995 /** Body of instructions in the function. */
996 struct exec_list body;
997
998 private:
999 /**
1000 * A function pointer to a predicate that answers whether a built-in
1001 * function is available in the current shader. NULL if not a built-in.
1002 */
1003 builtin_available_predicate builtin_avail;
1004
1005 /** Function of which this signature is one overload. */
1006 class ir_function *_function;
1007
1008 /** Function signature of which this one is a prototype clone */
1009 const ir_function_signature *origin;
1010
1011 friend class ir_function;
1012
1013 /**
1014 * Helper function to run a list of instructions for constant
1015 * expression evaluation.
1016 *
1017 * The hash table represents the values of the visible variables.
1018 * There are no scoping issues because the table is indexed on
1019 * ir_variable pointers, not variable names.
1020 *
1021 * Returns false if the expression is not constant, true otherwise,
1022 * and the value in *result if result is non-NULL.
1023 */
1024 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1025 struct hash_table *variable_context,
1026 ir_constant **result);
1027 };
1028
1029
1030 /**
1031 * Header for tracking multiple overloaded functions with the same name.
1032 * Contains a list of ir_function_signatures representing each of the
1033 * actual functions.
1034 */
1035 class ir_function : public ir_instruction {
1036 public:
1037 ir_function(const char *name);
1038
1039 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1040
1041 virtual void accept(ir_visitor *v)
1042 {
1043 v->visit(this);
1044 }
1045
1046 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1047
1048 void add_signature(ir_function_signature *sig)
1049 {
1050 sig->_function = this;
1051 this->signatures.push_tail(sig);
1052 }
1053
1054 /**
1055 * Find a signature that matches a set of actual parameters, taking implicit
1056 * conversions into account. Also flags whether the match was exact.
1057 */
1058 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1059 const exec_list *actual_param,
1060 bool allow_builtins,
1061 bool *match_is_exact);
1062
1063 /**
1064 * Find a signature that matches a set of actual parameters, taking implicit
1065 * conversions into account.
1066 */
1067 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1068 const exec_list *actual_param,
1069 bool allow_builtins);
1070
1071 /**
1072 * Find a signature that exactly matches a set of actual parameters without
1073 * any implicit type conversions.
1074 */
1075 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1076 const exec_list *actual_ps);
1077
1078 /**
1079 * Name of the function.
1080 */
1081 const char *name;
1082
1083 /** Whether or not this function has a signature that isn't a built-in. */
1084 bool has_user_signature();
1085
1086 /**
1087 * List of ir_function_signature for each overloaded function with this name.
1088 */
1089 struct exec_list signatures;
1090 };
1091
1092 inline const char *ir_function_signature::function_name() const
1093 {
1094 return this->_function->name;
1095 }
1096 /*@}*/
1097
1098
1099 /**
1100 * IR instruction representing high-level if-statements
1101 */
1102 class ir_if : public ir_instruction {
1103 public:
1104 ir_if(ir_rvalue *condition)
1105 : ir_instruction(ir_type_if), condition(condition)
1106 {
1107 }
1108
1109 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1110
1111 virtual void accept(ir_visitor *v)
1112 {
1113 v->visit(this);
1114 }
1115
1116 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1117
1118 ir_rvalue *condition;
1119 /** List of ir_instruction for the body of the then branch */
1120 exec_list then_instructions;
1121 /** List of ir_instruction for the body of the else branch */
1122 exec_list else_instructions;
1123 };
1124
1125
1126 /**
1127 * IR instruction representing a high-level loop structure.
1128 */
1129 class ir_loop : public ir_instruction {
1130 public:
1131 ir_loop();
1132
1133 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1134
1135 virtual void accept(ir_visitor *v)
1136 {
1137 v->visit(this);
1138 }
1139
1140 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1141
1142 /** List of ir_instruction that make up the body of the loop. */
1143 exec_list body_instructions;
1144 };
1145
1146
1147 class ir_assignment : public ir_instruction {
1148 public:
1149 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1150
1151 /**
1152 * Construct an assignment with an explicit write mask
1153 *
1154 * \note
1155 * Since a write mask is supplied, the LHS must already be a bare
1156 * \c ir_dereference. The cannot be any swizzles in the LHS.
1157 */
1158 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1159 unsigned write_mask);
1160
1161 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1162
1163 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1164
1165 virtual void accept(ir_visitor *v)
1166 {
1167 v->visit(this);
1168 }
1169
1170 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1171
1172 /**
1173 * Get a whole variable written by an assignment
1174 *
1175 * If the LHS of the assignment writes a whole variable, the variable is
1176 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1177 * assignment are:
1178 *
1179 * - Assigning to a scalar
1180 * - Assigning to all components of a vector
1181 * - Whole array (or matrix) assignment
1182 * - Whole structure assignment
1183 */
1184 ir_variable *whole_variable_written();
1185
1186 /**
1187 * Set the LHS of an assignment
1188 */
1189 void set_lhs(ir_rvalue *lhs);
1190
1191 /**
1192 * Left-hand side of the assignment.
1193 *
1194 * This should be treated as read only. If you need to set the LHS of an
1195 * assignment, use \c ir_assignment::set_lhs.
1196 */
1197 ir_dereference *lhs;
1198
1199 /**
1200 * Value being assigned
1201 */
1202 ir_rvalue *rhs;
1203
1204 /**
1205 * Optional condition for the assignment.
1206 */
1207 ir_rvalue *condition;
1208
1209
1210 /**
1211 * Component mask written
1212 *
1213 * For non-vector types in the LHS, this field will be zero. For vector
1214 * types, a bit will be set for each component that is written. Note that
1215 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1216 *
1217 * A partially-set write mask means that each enabled channel gets
1218 * the value from a consecutive channel of the rhs. For example,
1219 * to write just .xyw of gl_FrontColor with color:
1220 *
1221 * (assign (constant bool (1)) (xyw)
1222 * (var_ref gl_FragColor)
1223 * (swiz xyw (var_ref color)))
1224 */
1225 unsigned write_mask:4;
1226 };
1227
1228 /* Update ir_expression::get_num_operands() and operator_strs when
1229 * updating this list.
1230 */
1231 enum ir_expression_operation {
1232 ir_unop_bit_not,
1233 ir_unop_logic_not,
1234 ir_unop_neg,
1235 ir_unop_abs,
1236 ir_unop_sign,
1237 ir_unop_rcp,
1238 ir_unop_rsq,
1239 ir_unop_sqrt,
1240 ir_unop_exp, /**< Log base e on gentype */
1241 ir_unop_log, /**< Natural log on gentype */
1242 ir_unop_exp2,
1243 ir_unop_log2,
1244 ir_unop_f2i, /**< Float-to-integer conversion. */
1245 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1246 ir_unop_i2f, /**< Integer-to-float conversion. */
1247 ir_unop_f2b, /**< Float-to-boolean conversion */
1248 ir_unop_b2f, /**< Boolean-to-float conversion */
1249 ir_unop_i2b, /**< int-to-boolean conversion */
1250 ir_unop_b2i, /**< Boolean-to-int conversion */
1251 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1252 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1253 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1254 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1255 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1256 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1257 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1258 ir_unop_any,
1259
1260 /**
1261 * \name Unary floating-point rounding operations.
1262 */
1263 /*@{*/
1264 ir_unop_trunc,
1265 ir_unop_ceil,
1266 ir_unop_floor,
1267 ir_unop_fract,
1268 ir_unop_round_even,
1269 /*@}*/
1270
1271 /**
1272 * \name Trigonometric operations.
1273 */
1274 /*@{*/
1275 ir_unop_sin,
1276 ir_unop_cos,
1277 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1278 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1279 /*@}*/
1280
1281 /**
1282 * \name Partial derivatives.
1283 */
1284 /*@{*/
1285 ir_unop_dFdx,
1286 ir_unop_dFdx_coarse,
1287 ir_unop_dFdx_fine,
1288 ir_unop_dFdy,
1289 ir_unop_dFdy_coarse,
1290 ir_unop_dFdy_fine,
1291 /*@}*/
1292
1293 /**
1294 * \name Floating point pack and unpack operations.
1295 */
1296 /*@{*/
1297 ir_unop_pack_snorm_2x16,
1298 ir_unop_pack_snorm_4x8,
1299 ir_unop_pack_unorm_2x16,
1300 ir_unop_pack_unorm_4x8,
1301 ir_unop_pack_half_2x16,
1302 ir_unop_unpack_snorm_2x16,
1303 ir_unop_unpack_snorm_4x8,
1304 ir_unop_unpack_unorm_2x16,
1305 ir_unop_unpack_unorm_4x8,
1306 ir_unop_unpack_half_2x16,
1307 /*@}*/
1308
1309 /**
1310 * \name Lowered floating point unpacking operations.
1311 *
1312 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1313 */
1314 /*@{*/
1315 ir_unop_unpack_half_2x16_split_x,
1316 ir_unop_unpack_half_2x16_split_y,
1317 /*@}*/
1318
1319 /**
1320 * \name Bit operations, part of ARB_gpu_shader5.
1321 */
1322 /*@{*/
1323 ir_unop_bitfield_reverse,
1324 ir_unop_bit_count,
1325 ir_unop_find_msb,
1326 ir_unop_find_lsb,
1327 /*@}*/
1328
1329 ir_unop_saturate,
1330 ir_unop_noise,
1331
1332 /**
1333 * Interpolate fs input at centroid
1334 *
1335 * operand0 is the fs input.
1336 */
1337 ir_unop_interpolate_at_centroid,
1338
1339 /**
1340 * A sentinel marking the last of the unary operations.
1341 */
1342 ir_last_unop = ir_unop_interpolate_at_centroid,
1343
1344 ir_binop_add,
1345 ir_binop_sub,
1346 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1347 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1348 ir_binop_div,
1349
1350 /**
1351 * Returns the carry resulting from the addition of the two arguments.
1352 */
1353 /*@{*/
1354 ir_binop_carry,
1355 /*@}*/
1356
1357 /**
1358 * Returns the borrow resulting from the subtraction of the second argument
1359 * from the first argument.
1360 */
1361 /*@{*/
1362 ir_binop_borrow,
1363 /*@}*/
1364
1365 /**
1366 * Takes one of two combinations of arguments:
1367 *
1368 * - mod(vecN, vecN)
1369 * - mod(vecN, float)
1370 *
1371 * Does not take integer types.
1372 */
1373 ir_binop_mod,
1374
1375 /**
1376 * \name Binary comparison operators which return a boolean vector.
1377 * The type of both operands must be equal.
1378 */
1379 /*@{*/
1380 ir_binop_less,
1381 ir_binop_greater,
1382 ir_binop_lequal,
1383 ir_binop_gequal,
1384 ir_binop_equal,
1385 ir_binop_nequal,
1386 /**
1387 * Returns single boolean for whether all components of operands[0]
1388 * equal the components of operands[1].
1389 */
1390 ir_binop_all_equal,
1391 /**
1392 * Returns single boolean for whether any component of operands[0]
1393 * is not equal to the corresponding component of operands[1].
1394 */
1395 ir_binop_any_nequal,
1396 /*@}*/
1397
1398 /**
1399 * \name Bit-wise binary operations.
1400 */
1401 /*@{*/
1402 ir_binop_lshift,
1403 ir_binop_rshift,
1404 ir_binop_bit_and,
1405 ir_binop_bit_xor,
1406 ir_binop_bit_or,
1407 /*@}*/
1408
1409 ir_binop_logic_and,
1410 ir_binop_logic_xor,
1411 ir_binop_logic_or,
1412
1413 ir_binop_dot,
1414 ir_binop_min,
1415 ir_binop_max,
1416
1417 ir_binop_pow,
1418
1419 /**
1420 * \name Lowered floating point packing operations.
1421 *
1422 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1423 */
1424 /*@{*/
1425 ir_binop_pack_half_2x16_split,
1426 /*@}*/
1427
1428 /**
1429 * \name First half of a lowered bitfieldInsert() operation.
1430 *
1431 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1432 */
1433 /*@{*/
1434 ir_binop_bfm,
1435 /*@}*/
1436
1437 /**
1438 * Load a value the size of a given GLSL type from a uniform block.
1439 *
1440 * operand0 is the ir_constant uniform block index in the linked shader.
1441 * operand1 is a byte offset within the uniform block.
1442 */
1443 ir_binop_ubo_load,
1444
1445 /**
1446 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1447 */
1448 /*@{*/
1449 ir_binop_ldexp,
1450 /*@}*/
1451
1452 /**
1453 * Extract a scalar from a vector
1454 *
1455 * operand0 is the vector
1456 * operand1 is the index of the field to read from operand0
1457 */
1458 ir_binop_vector_extract,
1459
1460 /**
1461 * Interpolate fs input at offset
1462 *
1463 * operand0 is the fs input
1464 * operand1 is the offset from the pixel center
1465 */
1466 ir_binop_interpolate_at_offset,
1467
1468 /**
1469 * Interpolate fs input at sample position
1470 *
1471 * operand0 is the fs input
1472 * operand1 is the sample ID
1473 */
1474 ir_binop_interpolate_at_sample,
1475
1476 /**
1477 * A sentinel marking the last of the binary operations.
1478 */
1479 ir_last_binop = ir_binop_interpolate_at_sample,
1480
1481 /**
1482 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1483 */
1484 /*@{*/
1485 ir_triop_fma,
1486 /*@}*/
1487
1488 ir_triop_lrp,
1489
1490 /**
1491 * \name Conditional Select
1492 *
1493 * A vector conditional select instruction (like ?:, but operating per-
1494 * component on vectors).
1495 *
1496 * \see lower_instructions_visitor::ldexp_to_arith
1497 */
1498 /*@{*/
1499 ir_triop_csel,
1500 /*@}*/
1501
1502 /**
1503 * \name Second half of a lowered bitfieldInsert() operation.
1504 *
1505 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1506 */
1507 /*@{*/
1508 ir_triop_bfi,
1509 /*@}*/
1510
1511 ir_triop_bitfield_extract,
1512
1513 /**
1514 * Generate a value with one field of a vector changed
1515 *
1516 * operand0 is the vector
1517 * operand1 is the value to write into the vector result
1518 * operand2 is the index in operand0 to be modified
1519 */
1520 ir_triop_vector_insert,
1521
1522 /**
1523 * A sentinel marking the last of the ternary operations.
1524 */
1525 ir_last_triop = ir_triop_vector_insert,
1526
1527 ir_quadop_bitfield_insert,
1528
1529 ir_quadop_vector,
1530
1531 /**
1532 * A sentinel marking the last of the ternary operations.
1533 */
1534 ir_last_quadop = ir_quadop_vector,
1535
1536 /**
1537 * A sentinel marking the last of all operations.
1538 */
1539 ir_last_opcode = ir_quadop_vector
1540 };
1541
1542 class ir_expression : public ir_rvalue {
1543 public:
1544 ir_expression(int op, const struct glsl_type *type,
1545 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1546 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1547
1548 /**
1549 * Constructor for unary operation expressions
1550 */
1551 ir_expression(int op, ir_rvalue *);
1552
1553 /**
1554 * Constructor for binary operation expressions
1555 */
1556 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1557
1558 /**
1559 * Constructor for ternary operation expressions
1560 */
1561 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1562
1563 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1564
1565 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1566
1567 /**
1568 * Attempt to constant-fold the expression
1569 *
1570 * The "variable_context" hash table links ir_variable * to ir_constant *
1571 * that represent the variables' values. \c NULL represents an empty
1572 * context.
1573 *
1574 * If the expression cannot be constant folded, this method will return
1575 * \c NULL.
1576 */
1577 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1578
1579 /**
1580 * Determine the number of operands used by an expression
1581 */
1582 static unsigned int get_num_operands(ir_expression_operation);
1583
1584 /**
1585 * Determine the number of operands used by an expression
1586 */
1587 unsigned int get_num_operands() const
1588 {
1589 return (this->operation == ir_quadop_vector)
1590 ? this->type->vector_elements : get_num_operands(operation);
1591 }
1592
1593 /**
1594 * Return whether the expression operates on vectors horizontally.
1595 */
1596 bool is_horizontal() const
1597 {
1598 return operation == ir_binop_all_equal ||
1599 operation == ir_binop_any_nequal ||
1600 operation == ir_unop_any ||
1601 operation == ir_binop_dot ||
1602 operation == ir_quadop_vector;
1603 }
1604
1605 /**
1606 * Return a string representing this expression's operator.
1607 */
1608 const char *operator_string();
1609
1610 /**
1611 * Return a string representing this expression's operator.
1612 */
1613 static const char *operator_string(ir_expression_operation);
1614
1615
1616 /**
1617 * Do a reverse-lookup to translate the given string into an operator.
1618 */
1619 static ir_expression_operation get_operator(const char *);
1620
1621 virtual void accept(ir_visitor *v)
1622 {
1623 v->visit(this);
1624 }
1625
1626 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1627
1628 ir_expression_operation operation;
1629 ir_rvalue *operands[4];
1630 };
1631
1632
1633 /**
1634 * HIR instruction representing a high-level function call, containing a list
1635 * of parameters and returning a value in the supplied temporary.
1636 */
1637 class ir_call : public ir_instruction {
1638 public:
1639 ir_call(ir_function_signature *callee,
1640 ir_dereference_variable *return_deref,
1641 exec_list *actual_parameters)
1642 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1643 {
1644 assert(callee->return_type != NULL);
1645 actual_parameters->move_nodes_to(& this->actual_parameters);
1646 this->use_builtin = callee->is_builtin();
1647 }
1648
1649 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1650
1651 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1652
1653 virtual void accept(ir_visitor *v)
1654 {
1655 v->visit(this);
1656 }
1657
1658 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1659
1660 /**
1661 * Get the name of the function being called.
1662 */
1663 const char *callee_name() const
1664 {
1665 return callee->function_name();
1666 }
1667
1668 /**
1669 * Generates an inline version of the function before @ir,
1670 * storing the return value in return_deref.
1671 */
1672 void generate_inline(ir_instruction *ir);
1673
1674 /**
1675 * Storage for the function's return value.
1676 * This must be NULL if the return type is void.
1677 */
1678 ir_dereference_variable *return_deref;
1679
1680 /**
1681 * The specific function signature being called.
1682 */
1683 ir_function_signature *callee;
1684
1685 /* List of ir_rvalue of paramaters passed in this call. */
1686 exec_list actual_parameters;
1687
1688 /** Should this call only bind to a built-in function? */
1689 bool use_builtin;
1690 };
1691
1692
1693 /**
1694 * \name Jump-like IR instructions.
1695 *
1696 * These include \c break, \c continue, \c return, and \c discard.
1697 */
1698 /*@{*/
1699 class ir_jump : public ir_instruction {
1700 protected:
1701 ir_jump(enum ir_node_type t)
1702 : ir_instruction(t)
1703 {
1704 }
1705 };
1706
1707 class ir_return : public ir_jump {
1708 public:
1709 ir_return()
1710 : ir_jump(ir_type_return), value(NULL)
1711 {
1712 }
1713
1714 ir_return(ir_rvalue *value)
1715 : ir_jump(ir_type_return), value(value)
1716 {
1717 }
1718
1719 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1720
1721 ir_rvalue *get_value() const
1722 {
1723 return value;
1724 }
1725
1726 virtual void accept(ir_visitor *v)
1727 {
1728 v->visit(this);
1729 }
1730
1731 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1732
1733 ir_rvalue *value;
1734 };
1735
1736
1737 /**
1738 * Jump instructions used inside loops
1739 *
1740 * These include \c break and \c continue. The \c break within a loop is
1741 * different from the \c break within a switch-statement.
1742 *
1743 * \sa ir_switch_jump
1744 */
1745 class ir_loop_jump : public ir_jump {
1746 public:
1747 enum jump_mode {
1748 jump_break,
1749 jump_continue
1750 };
1751
1752 ir_loop_jump(jump_mode mode)
1753 : ir_jump(ir_type_loop_jump)
1754 {
1755 this->mode = mode;
1756 }
1757
1758 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1759
1760 virtual void accept(ir_visitor *v)
1761 {
1762 v->visit(this);
1763 }
1764
1765 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1766
1767 bool is_break() const
1768 {
1769 return mode == jump_break;
1770 }
1771
1772 bool is_continue() const
1773 {
1774 return mode == jump_continue;
1775 }
1776
1777 /** Mode selector for the jump instruction. */
1778 enum jump_mode mode;
1779 };
1780
1781 /**
1782 * IR instruction representing discard statements.
1783 */
1784 class ir_discard : public ir_jump {
1785 public:
1786 ir_discard()
1787 : ir_jump(ir_type_discard)
1788 {
1789 this->condition = NULL;
1790 }
1791
1792 ir_discard(ir_rvalue *cond)
1793 : ir_jump(ir_type_discard)
1794 {
1795 this->condition = cond;
1796 }
1797
1798 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1799
1800 virtual void accept(ir_visitor *v)
1801 {
1802 v->visit(this);
1803 }
1804
1805 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1806
1807 ir_rvalue *condition;
1808 };
1809 /*@}*/
1810
1811
1812 /**
1813 * Texture sampling opcodes used in ir_texture
1814 */
1815 enum ir_texture_opcode {
1816 ir_tex, /**< Regular texture look-up */
1817 ir_txb, /**< Texture look-up with LOD bias */
1818 ir_txl, /**< Texture look-up with explicit LOD */
1819 ir_txd, /**< Texture look-up with partial derivatvies */
1820 ir_txf, /**< Texel fetch with explicit LOD */
1821 ir_txf_ms, /**< Multisample texture fetch */
1822 ir_txs, /**< Texture size */
1823 ir_lod, /**< Texture lod query */
1824 ir_tg4, /**< Texture gather */
1825 ir_query_levels /**< Texture levels query */
1826 };
1827
1828
1829 /**
1830 * IR instruction to sample a texture
1831 *
1832 * The specific form of the IR instruction depends on the \c mode value
1833 * selected from \c ir_texture_opcodes. In the printed IR, these will
1834 * appear as:
1835 *
1836 * Texel offset (0 or an expression)
1837 * | Projection divisor
1838 * | | Shadow comparitor
1839 * | | |
1840 * v v v
1841 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1842 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1843 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1844 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1845 * (txf <type> <sampler> <coordinate> 0 <lod>)
1846 * (txf_ms
1847 * <type> <sampler> <coordinate> <sample_index>)
1848 * (txs <type> <sampler> <lod>)
1849 * (lod <type> <sampler> <coordinate>)
1850 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1851 * (query_levels <type> <sampler>)
1852 */
1853 class ir_texture : public ir_rvalue {
1854 public:
1855 ir_texture(enum ir_texture_opcode op)
1856 : ir_rvalue(ir_type_texture),
1857 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1858 shadow_comparitor(NULL), offset(NULL)
1859 {
1860 memset(&lod_info, 0, sizeof(lod_info));
1861 }
1862
1863 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1864
1865 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1866
1867 virtual void accept(ir_visitor *v)
1868 {
1869 v->visit(this);
1870 }
1871
1872 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1873
1874 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1875
1876 /**
1877 * Return a string representing the ir_texture_opcode.
1878 */
1879 const char *opcode_string();
1880
1881 /** Set the sampler and type. */
1882 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1883
1884 /**
1885 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1886 */
1887 static ir_texture_opcode get_opcode(const char *);
1888
1889 enum ir_texture_opcode op;
1890
1891 /** Sampler to use for the texture access. */
1892 ir_dereference *sampler;
1893
1894 /** Texture coordinate to sample */
1895 ir_rvalue *coordinate;
1896
1897 /**
1898 * Value used for projective divide.
1899 *
1900 * If there is no projective divide (the common case), this will be
1901 * \c NULL. Optimization passes should check for this to point to a constant
1902 * of 1.0 and replace that with \c NULL.
1903 */
1904 ir_rvalue *projector;
1905
1906 /**
1907 * Coordinate used for comparison on shadow look-ups.
1908 *
1909 * If there is no shadow comparison, this will be \c NULL. For the
1910 * \c ir_txf opcode, this *must* be \c NULL.
1911 */
1912 ir_rvalue *shadow_comparitor;
1913
1914 /** Texel offset. */
1915 ir_rvalue *offset;
1916
1917 union {
1918 ir_rvalue *lod; /**< Floating point LOD */
1919 ir_rvalue *bias; /**< Floating point LOD bias */
1920 ir_rvalue *sample_index; /**< MSAA sample index */
1921 ir_rvalue *component; /**< Gather component selector */
1922 struct {
1923 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1924 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1925 } grad;
1926 } lod_info;
1927 };
1928
1929
1930 struct ir_swizzle_mask {
1931 unsigned x:2;
1932 unsigned y:2;
1933 unsigned z:2;
1934 unsigned w:2;
1935
1936 /**
1937 * Number of components in the swizzle.
1938 */
1939 unsigned num_components:3;
1940
1941 /**
1942 * Does the swizzle contain duplicate components?
1943 *
1944 * L-value swizzles cannot contain duplicate components.
1945 */
1946 unsigned has_duplicates:1;
1947 };
1948
1949
1950 class ir_swizzle : public ir_rvalue {
1951 public:
1952 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1953 unsigned count);
1954
1955 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1956
1957 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1958
1959 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1960
1961 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1962
1963 /**
1964 * Construct an ir_swizzle from the textual representation. Can fail.
1965 */
1966 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1967
1968 virtual void accept(ir_visitor *v)
1969 {
1970 v->visit(this);
1971 }
1972
1973 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1974
1975 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
1976
1977 bool is_lvalue() const
1978 {
1979 return val->is_lvalue() && !mask.has_duplicates;
1980 }
1981
1982 /**
1983 * Get the variable that is ultimately referenced by an r-value
1984 */
1985 virtual ir_variable *variable_referenced() const;
1986
1987 ir_rvalue *val;
1988 ir_swizzle_mask mask;
1989
1990 private:
1991 /**
1992 * Initialize the mask component of a swizzle
1993 *
1994 * This is used by the \c ir_swizzle constructors.
1995 */
1996 void init_mask(const unsigned *components, unsigned count);
1997 };
1998
1999
2000 class ir_dereference : public ir_rvalue {
2001 public:
2002 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2003
2004 bool is_lvalue() const;
2005
2006 /**
2007 * Get the variable that is ultimately referenced by an r-value
2008 */
2009 virtual ir_variable *variable_referenced() const = 0;
2010
2011 protected:
2012 ir_dereference(enum ir_node_type t)
2013 : ir_rvalue(t)
2014 {
2015 }
2016 };
2017
2018
2019 class ir_dereference_variable : public ir_dereference {
2020 public:
2021 ir_dereference_variable(ir_variable *var);
2022
2023 virtual ir_dereference_variable *clone(void *mem_ctx,
2024 struct hash_table *) const;
2025
2026 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2027
2028 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2029
2030 /**
2031 * Get the variable that is ultimately referenced by an r-value
2032 */
2033 virtual ir_variable *variable_referenced() const
2034 {
2035 return this->var;
2036 }
2037
2038 virtual ir_variable *whole_variable_referenced()
2039 {
2040 /* ir_dereference_variable objects always dereference the entire
2041 * variable. However, if this dereference is dereferenced by anything
2042 * else, the complete deferefernce chain is not a whole-variable
2043 * dereference. This method should only be called on the top most
2044 * ir_rvalue in a dereference chain.
2045 */
2046 return this->var;
2047 }
2048
2049 virtual void accept(ir_visitor *v)
2050 {
2051 v->visit(this);
2052 }
2053
2054 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2055
2056 /**
2057 * Object being dereferenced.
2058 */
2059 ir_variable *var;
2060 };
2061
2062
2063 class ir_dereference_array : public ir_dereference {
2064 public:
2065 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2066
2067 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2068
2069 virtual ir_dereference_array *clone(void *mem_ctx,
2070 struct hash_table *) const;
2071
2072 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2073
2074 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2075
2076 /**
2077 * Get the variable that is ultimately referenced by an r-value
2078 */
2079 virtual ir_variable *variable_referenced() const
2080 {
2081 return this->array->variable_referenced();
2082 }
2083
2084 virtual void accept(ir_visitor *v)
2085 {
2086 v->visit(this);
2087 }
2088
2089 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2090
2091 ir_rvalue *array;
2092 ir_rvalue *array_index;
2093
2094 private:
2095 void set_array(ir_rvalue *value);
2096 };
2097
2098
2099 class ir_dereference_record : public ir_dereference {
2100 public:
2101 ir_dereference_record(ir_rvalue *value, const char *field);
2102
2103 ir_dereference_record(ir_variable *var, const char *field);
2104
2105 virtual ir_dereference_record *clone(void *mem_ctx,
2106 struct hash_table *) const;
2107
2108 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2109
2110 /**
2111 * Get the variable that is ultimately referenced by an r-value
2112 */
2113 virtual ir_variable *variable_referenced() const
2114 {
2115 return this->record->variable_referenced();
2116 }
2117
2118 virtual void accept(ir_visitor *v)
2119 {
2120 v->visit(this);
2121 }
2122
2123 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2124
2125 ir_rvalue *record;
2126 const char *field;
2127 };
2128
2129
2130 /**
2131 * Data stored in an ir_constant
2132 */
2133 union ir_constant_data {
2134 unsigned u[16];
2135 int i[16];
2136 float f[16];
2137 bool b[16];
2138 };
2139
2140
2141 class ir_constant : public ir_rvalue {
2142 public:
2143 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2144 ir_constant(bool b, unsigned vector_elements=1);
2145 ir_constant(unsigned int u, unsigned vector_elements=1);
2146 ir_constant(int i, unsigned vector_elements=1);
2147 ir_constant(float f, unsigned vector_elements=1);
2148
2149 /**
2150 * Construct an ir_constant from a list of ir_constant values
2151 */
2152 ir_constant(const struct glsl_type *type, exec_list *values);
2153
2154 /**
2155 * Construct an ir_constant from a scalar component of another ir_constant
2156 *
2157 * The new \c ir_constant inherits the type of the component from the
2158 * source constant.
2159 *
2160 * \note
2161 * In the case of a matrix constant, the new constant is a scalar, \b not
2162 * a vector.
2163 */
2164 ir_constant(const ir_constant *c, unsigned i);
2165
2166 /**
2167 * Return a new ir_constant of the specified type containing all zeros.
2168 */
2169 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2170
2171 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2172
2173 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2174
2175 virtual void accept(ir_visitor *v)
2176 {
2177 v->visit(this);
2178 }
2179
2180 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2181
2182 virtual bool equals(ir_instruction *ir, enum ir_node_type ignore = ir_type_unset);
2183
2184 /**
2185 * Get a particular component of a constant as a specific type
2186 *
2187 * This is useful, for example, to get a value from an integer constant
2188 * as a float or bool. This appears frequently when constructors are
2189 * called with all constant parameters.
2190 */
2191 /*@{*/
2192 bool get_bool_component(unsigned i) const;
2193 float get_float_component(unsigned i) const;
2194 int get_int_component(unsigned i) const;
2195 unsigned get_uint_component(unsigned i) const;
2196 /*@}*/
2197
2198 ir_constant *get_array_element(unsigned i) const;
2199
2200 ir_constant *get_record_field(const char *name);
2201
2202 /**
2203 * Copy the values on another constant at a given offset.
2204 *
2205 * The offset is ignored for array or struct copies, it's only for
2206 * scalars or vectors into vectors or matrices.
2207 *
2208 * With identical types on both sides and zero offset it's clone()
2209 * without creating a new object.
2210 */
2211
2212 void copy_offset(ir_constant *src, int offset);
2213
2214 /**
2215 * Copy the values on another constant at a given offset and
2216 * following an assign-like mask.
2217 *
2218 * The mask is ignored for scalars.
2219 *
2220 * Note that this function only handles what assign can handle,
2221 * i.e. at most a vector as source and a column of a matrix as
2222 * destination.
2223 */
2224
2225 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2226
2227 /**
2228 * Determine whether a constant has the same value as another constant
2229 *
2230 * \sa ir_constant::is_zero, ir_constant::is_one,
2231 * ir_constant::is_negative_one, ir_constant::is_basis
2232 */
2233 bool has_value(const ir_constant *) const;
2234
2235 /**
2236 * Return true if this ir_constant represents the given value.
2237 *
2238 * For vectors, this checks that each component is the given value.
2239 */
2240 virtual bool is_value(float f, int i) const;
2241 virtual bool is_zero() const;
2242 virtual bool is_one() const;
2243 virtual bool is_negative_one() const;
2244 virtual bool is_basis() const;
2245
2246 /**
2247 * Return true for constants that could be stored as 16-bit unsigned values.
2248 *
2249 * Note that this will return true even for signed integer ir_constants, as
2250 * long as the value is non-negative and fits in 16-bits.
2251 */
2252 virtual bool is_uint16_constant() const;
2253
2254 /**
2255 * Value of the constant.
2256 *
2257 * The field used to back the values supplied by the constant is determined
2258 * by the type associated with the \c ir_instruction. Constants may be
2259 * scalars, vectors, or matrices.
2260 */
2261 union ir_constant_data value;
2262
2263 /* Array elements */
2264 ir_constant **array_elements;
2265
2266 /* Structure fields */
2267 exec_list components;
2268
2269 private:
2270 /**
2271 * Parameterless constructor only used by the clone method
2272 */
2273 ir_constant(void);
2274 };
2275
2276 /**
2277 * IR instruction to emit a vertex in a geometry shader.
2278 */
2279 class ir_emit_vertex : public ir_instruction {
2280 public:
2281 ir_emit_vertex(ir_rvalue *stream)
2282 : ir_instruction(ir_type_emit_vertex),
2283 stream(stream)
2284 {
2285 assert(stream);
2286 }
2287
2288 virtual void accept(ir_visitor *v)
2289 {
2290 v->visit(this);
2291 }
2292
2293 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2294 {
2295 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2296 }
2297
2298 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2299
2300 int stream_id() const
2301 {
2302 return stream->as_constant()->value.i[0];
2303 }
2304
2305 ir_rvalue *stream;
2306 };
2307
2308 /**
2309 * IR instruction to complete the current primitive and start a new one in a
2310 * geometry shader.
2311 */
2312 class ir_end_primitive : public ir_instruction {
2313 public:
2314 ir_end_primitive(ir_rvalue *stream)
2315 : ir_instruction(ir_type_end_primitive),
2316 stream(stream)
2317 {
2318 assert(stream);
2319 }
2320
2321 virtual void accept(ir_visitor *v)
2322 {
2323 v->visit(this);
2324 }
2325
2326 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2327 {
2328 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2329 }
2330
2331 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2332
2333 int stream_id() const
2334 {
2335 return stream->as_constant()->value.i[0];
2336 }
2337
2338 ir_rvalue *stream;
2339 };
2340
2341 /*@}*/
2342
2343 /**
2344 * Apply a visitor to each IR node in a list
2345 */
2346 void
2347 visit_exec_list(exec_list *list, ir_visitor *visitor);
2348
2349 /**
2350 * Validate invariants on each IR node in a list
2351 */
2352 void validate_ir_tree(exec_list *instructions);
2353
2354 struct _mesa_glsl_parse_state;
2355 struct gl_shader_program;
2356
2357 /**
2358 * Detect whether an unlinked shader contains static recursion
2359 *
2360 * If the list of instructions is determined to contain static recursion,
2361 * \c _mesa_glsl_error will be called to emit error messages for each function
2362 * that is in the recursion cycle.
2363 */
2364 void
2365 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2366 exec_list *instructions);
2367
2368 /**
2369 * Detect whether a linked shader contains static recursion
2370 *
2371 * If the list of instructions is determined to contain static recursion,
2372 * \c link_error_printf will be called to emit error messages for each function
2373 * that is in the recursion cycle. In addition,
2374 * \c gl_shader_program::LinkStatus will be set to false.
2375 */
2376 void
2377 detect_recursion_linked(struct gl_shader_program *prog,
2378 exec_list *instructions);
2379
2380 /**
2381 * Make a clone of each IR instruction in a list
2382 *
2383 * \param in List of IR instructions that are to be cloned
2384 * \param out List to hold the cloned instructions
2385 */
2386 void
2387 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2388
2389 extern void
2390 _mesa_glsl_initialize_variables(exec_list *instructions,
2391 struct _mesa_glsl_parse_state *state);
2392
2393 extern void
2394 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2395
2396 extern void
2397 _mesa_glsl_initialize_builtin_functions();
2398
2399 extern ir_function_signature *
2400 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2401 const char *name, exec_list *actual_parameters);
2402
2403 extern gl_shader *
2404 _mesa_glsl_get_builtin_function_shader(void);
2405
2406 extern void
2407 _mesa_glsl_release_functions(void);
2408
2409 extern void
2410 _mesa_glsl_release_builtin_functions(void);
2411
2412 extern void
2413 reparent_ir(exec_list *list, void *mem_ctx);
2414
2415 struct glsl_symbol_table;
2416
2417 extern void
2418 import_prototypes(const exec_list *source, exec_list *dest,
2419 struct glsl_symbol_table *symbols, void *mem_ctx);
2420
2421 extern bool
2422 ir_has_call(ir_instruction *ir);
2423
2424 extern void
2425 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2426 gl_shader_stage shader_stage);
2427
2428 extern char *
2429 prototype_string(const glsl_type *return_type, const char *name,
2430 exec_list *parameters);
2431
2432 const char *
2433 mode_string(const ir_variable *var);
2434
2435 /**
2436 * Built-in / reserved GL variables names start with "gl_"
2437 */
2438 static inline bool
2439 is_gl_identifier(const char *s)
2440 {
2441 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2442 }
2443
2444 extern "C" {
2445 #endif /* __cplusplus */
2446
2447 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2448 struct _mesa_glsl_parse_state *state);
2449
2450 extern void
2451 fprint_ir(FILE *f, const void *instruction);
2452
2453 #ifdef __cplusplus
2454 } /* extern "C" */
2455 #endif
2456
2457 unsigned
2458 vertices_per_prim(GLenum prim);
2459
2460 #endif /* IR_H */