glsl: Add ir node for barrier
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_in,
328 ir_var_shader_out,
329 ir_var_function_in,
330 ir_var_function_out,
331 ir_var_function_inout,
332 ir_var_const_in, /**< "in" param that must be a constant expression */
333 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
334 ir_var_temporary, /**< Temporary variable generated during compilation. */
335 ir_var_mode_count /**< Number of variable modes */
336 };
337
338 /**
339 * Enum keeping track of how a variable was declared. For error checking of
340 * the gl_PerVertex redeclaration rules.
341 */
342 enum ir_var_declaration_type {
343 /**
344 * Normal declaration (for most variables, this means an explicit
345 * declaration. Exception: temporaries are always implicitly declared, but
346 * they still use ir_var_declared_normally).
347 *
348 * Note: an ir_variable that represents a named interface block uses
349 * ir_var_declared_normally.
350 */
351 ir_var_declared_normally = 0,
352
353 /**
354 * Variable was explicitly declared (or re-declared) in an unnamed
355 * interface block.
356 */
357 ir_var_declared_in_block,
358
359 /**
360 * Variable is an implicitly declared built-in that has not been explicitly
361 * re-declared by the shader.
362 */
363 ir_var_declared_implicitly,
364
365 /**
366 * Variable is implicitly generated by the compiler and should not be
367 * visible via the API.
368 */
369 ir_var_hidden,
370 };
371
372 /**
373 * \brief Layout qualifiers for gl_FragDepth.
374 *
375 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
376 * with a layout qualifier.
377 */
378 enum ir_depth_layout {
379 ir_depth_layout_none, /**< No depth layout is specified. */
380 ir_depth_layout_any,
381 ir_depth_layout_greater,
382 ir_depth_layout_less,
383 ir_depth_layout_unchanged
384 };
385
386 /**
387 * \brief Convert depth layout qualifier to string.
388 */
389 const char*
390 depth_layout_string(ir_depth_layout layout);
391
392 /**
393 * Description of built-in state associated with a uniform
394 *
395 * \sa ir_variable::state_slots
396 */
397 struct ir_state_slot {
398 int tokens[5];
399 int swizzle;
400 };
401
402
403 /**
404 * Get the string value for an interpolation qualifier
405 *
406 * \return The string that would be used in a shader to specify \c
407 * mode will be returned.
408 *
409 * This function is used to generate error messages of the form "shader
410 * uses %s interpolation qualifier", so in the case where there is no
411 * interpolation qualifier, it returns "no".
412 *
413 * This function should only be used on a shader input or output variable.
414 */
415 const char *interpolation_string(unsigned interpolation);
416
417
418 class ir_variable : public ir_instruction {
419 public:
420 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
421
422 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
423
424 virtual void accept(ir_visitor *v)
425 {
426 v->visit(this);
427 }
428
429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
430
431
432 /**
433 * Determine how this variable should be interpolated based on its
434 * interpolation qualifier (if present), whether it is gl_Color or
435 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
436 * state.
437 *
438 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
439 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
440 */
441 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
442
443 /**
444 * Determine whether or not a variable is part of a uniform block.
445 */
446 inline bool is_in_uniform_block() const
447 {
448 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
449 }
450
451 /**
452 * Determine whether or not a variable is the declaration of an interface
453 * block
454 *
455 * For the first declaration below, there will be an \c ir_variable named
456 * "instance" whose type and whose instance_type will be the same
457 * \cglsl_type. For the second declaration, there will be an \c ir_variable
458 * named "f" whose type is float and whose instance_type is B2.
459 *
460 * "instance" is an interface instance variable, but "f" is not.
461 *
462 * uniform B1 {
463 * float f;
464 * } instance;
465 *
466 * uniform B2 {
467 * float f;
468 * };
469 */
470 inline bool is_interface_instance() const
471 {
472 return this->type->without_array() == this->interface_type;
473 }
474
475 /**
476 * Set this->interface_type on a newly created variable.
477 */
478 void init_interface_type(const struct glsl_type *type)
479 {
480 assert(this->interface_type == NULL);
481 this->interface_type = type;
482 if (this->is_interface_instance()) {
483 this->u.max_ifc_array_access =
484 rzalloc_array(this, unsigned, type->length);
485 }
486 }
487
488 /**
489 * Change this->interface_type on a variable that previously had a
490 * different, but compatible, interface_type. This is used during linking
491 * to set the size of arrays in interface blocks.
492 */
493 void change_interface_type(const struct glsl_type *type)
494 {
495 if (this->u.max_ifc_array_access != NULL) {
496 /* max_ifc_array_access has already been allocated, so make sure the
497 * new interface has the same number of fields as the old one.
498 */
499 assert(this->interface_type->length == type->length);
500 }
501 this->interface_type = type;
502 }
503
504 /**
505 * Change this->interface_type on a variable that previously had a
506 * different, and incompatible, interface_type. This is used during
507 * compilation to handle redeclaration of the built-in gl_PerVertex
508 * interface block.
509 */
510 void reinit_interface_type(const struct glsl_type *type)
511 {
512 if (this->u.max_ifc_array_access != NULL) {
513 #ifndef NDEBUG
514 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
515 * it defines have been accessed yet; so it's safe to throw away the
516 * old max_ifc_array_access pointer, since all of its values are
517 * zero.
518 */
519 for (unsigned i = 0; i < this->interface_type->length; i++)
520 assert(this->u.max_ifc_array_access[i] == 0);
521 #endif
522 ralloc_free(this->u.max_ifc_array_access);
523 this->u.max_ifc_array_access = NULL;
524 }
525 this->interface_type = NULL;
526 init_interface_type(type);
527 }
528
529 const glsl_type *get_interface_type() const
530 {
531 return this->interface_type;
532 }
533
534 /**
535 * Get the max_ifc_array_access pointer
536 *
537 * A "set" function is not needed because the array is dynmically allocated
538 * as necessary.
539 */
540 inline unsigned *get_max_ifc_array_access()
541 {
542 assert(this->data._num_state_slots == 0);
543 return this->u.max_ifc_array_access;
544 }
545
546 inline unsigned get_num_state_slots() const
547 {
548 assert(!this->is_interface_instance()
549 || this->data._num_state_slots == 0);
550 return this->data._num_state_slots;
551 }
552
553 inline void set_num_state_slots(unsigned n)
554 {
555 assert(!this->is_interface_instance()
556 || n == 0);
557 this->data._num_state_slots = n;
558 }
559
560 inline ir_state_slot *get_state_slots()
561 {
562 return this->is_interface_instance() ? NULL : this->u.state_slots;
563 }
564
565 inline const ir_state_slot *get_state_slots() const
566 {
567 return this->is_interface_instance() ? NULL : this->u.state_slots;
568 }
569
570 inline ir_state_slot *allocate_state_slots(unsigned n)
571 {
572 assert(!this->is_interface_instance());
573
574 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
575 this->data._num_state_slots = 0;
576
577 if (this->u.state_slots != NULL)
578 this->data._num_state_slots = n;
579
580 return this->u.state_slots;
581 }
582
583 inline bool is_name_ralloced() const
584 {
585 return this->name != ir_variable::tmp_name;
586 }
587
588 /**
589 * Enable emitting extension warnings for this variable
590 */
591 void enable_extension_warning(const char *extension);
592
593 /**
594 * Get the extension warning string for this variable
595 *
596 * If warnings are not enabled, \c NULL is returned.
597 */
598 const char *get_extension_warning() const;
599
600 /**
601 * Declared type of the variable
602 */
603 const struct glsl_type *type;
604
605 /**
606 * Declared name of the variable
607 */
608 const char *name;
609
610 struct ir_variable_data {
611
612 /**
613 * Is the variable read-only?
614 *
615 * This is set for variables declared as \c const, shader inputs,
616 * and uniforms.
617 */
618 unsigned read_only:1;
619 unsigned centroid:1;
620 unsigned sample:1;
621 unsigned invariant:1;
622 unsigned precise:1;
623
624 /**
625 * Has this variable been used for reading or writing?
626 *
627 * Several GLSL semantic checks require knowledge of whether or not a
628 * variable has been used. For example, it is an error to redeclare a
629 * variable as invariant after it has been used.
630 *
631 * This is only maintained in the ast_to_hir.cpp path, not in
632 * Mesa's fixed function or ARB program paths.
633 */
634 unsigned used:1;
635
636 /**
637 * Has this variable been statically assigned?
638 *
639 * This answers whether the variable was assigned in any path of
640 * the shader during ast_to_hir. This doesn't answer whether it is
641 * still written after dead code removal, nor is it maintained in
642 * non-ast_to_hir.cpp (GLSL parsing) paths.
643 */
644 unsigned assigned:1;
645
646 /**
647 * Enum indicating how the variable was declared. See
648 * ir_var_declaration_type.
649 *
650 * This is used to detect certain kinds of illegal variable redeclarations.
651 */
652 unsigned how_declared:2;
653
654 /**
655 * Storage class of the variable.
656 *
657 * \sa ir_variable_mode
658 */
659 unsigned mode:4;
660
661 /**
662 * Interpolation mode for shader inputs / outputs
663 *
664 * \sa ir_variable_interpolation
665 */
666 unsigned interpolation:2;
667
668 /**
669 * \name ARB_fragment_coord_conventions
670 * @{
671 */
672 unsigned origin_upper_left:1;
673 unsigned pixel_center_integer:1;
674 /*@}*/
675
676 /**
677 * Was the location explicitly set in the shader?
678 *
679 * If the location is explicitly set in the shader, it \b cannot be changed
680 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
681 * no effect).
682 */
683 unsigned explicit_location:1;
684 unsigned explicit_index:1;
685
686 /**
687 * Was an initial binding explicitly set in the shader?
688 *
689 * If so, constant_value contains an integer ir_constant representing the
690 * initial binding point.
691 */
692 unsigned explicit_binding:1;
693
694 /**
695 * Does this variable have an initializer?
696 *
697 * This is used by the linker to cross-validiate initializers of global
698 * variables.
699 */
700 unsigned has_initializer:1;
701
702 /**
703 * Is this variable a generic output or input that has not yet been matched
704 * up to a variable in another stage of the pipeline?
705 *
706 * This is used by the linker as scratch storage while assigning locations
707 * to generic inputs and outputs.
708 */
709 unsigned is_unmatched_generic_inout:1;
710
711 /**
712 * If non-zero, then this variable may be packed along with other variables
713 * into a single varying slot, so this offset should be applied when
714 * accessing components. For example, an offset of 1 means that the x
715 * component of this variable is actually stored in component y of the
716 * location specified by \c location.
717 */
718 unsigned location_frac:2;
719
720 /**
721 * Layout of the matrix. Uses glsl_matrix_layout values.
722 */
723 unsigned matrix_layout:2;
724
725 /**
726 * Non-zero if this variable was created by lowering a named interface
727 * block which was not an array.
728 *
729 * Note that this variable and \c from_named_ifc_block_array will never
730 * both be non-zero.
731 */
732 unsigned from_named_ifc_block_nonarray:1;
733
734 /**
735 * Non-zero if this variable was created by lowering a named interface
736 * block which was an array.
737 *
738 * Note that this variable and \c from_named_ifc_block_nonarray will never
739 * both be non-zero.
740 */
741 unsigned from_named_ifc_block_array:1;
742
743 /**
744 * Non-zero if the variable must be a shader input. This is useful for
745 * constraints on function parameters.
746 */
747 unsigned must_be_shader_input:1;
748
749 /**
750 * Output index for dual source blending.
751 *
752 * \note
753 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
754 * source blending.
755 */
756 unsigned index:1;
757
758 /**
759 * \brief Layout qualifier for gl_FragDepth.
760 *
761 * This is not equal to \c ir_depth_layout_none if and only if this
762 * variable is \c gl_FragDepth and a layout qualifier is specified.
763 */
764 ir_depth_layout depth_layout:3;
765
766 /**
767 * ARB_shader_image_load_store qualifiers.
768 */
769 unsigned image_read_only:1; /**< "readonly" qualifier. */
770 unsigned image_write_only:1; /**< "writeonly" qualifier. */
771 unsigned image_coherent:1;
772 unsigned image_volatile:1;
773 unsigned image_restrict:1;
774
775 /**
776 * Emit a warning if this variable is accessed.
777 */
778 private:
779 uint8_t warn_extension_index;
780
781 public:
782 /** Image internal format if specified explicitly, otherwise GL_NONE. */
783 uint16_t image_format;
784
785 private:
786 /**
787 * Number of state slots used
788 *
789 * \note
790 * This could be stored in as few as 7-bits, if necessary. If it is made
791 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
792 * be safe.
793 */
794 uint16_t _num_state_slots;
795
796 public:
797 /**
798 * Initial binding point for a sampler, atomic, or UBO.
799 *
800 * For array types, this represents the binding point for the first element.
801 */
802 int16_t binding;
803
804 /**
805 * Storage location of the base of this variable
806 *
807 * The precise meaning of this field depends on the nature of the variable.
808 *
809 * - Vertex shader input: one of the values from \c gl_vert_attrib.
810 * - Vertex shader output: one of the values from \c gl_varying_slot.
811 * - Geometry shader input: one of the values from \c gl_varying_slot.
812 * - Geometry shader output: one of the values from \c gl_varying_slot.
813 * - Fragment shader input: one of the values from \c gl_varying_slot.
814 * - Fragment shader output: one of the values from \c gl_frag_result.
815 * - Uniforms: Per-stage uniform slot number for default uniform block.
816 * - Uniforms: Index within the uniform block definition for UBO members.
817 * - Other: This field is not currently used.
818 *
819 * If the variable is a uniform, shader input, or shader output, and the
820 * slot has not been assigned, the value will be -1.
821 */
822 int location;
823
824 /**
825 * Vertex stream output identifier.
826 */
827 unsigned stream;
828
829 /**
830 * Location an atomic counter is stored at.
831 */
832 struct {
833 unsigned offset;
834 } atomic;
835
836 /**
837 * Highest element accessed with a constant expression array index
838 *
839 * Not used for non-array variables.
840 */
841 unsigned max_array_access;
842
843 /**
844 * Allow (only) ir_variable direct access private members.
845 */
846 friend class ir_variable;
847 } data;
848
849 /**
850 * Value assigned in the initializer of a variable declared "const"
851 */
852 ir_constant *constant_value;
853
854 /**
855 * Constant expression assigned in the initializer of the variable
856 *
857 * \warning
858 * This field and \c ::constant_value are distinct. Even if the two fields
859 * refer to constants with the same value, they must point to separate
860 * objects.
861 */
862 ir_constant *constant_initializer;
863
864 private:
865 static const char *const warn_extension_table[];
866
867 union {
868 /**
869 * For variables which satisfy the is_interface_instance() predicate,
870 * this points to an array of integers such that if the ith member of
871 * the interface block is an array, max_ifc_array_access[i] is the
872 * maximum array element of that member that has been accessed. If the
873 * ith member of the interface block is not an array,
874 * max_ifc_array_access[i] is unused.
875 *
876 * For variables whose type is not an interface block, this pointer is
877 * NULL.
878 */
879 unsigned *max_ifc_array_access;
880
881 /**
882 * Built-in state that backs this uniform
883 *
884 * Once set at variable creation, \c state_slots must remain invariant.
885 *
886 * If the variable is not a uniform, \c _num_state_slots will be zero
887 * and \c state_slots will be \c NULL.
888 */
889 ir_state_slot *state_slots;
890 } u;
891
892 /**
893 * For variables that are in an interface block or are an instance of an
894 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
895 *
896 * \sa ir_variable::location
897 */
898 const glsl_type *interface_type;
899
900 /**
901 * Name used for anonymous compiler temporaries
902 */
903 static const char tmp_name[];
904
905 public:
906 /**
907 * Should the construct keep names for ir_var_temporary variables?
908 *
909 * When this global is false, names passed to the constructor for
910 * \c ir_var_temporary variables will be dropped. Instead, the variable will
911 * be named "compiler_temp". This name will be in static storage.
912 *
913 * \warning
914 * \b NEVER change the mode of an \c ir_var_temporary.
915 *
916 * \warning
917 * This variable is \b not thread-safe. It is global, \b not
918 * per-context. It begins life false. A context can, at some point, make
919 * it true. From that point on, it will be true forever. This should be
920 * okay since it will only be set true while debugging.
921 */
922 static bool temporaries_allocate_names;
923 };
924
925 /**
926 * A function that returns whether a built-in function is available in the
927 * current shading language (based on version, ES or desktop, and extensions).
928 */
929 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
930
931 /*@{*/
932 /**
933 * The representation of a function instance; may be the full definition or
934 * simply a prototype.
935 */
936 class ir_function_signature : public ir_instruction {
937 /* An ir_function_signature will be part of the list of signatures in
938 * an ir_function.
939 */
940 public:
941 ir_function_signature(const glsl_type *return_type,
942 builtin_available_predicate builtin_avail = NULL);
943
944 virtual ir_function_signature *clone(void *mem_ctx,
945 struct hash_table *ht) const;
946 ir_function_signature *clone_prototype(void *mem_ctx,
947 struct hash_table *ht) const;
948
949 virtual void accept(ir_visitor *v)
950 {
951 v->visit(this);
952 }
953
954 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
955
956 /**
957 * Attempt to evaluate this function as a constant expression,
958 * given a list of the actual parameters and the variable context.
959 * Returns NULL for non-built-ins.
960 */
961 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
962
963 /**
964 * Get the name of the function for which this is a signature
965 */
966 const char *function_name() const;
967
968 /**
969 * Get a handle to the function for which this is a signature
970 *
971 * There is no setter function, this function returns a \c const pointer,
972 * and \c ir_function_signature::_function is private for a reason. The
973 * only way to make a connection between a function and function signature
974 * is via \c ir_function::add_signature. This helps ensure that certain
975 * invariants (i.e., a function signature is in the list of signatures for
976 * its \c _function) are met.
977 *
978 * \sa ir_function::add_signature
979 */
980 inline const class ir_function *function() const
981 {
982 return this->_function;
983 }
984
985 /**
986 * Check whether the qualifiers match between this signature's parameters
987 * and the supplied parameter list. If not, returns the name of the first
988 * parameter with mismatched qualifiers (for use in error messages).
989 */
990 const char *qualifiers_match(exec_list *params);
991
992 /**
993 * Replace the current parameter list with the given one. This is useful
994 * if the current information came from a prototype, and either has invalid
995 * or missing parameter names.
996 */
997 void replace_parameters(exec_list *new_params);
998
999 /**
1000 * Function return type.
1001 *
1002 * \note This discards the optional precision qualifier.
1003 */
1004 const struct glsl_type *return_type;
1005
1006 /**
1007 * List of ir_variable of function parameters.
1008 *
1009 * This represents the storage. The paramaters passed in a particular
1010 * call will be in ir_call::actual_paramaters.
1011 */
1012 struct exec_list parameters;
1013
1014 /** Whether or not this function has a body (which may be empty). */
1015 unsigned is_defined:1;
1016
1017 /** Whether or not this function signature is a built-in. */
1018 bool is_builtin() const;
1019
1020 /**
1021 * Whether or not this function is an intrinsic to be implemented
1022 * by the driver.
1023 */
1024 bool is_intrinsic;
1025
1026 /** Whether or not a built-in is available for this shader. */
1027 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1028
1029 /** Body of instructions in the function. */
1030 struct exec_list body;
1031
1032 private:
1033 /**
1034 * A function pointer to a predicate that answers whether a built-in
1035 * function is available in the current shader. NULL if not a built-in.
1036 */
1037 builtin_available_predicate builtin_avail;
1038
1039 /** Function of which this signature is one overload. */
1040 class ir_function *_function;
1041
1042 /** Function signature of which this one is a prototype clone */
1043 const ir_function_signature *origin;
1044
1045 friend class ir_function;
1046
1047 /**
1048 * Helper function to run a list of instructions for constant
1049 * expression evaluation.
1050 *
1051 * The hash table represents the values of the visible variables.
1052 * There are no scoping issues because the table is indexed on
1053 * ir_variable pointers, not variable names.
1054 *
1055 * Returns false if the expression is not constant, true otherwise,
1056 * and the value in *result if result is non-NULL.
1057 */
1058 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1059 struct hash_table *variable_context,
1060 ir_constant **result);
1061 };
1062
1063
1064 /**
1065 * Header for tracking multiple overloaded functions with the same name.
1066 * Contains a list of ir_function_signatures representing each of the
1067 * actual functions.
1068 */
1069 class ir_function : public ir_instruction {
1070 public:
1071 ir_function(const char *name);
1072
1073 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1074
1075 virtual void accept(ir_visitor *v)
1076 {
1077 v->visit(this);
1078 }
1079
1080 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1081
1082 void add_signature(ir_function_signature *sig)
1083 {
1084 sig->_function = this;
1085 this->signatures.push_tail(sig);
1086 }
1087
1088 /**
1089 * Find a signature that matches a set of actual parameters, taking implicit
1090 * conversions into account. Also flags whether the match was exact.
1091 */
1092 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1093 const exec_list *actual_param,
1094 bool allow_builtins,
1095 bool *match_is_exact);
1096
1097 /**
1098 * Find a signature that matches a set of actual parameters, taking implicit
1099 * conversions into account.
1100 */
1101 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1102 const exec_list *actual_param,
1103 bool allow_builtins);
1104
1105 /**
1106 * Find a signature that exactly matches a set of actual parameters without
1107 * any implicit type conversions.
1108 */
1109 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1110 const exec_list *actual_ps);
1111
1112 /**
1113 * Name of the function.
1114 */
1115 const char *name;
1116
1117 /** Whether or not this function has a signature that isn't a built-in. */
1118 bool has_user_signature();
1119
1120 /**
1121 * List of ir_function_signature for each overloaded function with this name.
1122 */
1123 struct exec_list signatures;
1124 };
1125
1126 inline const char *ir_function_signature::function_name() const
1127 {
1128 return this->_function->name;
1129 }
1130 /*@}*/
1131
1132
1133 /**
1134 * IR instruction representing high-level if-statements
1135 */
1136 class ir_if : public ir_instruction {
1137 public:
1138 ir_if(ir_rvalue *condition)
1139 : ir_instruction(ir_type_if), condition(condition)
1140 {
1141 }
1142
1143 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1144
1145 virtual void accept(ir_visitor *v)
1146 {
1147 v->visit(this);
1148 }
1149
1150 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1151
1152 ir_rvalue *condition;
1153 /** List of ir_instruction for the body of the then branch */
1154 exec_list then_instructions;
1155 /** List of ir_instruction for the body of the else branch */
1156 exec_list else_instructions;
1157 };
1158
1159
1160 /**
1161 * IR instruction representing a high-level loop structure.
1162 */
1163 class ir_loop : public ir_instruction {
1164 public:
1165 ir_loop();
1166
1167 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1168
1169 virtual void accept(ir_visitor *v)
1170 {
1171 v->visit(this);
1172 }
1173
1174 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1175
1176 /** List of ir_instruction that make up the body of the loop. */
1177 exec_list body_instructions;
1178 };
1179
1180
1181 class ir_assignment : public ir_instruction {
1182 public:
1183 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1184
1185 /**
1186 * Construct an assignment with an explicit write mask
1187 *
1188 * \note
1189 * Since a write mask is supplied, the LHS must already be a bare
1190 * \c ir_dereference. The cannot be any swizzles in the LHS.
1191 */
1192 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1193 unsigned write_mask);
1194
1195 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1196
1197 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1198
1199 virtual void accept(ir_visitor *v)
1200 {
1201 v->visit(this);
1202 }
1203
1204 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1205
1206 /**
1207 * Get a whole variable written by an assignment
1208 *
1209 * If the LHS of the assignment writes a whole variable, the variable is
1210 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1211 * assignment are:
1212 *
1213 * - Assigning to a scalar
1214 * - Assigning to all components of a vector
1215 * - Whole array (or matrix) assignment
1216 * - Whole structure assignment
1217 */
1218 ir_variable *whole_variable_written();
1219
1220 /**
1221 * Set the LHS of an assignment
1222 */
1223 void set_lhs(ir_rvalue *lhs);
1224
1225 /**
1226 * Left-hand side of the assignment.
1227 *
1228 * This should be treated as read only. If you need to set the LHS of an
1229 * assignment, use \c ir_assignment::set_lhs.
1230 */
1231 ir_dereference *lhs;
1232
1233 /**
1234 * Value being assigned
1235 */
1236 ir_rvalue *rhs;
1237
1238 /**
1239 * Optional condition for the assignment.
1240 */
1241 ir_rvalue *condition;
1242
1243
1244 /**
1245 * Component mask written
1246 *
1247 * For non-vector types in the LHS, this field will be zero. For vector
1248 * types, a bit will be set for each component that is written. Note that
1249 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1250 *
1251 * A partially-set write mask means that each enabled channel gets
1252 * the value from a consecutive channel of the rhs. For example,
1253 * to write just .xyw of gl_FrontColor with color:
1254 *
1255 * (assign (constant bool (1)) (xyw)
1256 * (var_ref gl_FragColor)
1257 * (swiz xyw (var_ref color)))
1258 */
1259 unsigned write_mask:4;
1260 };
1261
1262 /* Update ir_expression::get_num_operands() and operator_strs when
1263 * updating this list.
1264 */
1265 enum ir_expression_operation {
1266 ir_unop_bit_not,
1267 ir_unop_logic_not,
1268 ir_unop_neg,
1269 ir_unop_abs,
1270 ir_unop_sign,
1271 ir_unop_rcp,
1272 ir_unop_rsq,
1273 ir_unop_sqrt,
1274 ir_unop_exp, /**< Log base e on gentype */
1275 ir_unop_log, /**< Natural log on gentype */
1276 ir_unop_exp2,
1277 ir_unop_log2,
1278 ir_unop_f2i, /**< Float-to-integer conversion. */
1279 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1280 ir_unop_i2f, /**< Integer-to-float conversion. */
1281 ir_unop_f2b, /**< Float-to-boolean conversion */
1282 ir_unop_b2f, /**< Boolean-to-float conversion */
1283 ir_unop_i2b, /**< int-to-boolean conversion */
1284 ir_unop_b2i, /**< Boolean-to-int conversion */
1285 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1286 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1287 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1288 ir_unop_d2f, /**< Double-to-float conversion. */
1289 ir_unop_f2d, /**< Float-to-double conversion. */
1290 ir_unop_d2i, /**< Double-to-integer conversion. */
1291 ir_unop_i2d, /**< Integer-to-double conversion. */
1292 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1293 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1294 ir_unop_d2b, /**< Double-to-boolean conversion. */
1295 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1296 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1297 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1298 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1299 ir_unop_any,
1300
1301 /**
1302 * \name Unary floating-point rounding operations.
1303 */
1304 /*@{*/
1305 ir_unop_trunc,
1306 ir_unop_ceil,
1307 ir_unop_floor,
1308 ir_unop_fract,
1309 ir_unop_round_even,
1310 /*@}*/
1311
1312 /**
1313 * \name Trigonometric operations.
1314 */
1315 /*@{*/
1316 ir_unop_sin,
1317 ir_unop_cos,
1318 /*@}*/
1319
1320 /**
1321 * \name Partial derivatives.
1322 */
1323 /*@{*/
1324 ir_unop_dFdx,
1325 ir_unop_dFdx_coarse,
1326 ir_unop_dFdx_fine,
1327 ir_unop_dFdy,
1328 ir_unop_dFdy_coarse,
1329 ir_unop_dFdy_fine,
1330 /*@}*/
1331
1332 /**
1333 * \name Floating point pack and unpack operations.
1334 */
1335 /*@{*/
1336 ir_unop_pack_snorm_2x16,
1337 ir_unop_pack_snorm_4x8,
1338 ir_unop_pack_unorm_2x16,
1339 ir_unop_pack_unorm_4x8,
1340 ir_unop_pack_half_2x16,
1341 ir_unop_unpack_snorm_2x16,
1342 ir_unop_unpack_snorm_4x8,
1343 ir_unop_unpack_unorm_2x16,
1344 ir_unop_unpack_unorm_4x8,
1345 ir_unop_unpack_half_2x16,
1346 /*@}*/
1347
1348 /**
1349 * \name Lowered floating point unpacking operations.
1350 *
1351 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1352 */
1353 /*@{*/
1354 ir_unop_unpack_half_2x16_split_x,
1355 ir_unop_unpack_half_2x16_split_y,
1356 /*@}*/
1357
1358 /**
1359 * \name Bit operations, part of ARB_gpu_shader5.
1360 */
1361 /*@{*/
1362 ir_unop_bitfield_reverse,
1363 ir_unop_bit_count,
1364 ir_unop_find_msb,
1365 ir_unop_find_lsb,
1366 /*@}*/
1367
1368 ir_unop_saturate,
1369
1370 /**
1371 * \name Double packing, part of ARB_gpu_shader_fp64.
1372 */
1373 /*@{*/
1374 ir_unop_pack_double_2x32,
1375 ir_unop_unpack_double_2x32,
1376 /*@}*/
1377
1378 ir_unop_frexp_sig,
1379 ir_unop_frexp_exp,
1380
1381 ir_unop_noise,
1382
1383 /**
1384 * Interpolate fs input at centroid
1385 *
1386 * operand0 is the fs input.
1387 */
1388 ir_unop_interpolate_at_centroid,
1389
1390 /**
1391 * A sentinel marking the last of the unary operations.
1392 */
1393 ir_last_unop = ir_unop_interpolate_at_centroid,
1394
1395 ir_binop_add,
1396 ir_binop_sub,
1397 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1398 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1399 ir_binop_div,
1400
1401 /**
1402 * Returns the carry resulting from the addition of the two arguments.
1403 */
1404 /*@{*/
1405 ir_binop_carry,
1406 /*@}*/
1407
1408 /**
1409 * Returns the borrow resulting from the subtraction of the second argument
1410 * from the first argument.
1411 */
1412 /*@{*/
1413 ir_binop_borrow,
1414 /*@}*/
1415
1416 /**
1417 * Takes one of two combinations of arguments:
1418 *
1419 * - mod(vecN, vecN)
1420 * - mod(vecN, float)
1421 *
1422 * Does not take integer types.
1423 */
1424 ir_binop_mod,
1425
1426 /**
1427 * \name Binary comparison operators which return a boolean vector.
1428 * The type of both operands must be equal.
1429 */
1430 /*@{*/
1431 ir_binop_less,
1432 ir_binop_greater,
1433 ir_binop_lequal,
1434 ir_binop_gequal,
1435 ir_binop_equal,
1436 ir_binop_nequal,
1437 /**
1438 * Returns single boolean for whether all components of operands[0]
1439 * equal the components of operands[1].
1440 */
1441 ir_binop_all_equal,
1442 /**
1443 * Returns single boolean for whether any component of operands[0]
1444 * is not equal to the corresponding component of operands[1].
1445 */
1446 ir_binop_any_nequal,
1447 /*@}*/
1448
1449 /**
1450 * \name Bit-wise binary operations.
1451 */
1452 /*@{*/
1453 ir_binop_lshift,
1454 ir_binop_rshift,
1455 ir_binop_bit_and,
1456 ir_binop_bit_xor,
1457 ir_binop_bit_or,
1458 /*@}*/
1459
1460 ir_binop_logic_and,
1461 ir_binop_logic_xor,
1462 ir_binop_logic_or,
1463
1464 ir_binop_dot,
1465 ir_binop_min,
1466 ir_binop_max,
1467
1468 ir_binop_pow,
1469
1470 /**
1471 * \name Lowered floating point packing operations.
1472 *
1473 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1474 */
1475 /*@{*/
1476 ir_binop_pack_half_2x16_split,
1477 /*@}*/
1478
1479 /**
1480 * \name First half of a lowered bitfieldInsert() operation.
1481 *
1482 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1483 */
1484 /*@{*/
1485 ir_binop_bfm,
1486 /*@}*/
1487
1488 /**
1489 * Load a value the size of a given GLSL type from a uniform block.
1490 *
1491 * operand0 is the ir_constant uniform block index in the linked shader.
1492 * operand1 is a byte offset within the uniform block.
1493 */
1494 ir_binop_ubo_load,
1495
1496 /**
1497 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1498 */
1499 /*@{*/
1500 ir_binop_ldexp,
1501 /*@}*/
1502
1503 /**
1504 * Extract a scalar from a vector
1505 *
1506 * operand0 is the vector
1507 * operand1 is the index of the field to read from operand0
1508 */
1509 ir_binop_vector_extract,
1510
1511 /**
1512 * Interpolate fs input at offset
1513 *
1514 * operand0 is the fs input
1515 * operand1 is the offset from the pixel center
1516 */
1517 ir_binop_interpolate_at_offset,
1518
1519 /**
1520 * Interpolate fs input at sample position
1521 *
1522 * operand0 is the fs input
1523 * operand1 is the sample ID
1524 */
1525 ir_binop_interpolate_at_sample,
1526
1527 /**
1528 * A sentinel marking the last of the binary operations.
1529 */
1530 ir_last_binop = ir_binop_interpolate_at_sample,
1531
1532 /**
1533 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1534 */
1535 /*@{*/
1536 ir_triop_fma,
1537 /*@}*/
1538
1539 ir_triop_lrp,
1540
1541 /**
1542 * \name Conditional Select
1543 *
1544 * A vector conditional select instruction (like ?:, but operating per-
1545 * component on vectors).
1546 *
1547 * \see lower_instructions_visitor::ldexp_to_arith
1548 */
1549 /*@{*/
1550 ir_triop_csel,
1551 /*@}*/
1552
1553 /**
1554 * \name Second half of a lowered bitfieldInsert() operation.
1555 *
1556 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1557 */
1558 /*@{*/
1559 ir_triop_bfi,
1560 /*@}*/
1561
1562 ir_triop_bitfield_extract,
1563
1564 /**
1565 * Generate a value with one field of a vector changed
1566 *
1567 * operand0 is the vector
1568 * operand1 is the value to write into the vector result
1569 * operand2 is the index in operand0 to be modified
1570 */
1571 ir_triop_vector_insert,
1572
1573 /**
1574 * A sentinel marking the last of the ternary operations.
1575 */
1576 ir_last_triop = ir_triop_vector_insert,
1577
1578 ir_quadop_bitfield_insert,
1579
1580 ir_quadop_vector,
1581
1582 /**
1583 * A sentinel marking the last of the ternary operations.
1584 */
1585 ir_last_quadop = ir_quadop_vector,
1586
1587 /**
1588 * A sentinel marking the last of all operations.
1589 */
1590 ir_last_opcode = ir_quadop_vector
1591 };
1592
1593 class ir_expression : public ir_rvalue {
1594 public:
1595 ir_expression(int op, const struct glsl_type *type,
1596 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1597 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1598
1599 /**
1600 * Constructor for unary operation expressions
1601 */
1602 ir_expression(int op, ir_rvalue *);
1603
1604 /**
1605 * Constructor for binary operation expressions
1606 */
1607 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1608
1609 /**
1610 * Constructor for ternary operation expressions
1611 */
1612 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1613
1614 virtual bool equals(const ir_instruction *ir,
1615 enum ir_node_type ignore = ir_type_unset) const;
1616
1617 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1618
1619 /**
1620 * Attempt to constant-fold the expression
1621 *
1622 * The "variable_context" hash table links ir_variable * to ir_constant *
1623 * that represent the variables' values. \c NULL represents an empty
1624 * context.
1625 *
1626 * If the expression cannot be constant folded, this method will return
1627 * \c NULL.
1628 */
1629 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1630
1631 /**
1632 * Determine the number of operands used by an expression
1633 */
1634 static unsigned int get_num_operands(ir_expression_operation);
1635
1636 /**
1637 * Determine the number of operands used by an expression
1638 */
1639 unsigned int get_num_operands() const
1640 {
1641 return (this->operation == ir_quadop_vector)
1642 ? this->type->vector_elements : get_num_operands(operation);
1643 }
1644
1645 /**
1646 * Return whether the expression operates on vectors horizontally.
1647 */
1648 bool is_horizontal() const
1649 {
1650 return operation == ir_binop_all_equal ||
1651 operation == ir_binop_any_nequal ||
1652 operation == ir_unop_any ||
1653 operation == ir_binop_dot ||
1654 operation == ir_quadop_vector;
1655 }
1656
1657 /**
1658 * Return a string representing this expression's operator.
1659 */
1660 const char *operator_string();
1661
1662 /**
1663 * Return a string representing this expression's operator.
1664 */
1665 static const char *operator_string(ir_expression_operation);
1666
1667
1668 /**
1669 * Do a reverse-lookup to translate the given string into an operator.
1670 */
1671 static ir_expression_operation get_operator(const char *);
1672
1673 virtual void accept(ir_visitor *v)
1674 {
1675 v->visit(this);
1676 }
1677
1678 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1679
1680 ir_expression_operation operation;
1681 ir_rvalue *operands[4];
1682 };
1683
1684
1685 /**
1686 * HIR instruction representing a high-level function call, containing a list
1687 * of parameters and returning a value in the supplied temporary.
1688 */
1689 class ir_call : public ir_instruction {
1690 public:
1691 ir_call(ir_function_signature *callee,
1692 ir_dereference_variable *return_deref,
1693 exec_list *actual_parameters)
1694 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1695 {
1696 assert(callee->return_type != NULL);
1697 actual_parameters->move_nodes_to(& this->actual_parameters);
1698 this->use_builtin = callee->is_builtin();
1699 }
1700
1701 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1702
1703 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1704
1705 virtual void accept(ir_visitor *v)
1706 {
1707 v->visit(this);
1708 }
1709
1710 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1711
1712 /**
1713 * Get the name of the function being called.
1714 */
1715 const char *callee_name() const
1716 {
1717 return callee->function_name();
1718 }
1719
1720 /**
1721 * Generates an inline version of the function before @ir,
1722 * storing the return value in return_deref.
1723 */
1724 void generate_inline(ir_instruction *ir);
1725
1726 /**
1727 * Storage for the function's return value.
1728 * This must be NULL if the return type is void.
1729 */
1730 ir_dereference_variable *return_deref;
1731
1732 /**
1733 * The specific function signature being called.
1734 */
1735 ir_function_signature *callee;
1736
1737 /* List of ir_rvalue of paramaters passed in this call. */
1738 exec_list actual_parameters;
1739
1740 /** Should this call only bind to a built-in function? */
1741 bool use_builtin;
1742 };
1743
1744
1745 /**
1746 * \name Jump-like IR instructions.
1747 *
1748 * These include \c break, \c continue, \c return, and \c discard.
1749 */
1750 /*@{*/
1751 class ir_jump : public ir_instruction {
1752 protected:
1753 ir_jump(enum ir_node_type t)
1754 : ir_instruction(t)
1755 {
1756 }
1757 };
1758
1759 class ir_return : public ir_jump {
1760 public:
1761 ir_return()
1762 : ir_jump(ir_type_return), value(NULL)
1763 {
1764 }
1765
1766 ir_return(ir_rvalue *value)
1767 : ir_jump(ir_type_return), value(value)
1768 {
1769 }
1770
1771 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1772
1773 ir_rvalue *get_value() const
1774 {
1775 return value;
1776 }
1777
1778 virtual void accept(ir_visitor *v)
1779 {
1780 v->visit(this);
1781 }
1782
1783 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1784
1785 ir_rvalue *value;
1786 };
1787
1788
1789 /**
1790 * Jump instructions used inside loops
1791 *
1792 * These include \c break and \c continue. The \c break within a loop is
1793 * different from the \c break within a switch-statement.
1794 *
1795 * \sa ir_switch_jump
1796 */
1797 class ir_loop_jump : public ir_jump {
1798 public:
1799 enum jump_mode {
1800 jump_break,
1801 jump_continue
1802 };
1803
1804 ir_loop_jump(jump_mode mode)
1805 : ir_jump(ir_type_loop_jump)
1806 {
1807 this->mode = mode;
1808 }
1809
1810 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1811
1812 virtual void accept(ir_visitor *v)
1813 {
1814 v->visit(this);
1815 }
1816
1817 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1818
1819 bool is_break() const
1820 {
1821 return mode == jump_break;
1822 }
1823
1824 bool is_continue() const
1825 {
1826 return mode == jump_continue;
1827 }
1828
1829 /** Mode selector for the jump instruction. */
1830 enum jump_mode mode;
1831 };
1832
1833 /**
1834 * IR instruction representing discard statements.
1835 */
1836 class ir_discard : public ir_jump {
1837 public:
1838 ir_discard()
1839 : ir_jump(ir_type_discard)
1840 {
1841 this->condition = NULL;
1842 }
1843
1844 ir_discard(ir_rvalue *cond)
1845 : ir_jump(ir_type_discard)
1846 {
1847 this->condition = cond;
1848 }
1849
1850 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1851
1852 virtual void accept(ir_visitor *v)
1853 {
1854 v->visit(this);
1855 }
1856
1857 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1858
1859 ir_rvalue *condition;
1860 };
1861 /*@}*/
1862
1863
1864 /**
1865 * Texture sampling opcodes used in ir_texture
1866 */
1867 enum ir_texture_opcode {
1868 ir_tex, /**< Regular texture look-up */
1869 ir_txb, /**< Texture look-up with LOD bias */
1870 ir_txl, /**< Texture look-up with explicit LOD */
1871 ir_txd, /**< Texture look-up with partial derivatvies */
1872 ir_txf, /**< Texel fetch with explicit LOD */
1873 ir_txf_ms, /**< Multisample texture fetch */
1874 ir_txs, /**< Texture size */
1875 ir_lod, /**< Texture lod query */
1876 ir_tg4, /**< Texture gather */
1877 ir_query_levels /**< Texture levels query */
1878 };
1879
1880
1881 /**
1882 * IR instruction to sample a texture
1883 *
1884 * The specific form of the IR instruction depends on the \c mode value
1885 * selected from \c ir_texture_opcodes. In the printed IR, these will
1886 * appear as:
1887 *
1888 * Texel offset (0 or an expression)
1889 * | Projection divisor
1890 * | | Shadow comparitor
1891 * | | |
1892 * v v v
1893 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1894 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1895 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1896 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1897 * (txf <type> <sampler> <coordinate> 0 <lod>)
1898 * (txf_ms
1899 * <type> <sampler> <coordinate> <sample_index>)
1900 * (txs <type> <sampler> <lod>)
1901 * (lod <type> <sampler> <coordinate>)
1902 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1903 * (query_levels <type> <sampler>)
1904 */
1905 class ir_texture : public ir_rvalue {
1906 public:
1907 ir_texture(enum ir_texture_opcode op)
1908 : ir_rvalue(ir_type_texture),
1909 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1910 shadow_comparitor(NULL), offset(NULL)
1911 {
1912 memset(&lod_info, 0, sizeof(lod_info));
1913 }
1914
1915 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1916
1917 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1918
1919 virtual void accept(ir_visitor *v)
1920 {
1921 v->visit(this);
1922 }
1923
1924 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1925
1926 virtual bool equals(const ir_instruction *ir,
1927 enum ir_node_type ignore = ir_type_unset) const;
1928
1929 /**
1930 * Return a string representing the ir_texture_opcode.
1931 */
1932 const char *opcode_string();
1933
1934 /** Set the sampler and type. */
1935 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1936
1937 /**
1938 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1939 */
1940 static ir_texture_opcode get_opcode(const char *);
1941
1942 enum ir_texture_opcode op;
1943
1944 /** Sampler to use for the texture access. */
1945 ir_dereference *sampler;
1946
1947 /** Texture coordinate to sample */
1948 ir_rvalue *coordinate;
1949
1950 /**
1951 * Value used for projective divide.
1952 *
1953 * If there is no projective divide (the common case), this will be
1954 * \c NULL. Optimization passes should check for this to point to a constant
1955 * of 1.0 and replace that with \c NULL.
1956 */
1957 ir_rvalue *projector;
1958
1959 /**
1960 * Coordinate used for comparison on shadow look-ups.
1961 *
1962 * If there is no shadow comparison, this will be \c NULL. For the
1963 * \c ir_txf opcode, this *must* be \c NULL.
1964 */
1965 ir_rvalue *shadow_comparitor;
1966
1967 /** Texel offset. */
1968 ir_rvalue *offset;
1969
1970 union {
1971 ir_rvalue *lod; /**< Floating point LOD */
1972 ir_rvalue *bias; /**< Floating point LOD bias */
1973 ir_rvalue *sample_index; /**< MSAA sample index */
1974 ir_rvalue *component; /**< Gather component selector */
1975 struct {
1976 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1977 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1978 } grad;
1979 } lod_info;
1980 };
1981
1982
1983 struct ir_swizzle_mask {
1984 unsigned x:2;
1985 unsigned y:2;
1986 unsigned z:2;
1987 unsigned w:2;
1988
1989 /**
1990 * Number of components in the swizzle.
1991 */
1992 unsigned num_components:3;
1993
1994 /**
1995 * Does the swizzle contain duplicate components?
1996 *
1997 * L-value swizzles cannot contain duplicate components.
1998 */
1999 unsigned has_duplicates:1;
2000 };
2001
2002
2003 class ir_swizzle : public ir_rvalue {
2004 public:
2005 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2006 unsigned count);
2007
2008 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2009
2010 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2011
2012 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2013
2014 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2015
2016 /**
2017 * Construct an ir_swizzle from the textual representation. Can fail.
2018 */
2019 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2020
2021 virtual void accept(ir_visitor *v)
2022 {
2023 v->visit(this);
2024 }
2025
2026 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2027
2028 virtual bool equals(const ir_instruction *ir,
2029 enum ir_node_type ignore = ir_type_unset) const;
2030
2031 bool is_lvalue() const
2032 {
2033 return val->is_lvalue() && !mask.has_duplicates;
2034 }
2035
2036 /**
2037 * Get the variable that is ultimately referenced by an r-value
2038 */
2039 virtual ir_variable *variable_referenced() const;
2040
2041 ir_rvalue *val;
2042 ir_swizzle_mask mask;
2043
2044 private:
2045 /**
2046 * Initialize the mask component of a swizzle
2047 *
2048 * This is used by the \c ir_swizzle constructors.
2049 */
2050 void init_mask(const unsigned *components, unsigned count);
2051 };
2052
2053
2054 class ir_dereference : public ir_rvalue {
2055 public:
2056 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2057
2058 bool is_lvalue() const;
2059
2060 /**
2061 * Get the variable that is ultimately referenced by an r-value
2062 */
2063 virtual ir_variable *variable_referenced() const = 0;
2064
2065 protected:
2066 ir_dereference(enum ir_node_type t)
2067 : ir_rvalue(t)
2068 {
2069 }
2070 };
2071
2072
2073 class ir_dereference_variable : public ir_dereference {
2074 public:
2075 ir_dereference_variable(ir_variable *var);
2076
2077 virtual ir_dereference_variable *clone(void *mem_ctx,
2078 struct hash_table *) const;
2079
2080 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2081
2082 virtual bool equals(const ir_instruction *ir,
2083 enum ir_node_type ignore = ir_type_unset) const;
2084
2085 /**
2086 * Get the variable that is ultimately referenced by an r-value
2087 */
2088 virtual ir_variable *variable_referenced() const
2089 {
2090 return this->var;
2091 }
2092
2093 virtual ir_variable *whole_variable_referenced()
2094 {
2095 /* ir_dereference_variable objects always dereference the entire
2096 * variable. However, if this dereference is dereferenced by anything
2097 * else, the complete deferefernce chain is not a whole-variable
2098 * dereference. This method should only be called on the top most
2099 * ir_rvalue in a dereference chain.
2100 */
2101 return this->var;
2102 }
2103
2104 virtual void accept(ir_visitor *v)
2105 {
2106 v->visit(this);
2107 }
2108
2109 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2110
2111 /**
2112 * Object being dereferenced.
2113 */
2114 ir_variable *var;
2115 };
2116
2117
2118 class ir_dereference_array : public ir_dereference {
2119 public:
2120 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2121
2122 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2123
2124 virtual ir_dereference_array *clone(void *mem_ctx,
2125 struct hash_table *) const;
2126
2127 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2128
2129 virtual bool equals(const ir_instruction *ir,
2130 enum ir_node_type ignore = ir_type_unset) const;
2131
2132 /**
2133 * Get the variable that is ultimately referenced by an r-value
2134 */
2135 virtual ir_variable *variable_referenced() const
2136 {
2137 return this->array->variable_referenced();
2138 }
2139
2140 virtual void accept(ir_visitor *v)
2141 {
2142 v->visit(this);
2143 }
2144
2145 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2146
2147 ir_rvalue *array;
2148 ir_rvalue *array_index;
2149
2150 private:
2151 void set_array(ir_rvalue *value);
2152 };
2153
2154
2155 class ir_dereference_record : public ir_dereference {
2156 public:
2157 ir_dereference_record(ir_rvalue *value, const char *field);
2158
2159 ir_dereference_record(ir_variable *var, const char *field);
2160
2161 virtual ir_dereference_record *clone(void *mem_ctx,
2162 struct hash_table *) const;
2163
2164 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2165
2166 /**
2167 * Get the variable that is ultimately referenced by an r-value
2168 */
2169 virtual ir_variable *variable_referenced() const
2170 {
2171 return this->record->variable_referenced();
2172 }
2173
2174 virtual void accept(ir_visitor *v)
2175 {
2176 v->visit(this);
2177 }
2178
2179 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2180
2181 ir_rvalue *record;
2182 const char *field;
2183 };
2184
2185
2186 /**
2187 * Data stored in an ir_constant
2188 */
2189 union ir_constant_data {
2190 unsigned u[16];
2191 int i[16];
2192 float f[16];
2193 bool b[16];
2194 double d[16];
2195 };
2196
2197
2198 class ir_constant : public ir_rvalue {
2199 public:
2200 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2201 ir_constant(bool b, unsigned vector_elements=1);
2202 ir_constant(unsigned int u, unsigned vector_elements=1);
2203 ir_constant(int i, unsigned vector_elements=1);
2204 ir_constant(float f, unsigned vector_elements=1);
2205 ir_constant(double d, unsigned vector_elements=1);
2206
2207 /**
2208 * Construct an ir_constant from a list of ir_constant values
2209 */
2210 ir_constant(const struct glsl_type *type, exec_list *values);
2211
2212 /**
2213 * Construct an ir_constant from a scalar component of another ir_constant
2214 *
2215 * The new \c ir_constant inherits the type of the component from the
2216 * source constant.
2217 *
2218 * \note
2219 * In the case of a matrix constant, the new constant is a scalar, \b not
2220 * a vector.
2221 */
2222 ir_constant(const ir_constant *c, unsigned i);
2223
2224 /**
2225 * Return a new ir_constant of the specified type containing all zeros.
2226 */
2227 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2228
2229 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2230
2231 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2232
2233 virtual void accept(ir_visitor *v)
2234 {
2235 v->visit(this);
2236 }
2237
2238 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2239
2240 virtual bool equals(const ir_instruction *ir,
2241 enum ir_node_type ignore = ir_type_unset) const;
2242
2243 /**
2244 * Get a particular component of a constant as a specific type
2245 *
2246 * This is useful, for example, to get a value from an integer constant
2247 * as a float or bool. This appears frequently when constructors are
2248 * called with all constant parameters.
2249 */
2250 /*@{*/
2251 bool get_bool_component(unsigned i) const;
2252 float get_float_component(unsigned i) const;
2253 double get_double_component(unsigned i) const;
2254 int get_int_component(unsigned i) const;
2255 unsigned get_uint_component(unsigned i) const;
2256 /*@}*/
2257
2258 ir_constant *get_array_element(unsigned i) const;
2259
2260 ir_constant *get_record_field(const char *name);
2261
2262 /**
2263 * Copy the values on another constant at a given offset.
2264 *
2265 * The offset is ignored for array or struct copies, it's only for
2266 * scalars or vectors into vectors or matrices.
2267 *
2268 * With identical types on both sides and zero offset it's clone()
2269 * without creating a new object.
2270 */
2271
2272 void copy_offset(ir_constant *src, int offset);
2273
2274 /**
2275 * Copy the values on another constant at a given offset and
2276 * following an assign-like mask.
2277 *
2278 * The mask is ignored for scalars.
2279 *
2280 * Note that this function only handles what assign can handle,
2281 * i.e. at most a vector as source and a column of a matrix as
2282 * destination.
2283 */
2284
2285 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2286
2287 /**
2288 * Determine whether a constant has the same value as another constant
2289 *
2290 * \sa ir_constant::is_zero, ir_constant::is_one,
2291 * ir_constant::is_negative_one
2292 */
2293 bool has_value(const ir_constant *) const;
2294
2295 /**
2296 * Return true if this ir_constant represents the given value.
2297 *
2298 * For vectors, this checks that each component is the given value.
2299 */
2300 virtual bool is_value(float f, int i) const;
2301 virtual bool is_zero() const;
2302 virtual bool is_one() const;
2303 virtual bool is_negative_one() const;
2304
2305 /**
2306 * Return true for constants that could be stored as 16-bit unsigned values.
2307 *
2308 * Note that this will return true even for signed integer ir_constants, as
2309 * long as the value is non-negative and fits in 16-bits.
2310 */
2311 virtual bool is_uint16_constant() const;
2312
2313 /**
2314 * Value of the constant.
2315 *
2316 * The field used to back the values supplied by the constant is determined
2317 * by the type associated with the \c ir_instruction. Constants may be
2318 * scalars, vectors, or matrices.
2319 */
2320 union ir_constant_data value;
2321
2322 /* Array elements */
2323 ir_constant **array_elements;
2324
2325 /* Structure fields */
2326 exec_list components;
2327
2328 private:
2329 /**
2330 * Parameterless constructor only used by the clone method
2331 */
2332 ir_constant(void);
2333 };
2334
2335 /**
2336 * IR instruction to emit a vertex in a geometry shader.
2337 */
2338 class ir_emit_vertex : public ir_instruction {
2339 public:
2340 ir_emit_vertex(ir_rvalue *stream)
2341 : ir_instruction(ir_type_emit_vertex),
2342 stream(stream)
2343 {
2344 assert(stream);
2345 }
2346
2347 virtual void accept(ir_visitor *v)
2348 {
2349 v->visit(this);
2350 }
2351
2352 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2353 {
2354 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2355 }
2356
2357 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2358
2359 int stream_id() const
2360 {
2361 return stream->as_constant()->value.i[0];
2362 }
2363
2364 ir_rvalue *stream;
2365 };
2366
2367 /**
2368 * IR instruction to complete the current primitive and start a new one in a
2369 * geometry shader.
2370 */
2371 class ir_end_primitive : public ir_instruction {
2372 public:
2373 ir_end_primitive(ir_rvalue *stream)
2374 : ir_instruction(ir_type_end_primitive),
2375 stream(stream)
2376 {
2377 assert(stream);
2378 }
2379
2380 virtual void accept(ir_visitor *v)
2381 {
2382 v->visit(this);
2383 }
2384
2385 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2386 {
2387 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2388 }
2389
2390 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2391
2392 int stream_id() const
2393 {
2394 return stream->as_constant()->value.i[0];
2395 }
2396
2397 ir_rvalue *stream;
2398 };
2399
2400 /**
2401 * IR instruction for tessellation control and compute shader barrier.
2402 */
2403 class ir_barrier : public ir_instruction {
2404 public:
2405 ir_barrier()
2406 : ir_instruction(ir_type_barrier)
2407 {
2408 }
2409
2410 virtual void accept(ir_visitor *v)
2411 {
2412 v->visit(this);
2413 }
2414
2415 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2416 {
2417 return new(mem_ctx) ir_barrier();
2418 }
2419
2420 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2421 };
2422
2423 /*@}*/
2424
2425 /**
2426 * Apply a visitor to each IR node in a list
2427 */
2428 void
2429 visit_exec_list(exec_list *list, ir_visitor *visitor);
2430
2431 /**
2432 * Validate invariants on each IR node in a list
2433 */
2434 void validate_ir_tree(exec_list *instructions);
2435
2436 struct _mesa_glsl_parse_state;
2437 struct gl_shader_program;
2438
2439 /**
2440 * Detect whether an unlinked shader contains static recursion
2441 *
2442 * If the list of instructions is determined to contain static recursion,
2443 * \c _mesa_glsl_error will be called to emit error messages for each function
2444 * that is in the recursion cycle.
2445 */
2446 void
2447 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2448 exec_list *instructions);
2449
2450 /**
2451 * Detect whether a linked shader contains static recursion
2452 *
2453 * If the list of instructions is determined to contain static recursion,
2454 * \c link_error_printf will be called to emit error messages for each function
2455 * that is in the recursion cycle. In addition,
2456 * \c gl_shader_program::LinkStatus will be set to false.
2457 */
2458 void
2459 detect_recursion_linked(struct gl_shader_program *prog,
2460 exec_list *instructions);
2461
2462 /**
2463 * Make a clone of each IR instruction in a list
2464 *
2465 * \param in List of IR instructions that are to be cloned
2466 * \param out List to hold the cloned instructions
2467 */
2468 void
2469 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2470
2471 extern void
2472 _mesa_glsl_initialize_variables(exec_list *instructions,
2473 struct _mesa_glsl_parse_state *state);
2474
2475 extern void
2476 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2477
2478 extern void
2479 _mesa_glsl_initialize_builtin_functions();
2480
2481 extern ir_function_signature *
2482 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2483 const char *name, exec_list *actual_parameters);
2484
2485 extern ir_function *
2486 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2487 const char *name);
2488
2489 extern gl_shader *
2490 _mesa_glsl_get_builtin_function_shader(void);
2491
2492 extern void
2493 _mesa_glsl_release_functions(void);
2494
2495 extern void
2496 _mesa_glsl_release_builtin_functions(void);
2497
2498 extern void
2499 reparent_ir(exec_list *list, void *mem_ctx);
2500
2501 struct glsl_symbol_table;
2502
2503 extern void
2504 import_prototypes(const exec_list *source, exec_list *dest,
2505 struct glsl_symbol_table *symbols, void *mem_ctx);
2506
2507 extern bool
2508 ir_has_call(ir_instruction *ir);
2509
2510 extern void
2511 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2512 gl_shader_stage shader_stage);
2513
2514 extern char *
2515 prototype_string(const glsl_type *return_type, const char *name,
2516 exec_list *parameters);
2517
2518 const char *
2519 mode_string(const ir_variable *var);
2520
2521 /**
2522 * Built-in / reserved GL variables names start with "gl_"
2523 */
2524 static inline bool
2525 is_gl_identifier(const char *s)
2526 {
2527 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2528 }
2529
2530 extern "C" {
2531 #endif /* __cplusplus */
2532
2533 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2534 struct _mesa_glsl_parse_state *state);
2535
2536 extern void
2537 fprint_ir(FILE *f, const void *instruction);
2538
2539 #ifdef __cplusplus
2540 } /* extern "C" */
2541 #endif
2542
2543 unsigned
2544 vertices_per_prim(GLenum prim);
2545
2546 #endif /* IR_H */