nir/spirv: Add initial support for GLSL 4.50 builtins
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue() const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_in,
327 ir_var_shader_out,
328 ir_var_function_in,
329 ir_var_function_out,
330 ir_var_function_inout,
331 ir_var_const_in, /**< "in" param that must be a constant expression */
332 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
333 ir_var_temporary, /**< Temporary variable generated during compilation. */
334 ir_var_mode_count /**< Number of variable modes */
335 };
336
337 /**
338 * Enum keeping track of how a variable was declared. For error checking of
339 * the gl_PerVertex redeclaration rules.
340 */
341 enum ir_var_declaration_type {
342 /**
343 * Normal declaration (for most variables, this means an explicit
344 * declaration. Exception: temporaries are always implicitly declared, but
345 * they still use ir_var_declared_normally).
346 *
347 * Note: an ir_variable that represents a named interface block uses
348 * ir_var_declared_normally.
349 */
350 ir_var_declared_normally = 0,
351
352 /**
353 * Variable was explicitly declared (or re-declared) in an unnamed
354 * interface block.
355 */
356 ir_var_declared_in_block,
357
358 /**
359 * Variable is an implicitly declared built-in that has not been explicitly
360 * re-declared by the shader.
361 */
362 ir_var_declared_implicitly,
363
364 /**
365 * Variable is implicitly generated by the compiler and should not be
366 * visible via the API.
367 */
368 ir_var_hidden,
369 };
370
371 /**
372 * \brief Layout qualifiers for gl_FragDepth.
373 *
374 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
375 * with a layout qualifier.
376 */
377 enum ir_depth_layout {
378 ir_depth_layout_none, /**< No depth layout is specified. */
379 ir_depth_layout_any,
380 ir_depth_layout_greater,
381 ir_depth_layout_less,
382 ir_depth_layout_unchanged
383 };
384
385 /**
386 * \brief Convert depth layout qualifier to string.
387 */
388 const char*
389 depth_layout_string(ir_depth_layout layout);
390
391 /**
392 * Description of built-in state associated with a uniform
393 *
394 * \sa ir_variable::state_slots
395 */
396 struct ir_state_slot {
397 int tokens[5];
398 int swizzle;
399 };
400
401
402 /**
403 * Get the string value for an interpolation qualifier
404 *
405 * \return The string that would be used in a shader to specify \c
406 * mode will be returned.
407 *
408 * This function is used to generate error messages of the form "shader
409 * uses %s interpolation qualifier", so in the case where there is no
410 * interpolation qualifier, it returns "no".
411 *
412 * This function should only be used on a shader input or output variable.
413 */
414 const char *interpolation_string(unsigned interpolation);
415
416
417 class ir_variable : public ir_instruction {
418 public:
419 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
420
421 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
422
423 virtual void accept(ir_visitor *v)
424 {
425 v->visit(this);
426 }
427
428 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
429
430
431 /**
432 * Determine how this variable should be interpolated based on its
433 * interpolation qualifier (if present), whether it is gl_Color or
434 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
435 * state.
436 *
437 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
438 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
439 */
440 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
441
442 /**
443 * Determine whether or not a variable is part of a uniform block.
444 */
445 inline bool is_in_uniform_block() const
446 {
447 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
448 }
449
450 /**
451 * Determine whether or not a variable is the declaration of an interface
452 * block
453 *
454 * For the first declaration below, there will be an \c ir_variable named
455 * "instance" whose type and whose instance_type will be the same
456 * \cglsl_type. For the second declaration, there will be an \c ir_variable
457 * named "f" whose type is float and whose instance_type is B2.
458 *
459 * "instance" is an interface instance variable, but "f" is not.
460 *
461 * uniform B1 {
462 * float f;
463 * } instance;
464 *
465 * uniform B2 {
466 * float f;
467 * };
468 */
469 inline bool is_interface_instance() const
470 {
471 return this->type->without_array() == this->interface_type;
472 }
473
474 /**
475 * Set this->interface_type on a newly created variable.
476 */
477 void init_interface_type(const struct glsl_type *type)
478 {
479 assert(this->interface_type == NULL);
480 this->interface_type = type;
481 if (this->is_interface_instance()) {
482 this->u.max_ifc_array_access =
483 rzalloc_array(this, unsigned, type->length);
484 }
485 }
486
487 /**
488 * Change this->interface_type on a variable that previously had a
489 * different, but compatible, interface_type. This is used during linking
490 * to set the size of arrays in interface blocks.
491 */
492 void change_interface_type(const struct glsl_type *type)
493 {
494 if (this->u.max_ifc_array_access != NULL) {
495 /* max_ifc_array_access has already been allocated, so make sure the
496 * new interface has the same number of fields as the old one.
497 */
498 assert(this->interface_type->length == type->length);
499 }
500 this->interface_type = type;
501 }
502
503 /**
504 * Change this->interface_type on a variable that previously had a
505 * different, and incompatible, interface_type. This is used during
506 * compilation to handle redeclaration of the built-in gl_PerVertex
507 * interface block.
508 */
509 void reinit_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 #ifndef NDEBUG
513 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
514 * it defines have been accessed yet; so it's safe to throw away the
515 * old max_ifc_array_access pointer, since all of its values are
516 * zero.
517 */
518 for (unsigned i = 0; i < this->interface_type->length; i++)
519 assert(this->u.max_ifc_array_access[i] == 0);
520 #endif
521 ralloc_free(this->u.max_ifc_array_access);
522 this->u.max_ifc_array_access = NULL;
523 }
524 this->interface_type = NULL;
525 init_interface_type(type);
526 }
527
528 const glsl_type *get_interface_type() const
529 {
530 return this->interface_type;
531 }
532
533 /**
534 * Get the max_ifc_array_access pointer
535 *
536 * A "set" function is not needed because the array is dynmically allocated
537 * as necessary.
538 */
539 inline unsigned *get_max_ifc_array_access()
540 {
541 assert(this->data._num_state_slots == 0);
542 return this->u.max_ifc_array_access;
543 }
544
545 inline unsigned get_num_state_slots() const
546 {
547 assert(!this->is_interface_instance()
548 || this->data._num_state_slots == 0);
549 return this->data._num_state_slots;
550 }
551
552 inline void set_num_state_slots(unsigned n)
553 {
554 assert(!this->is_interface_instance()
555 || n == 0);
556 this->data._num_state_slots = n;
557 }
558
559 inline ir_state_slot *get_state_slots()
560 {
561 return this->is_interface_instance() ? NULL : this->u.state_slots;
562 }
563
564 inline const ir_state_slot *get_state_slots() const
565 {
566 return this->is_interface_instance() ? NULL : this->u.state_slots;
567 }
568
569 inline ir_state_slot *allocate_state_slots(unsigned n)
570 {
571 assert(!this->is_interface_instance());
572
573 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
574 this->data._num_state_slots = 0;
575
576 if (this->u.state_slots != NULL)
577 this->data._num_state_slots = n;
578
579 return this->u.state_slots;
580 }
581
582 inline bool is_name_ralloced() const
583 {
584 return this->name != ir_variable::tmp_name;
585 }
586
587 /**
588 * Enable emitting extension warnings for this variable
589 */
590 void enable_extension_warning(const char *extension);
591
592 /**
593 * Get the extension warning string for this variable
594 *
595 * If warnings are not enabled, \c NULL is returned.
596 */
597 const char *get_extension_warning() const;
598
599 /**
600 * Declared type of the variable
601 */
602 const struct glsl_type *type;
603
604 /**
605 * Declared name of the variable
606 */
607 const char *name;
608
609 struct ir_variable_data {
610
611 /**
612 * Is the variable read-only?
613 *
614 * This is set for variables declared as \c const, shader inputs,
615 * and uniforms.
616 */
617 unsigned read_only:1;
618 unsigned centroid:1;
619 unsigned sample:1;
620 unsigned invariant:1;
621 unsigned precise:1;
622
623 /**
624 * Has this variable been used for reading or writing?
625 *
626 * Several GLSL semantic checks require knowledge of whether or not a
627 * variable has been used. For example, it is an error to redeclare a
628 * variable as invariant after it has been used.
629 *
630 * This is only maintained in the ast_to_hir.cpp path, not in
631 * Mesa's fixed function or ARB program paths.
632 */
633 unsigned used:1;
634
635 /**
636 * Has this variable been statically assigned?
637 *
638 * This answers whether the variable was assigned in any path of
639 * the shader during ast_to_hir. This doesn't answer whether it is
640 * still written after dead code removal, nor is it maintained in
641 * non-ast_to_hir.cpp (GLSL parsing) paths.
642 */
643 unsigned assigned:1;
644
645 /**
646 * Enum indicating how the variable was declared. See
647 * ir_var_declaration_type.
648 *
649 * This is used to detect certain kinds of illegal variable redeclarations.
650 */
651 unsigned how_declared:2;
652
653 /**
654 * Storage class of the variable.
655 *
656 * \sa ir_variable_mode
657 */
658 unsigned mode:4;
659
660 /**
661 * Interpolation mode for shader inputs / outputs
662 *
663 * \sa ir_variable_interpolation
664 */
665 unsigned interpolation:2;
666
667 /**
668 * \name ARB_fragment_coord_conventions
669 * @{
670 */
671 unsigned origin_upper_left:1;
672 unsigned pixel_center_integer:1;
673 /*@}*/
674
675 /**
676 * Was the location explicitly set in the shader?
677 *
678 * If the location is explicitly set in the shader, it \b cannot be changed
679 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
680 * no effect).
681 */
682 unsigned explicit_location:1;
683 unsigned explicit_index:1;
684
685 /**
686 * Was an initial binding explicitly set in the shader?
687 *
688 * If so, constant_value contains an integer ir_constant representing the
689 * initial binding point.
690 */
691 unsigned explicit_binding:1;
692
693 /**
694 * Does this variable have an initializer?
695 *
696 * This is used by the linker to cross-validiate initializers of global
697 * variables.
698 */
699 unsigned has_initializer:1;
700
701 /**
702 * Is this variable a generic output or input that has not yet been matched
703 * up to a variable in another stage of the pipeline?
704 *
705 * This is used by the linker as scratch storage while assigning locations
706 * to generic inputs and outputs.
707 */
708 unsigned is_unmatched_generic_inout:1;
709
710 /**
711 * If non-zero, then this variable may be packed along with other variables
712 * into a single varying slot, so this offset should be applied when
713 * accessing components. For example, an offset of 1 means that the x
714 * component of this variable is actually stored in component y of the
715 * location specified by \c location.
716 */
717 unsigned location_frac:2;
718
719 /**
720 * Layout of the matrix. Uses glsl_matrix_layout values.
721 */
722 unsigned matrix_layout:2;
723
724 /**
725 * Non-zero if this variable was created by lowering a named interface
726 * block which was not an array.
727 *
728 * Note that this variable and \c from_named_ifc_block_array will never
729 * both be non-zero.
730 */
731 unsigned from_named_ifc_block_nonarray:1;
732
733 /**
734 * Non-zero if this variable was created by lowering a named interface
735 * block which was an array.
736 *
737 * Note that this variable and \c from_named_ifc_block_nonarray will never
738 * both be non-zero.
739 */
740 unsigned from_named_ifc_block_array:1;
741
742 /**
743 * Non-zero if the variable must be a shader input. This is useful for
744 * constraints on function parameters.
745 */
746 unsigned must_be_shader_input:1;
747
748 /**
749 * Output index for dual source blending.
750 *
751 * \note
752 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
753 * source blending.
754 */
755 unsigned index:1;
756
757 /**
758 * \brief Layout qualifier for gl_FragDepth.
759 *
760 * This is not equal to \c ir_depth_layout_none if and only if this
761 * variable is \c gl_FragDepth and a layout qualifier is specified.
762 */
763 ir_depth_layout depth_layout:3;
764
765 /**
766 * ARB_shader_image_load_store qualifiers.
767 */
768 unsigned image_read_only:1; /**< "readonly" qualifier. */
769 unsigned image_write_only:1; /**< "writeonly" qualifier. */
770 unsigned image_coherent:1;
771 unsigned image_volatile:1;
772 unsigned image_restrict:1;
773
774 /**
775 * Emit a warning if this variable is accessed.
776 */
777 private:
778 uint8_t warn_extension_index;
779
780 public:
781 /** Image internal format if specified explicitly, otherwise GL_NONE. */
782 uint16_t image_format;
783
784 private:
785 /**
786 * Number of state slots used
787 *
788 * \note
789 * This could be stored in as few as 7-bits, if necessary. If it is made
790 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
791 * be safe.
792 */
793 uint16_t _num_state_slots;
794
795 public:
796 /**
797 * Initial binding point for a sampler, atomic, or UBO.
798 *
799 * For array types, this represents the binding point for the first element.
800 */
801 int16_t binding;
802
803 /**
804 * Storage location of the base of this variable
805 *
806 * The precise meaning of this field depends on the nature of the variable.
807 *
808 * - Vertex shader input: one of the values from \c gl_vert_attrib.
809 * - Vertex shader output: one of the values from \c gl_varying_slot.
810 * - Geometry shader input: one of the values from \c gl_varying_slot.
811 * - Geometry shader output: one of the values from \c gl_varying_slot.
812 * - Fragment shader input: one of the values from \c gl_varying_slot.
813 * - Fragment shader output: one of the values from \c gl_frag_result.
814 * - Uniforms: Per-stage uniform slot number for default uniform block.
815 * - Uniforms: Index within the uniform block definition for UBO members.
816 * - Other: This field is not currently used.
817 *
818 * If the variable is a uniform, shader input, or shader output, and the
819 * slot has not been assigned, the value will be -1.
820 */
821 int location;
822
823 /**
824 * Vertex stream output identifier.
825 */
826 unsigned stream;
827
828 /**
829 * Location an atomic counter is stored at.
830 */
831 struct {
832 unsigned offset;
833 } atomic;
834
835 /**
836 * Highest element accessed with a constant expression array index
837 *
838 * Not used for non-array variables.
839 */
840 unsigned max_array_access;
841
842 /**
843 * Allow (only) ir_variable direct access private members.
844 */
845 friend class ir_variable;
846 } data;
847
848 /**
849 * Value assigned in the initializer of a variable declared "const"
850 */
851 ir_constant *constant_value;
852
853 /**
854 * Constant expression assigned in the initializer of the variable
855 *
856 * \warning
857 * This field and \c ::constant_value are distinct. Even if the two fields
858 * refer to constants with the same value, they must point to separate
859 * objects.
860 */
861 ir_constant *constant_initializer;
862
863 private:
864 static const char *const warn_extension_table[];
865
866 union {
867 /**
868 * For variables which satisfy the is_interface_instance() predicate,
869 * this points to an array of integers such that if the ith member of
870 * the interface block is an array, max_ifc_array_access[i] is the
871 * maximum array element of that member that has been accessed. If the
872 * ith member of the interface block is not an array,
873 * max_ifc_array_access[i] is unused.
874 *
875 * For variables whose type is not an interface block, this pointer is
876 * NULL.
877 */
878 unsigned *max_ifc_array_access;
879
880 /**
881 * Built-in state that backs this uniform
882 *
883 * Once set at variable creation, \c state_slots must remain invariant.
884 *
885 * If the variable is not a uniform, \c _num_state_slots will be zero
886 * and \c state_slots will be \c NULL.
887 */
888 ir_state_slot *state_slots;
889 } u;
890
891 /**
892 * For variables that are in an interface block or are an instance of an
893 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
894 *
895 * \sa ir_variable::location
896 */
897 const glsl_type *interface_type;
898
899 /**
900 * Name used for anonymous compiler temporaries
901 */
902 static const char tmp_name[];
903
904 public:
905 /**
906 * Should the construct keep names for ir_var_temporary variables?
907 *
908 * When this global is false, names passed to the constructor for
909 * \c ir_var_temporary variables will be dropped. Instead, the variable will
910 * be named "compiler_temp". This name will be in static storage.
911 *
912 * \warning
913 * \b NEVER change the mode of an \c ir_var_temporary.
914 *
915 * \warning
916 * This variable is \b not thread-safe. It is global, \b not
917 * per-context. It begins life false. A context can, at some point, make
918 * it true. From that point on, it will be true forever. This should be
919 * okay since it will only be set true while debugging.
920 */
921 static bool temporaries_allocate_names;
922 };
923
924 /**
925 * A function that returns whether a built-in function is available in the
926 * current shading language (based on version, ES or desktop, and extensions).
927 */
928 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
929
930 /*@{*/
931 /**
932 * The representation of a function instance; may be the full definition or
933 * simply a prototype.
934 */
935 class ir_function_signature : public ir_instruction {
936 /* An ir_function_signature will be part of the list of signatures in
937 * an ir_function.
938 */
939 public:
940 ir_function_signature(const glsl_type *return_type,
941 builtin_available_predicate builtin_avail = NULL);
942
943 virtual ir_function_signature *clone(void *mem_ctx,
944 struct hash_table *ht) const;
945 ir_function_signature *clone_prototype(void *mem_ctx,
946 struct hash_table *ht) const;
947
948 virtual void accept(ir_visitor *v)
949 {
950 v->visit(this);
951 }
952
953 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
954
955 /**
956 * Attempt to evaluate this function as a constant expression,
957 * given a list of the actual parameters and the variable context.
958 * Returns NULL for non-built-ins.
959 */
960 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
961
962 /**
963 * Get the name of the function for which this is a signature
964 */
965 const char *function_name() const;
966
967 /**
968 * Get a handle to the function for which this is a signature
969 *
970 * There is no setter function, this function returns a \c const pointer,
971 * and \c ir_function_signature::_function is private for a reason. The
972 * only way to make a connection between a function and function signature
973 * is via \c ir_function::add_signature. This helps ensure that certain
974 * invariants (i.e., a function signature is in the list of signatures for
975 * its \c _function) are met.
976 *
977 * \sa ir_function::add_signature
978 */
979 inline const class ir_function *function() const
980 {
981 return this->_function;
982 }
983
984 /**
985 * Check whether the qualifiers match between this signature's parameters
986 * and the supplied parameter list. If not, returns the name of the first
987 * parameter with mismatched qualifiers (for use in error messages).
988 */
989 const char *qualifiers_match(exec_list *params);
990
991 /**
992 * Replace the current parameter list with the given one. This is useful
993 * if the current information came from a prototype, and either has invalid
994 * or missing parameter names.
995 */
996 void replace_parameters(exec_list *new_params);
997
998 /**
999 * Function return type.
1000 *
1001 * \note This discards the optional precision qualifier.
1002 */
1003 const struct glsl_type *return_type;
1004
1005 /**
1006 * List of ir_variable of function parameters.
1007 *
1008 * This represents the storage. The paramaters passed in a particular
1009 * call will be in ir_call::actual_paramaters.
1010 */
1011 struct exec_list parameters;
1012
1013 /** Whether or not this function has a body (which may be empty). */
1014 unsigned is_defined:1;
1015
1016 /** Whether or not this function signature is a built-in. */
1017 bool is_builtin() const;
1018
1019 /**
1020 * Whether or not this function is an intrinsic to be implemented
1021 * by the driver.
1022 */
1023 bool is_intrinsic;
1024
1025 /** Whether or not a built-in is available for this shader. */
1026 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1027
1028 /** Body of instructions in the function. */
1029 struct exec_list body;
1030
1031 private:
1032 /**
1033 * A function pointer to a predicate that answers whether a built-in
1034 * function is available in the current shader. NULL if not a built-in.
1035 */
1036 builtin_available_predicate builtin_avail;
1037
1038 /** Function of which this signature is one overload. */
1039 class ir_function *_function;
1040
1041 /** Function signature of which this one is a prototype clone */
1042 const ir_function_signature *origin;
1043
1044 friend class ir_function;
1045
1046 /**
1047 * Helper function to run a list of instructions for constant
1048 * expression evaluation.
1049 *
1050 * The hash table represents the values of the visible variables.
1051 * There are no scoping issues because the table is indexed on
1052 * ir_variable pointers, not variable names.
1053 *
1054 * Returns false if the expression is not constant, true otherwise,
1055 * and the value in *result if result is non-NULL.
1056 */
1057 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1058 struct hash_table *variable_context,
1059 ir_constant **result);
1060 };
1061
1062
1063 /**
1064 * Header for tracking multiple overloaded functions with the same name.
1065 * Contains a list of ir_function_signatures representing each of the
1066 * actual functions.
1067 */
1068 class ir_function : public ir_instruction {
1069 public:
1070 ir_function(const char *name);
1071
1072 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1073
1074 virtual void accept(ir_visitor *v)
1075 {
1076 v->visit(this);
1077 }
1078
1079 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1080
1081 void add_signature(ir_function_signature *sig)
1082 {
1083 sig->_function = this;
1084 this->signatures.push_tail(sig);
1085 }
1086
1087 /**
1088 * Find a signature that matches a set of actual parameters, taking implicit
1089 * conversions into account. Also flags whether the match was exact.
1090 */
1091 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1092 const exec_list *actual_param,
1093 bool allow_builtins,
1094 bool *match_is_exact);
1095
1096 /**
1097 * Find a signature that matches a set of actual parameters, taking implicit
1098 * conversions into account.
1099 */
1100 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1101 const exec_list *actual_param,
1102 bool allow_builtins);
1103
1104 /**
1105 * Find a signature that exactly matches a set of actual parameters without
1106 * any implicit type conversions.
1107 */
1108 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1109 const exec_list *actual_ps);
1110
1111 /**
1112 * Name of the function.
1113 */
1114 const char *name;
1115
1116 /** Whether or not this function has a signature that isn't a built-in. */
1117 bool has_user_signature();
1118
1119 /**
1120 * List of ir_function_signature for each overloaded function with this name.
1121 */
1122 struct exec_list signatures;
1123 };
1124
1125 inline const char *ir_function_signature::function_name() const
1126 {
1127 return this->_function->name;
1128 }
1129 /*@}*/
1130
1131
1132 /**
1133 * IR instruction representing high-level if-statements
1134 */
1135 class ir_if : public ir_instruction {
1136 public:
1137 ir_if(ir_rvalue *condition)
1138 : ir_instruction(ir_type_if), condition(condition)
1139 {
1140 }
1141
1142 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1143
1144 virtual void accept(ir_visitor *v)
1145 {
1146 v->visit(this);
1147 }
1148
1149 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1150
1151 ir_rvalue *condition;
1152 /** List of ir_instruction for the body of the then branch */
1153 exec_list then_instructions;
1154 /** List of ir_instruction for the body of the else branch */
1155 exec_list else_instructions;
1156 };
1157
1158
1159 /**
1160 * IR instruction representing a high-level loop structure.
1161 */
1162 class ir_loop : public ir_instruction {
1163 public:
1164 ir_loop();
1165
1166 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1167
1168 virtual void accept(ir_visitor *v)
1169 {
1170 v->visit(this);
1171 }
1172
1173 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1174
1175 /** List of ir_instruction that make up the body of the loop. */
1176 exec_list body_instructions;
1177 };
1178
1179
1180 class ir_assignment : public ir_instruction {
1181 public:
1182 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1183
1184 /**
1185 * Construct an assignment with an explicit write mask
1186 *
1187 * \note
1188 * Since a write mask is supplied, the LHS must already be a bare
1189 * \c ir_dereference. The cannot be any swizzles in the LHS.
1190 */
1191 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1192 unsigned write_mask);
1193
1194 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1195
1196 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1197
1198 virtual void accept(ir_visitor *v)
1199 {
1200 v->visit(this);
1201 }
1202
1203 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1204
1205 /**
1206 * Get a whole variable written by an assignment
1207 *
1208 * If the LHS of the assignment writes a whole variable, the variable is
1209 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1210 * assignment are:
1211 *
1212 * - Assigning to a scalar
1213 * - Assigning to all components of a vector
1214 * - Whole array (or matrix) assignment
1215 * - Whole structure assignment
1216 */
1217 ir_variable *whole_variable_written();
1218
1219 /**
1220 * Set the LHS of an assignment
1221 */
1222 void set_lhs(ir_rvalue *lhs);
1223
1224 /**
1225 * Left-hand side of the assignment.
1226 *
1227 * This should be treated as read only. If you need to set the LHS of an
1228 * assignment, use \c ir_assignment::set_lhs.
1229 */
1230 ir_dereference *lhs;
1231
1232 /**
1233 * Value being assigned
1234 */
1235 ir_rvalue *rhs;
1236
1237 /**
1238 * Optional condition for the assignment.
1239 */
1240 ir_rvalue *condition;
1241
1242
1243 /**
1244 * Component mask written
1245 *
1246 * For non-vector types in the LHS, this field will be zero. For vector
1247 * types, a bit will be set for each component that is written. Note that
1248 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1249 *
1250 * A partially-set write mask means that each enabled channel gets
1251 * the value from a consecutive channel of the rhs. For example,
1252 * to write just .xyw of gl_FrontColor with color:
1253 *
1254 * (assign (constant bool (1)) (xyw)
1255 * (var_ref gl_FragColor)
1256 * (swiz xyw (var_ref color)))
1257 */
1258 unsigned write_mask:4;
1259 };
1260
1261 /* Update ir_expression::get_num_operands() and operator_strs when
1262 * updating this list.
1263 */
1264 enum ir_expression_operation {
1265 ir_unop_bit_not,
1266 ir_unop_logic_not,
1267 ir_unop_neg,
1268 ir_unop_abs,
1269 ir_unop_sign,
1270 ir_unop_rcp,
1271 ir_unop_rsq,
1272 ir_unop_sqrt,
1273 ir_unop_exp, /**< Log base e on gentype */
1274 ir_unop_log, /**< Natural log on gentype */
1275 ir_unop_exp2,
1276 ir_unop_log2,
1277 ir_unop_f2i, /**< Float-to-integer conversion. */
1278 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1279 ir_unop_i2f, /**< Integer-to-float conversion. */
1280 ir_unop_f2b, /**< Float-to-boolean conversion */
1281 ir_unop_b2f, /**< Boolean-to-float conversion */
1282 ir_unop_i2b, /**< int-to-boolean conversion */
1283 ir_unop_b2i, /**< Boolean-to-int conversion */
1284 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1285 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1286 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1287 ir_unop_d2f, /**< Double-to-float conversion. */
1288 ir_unop_f2d, /**< Float-to-double conversion. */
1289 ir_unop_d2i, /**< Double-to-integer conversion. */
1290 ir_unop_i2d, /**< Integer-to-double conversion. */
1291 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1292 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1293 ir_unop_d2b, /**< Double-to-boolean conversion. */
1294 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1295 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1296 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1297 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1298 ir_unop_any,
1299
1300 /**
1301 * \name Unary floating-point rounding operations.
1302 */
1303 /*@{*/
1304 ir_unop_trunc,
1305 ir_unop_ceil,
1306 ir_unop_floor,
1307 ir_unop_fract,
1308 ir_unop_round_even,
1309 /*@}*/
1310
1311 /**
1312 * \name Trigonometric operations.
1313 */
1314 /*@{*/
1315 ir_unop_sin,
1316 ir_unop_cos,
1317 /*@}*/
1318
1319 /**
1320 * \name Partial derivatives.
1321 */
1322 /*@{*/
1323 ir_unop_dFdx,
1324 ir_unop_dFdx_coarse,
1325 ir_unop_dFdx_fine,
1326 ir_unop_dFdy,
1327 ir_unop_dFdy_coarse,
1328 ir_unop_dFdy_fine,
1329 /*@}*/
1330
1331 /**
1332 * \name Floating point pack and unpack operations.
1333 */
1334 /*@{*/
1335 ir_unop_pack_snorm_2x16,
1336 ir_unop_pack_snorm_4x8,
1337 ir_unop_pack_unorm_2x16,
1338 ir_unop_pack_unorm_4x8,
1339 ir_unop_pack_half_2x16,
1340 ir_unop_unpack_snorm_2x16,
1341 ir_unop_unpack_snorm_4x8,
1342 ir_unop_unpack_unorm_2x16,
1343 ir_unop_unpack_unorm_4x8,
1344 ir_unop_unpack_half_2x16,
1345 /*@}*/
1346
1347 /**
1348 * \name Lowered floating point unpacking operations.
1349 *
1350 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1351 */
1352 /*@{*/
1353 ir_unop_unpack_half_2x16_split_x,
1354 ir_unop_unpack_half_2x16_split_y,
1355 /*@}*/
1356
1357 /**
1358 * \name Bit operations, part of ARB_gpu_shader5.
1359 */
1360 /*@{*/
1361 ir_unop_bitfield_reverse,
1362 ir_unop_bit_count,
1363 ir_unop_find_msb,
1364 ir_unop_find_lsb,
1365 /*@}*/
1366
1367 ir_unop_saturate,
1368
1369 /**
1370 * \name Double packing, part of ARB_gpu_shader_fp64.
1371 */
1372 /*@{*/
1373 ir_unop_pack_double_2x32,
1374 ir_unop_unpack_double_2x32,
1375 /*@}*/
1376
1377 ir_unop_frexp_sig,
1378 ir_unop_frexp_exp,
1379
1380 ir_unop_noise,
1381
1382 /**
1383 * Interpolate fs input at centroid
1384 *
1385 * operand0 is the fs input.
1386 */
1387 ir_unop_interpolate_at_centroid,
1388
1389 /**
1390 * A sentinel marking the last of the unary operations.
1391 */
1392 ir_last_unop = ir_unop_interpolate_at_centroid,
1393
1394 ir_binop_add,
1395 ir_binop_sub,
1396 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1397 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1398 ir_binop_div,
1399
1400 /**
1401 * Returns the carry resulting from the addition of the two arguments.
1402 */
1403 /*@{*/
1404 ir_binop_carry,
1405 /*@}*/
1406
1407 /**
1408 * Returns the borrow resulting from the subtraction of the second argument
1409 * from the first argument.
1410 */
1411 /*@{*/
1412 ir_binop_borrow,
1413 /*@}*/
1414
1415 /**
1416 * Takes one of two combinations of arguments:
1417 *
1418 * - mod(vecN, vecN)
1419 * - mod(vecN, float)
1420 *
1421 * Does not take integer types.
1422 */
1423 ir_binop_mod,
1424
1425 /**
1426 * \name Binary comparison operators which return a boolean vector.
1427 * The type of both operands must be equal.
1428 */
1429 /*@{*/
1430 ir_binop_less,
1431 ir_binop_greater,
1432 ir_binop_lequal,
1433 ir_binop_gequal,
1434 ir_binop_equal,
1435 ir_binop_nequal,
1436 /**
1437 * Returns single boolean for whether all components of operands[0]
1438 * equal the components of operands[1].
1439 */
1440 ir_binop_all_equal,
1441 /**
1442 * Returns single boolean for whether any component of operands[0]
1443 * is not equal to the corresponding component of operands[1].
1444 */
1445 ir_binop_any_nequal,
1446 /*@}*/
1447
1448 /**
1449 * \name Bit-wise binary operations.
1450 */
1451 /*@{*/
1452 ir_binop_lshift,
1453 ir_binop_rshift,
1454 ir_binop_bit_and,
1455 ir_binop_bit_xor,
1456 ir_binop_bit_or,
1457 /*@}*/
1458
1459 ir_binop_logic_and,
1460 ir_binop_logic_xor,
1461 ir_binop_logic_or,
1462
1463 ir_binop_dot,
1464 ir_binop_min,
1465 ir_binop_max,
1466
1467 ir_binop_pow,
1468
1469 /**
1470 * \name Lowered floating point packing operations.
1471 *
1472 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1473 */
1474 /*@{*/
1475 ir_binop_pack_half_2x16_split,
1476 /*@}*/
1477
1478 /**
1479 * \name First half of a lowered bitfieldInsert() operation.
1480 *
1481 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1482 */
1483 /*@{*/
1484 ir_binop_bfm,
1485 /*@}*/
1486
1487 /**
1488 * Load a value the size of a given GLSL type from a uniform block.
1489 *
1490 * operand0 is the ir_constant uniform block index in the linked shader.
1491 * operand1 is a byte offset within the uniform block.
1492 */
1493 ir_binop_ubo_load,
1494
1495 /**
1496 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1497 */
1498 /*@{*/
1499 ir_binop_ldexp,
1500 /*@}*/
1501
1502 /**
1503 * Extract a scalar from a vector
1504 *
1505 * operand0 is the vector
1506 * operand1 is the index of the field to read from operand0
1507 */
1508 ir_binop_vector_extract,
1509
1510 /**
1511 * Interpolate fs input at offset
1512 *
1513 * operand0 is the fs input
1514 * operand1 is the offset from the pixel center
1515 */
1516 ir_binop_interpolate_at_offset,
1517
1518 /**
1519 * Interpolate fs input at sample position
1520 *
1521 * operand0 is the fs input
1522 * operand1 is the sample ID
1523 */
1524 ir_binop_interpolate_at_sample,
1525
1526 /**
1527 * A sentinel marking the last of the binary operations.
1528 */
1529 ir_last_binop = ir_binop_interpolate_at_sample,
1530
1531 /**
1532 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1533 */
1534 /*@{*/
1535 ir_triop_fma,
1536 /*@}*/
1537
1538 ir_triop_lrp,
1539
1540 /**
1541 * \name Conditional Select
1542 *
1543 * A vector conditional select instruction (like ?:, but operating per-
1544 * component on vectors).
1545 *
1546 * \see lower_instructions_visitor::ldexp_to_arith
1547 */
1548 /*@{*/
1549 ir_triop_csel,
1550 /*@}*/
1551
1552 /**
1553 * \name Second half of a lowered bitfieldInsert() operation.
1554 *
1555 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1556 */
1557 /*@{*/
1558 ir_triop_bfi,
1559 /*@}*/
1560
1561 ir_triop_bitfield_extract,
1562
1563 /**
1564 * Generate a value with one field of a vector changed
1565 *
1566 * operand0 is the vector
1567 * operand1 is the value to write into the vector result
1568 * operand2 is the index in operand0 to be modified
1569 */
1570 ir_triop_vector_insert,
1571
1572 /**
1573 * A sentinel marking the last of the ternary operations.
1574 */
1575 ir_last_triop = ir_triop_vector_insert,
1576
1577 ir_quadop_bitfield_insert,
1578
1579 ir_quadop_vector,
1580
1581 /**
1582 * A sentinel marking the last of the ternary operations.
1583 */
1584 ir_last_quadop = ir_quadop_vector,
1585
1586 /**
1587 * A sentinel marking the last of all operations.
1588 */
1589 ir_last_opcode = ir_quadop_vector
1590 };
1591
1592 class ir_expression : public ir_rvalue {
1593 public:
1594 ir_expression(int op, const struct glsl_type *type,
1595 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1596 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1597
1598 /**
1599 * Constructor for unary operation expressions
1600 */
1601 ir_expression(int op, ir_rvalue *);
1602
1603 /**
1604 * Constructor for binary operation expressions
1605 */
1606 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1607
1608 /**
1609 * Constructor for ternary operation expressions
1610 */
1611 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1612
1613 virtual bool equals(const ir_instruction *ir,
1614 enum ir_node_type ignore = ir_type_unset) const;
1615
1616 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1617
1618 /**
1619 * Attempt to constant-fold the expression
1620 *
1621 * The "variable_context" hash table links ir_variable * to ir_constant *
1622 * that represent the variables' values. \c NULL represents an empty
1623 * context.
1624 *
1625 * If the expression cannot be constant folded, this method will return
1626 * \c NULL.
1627 */
1628 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1629
1630 /**
1631 * Determine the number of operands used by an expression
1632 */
1633 static unsigned int get_num_operands(ir_expression_operation);
1634
1635 /**
1636 * Determine the number of operands used by an expression
1637 */
1638 unsigned int get_num_operands() const
1639 {
1640 return (this->operation == ir_quadop_vector)
1641 ? this->type->vector_elements : get_num_operands(operation);
1642 }
1643
1644 /**
1645 * Return whether the expression operates on vectors horizontally.
1646 */
1647 bool is_horizontal() const
1648 {
1649 return operation == ir_binop_all_equal ||
1650 operation == ir_binop_any_nequal ||
1651 operation == ir_unop_any ||
1652 operation == ir_binop_dot ||
1653 operation == ir_quadop_vector;
1654 }
1655
1656 /**
1657 * Return a string representing this expression's operator.
1658 */
1659 const char *operator_string();
1660
1661 /**
1662 * Return a string representing this expression's operator.
1663 */
1664 static const char *operator_string(ir_expression_operation);
1665
1666
1667 /**
1668 * Do a reverse-lookup to translate the given string into an operator.
1669 */
1670 static ir_expression_operation get_operator(const char *);
1671
1672 virtual void accept(ir_visitor *v)
1673 {
1674 v->visit(this);
1675 }
1676
1677 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1678
1679 ir_expression_operation operation;
1680 ir_rvalue *operands[4];
1681 };
1682
1683
1684 /**
1685 * HIR instruction representing a high-level function call, containing a list
1686 * of parameters and returning a value in the supplied temporary.
1687 */
1688 class ir_call : public ir_instruction {
1689 public:
1690 ir_call(ir_function_signature *callee,
1691 ir_dereference_variable *return_deref,
1692 exec_list *actual_parameters)
1693 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1694 {
1695 assert(callee->return_type != NULL);
1696 actual_parameters->move_nodes_to(& this->actual_parameters);
1697 this->use_builtin = callee->is_builtin();
1698 }
1699
1700 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1701
1702 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1703
1704 virtual void accept(ir_visitor *v)
1705 {
1706 v->visit(this);
1707 }
1708
1709 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1710
1711 /**
1712 * Get the name of the function being called.
1713 */
1714 const char *callee_name() const
1715 {
1716 return callee->function_name();
1717 }
1718
1719 /**
1720 * Generates an inline version of the function before @ir,
1721 * storing the return value in return_deref.
1722 */
1723 void generate_inline(ir_instruction *ir);
1724
1725 /**
1726 * Storage for the function's return value.
1727 * This must be NULL if the return type is void.
1728 */
1729 ir_dereference_variable *return_deref;
1730
1731 /**
1732 * The specific function signature being called.
1733 */
1734 ir_function_signature *callee;
1735
1736 /* List of ir_rvalue of paramaters passed in this call. */
1737 exec_list actual_parameters;
1738
1739 /** Should this call only bind to a built-in function? */
1740 bool use_builtin;
1741 };
1742
1743
1744 /**
1745 * \name Jump-like IR instructions.
1746 *
1747 * These include \c break, \c continue, \c return, and \c discard.
1748 */
1749 /*@{*/
1750 class ir_jump : public ir_instruction {
1751 protected:
1752 ir_jump(enum ir_node_type t)
1753 : ir_instruction(t)
1754 {
1755 }
1756 };
1757
1758 class ir_return : public ir_jump {
1759 public:
1760 ir_return()
1761 : ir_jump(ir_type_return), value(NULL)
1762 {
1763 }
1764
1765 ir_return(ir_rvalue *value)
1766 : ir_jump(ir_type_return), value(value)
1767 {
1768 }
1769
1770 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1771
1772 ir_rvalue *get_value() const
1773 {
1774 return value;
1775 }
1776
1777 virtual void accept(ir_visitor *v)
1778 {
1779 v->visit(this);
1780 }
1781
1782 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1783
1784 ir_rvalue *value;
1785 };
1786
1787
1788 /**
1789 * Jump instructions used inside loops
1790 *
1791 * These include \c break and \c continue. The \c break within a loop is
1792 * different from the \c break within a switch-statement.
1793 *
1794 * \sa ir_switch_jump
1795 */
1796 class ir_loop_jump : public ir_jump {
1797 public:
1798 enum jump_mode {
1799 jump_break,
1800 jump_continue
1801 };
1802
1803 ir_loop_jump(jump_mode mode)
1804 : ir_jump(ir_type_loop_jump)
1805 {
1806 this->mode = mode;
1807 }
1808
1809 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1810
1811 virtual void accept(ir_visitor *v)
1812 {
1813 v->visit(this);
1814 }
1815
1816 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1817
1818 bool is_break() const
1819 {
1820 return mode == jump_break;
1821 }
1822
1823 bool is_continue() const
1824 {
1825 return mode == jump_continue;
1826 }
1827
1828 /** Mode selector for the jump instruction. */
1829 enum jump_mode mode;
1830 };
1831
1832 /**
1833 * IR instruction representing discard statements.
1834 */
1835 class ir_discard : public ir_jump {
1836 public:
1837 ir_discard()
1838 : ir_jump(ir_type_discard)
1839 {
1840 this->condition = NULL;
1841 }
1842
1843 ir_discard(ir_rvalue *cond)
1844 : ir_jump(ir_type_discard)
1845 {
1846 this->condition = cond;
1847 }
1848
1849 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1850
1851 virtual void accept(ir_visitor *v)
1852 {
1853 v->visit(this);
1854 }
1855
1856 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1857
1858 ir_rvalue *condition;
1859 };
1860 /*@}*/
1861
1862
1863 /**
1864 * Texture sampling opcodes used in ir_texture
1865 */
1866 enum ir_texture_opcode {
1867 ir_tex, /**< Regular texture look-up */
1868 ir_txb, /**< Texture look-up with LOD bias */
1869 ir_txl, /**< Texture look-up with explicit LOD */
1870 ir_txd, /**< Texture look-up with partial derivatvies */
1871 ir_txf, /**< Texel fetch with explicit LOD */
1872 ir_txf_ms, /**< Multisample texture fetch */
1873 ir_txs, /**< Texture size */
1874 ir_lod, /**< Texture lod query */
1875 ir_tg4, /**< Texture gather */
1876 ir_query_levels /**< Texture levels query */
1877 };
1878
1879
1880 /**
1881 * IR instruction to sample a texture
1882 *
1883 * The specific form of the IR instruction depends on the \c mode value
1884 * selected from \c ir_texture_opcodes. In the printed IR, these will
1885 * appear as:
1886 *
1887 * Texel offset (0 or an expression)
1888 * | Projection divisor
1889 * | | Shadow comparitor
1890 * | | |
1891 * v v v
1892 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1893 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1894 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1895 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1896 * (txf <type> <sampler> <coordinate> 0 <lod>)
1897 * (txf_ms
1898 * <type> <sampler> <coordinate> <sample_index>)
1899 * (txs <type> <sampler> <lod>)
1900 * (lod <type> <sampler> <coordinate>)
1901 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1902 * (query_levels <type> <sampler>)
1903 */
1904 class ir_texture : public ir_rvalue {
1905 public:
1906 ir_texture(enum ir_texture_opcode op)
1907 : ir_rvalue(ir_type_texture),
1908 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1909 shadow_comparitor(NULL), offset(NULL)
1910 {
1911 memset(&lod_info, 0, sizeof(lod_info));
1912 }
1913
1914 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1915
1916 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1917
1918 virtual void accept(ir_visitor *v)
1919 {
1920 v->visit(this);
1921 }
1922
1923 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1924
1925 virtual bool equals(const ir_instruction *ir,
1926 enum ir_node_type ignore = ir_type_unset) const;
1927
1928 /**
1929 * Return a string representing the ir_texture_opcode.
1930 */
1931 const char *opcode_string();
1932
1933 /** Set the sampler and type. */
1934 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1935
1936 /**
1937 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1938 */
1939 static ir_texture_opcode get_opcode(const char *);
1940
1941 enum ir_texture_opcode op;
1942
1943 /** Sampler to use for the texture access. */
1944 ir_dereference *sampler;
1945
1946 /** Texture coordinate to sample */
1947 ir_rvalue *coordinate;
1948
1949 /**
1950 * Value used for projective divide.
1951 *
1952 * If there is no projective divide (the common case), this will be
1953 * \c NULL. Optimization passes should check for this to point to a constant
1954 * of 1.0 and replace that with \c NULL.
1955 */
1956 ir_rvalue *projector;
1957
1958 /**
1959 * Coordinate used for comparison on shadow look-ups.
1960 *
1961 * If there is no shadow comparison, this will be \c NULL. For the
1962 * \c ir_txf opcode, this *must* be \c NULL.
1963 */
1964 ir_rvalue *shadow_comparitor;
1965
1966 /** Texel offset. */
1967 ir_rvalue *offset;
1968
1969 union {
1970 ir_rvalue *lod; /**< Floating point LOD */
1971 ir_rvalue *bias; /**< Floating point LOD bias */
1972 ir_rvalue *sample_index; /**< MSAA sample index */
1973 ir_rvalue *component; /**< Gather component selector */
1974 struct {
1975 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1976 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1977 } grad;
1978 } lod_info;
1979 };
1980
1981
1982 struct ir_swizzle_mask {
1983 unsigned x:2;
1984 unsigned y:2;
1985 unsigned z:2;
1986 unsigned w:2;
1987
1988 /**
1989 * Number of components in the swizzle.
1990 */
1991 unsigned num_components:3;
1992
1993 /**
1994 * Does the swizzle contain duplicate components?
1995 *
1996 * L-value swizzles cannot contain duplicate components.
1997 */
1998 unsigned has_duplicates:1;
1999 };
2000
2001
2002 class ir_swizzle : public ir_rvalue {
2003 public:
2004 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2005 unsigned count);
2006
2007 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2008
2009 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2010
2011 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2012
2013 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2014
2015 /**
2016 * Construct an ir_swizzle from the textual representation. Can fail.
2017 */
2018 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2019
2020 virtual void accept(ir_visitor *v)
2021 {
2022 v->visit(this);
2023 }
2024
2025 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2026
2027 virtual bool equals(const ir_instruction *ir,
2028 enum ir_node_type ignore = ir_type_unset) const;
2029
2030 bool is_lvalue() const
2031 {
2032 return val->is_lvalue() && !mask.has_duplicates;
2033 }
2034
2035 /**
2036 * Get the variable that is ultimately referenced by an r-value
2037 */
2038 virtual ir_variable *variable_referenced() const;
2039
2040 ir_rvalue *val;
2041 ir_swizzle_mask mask;
2042
2043 private:
2044 /**
2045 * Initialize the mask component of a swizzle
2046 *
2047 * This is used by the \c ir_swizzle constructors.
2048 */
2049 void init_mask(const unsigned *components, unsigned count);
2050 };
2051
2052
2053 class ir_dereference : public ir_rvalue {
2054 public:
2055 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2056
2057 bool is_lvalue() const;
2058
2059 /**
2060 * Get the variable that is ultimately referenced by an r-value
2061 */
2062 virtual ir_variable *variable_referenced() const = 0;
2063
2064 protected:
2065 ir_dereference(enum ir_node_type t)
2066 : ir_rvalue(t)
2067 {
2068 }
2069 };
2070
2071
2072 class ir_dereference_variable : public ir_dereference {
2073 public:
2074 ir_dereference_variable(ir_variable *var);
2075
2076 virtual ir_dereference_variable *clone(void *mem_ctx,
2077 struct hash_table *) const;
2078
2079 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2080
2081 virtual bool equals(const ir_instruction *ir,
2082 enum ir_node_type ignore = ir_type_unset) const;
2083
2084 /**
2085 * Get the variable that is ultimately referenced by an r-value
2086 */
2087 virtual ir_variable *variable_referenced() const
2088 {
2089 return this->var;
2090 }
2091
2092 virtual ir_variable *whole_variable_referenced()
2093 {
2094 /* ir_dereference_variable objects always dereference the entire
2095 * variable. However, if this dereference is dereferenced by anything
2096 * else, the complete deferefernce chain is not a whole-variable
2097 * dereference. This method should only be called on the top most
2098 * ir_rvalue in a dereference chain.
2099 */
2100 return this->var;
2101 }
2102
2103 virtual void accept(ir_visitor *v)
2104 {
2105 v->visit(this);
2106 }
2107
2108 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2109
2110 /**
2111 * Object being dereferenced.
2112 */
2113 ir_variable *var;
2114 };
2115
2116
2117 class ir_dereference_array : public ir_dereference {
2118 public:
2119 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2120
2121 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2122
2123 virtual ir_dereference_array *clone(void *mem_ctx,
2124 struct hash_table *) const;
2125
2126 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2127
2128 virtual bool equals(const ir_instruction *ir,
2129 enum ir_node_type ignore = ir_type_unset) const;
2130
2131 /**
2132 * Get the variable that is ultimately referenced by an r-value
2133 */
2134 virtual ir_variable *variable_referenced() const
2135 {
2136 return this->array->variable_referenced();
2137 }
2138
2139 virtual void accept(ir_visitor *v)
2140 {
2141 v->visit(this);
2142 }
2143
2144 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2145
2146 ir_rvalue *array;
2147 ir_rvalue *array_index;
2148
2149 private:
2150 void set_array(ir_rvalue *value);
2151 };
2152
2153
2154 class ir_dereference_record : public ir_dereference {
2155 public:
2156 ir_dereference_record(ir_rvalue *value, const char *field);
2157
2158 ir_dereference_record(ir_variable *var, const char *field);
2159
2160 virtual ir_dereference_record *clone(void *mem_ctx,
2161 struct hash_table *) const;
2162
2163 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2164
2165 /**
2166 * Get the variable that is ultimately referenced by an r-value
2167 */
2168 virtual ir_variable *variable_referenced() const
2169 {
2170 return this->record->variable_referenced();
2171 }
2172
2173 virtual void accept(ir_visitor *v)
2174 {
2175 v->visit(this);
2176 }
2177
2178 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2179
2180 ir_rvalue *record;
2181 const char *field;
2182 };
2183
2184
2185 /**
2186 * Data stored in an ir_constant
2187 */
2188 union ir_constant_data {
2189 unsigned u[16];
2190 int i[16];
2191 float f[16];
2192 bool b[16];
2193 double d[16];
2194 };
2195
2196
2197 class ir_constant : public ir_rvalue {
2198 public:
2199 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2200 ir_constant(bool b, unsigned vector_elements=1);
2201 ir_constant(unsigned int u, unsigned vector_elements=1);
2202 ir_constant(int i, unsigned vector_elements=1);
2203 ir_constant(float f, unsigned vector_elements=1);
2204 ir_constant(double d, unsigned vector_elements=1);
2205
2206 /**
2207 * Construct an ir_constant from a list of ir_constant values
2208 */
2209 ir_constant(const struct glsl_type *type, exec_list *values);
2210
2211 /**
2212 * Construct an ir_constant from a scalar component of another ir_constant
2213 *
2214 * The new \c ir_constant inherits the type of the component from the
2215 * source constant.
2216 *
2217 * \note
2218 * In the case of a matrix constant, the new constant is a scalar, \b not
2219 * a vector.
2220 */
2221 ir_constant(const ir_constant *c, unsigned i);
2222
2223 /**
2224 * Return a new ir_constant of the specified type containing all zeros.
2225 */
2226 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2227
2228 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2229
2230 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2231
2232 virtual void accept(ir_visitor *v)
2233 {
2234 v->visit(this);
2235 }
2236
2237 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2238
2239 virtual bool equals(const ir_instruction *ir,
2240 enum ir_node_type ignore = ir_type_unset) const;
2241
2242 /**
2243 * Get a particular component of a constant as a specific type
2244 *
2245 * This is useful, for example, to get a value from an integer constant
2246 * as a float or bool. This appears frequently when constructors are
2247 * called with all constant parameters.
2248 */
2249 /*@{*/
2250 bool get_bool_component(unsigned i) const;
2251 float get_float_component(unsigned i) const;
2252 double get_double_component(unsigned i) const;
2253 int get_int_component(unsigned i) const;
2254 unsigned get_uint_component(unsigned i) const;
2255 /*@}*/
2256
2257 ir_constant *get_array_element(unsigned i) const;
2258
2259 ir_constant *get_record_field(const char *name);
2260
2261 /**
2262 * Copy the values on another constant at a given offset.
2263 *
2264 * The offset is ignored for array or struct copies, it's only for
2265 * scalars or vectors into vectors or matrices.
2266 *
2267 * With identical types on both sides and zero offset it's clone()
2268 * without creating a new object.
2269 */
2270
2271 void copy_offset(ir_constant *src, int offset);
2272
2273 /**
2274 * Copy the values on another constant at a given offset and
2275 * following an assign-like mask.
2276 *
2277 * The mask is ignored for scalars.
2278 *
2279 * Note that this function only handles what assign can handle,
2280 * i.e. at most a vector as source and a column of a matrix as
2281 * destination.
2282 */
2283
2284 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2285
2286 /**
2287 * Determine whether a constant has the same value as another constant
2288 *
2289 * \sa ir_constant::is_zero, ir_constant::is_one,
2290 * ir_constant::is_negative_one
2291 */
2292 bool has_value(const ir_constant *) const;
2293
2294 /**
2295 * Return true if this ir_constant represents the given value.
2296 *
2297 * For vectors, this checks that each component is the given value.
2298 */
2299 virtual bool is_value(float f, int i) const;
2300 virtual bool is_zero() const;
2301 virtual bool is_one() const;
2302 virtual bool is_negative_one() const;
2303
2304 /**
2305 * Return true for constants that could be stored as 16-bit unsigned values.
2306 *
2307 * Note that this will return true even for signed integer ir_constants, as
2308 * long as the value is non-negative and fits in 16-bits.
2309 */
2310 virtual bool is_uint16_constant() const;
2311
2312 /**
2313 * Value of the constant.
2314 *
2315 * The field used to back the values supplied by the constant is determined
2316 * by the type associated with the \c ir_instruction. Constants may be
2317 * scalars, vectors, or matrices.
2318 */
2319 union ir_constant_data value;
2320
2321 /* Array elements */
2322 ir_constant **array_elements;
2323
2324 /* Structure fields */
2325 exec_list components;
2326
2327 private:
2328 /**
2329 * Parameterless constructor only used by the clone method
2330 */
2331 ir_constant(void);
2332 };
2333
2334 /**
2335 * IR instruction to emit a vertex in a geometry shader.
2336 */
2337 class ir_emit_vertex : public ir_instruction {
2338 public:
2339 ir_emit_vertex(ir_rvalue *stream)
2340 : ir_instruction(ir_type_emit_vertex),
2341 stream(stream)
2342 {
2343 assert(stream);
2344 }
2345
2346 virtual void accept(ir_visitor *v)
2347 {
2348 v->visit(this);
2349 }
2350
2351 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2352 {
2353 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2354 }
2355
2356 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2357
2358 int stream_id() const
2359 {
2360 return stream->as_constant()->value.i[0];
2361 }
2362
2363 ir_rvalue *stream;
2364 };
2365
2366 /**
2367 * IR instruction to complete the current primitive and start a new one in a
2368 * geometry shader.
2369 */
2370 class ir_end_primitive : public ir_instruction {
2371 public:
2372 ir_end_primitive(ir_rvalue *stream)
2373 : ir_instruction(ir_type_end_primitive),
2374 stream(stream)
2375 {
2376 assert(stream);
2377 }
2378
2379 virtual void accept(ir_visitor *v)
2380 {
2381 v->visit(this);
2382 }
2383
2384 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2385 {
2386 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2387 }
2388
2389 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2390
2391 int stream_id() const
2392 {
2393 return stream->as_constant()->value.i[0];
2394 }
2395
2396 ir_rvalue *stream;
2397 };
2398
2399 /*@}*/
2400
2401 /**
2402 * Apply a visitor to each IR node in a list
2403 */
2404 void
2405 visit_exec_list(exec_list *list, ir_visitor *visitor);
2406
2407 /**
2408 * Validate invariants on each IR node in a list
2409 */
2410 void validate_ir_tree(exec_list *instructions);
2411
2412 struct _mesa_glsl_parse_state;
2413 struct gl_shader_program;
2414
2415 /**
2416 * Detect whether an unlinked shader contains static recursion
2417 *
2418 * If the list of instructions is determined to contain static recursion,
2419 * \c _mesa_glsl_error will be called to emit error messages for each function
2420 * that is in the recursion cycle.
2421 */
2422 void
2423 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2424 exec_list *instructions);
2425
2426 /**
2427 * Detect whether a linked shader contains static recursion
2428 *
2429 * If the list of instructions is determined to contain static recursion,
2430 * \c link_error_printf will be called to emit error messages for each function
2431 * that is in the recursion cycle. In addition,
2432 * \c gl_shader_program::LinkStatus will be set to false.
2433 */
2434 void
2435 detect_recursion_linked(struct gl_shader_program *prog,
2436 exec_list *instructions);
2437
2438 /**
2439 * Make a clone of each IR instruction in a list
2440 *
2441 * \param in List of IR instructions that are to be cloned
2442 * \param out List to hold the cloned instructions
2443 */
2444 void
2445 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2446
2447 extern void
2448 _mesa_glsl_initialize_variables(exec_list *instructions,
2449 struct _mesa_glsl_parse_state *state);
2450
2451 extern void
2452 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2453
2454 extern void
2455 _mesa_glsl_initialize_builtin_functions();
2456
2457 extern ir_function_signature *
2458 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2459 const char *name, exec_list *actual_parameters);
2460
2461 extern ir_function *
2462 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2463 const char *name);
2464
2465 extern gl_shader *
2466 _mesa_glsl_get_builtin_function_shader(void);
2467
2468 extern void
2469 _mesa_glsl_release_functions(void);
2470
2471 extern void
2472 _mesa_glsl_release_builtin_functions(void);
2473
2474 extern void
2475 reparent_ir(exec_list *list, void *mem_ctx);
2476
2477 struct glsl_symbol_table;
2478
2479 extern void
2480 import_prototypes(const exec_list *source, exec_list *dest,
2481 struct glsl_symbol_table *symbols, void *mem_ctx);
2482
2483 extern bool
2484 ir_has_call(ir_instruction *ir);
2485
2486 extern void
2487 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2488 gl_shader_stage shader_stage);
2489
2490 extern char *
2491 prototype_string(const glsl_type *return_type, const char *name,
2492 exec_list *parameters);
2493
2494 const char *
2495 mode_string(const ir_variable *var);
2496
2497 /**
2498 * Built-in / reserved GL variables names start with "gl_"
2499 */
2500 static inline bool
2501 is_gl_identifier(const char *s)
2502 {
2503 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2504 }
2505
2506 extern "C" {
2507 #endif /* __cplusplus */
2508
2509 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2510 struct _mesa_glsl_parse_state *state);
2511
2512 extern void
2513 fprint_ir(FILE *f, const void *instruction);
2514
2515 #ifdef __cplusplus
2516 } /* extern "C" */
2517 #endif
2518
2519 unsigned
2520 vertices_per_prim(GLenum prim);
2521
2522 #endif /* IR_H */