glsl: Remove field array_lvalue from ir_variable.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37
38 /**
39 * \defgroup IR Intermediate representation nodes
40 *
41 * @{
42 */
43
44 /**
45 * Class tags
46 *
47 * Each concrete class derived from \c ir_instruction has a value in this
48 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
49 * by the constructor. While using type tags is not very C++, it is extremely
50 * convenient. For example, during debugging you can simply inspect
51 * \c ir_instruction::ir_type to find out the actual type of the object.
52 *
53 * In addition, it is possible to use a switch-statement based on \c
54 * \c ir_instruction::ir_type to select different behavior for different object
55 * types. For functions that have only slight differences for several object
56 * types, this allows writing very straightforward, readable code.
57 */
58 enum ir_node_type {
59 /**
60 * Zero is unused so that the IR validator can detect cases where
61 * \c ir_instruction::ir_type has not been initialized.
62 */
63 ir_type_unset,
64 ir_type_variable,
65 ir_type_assignment,
66 ir_type_call,
67 ir_type_constant,
68 ir_type_dereference_array,
69 ir_type_dereference_record,
70 ir_type_dereference_variable,
71 ir_type_discard,
72 ir_type_expression,
73 ir_type_function,
74 ir_type_function_signature,
75 ir_type_if,
76 ir_type_loop,
77 ir_type_loop_jump,
78 ir_type_return,
79 ir_type_swizzle,
80 ir_type_texture,
81 ir_type_max /**< maximum ir_type enum number, for validation */
82 };
83
84 /**
85 * Base class of all IR instructions
86 */
87 class ir_instruction : public exec_node {
88 public:
89 enum ir_node_type ir_type;
90 const struct glsl_type *type;
91
92 /** ir_print_visitor helper for debugging. */
93 void print(void) const;
94
95 virtual void accept(ir_visitor *) = 0;
96 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97 virtual ir_instruction *clone(void *mem_ctx,
98 struct hash_table *ht) const = 0;
99
100 /**
101 * \name IR instruction downcast functions
102 *
103 * These functions either cast the object to a derived class or return
104 * \c NULL if the object's type does not match the specified derived class.
105 * Additional downcast functions will be added as needed.
106 */
107 /*@{*/
108 virtual class ir_variable * as_variable() { return NULL; }
109 virtual class ir_function * as_function() { return NULL; }
110 virtual class ir_dereference * as_dereference() { return NULL; }
111 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
112 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113 virtual class ir_expression * as_expression() { return NULL; }
114 virtual class ir_rvalue * as_rvalue() { return NULL; }
115 virtual class ir_loop * as_loop() { return NULL; }
116 virtual class ir_assignment * as_assignment() { return NULL; }
117 virtual class ir_call * as_call() { return NULL; }
118 virtual class ir_return * as_return() { return NULL; }
119 virtual class ir_if * as_if() { return NULL; }
120 virtual class ir_swizzle * as_swizzle() { return NULL; }
121 virtual class ir_constant * as_constant() { return NULL; }
122 virtual class ir_discard * as_discard() { return NULL; }
123 /*@}*/
124
125 protected:
126 ir_instruction()
127 {
128 ir_type = ir_type_unset;
129 type = NULL;
130 }
131 };
132
133
134 class ir_rvalue : public ir_instruction {
135 public:
136 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
137
138 virtual ir_constant *constant_expression_value() = 0;
139
140 virtual ir_rvalue * as_rvalue()
141 {
142 return this;
143 }
144
145 ir_rvalue *as_rvalue_to_saturate();
146
147 virtual bool is_lvalue() const
148 {
149 return false;
150 }
151
152 /**
153 * Get the variable that is ultimately referenced by an r-value
154 */
155 virtual ir_variable *variable_referenced() const
156 {
157 return NULL;
158 }
159
160
161 /**
162 * If an r-value is a reference to a whole variable, get that variable
163 *
164 * \return
165 * Pointer to a variable that is completely dereferenced by the r-value. If
166 * the r-value is not a dereference or the dereference does not access the
167 * entire variable (i.e., it's just one array element, struct field), \c NULL
168 * is returned.
169 */
170 virtual ir_variable *whole_variable_referenced()
171 {
172 return NULL;
173 }
174
175 /**
176 * Determine if an r-value has the value zero
177 *
178 * The base implementation of this function always returns \c false. The
179 * \c ir_constant class over-rides this function to return \c true \b only
180 * for vector and scalar types that have all elements set to the value
181 * zero (or \c false for booleans).
182 *
183 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
184 */
185 virtual bool is_zero() const;
186
187 /**
188 * Determine if an r-value has the value one
189 *
190 * The base implementation of this function always returns \c false. The
191 * \c ir_constant class over-rides this function to return \c true \b only
192 * for vector and scalar types that have all elements set to the value
193 * one (or \c true for booleans).
194 *
195 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
196 */
197 virtual bool is_one() const;
198
199 /**
200 * Determine if an r-value has the value negative one
201 *
202 * The base implementation of this function always returns \c false. The
203 * \c ir_constant class over-rides this function to return \c true \b only
204 * for vector and scalar types that have all elements set to the value
205 * negative one. For boolean times, the result is always \c false.
206 *
207 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
208 */
209 virtual bool is_negative_one() const;
210
211 protected:
212 ir_rvalue();
213 };
214
215
216 /**
217 * Variable storage classes
218 */
219 enum ir_variable_mode {
220 ir_var_auto = 0, /**< Function local variables and globals. */
221 ir_var_uniform, /**< Variable declared as a uniform. */
222 ir_var_in,
223 ir_var_out,
224 ir_var_inout,
225 ir_var_const_in, /**< "in" param that must be a constant expression */
226 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
227 ir_var_temporary /**< Temporary variable generated during compilation. */
228 };
229
230 enum ir_variable_interpolation {
231 ir_var_smooth = 0,
232 ir_var_flat,
233 ir_var_noperspective
234 };
235
236 /**
237 * \brief Layout qualifiers for gl_FragDepth.
238 *
239 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
240 * with a layout qualifier.
241 */
242 enum ir_depth_layout {
243 ir_depth_layout_none, /**< No depth layout is specified. */
244 ir_depth_layout_any,
245 ir_depth_layout_greater,
246 ir_depth_layout_less,
247 ir_depth_layout_unchanged
248 };
249
250 /**
251 * \brief Convert depth layout qualifier to string.
252 */
253 const char*
254 depth_layout_string(ir_depth_layout layout);
255
256 /**
257 * Description of built-in state associated with a uniform
258 *
259 * \sa ir_variable::state_slots
260 */
261 struct ir_state_slot {
262 int tokens[5];
263 int swizzle;
264 };
265
266 class ir_variable : public ir_instruction {
267 public:
268 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
269
270 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
271
272 virtual ir_variable *as_variable()
273 {
274 return this;
275 }
276
277 virtual void accept(ir_visitor *v)
278 {
279 v->visit(this);
280 }
281
282 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
283
284
285 /**
286 * Get the string value for the interpolation qualifier
287 *
288 * \return The string that would be used in a shader to specify \c
289 * mode will be returned.
290 *
291 * This function should only be used on a shader input or output variable.
292 */
293 const char *interpolation_string() const;
294
295 /**
296 * Calculate the number of slots required to hold this variable
297 *
298 * This is used to determine how many uniform or varying locations a variable
299 * occupies. The count is in units of floating point components.
300 */
301 unsigned component_slots() const;
302
303 /**
304 * Delcared name of the variable
305 */
306 const char *name;
307
308 /**
309 * Highest element accessed with a constant expression array index
310 *
311 * Not used for non-array variables.
312 */
313 unsigned max_array_access;
314
315 /**
316 * Is the variable read-only?
317 *
318 * This is set for variables declared as \c const, shader inputs,
319 * and uniforms.
320 */
321 unsigned read_only:1;
322 unsigned centroid:1;
323 unsigned invariant:1;
324
325 /**
326 * Has this variable been used for reading or writing?
327 *
328 * Several GLSL semantic checks require knowledge of whether or not a
329 * variable has been used. For example, it is an error to redeclare a
330 * variable as invariant after it has been used.
331 */
332 unsigned used:1;
333
334 /**
335 * Storage class of the variable.
336 *
337 * \sa ir_variable_mode
338 */
339 unsigned mode:3;
340
341 /**
342 * Interpolation mode for shader inputs / outputs
343 *
344 * \sa ir_variable_interpolation
345 */
346 unsigned interpolation:2;
347
348 /**
349 * \name ARB_fragment_coord_conventions
350 * @{
351 */
352 unsigned origin_upper_left:1;
353 unsigned pixel_center_integer:1;
354 /*@}*/
355
356 /**
357 * \brief Layout qualifier for gl_FragDepth.
358 *
359 * This is not equal to \c ir_depth_layout_none if and only if this
360 * variable is \c gl_FragDepth and a layout qualifier is specified.
361 */
362 ir_depth_layout depth_layout;
363
364 /**
365 * Was the location explicitly set in the shader?
366 *
367 * If the location is explicitly set in the shader, it \b cannot be changed
368 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
369 * no effect).
370 */
371 unsigned explicit_location:1;
372
373 /**
374 * Storage location of the base of this variable
375 *
376 * The precise meaning of this field depends on the nature of the variable.
377 *
378 * - Vertex shader input: one of the values from \c gl_vert_attrib.
379 * - Vertex shader output: one of the values from \c gl_vert_result.
380 * - Fragment shader input: one of the values from \c gl_frag_attrib.
381 * - Fragment shader output: one of the values from \c gl_frag_result.
382 * - Uniforms: Per-stage uniform slot number.
383 * - Other: This field is not currently used.
384 *
385 * If the variable is a uniform, shader input, or shader output, and the
386 * slot has not been assigned, the value will be -1.
387 */
388 int location;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 ir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Emit a warning if this variable is accessed.
408 */
409 const char *warn_extension;
410
411 /**
412 * Value assigned in the initializer of a variable declared "const"
413 */
414 ir_constant *constant_value;
415 };
416
417
418 /*@{*/
419 /**
420 * The representation of a function instance; may be the full definition or
421 * simply a prototype.
422 */
423 class ir_function_signature : public ir_instruction {
424 /* An ir_function_signature will be part of the list of signatures in
425 * an ir_function.
426 */
427 public:
428 ir_function_signature(const glsl_type *return_type);
429
430 virtual ir_function_signature *clone(void *mem_ctx,
431 struct hash_table *ht) const;
432 ir_function_signature *clone_prototype(void *mem_ctx,
433 struct hash_table *ht) const;
434
435 virtual void accept(ir_visitor *v)
436 {
437 v->visit(this);
438 }
439
440 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
441
442 /**
443 * Get the name of the function for which this is a signature
444 */
445 const char *function_name() const;
446
447 /**
448 * Get a handle to the function for which this is a signature
449 *
450 * There is no setter function, this function returns a \c const pointer,
451 * and \c ir_function_signature::_function is private for a reason. The
452 * only way to make a connection between a function and function signature
453 * is via \c ir_function::add_signature. This helps ensure that certain
454 * invariants (i.e., a function signature is in the list of signatures for
455 * its \c _function) are met.
456 *
457 * \sa ir_function::add_signature
458 */
459 inline const class ir_function *function() const
460 {
461 return this->_function;
462 }
463
464 /**
465 * Check whether the qualifiers match between this signature's parameters
466 * and the supplied parameter list. If not, returns the name of the first
467 * parameter with mismatched qualifiers (for use in error messages).
468 */
469 const char *qualifiers_match(exec_list *params);
470
471 /**
472 * Replace the current parameter list with the given one. This is useful
473 * if the current information came from a prototype, and either has invalid
474 * or missing parameter names.
475 */
476 void replace_parameters(exec_list *new_params);
477
478 /**
479 * Function return type.
480 *
481 * \note This discards the optional precision qualifier.
482 */
483 const struct glsl_type *return_type;
484
485 /**
486 * List of ir_variable of function parameters.
487 *
488 * This represents the storage. The paramaters passed in a particular
489 * call will be in ir_call::actual_paramaters.
490 */
491 struct exec_list parameters;
492
493 /** Whether or not this function has a body (which may be empty). */
494 unsigned is_defined:1;
495
496 /** Whether or not this function signature is a built-in. */
497 unsigned is_builtin:1;
498
499 /** Body of instructions in the function. */
500 struct exec_list body;
501
502 private:
503 /** Function of which this signature is one overload. */
504 class ir_function *_function;
505
506 friend class ir_function;
507 };
508
509
510 /**
511 * Header for tracking multiple overloaded functions with the same name.
512 * Contains a list of ir_function_signatures representing each of the
513 * actual functions.
514 */
515 class ir_function : public ir_instruction {
516 public:
517 ir_function(const char *name);
518
519 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
520
521 virtual ir_function *as_function()
522 {
523 return this;
524 }
525
526 virtual void accept(ir_visitor *v)
527 {
528 v->visit(this);
529 }
530
531 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
532
533 void add_signature(ir_function_signature *sig)
534 {
535 sig->_function = this;
536 this->signatures.push_tail(sig);
537 }
538
539 /**
540 * Get an iterator for the set of function signatures
541 */
542 exec_list_iterator iterator()
543 {
544 return signatures.iterator();
545 }
546
547 /**
548 * Find a signature that matches a set of actual parameters, taking implicit
549 * conversions into account.
550 */
551 ir_function_signature *matching_signature(const exec_list *actual_param);
552
553 /**
554 * Find a signature that exactly matches a set of actual parameters without
555 * any implicit type conversions.
556 */
557 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
558
559 /**
560 * Name of the function.
561 */
562 const char *name;
563
564 /** Whether or not this function has a signature that isn't a built-in. */
565 bool has_user_signature();
566
567 /**
568 * List of ir_function_signature for each overloaded function with this name.
569 */
570 struct exec_list signatures;
571 };
572
573 inline const char *ir_function_signature::function_name() const
574 {
575 return this->_function->name;
576 }
577 /*@}*/
578
579
580 /**
581 * IR instruction representing high-level if-statements
582 */
583 class ir_if : public ir_instruction {
584 public:
585 ir_if(ir_rvalue *condition)
586 : condition(condition)
587 {
588 ir_type = ir_type_if;
589 }
590
591 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
592
593 virtual ir_if *as_if()
594 {
595 return this;
596 }
597
598 virtual void accept(ir_visitor *v)
599 {
600 v->visit(this);
601 }
602
603 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
604
605 ir_rvalue *condition;
606 /** List of ir_instruction for the body of the then branch */
607 exec_list then_instructions;
608 /** List of ir_instruction for the body of the else branch */
609 exec_list else_instructions;
610 };
611
612
613 /**
614 * IR instruction representing a high-level loop structure.
615 */
616 class ir_loop : public ir_instruction {
617 public:
618 ir_loop();
619
620 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
621
622 virtual void accept(ir_visitor *v)
623 {
624 v->visit(this);
625 }
626
627 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
628
629 virtual ir_loop *as_loop()
630 {
631 return this;
632 }
633
634 /**
635 * Get an iterator for the instructions of the loop body
636 */
637 exec_list_iterator iterator()
638 {
639 return body_instructions.iterator();
640 }
641
642 /** List of ir_instruction that make up the body of the loop. */
643 exec_list body_instructions;
644
645 /**
646 * \name Loop counter and controls
647 *
648 * Represents a loop like a FORTRAN \c do-loop.
649 *
650 * \note
651 * If \c from and \c to are the same value, the loop will execute once.
652 */
653 /*@{*/
654 ir_rvalue *from; /** Value of the loop counter on the first
655 * iteration of the loop.
656 */
657 ir_rvalue *to; /** Value of the loop counter on the last
658 * iteration of the loop.
659 */
660 ir_rvalue *increment;
661 ir_variable *counter;
662
663 /**
664 * Comparison operation in the loop terminator.
665 *
666 * If any of the loop control fields are non-\c NULL, this field must be
667 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
668 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
669 */
670 int cmp;
671 /*@}*/
672 };
673
674
675 class ir_assignment : public ir_instruction {
676 public:
677 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
678
679 /**
680 * Construct an assignment with an explicit write mask
681 *
682 * \note
683 * Since a write mask is supplied, the LHS must already be a bare
684 * \c ir_dereference. The cannot be any swizzles in the LHS.
685 */
686 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
687 unsigned write_mask);
688
689 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
690
691 virtual ir_constant *constant_expression_value();
692
693 virtual void accept(ir_visitor *v)
694 {
695 v->visit(this);
696 }
697
698 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
699
700 virtual ir_assignment * as_assignment()
701 {
702 return this;
703 }
704
705 /**
706 * Get a whole variable written by an assignment
707 *
708 * If the LHS of the assignment writes a whole variable, the variable is
709 * returned. Otherwise \c NULL is returned. Examples of whole-variable
710 * assignment are:
711 *
712 * - Assigning to a scalar
713 * - Assigning to all components of a vector
714 * - Whole array (or matrix) assignment
715 * - Whole structure assignment
716 */
717 ir_variable *whole_variable_written();
718
719 /**
720 * Set the LHS of an assignment
721 */
722 void set_lhs(ir_rvalue *lhs);
723
724 /**
725 * Left-hand side of the assignment.
726 *
727 * This should be treated as read only. If you need to set the LHS of an
728 * assignment, use \c ir_assignment::set_lhs.
729 */
730 ir_dereference *lhs;
731
732 /**
733 * Value being assigned
734 */
735 ir_rvalue *rhs;
736
737 /**
738 * Optional condition for the assignment.
739 */
740 ir_rvalue *condition;
741
742
743 /**
744 * Component mask written
745 *
746 * For non-vector types in the LHS, this field will be zero. For vector
747 * types, a bit will be set for each component that is written. Note that
748 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
749 *
750 * A partially-set write mask means that each enabled channel gets
751 * the value from a consecutive channel of the rhs. For example,
752 * to write just .xyw of gl_FrontColor with color:
753 *
754 * (assign (constant bool (1)) (xyw)
755 * (var_ref gl_FragColor)
756 * (swiz xyw (var_ref color)))
757 */
758 unsigned write_mask:4;
759 };
760
761 /* Update ir_expression::num_operands() and operator_strs when
762 * updating this list.
763 */
764 enum ir_expression_operation {
765 ir_unop_bit_not,
766 ir_unop_logic_not,
767 ir_unop_neg,
768 ir_unop_abs,
769 ir_unop_sign,
770 ir_unop_rcp,
771 ir_unop_rsq,
772 ir_unop_sqrt,
773 ir_unop_exp, /**< Log base e on gentype */
774 ir_unop_log, /**< Natural log on gentype */
775 ir_unop_exp2,
776 ir_unop_log2,
777 ir_unop_f2i, /**< Float-to-integer conversion. */
778 ir_unop_i2f, /**< Integer-to-float conversion. */
779 ir_unop_f2b, /**< Float-to-boolean conversion */
780 ir_unop_b2f, /**< Boolean-to-float conversion */
781 ir_unop_i2b, /**< int-to-boolean conversion */
782 ir_unop_b2i, /**< Boolean-to-int conversion */
783 ir_unop_u2f, /**< Unsigned-to-float conversion. */
784 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
785 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
786 ir_unop_any,
787
788 /**
789 * \name Unary floating-point rounding operations.
790 */
791 /*@{*/
792 ir_unop_trunc,
793 ir_unop_ceil,
794 ir_unop_floor,
795 ir_unop_fract,
796 ir_unop_round_even,
797 /*@}*/
798
799 /**
800 * \name Trigonometric operations.
801 */
802 /*@{*/
803 ir_unop_sin,
804 ir_unop_cos,
805 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
806 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
807 /*@}*/
808
809 /**
810 * \name Partial derivatives.
811 */
812 /*@{*/
813 ir_unop_dFdx,
814 ir_unop_dFdy,
815 /*@}*/
816
817 ir_unop_noise,
818
819 /**
820 * A sentinel marking the last of the unary operations.
821 */
822 ir_last_unop = ir_unop_noise,
823
824 ir_binop_add,
825 ir_binop_sub,
826 ir_binop_mul,
827 ir_binop_div,
828
829 /**
830 * Takes one of two combinations of arguments:
831 *
832 * - mod(vecN, vecN)
833 * - mod(vecN, float)
834 *
835 * Does not take integer types.
836 */
837 ir_binop_mod,
838
839 /**
840 * \name Binary comparison operators which return a boolean vector.
841 * The type of both operands must be equal.
842 */
843 /*@{*/
844 ir_binop_less,
845 ir_binop_greater,
846 ir_binop_lequal,
847 ir_binop_gequal,
848 ir_binop_equal,
849 ir_binop_nequal,
850 /**
851 * Returns single boolean for whether all components of operands[0]
852 * equal the components of operands[1].
853 */
854 ir_binop_all_equal,
855 /**
856 * Returns single boolean for whether any component of operands[0]
857 * is not equal to the corresponding component of operands[1].
858 */
859 ir_binop_any_nequal,
860 /*@}*/
861
862 /**
863 * \name Bit-wise binary operations.
864 */
865 /*@{*/
866 ir_binop_lshift,
867 ir_binop_rshift,
868 ir_binop_bit_and,
869 ir_binop_bit_xor,
870 ir_binop_bit_or,
871 /*@}*/
872
873 ir_binop_logic_and,
874 ir_binop_logic_xor,
875 ir_binop_logic_or,
876
877 ir_binop_dot,
878 ir_binop_min,
879 ir_binop_max,
880
881 ir_binop_pow,
882
883 /**
884 * A sentinel marking the last of the binary operations.
885 */
886 ir_last_binop = ir_binop_pow,
887
888 ir_quadop_vector,
889
890 /**
891 * A sentinel marking the last of all operations.
892 */
893 ir_last_opcode = ir_last_binop
894 };
895
896 class ir_expression : public ir_rvalue {
897 public:
898 /**
899 * Constructor for unary operation expressions
900 */
901 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
902 ir_expression(int op, ir_rvalue *);
903
904 /**
905 * Constructor for binary operation expressions
906 */
907 ir_expression(int op, const struct glsl_type *type,
908 ir_rvalue *, ir_rvalue *);
909 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
910
911 /**
912 * Constructor for quad operator expressions
913 */
914 ir_expression(int op, const struct glsl_type *type,
915 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
916
917 virtual ir_expression *as_expression()
918 {
919 return this;
920 }
921
922 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
923
924 /**
925 * Attempt to constant-fold the expression
926 *
927 * If the expression cannot be constant folded, this method will return
928 * \c NULL.
929 */
930 virtual ir_constant *constant_expression_value();
931
932 /**
933 * Determine the number of operands used by an expression
934 */
935 static unsigned int get_num_operands(ir_expression_operation);
936
937 /**
938 * Determine the number of operands used by an expression
939 */
940 unsigned int get_num_operands() const
941 {
942 return (this->operation == ir_quadop_vector)
943 ? this->type->vector_elements : get_num_operands(operation);
944 }
945
946 /**
947 * Return a string representing this expression's operator.
948 */
949 const char *operator_string();
950
951 /**
952 * Return a string representing this expression's operator.
953 */
954 static const char *operator_string(ir_expression_operation);
955
956
957 /**
958 * Do a reverse-lookup to translate the given string into an operator.
959 */
960 static ir_expression_operation get_operator(const char *);
961
962 virtual void accept(ir_visitor *v)
963 {
964 v->visit(this);
965 }
966
967 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
968
969 ir_expression_operation operation;
970 ir_rvalue *operands[4];
971 };
972
973
974 /**
975 * IR instruction representing a function call
976 */
977 class ir_call : public ir_rvalue {
978 public:
979 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
980 : callee(callee)
981 {
982 ir_type = ir_type_call;
983 assert(callee->return_type != NULL);
984 type = callee->return_type;
985 actual_parameters->move_nodes_to(& this->actual_parameters);
986 this->use_builtin = callee->is_builtin;
987 }
988
989 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
990
991 virtual ir_constant *constant_expression_value();
992
993 virtual ir_call *as_call()
994 {
995 return this;
996 }
997
998 virtual void accept(ir_visitor *v)
999 {
1000 v->visit(this);
1001 }
1002
1003 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1004
1005 /**
1006 * Get a generic ir_call object when an error occurs
1007 *
1008 * Any allocation will be performed with 'ctx' as ralloc owner.
1009 */
1010 static ir_call *get_error_instruction(void *ctx);
1011
1012 /**
1013 * Get an iterator for the set of acutal parameters
1014 */
1015 exec_list_iterator iterator()
1016 {
1017 return actual_parameters.iterator();
1018 }
1019
1020 /**
1021 * Get the name of the function being called.
1022 */
1023 const char *callee_name() const
1024 {
1025 return callee->function_name();
1026 }
1027
1028 /**
1029 * Get the function signature bound to this function call
1030 */
1031 ir_function_signature *get_callee()
1032 {
1033 return callee;
1034 }
1035
1036 /**
1037 * Set the function call target
1038 */
1039 void set_callee(ir_function_signature *sig);
1040
1041 /**
1042 * Generates an inline version of the function before @ir,
1043 * returning the return value of the function.
1044 */
1045 ir_rvalue *generate_inline(ir_instruction *ir);
1046
1047 /* List of ir_rvalue of paramaters passed in this call. */
1048 exec_list actual_parameters;
1049
1050 /** Should this call only bind to a built-in function? */
1051 bool use_builtin;
1052
1053 private:
1054 ir_call()
1055 : callee(NULL)
1056 {
1057 this->ir_type = ir_type_call;
1058 }
1059
1060 ir_function_signature *callee;
1061 };
1062
1063
1064 /**
1065 * \name Jump-like IR instructions.
1066 *
1067 * These include \c break, \c continue, \c return, and \c discard.
1068 */
1069 /*@{*/
1070 class ir_jump : public ir_instruction {
1071 protected:
1072 ir_jump()
1073 {
1074 ir_type = ir_type_unset;
1075 }
1076 };
1077
1078 class ir_return : public ir_jump {
1079 public:
1080 ir_return()
1081 : value(NULL)
1082 {
1083 this->ir_type = ir_type_return;
1084 }
1085
1086 ir_return(ir_rvalue *value)
1087 : value(value)
1088 {
1089 this->ir_type = ir_type_return;
1090 }
1091
1092 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1093
1094 virtual ir_return *as_return()
1095 {
1096 return this;
1097 }
1098
1099 ir_rvalue *get_value() const
1100 {
1101 return value;
1102 }
1103
1104 virtual void accept(ir_visitor *v)
1105 {
1106 v->visit(this);
1107 }
1108
1109 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1110
1111 ir_rvalue *value;
1112 };
1113
1114
1115 /**
1116 * Jump instructions used inside loops
1117 *
1118 * These include \c break and \c continue. The \c break within a loop is
1119 * different from the \c break within a switch-statement.
1120 *
1121 * \sa ir_switch_jump
1122 */
1123 class ir_loop_jump : public ir_jump {
1124 public:
1125 enum jump_mode {
1126 jump_break,
1127 jump_continue
1128 };
1129
1130 ir_loop_jump(jump_mode mode)
1131 {
1132 this->ir_type = ir_type_loop_jump;
1133 this->mode = mode;
1134 this->loop = loop;
1135 }
1136
1137 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1138
1139 virtual void accept(ir_visitor *v)
1140 {
1141 v->visit(this);
1142 }
1143
1144 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1145
1146 bool is_break() const
1147 {
1148 return mode == jump_break;
1149 }
1150
1151 bool is_continue() const
1152 {
1153 return mode == jump_continue;
1154 }
1155
1156 /** Mode selector for the jump instruction. */
1157 enum jump_mode mode;
1158 private:
1159 /** Loop containing this break instruction. */
1160 ir_loop *loop;
1161 };
1162
1163 /**
1164 * IR instruction representing discard statements.
1165 */
1166 class ir_discard : public ir_jump {
1167 public:
1168 ir_discard()
1169 {
1170 this->ir_type = ir_type_discard;
1171 this->condition = NULL;
1172 }
1173
1174 ir_discard(ir_rvalue *cond)
1175 {
1176 this->ir_type = ir_type_discard;
1177 this->condition = cond;
1178 }
1179
1180 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1181
1182 virtual void accept(ir_visitor *v)
1183 {
1184 v->visit(this);
1185 }
1186
1187 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1188
1189 virtual ir_discard *as_discard()
1190 {
1191 return this;
1192 }
1193
1194 ir_rvalue *condition;
1195 };
1196 /*@}*/
1197
1198
1199 /**
1200 * Texture sampling opcodes used in ir_texture
1201 */
1202 enum ir_texture_opcode {
1203 ir_tex, /**< Regular texture look-up */
1204 ir_txb, /**< Texture look-up with LOD bias */
1205 ir_txl, /**< Texture look-up with explicit LOD */
1206 ir_txd, /**< Texture look-up with partial derivatvies */
1207 ir_txf, /**< Texel fetch with explicit LOD */
1208 ir_txs /**< Texture size */
1209 };
1210
1211
1212 /**
1213 * IR instruction to sample a texture
1214 *
1215 * The specific form of the IR instruction depends on the \c mode value
1216 * selected from \c ir_texture_opcodes. In the printed IR, these will
1217 * appear as:
1218 *
1219 * Texel offset (0 or an expression)
1220 * | Projection divisor
1221 * | | Shadow comparitor
1222 * | | |
1223 * v v v
1224 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1225 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1226 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1227 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1228 * (txf <type> <sampler> <coordinate> 0 <lod>)
1229 * (txs <type> <sampler> <lod>)
1230 */
1231 class ir_texture : public ir_rvalue {
1232 public:
1233 ir_texture(enum ir_texture_opcode op)
1234 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1235 {
1236 this->ir_type = ir_type_texture;
1237 }
1238
1239 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1240
1241 virtual ir_constant *constant_expression_value();
1242
1243 virtual void accept(ir_visitor *v)
1244 {
1245 v->visit(this);
1246 }
1247
1248 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1249
1250 /**
1251 * Return a string representing the ir_texture_opcode.
1252 */
1253 const char *opcode_string();
1254
1255 /** Set the sampler and type. */
1256 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1257
1258 /**
1259 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1260 */
1261 static ir_texture_opcode get_opcode(const char *);
1262
1263 enum ir_texture_opcode op;
1264
1265 /** Sampler to use for the texture access. */
1266 ir_dereference *sampler;
1267
1268 /** Texture coordinate to sample */
1269 ir_rvalue *coordinate;
1270
1271 /**
1272 * Value used for projective divide.
1273 *
1274 * If there is no projective divide (the common case), this will be
1275 * \c NULL. Optimization passes should check for this to point to a constant
1276 * of 1.0 and replace that with \c NULL.
1277 */
1278 ir_rvalue *projector;
1279
1280 /**
1281 * Coordinate used for comparison on shadow look-ups.
1282 *
1283 * If there is no shadow comparison, this will be \c NULL. For the
1284 * \c ir_txf opcode, this *must* be \c NULL.
1285 */
1286 ir_rvalue *shadow_comparitor;
1287
1288 /** Texel offset. */
1289 ir_rvalue *offset;
1290
1291 union {
1292 ir_rvalue *lod; /**< Floating point LOD */
1293 ir_rvalue *bias; /**< Floating point LOD bias */
1294 struct {
1295 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1296 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1297 } grad;
1298 } lod_info;
1299 };
1300
1301
1302 struct ir_swizzle_mask {
1303 unsigned x:2;
1304 unsigned y:2;
1305 unsigned z:2;
1306 unsigned w:2;
1307
1308 /**
1309 * Number of components in the swizzle.
1310 */
1311 unsigned num_components:3;
1312
1313 /**
1314 * Does the swizzle contain duplicate components?
1315 *
1316 * L-value swizzles cannot contain duplicate components.
1317 */
1318 unsigned has_duplicates:1;
1319 };
1320
1321
1322 class ir_swizzle : public ir_rvalue {
1323 public:
1324 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1325 unsigned count);
1326
1327 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1328
1329 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1330
1331 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1332
1333 virtual ir_constant *constant_expression_value();
1334
1335 virtual ir_swizzle *as_swizzle()
1336 {
1337 return this;
1338 }
1339
1340 /**
1341 * Construct an ir_swizzle from the textual representation. Can fail.
1342 */
1343 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1344
1345 virtual void accept(ir_visitor *v)
1346 {
1347 v->visit(this);
1348 }
1349
1350 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1351
1352 bool is_lvalue() const
1353 {
1354 return val->is_lvalue() && !mask.has_duplicates;
1355 }
1356
1357 /**
1358 * Get the variable that is ultimately referenced by an r-value
1359 */
1360 virtual ir_variable *variable_referenced() const;
1361
1362 ir_rvalue *val;
1363 ir_swizzle_mask mask;
1364
1365 private:
1366 /**
1367 * Initialize the mask component of a swizzle
1368 *
1369 * This is used by the \c ir_swizzle constructors.
1370 */
1371 void init_mask(const unsigned *components, unsigned count);
1372 };
1373
1374
1375 class ir_dereference : public ir_rvalue {
1376 public:
1377 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1378
1379 virtual ir_dereference *as_dereference()
1380 {
1381 return this;
1382 }
1383
1384 bool is_lvalue() const;
1385
1386 /**
1387 * Get the variable that is ultimately referenced by an r-value
1388 */
1389 virtual ir_variable *variable_referenced() const = 0;
1390 };
1391
1392
1393 class ir_dereference_variable : public ir_dereference {
1394 public:
1395 ir_dereference_variable(ir_variable *var);
1396
1397 virtual ir_dereference_variable *clone(void *mem_ctx,
1398 struct hash_table *) const;
1399
1400 virtual ir_constant *constant_expression_value();
1401
1402 virtual ir_dereference_variable *as_dereference_variable()
1403 {
1404 return this;
1405 }
1406
1407 /**
1408 * Get the variable that is ultimately referenced by an r-value
1409 */
1410 virtual ir_variable *variable_referenced() const
1411 {
1412 return this->var;
1413 }
1414
1415 virtual ir_variable *whole_variable_referenced()
1416 {
1417 /* ir_dereference_variable objects always dereference the entire
1418 * variable. However, if this dereference is dereferenced by anything
1419 * else, the complete deferefernce chain is not a whole-variable
1420 * dereference. This method should only be called on the top most
1421 * ir_rvalue in a dereference chain.
1422 */
1423 return this->var;
1424 }
1425
1426 virtual void accept(ir_visitor *v)
1427 {
1428 v->visit(this);
1429 }
1430
1431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1432
1433 /**
1434 * Object being dereferenced.
1435 */
1436 ir_variable *var;
1437 };
1438
1439
1440 class ir_dereference_array : public ir_dereference {
1441 public:
1442 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1443
1444 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1445
1446 virtual ir_dereference_array *clone(void *mem_ctx,
1447 struct hash_table *) const;
1448
1449 virtual ir_constant *constant_expression_value();
1450
1451 virtual ir_dereference_array *as_dereference_array()
1452 {
1453 return this;
1454 }
1455
1456 /**
1457 * Get the variable that is ultimately referenced by an r-value
1458 */
1459 virtual ir_variable *variable_referenced() const
1460 {
1461 return this->array->variable_referenced();
1462 }
1463
1464 virtual void accept(ir_visitor *v)
1465 {
1466 v->visit(this);
1467 }
1468
1469 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1470
1471 ir_rvalue *array;
1472 ir_rvalue *array_index;
1473
1474 private:
1475 void set_array(ir_rvalue *value);
1476 };
1477
1478
1479 class ir_dereference_record : public ir_dereference {
1480 public:
1481 ir_dereference_record(ir_rvalue *value, const char *field);
1482
1483 ir_dereference_record(ir_variable *var, const char *field);
1484
1485 virtual ir_dereference_record *clone(void *mem_ctx,
1486 struct hash_table *) const;
1487
1488 virtual ir_constant *constant_expression_value();
1489
1490 /**
1491 * Get the variable that is ultimately referenced by an r-value
1492 */
1493 virtual ir_variable *variable_referenced() const
1494 {
1495 return this->record->variable_referenced();
1496 }
1497
1498 virtual void accept(ir_visitor *v)
1499 {
1500 v->visit(this);
1501 }
1502
1503 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1504
1505 ir_rvalue *record;
1506 const char *field;
1507 };
1508
1509
1510 /**
1511 * Data stored in an ir_constant
1512 */
1513 union ir_constant_data {
1514 unsigned u[16];
1515 int i[16];
1516 float f[16];
1517 bool b[16];
1518 };
1519
1520
1521 class ir_constant : public ir_rvalue {
1522 public:
1523 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1524 ir_constant(bool b);
1525 ir_constant(unsigned int u);
1526 ir_constant(int i);
1527 ir_constant(float f);
1528
1529 /**
1530 * Construct an ir_constant from a list of ir_constant values
1531 */
1532 ir_constant(const struct glsl_type *type, exec_list *values);
1533
1534 /**
1535 * Construct an ir_constant from a scalar component of another ir_constant
1536 *
1537 * The new \c ir_constant inherits the type of the component from the
1538 * source constant.
1539 *
1540 * \note
1541 * In the case of a matrix constant, the new constant is a scalar, \b not
1542 * a vector.
1543 */
1544 ir_constant(const ir_constant *c, unsigned i);
1545
1546 /**
1547 * Return a new ir_constant of the specified type containing all zeros.
1548 */
1549 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1550
1551 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1552
1553 virtual ir_constant *constant_expression_value();
1554
1555 virtual ir_constant *as_constant()
1556 {
1557 return this;
1558 }
1559
1560 virtual void accept(ir_visitor *v)
1561 {
1562 v->visit(this);
1563 }
1564
1565 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1566
1567 /**
1568 * Get a particular component of a constant as a specific type
1569 *
1570 * This is useful, for example, to get a value from an integer constant
1571 * as a float or bool. This appears frequently when constructors are
1572 * called with all constant parameters.
1573 */
1574 /*@{*/
1575 bool get_bool_component(unsigned i) const;
1576 float get_float_component(unsigned i) const;
1577 int get_int_component(unsigned i) const;
1578 unsigned get_uint_component(unsigned i) const;
1579 /*@}*/
1580
1581 ir_constant *get_array_element(unsigned i) const;
1582
1583 ir_constant *get_record_field(const char *name);
1584
1585 /**
1586 * Determine whether a constant has the same value as another constant
1587 *
1588 * \sa ir_constant::is_zero, ir_constant::is_one,
1589 * ir_constant::is_negative_one
1590 */
1591 bool has_value(const ir_constant *) const;
1592
1593 virtual bool is_zero() const;
1594 virtual bool is_one() const;
1595 virtual bool is_negative_one() const;
1596
1597 /**
1598 * Value of the constant.
1599 *
1600 * The field used to back the values supplied by the constant is determined
1601 * by the type associated with the \c ir_instruction. Constants may be
1602 * scalars, vectors, or matrices.
1603 */
1604 union ir_constant_data value;
1605
1606 /* Array elements */
1607 ir_constant **array_elements;
1608
1609 /* Structure fields */
1610 exec_list components;
1611
1612 private:
1613 /**
1614 * Parameterless constructor only used by the clone method
1615 */
1616 ir_constant(void);
1617 };
1618
1619 /*@}*/
1620
1621 /**
1622 * Apply a visitor to each IR node in a list
1623 */
1624 void
1625 visit_exec_list(exec_list *list, ir_visitor *visitor);
1626
1627 /**
1628 * Validate invariants on each IR node in a list
1629 */
1630 void validate_ir_tree(exec_list *instructions);
1631
1632 struct _mesa_glsl_parse_state;
1633 struct gl_shader_program;
1634
1635 /**
1636 * Detect whether an unlinked shader contains static recursion
1637 *
1638 * If the list of instructions is determined to contain static recursion,
1639 * \c _mesa_glsl_error will be called to emit error messages for each function
1640 * that is in the recursion cycle.
1641 */
1642 void
1643 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1644 exec_list *instructions);
1645
1646 /**
1647 * Detect whether a linked shader contains static recursion
1648 *
1649 * If the list of instructions is determined to contain static recursion,
1650 * \c link_error_printf will be called to emit error messages for each function
1651 * that is in the recursion cycle. In addition,
1652 * \c gl_shader_program::LinkStatus will be set to false.
1653 */
1654 void
1655 detect_recursion_linked(struct gl_shader_program *prog,
1656 exec_list *instructions);
1657
1658 /**
1659 * Make a clone of each IR instruction in a list
1660 *
1661 * \param in List of IR instructions that are to be cloned
1662 * \param out List to hold the cloned instructions
1663 */
1664 void
1665 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1666
1667 extern void
1668 _mesa_glsl_initialize_variables(exec_list *instructions,
1669 struct _mesa_glsl_parse_state *state);
1670
1671 extern void
1672 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1673
1674 extern void
1675 _mesa_glsl_release_functions(void);
1676
1677 extern void
1678 reparent_ir(exec_list *list, void *mem_ctx);
1679
1680 struct glsl_symbol_table;
1681
1682 extern void
1683 import_prototypes(const exec_list *source, exec_list *dest,
1684 struct glsl_symbol_table *symbols, void *mem_ctx);
1685
1686 extern bool
1687 ir_has_call(ir_instruction *ir);
1688
1689 extern void
1690 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1691
1692 extern char *
1693 prototype_string(const glsl_type *return_type, const char *name,
1694 exec_list *parameters);
1695
1696 #endif /* IR_H */