Merge branch 'master' into pipe-video
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 /**
45 * \defgroup IR Intermediate representation nodes
46 *
47 * @{
48 */
49
50 /**
51 * Class tags
52 *
53 * Each concrete class derived from \c ir_instruction has a value in this
54 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
55 * by the constructor. While using type tags is not very C++, it is extremely
56 * convenient. For example, during debugging you can simply inspect
57 * \c ir_instruction::ir_type to find out the actual type of the object.
58 *
59 * In addition, it is possible to use a switch-statement based on \c
60 * \c ir_instruction::ir_type to select different behavior for different object
61 * types. For functions that have only slight differences for several object
62 * types, this allows writing very straightforward, readable code.
63 */
64 enum ir_node_type {
65 /**
66 * Zero is unused so that the IR validator can detect cases where
67 * \c ir_instruction::ir_type has not been initialized.
68 */
69 ir_type_unset,
70 ir_type_variable,
71 ir_type_assignment,
72 ir_type_call,
73 ir_type_constant,
74 ir_type_dereference_array,
75 ir_type_dereference_record,
76 ir_type_dereference_variable,
77 ir_type_discard,
78 ir_type_expression,
79 ir_type_function,
80 ir_type_function_signature,
81 ir_type_if,
82 ir_type_loop,
83 ir_type_loop_jump,
84 ir_type_return,
85 ir_type_swizzle,
86 ir_type_texture,
87 ir_type_max /**< maximum ir_type enum number, for validation */
88 };
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96 const struct glsl_type *type;
97
98 /** ir_print_visitor helper for debugging. */
99 void print(void) const;
100
101 virtual void accept(ir_visitor *) = 0;
102 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
103 virtual ir_instruction *clone(void *mem_ctx,
104 struct hash_table *ht) const = 0;
105
106 /**
107 * \name IR instruction downcast functions
108 *
109 * These functions either cast the object to a derived class or return
110 * \c NULL if the object's type does not match the specified derived class.
111 * Additional downcast functions will be added as needed.
112 */
113 /*@{*/
114 virtual class ir_variable * as_variable() { return NULL; }
115 virtual class ir_function * as_function() { return NULL; }
116 virtual class ir_dereference * as_dereference() { return NULL; }
117 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
118 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
119 virtual class ir_expression * as_expression() { return NULL; }
120 virtual class ir_rvalue * as_rvalue() { return NULL; }
121 virtual class ir_loop * as_loop() { return NULL; }
122 virtual class ir_assignment * as_assignment() { return NULL; }
123 virtual class ir_call * as_call() { return NULL; }
124 virtual class ir_return * as_return() { return NULL; }
125 virtual class ir_if * as_if() { return NULL; }
126 virtual class ir_swizzle * as_swizzle() { return NULL; }
127 virtual class ir_constant * as_constant() { return NULL; }
128 /*@}*/
129
130 protected:
131 ir_instruction()
132 {
133 ir_type = ir_type_unset;
134 type = NULL;
135 }
136 };
137
138
139 class ir_rvalue : public ir_instruction {
140 public:
141 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
142
143 virtual ir_constant *constant_expression_value() = 0;
144
145 virtual ir_rvalue * as_rvalue()
146 {
147 return this;
148 }
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 protected:
179 ir_rvalue();
180 };
181
182
183 /**
184 * Variable storage classes
185 */
186 enum ir_variable_mode {
187 ir_var_auto = 0, /**< Function local variables and globals. */
188 ir_var_uniform, /**< Variable declared as a uniform. */
189 ir_var_in,
190 ir_var_out,
191 ir_var_inout,
192 ir_var_temporary /**< Temporary variable generated during compilation. */
193 };
194
195 enum ir_variable_interpolation {
196 ir_var_smooth = 0,
197 ir_var_flat,
198 ir_var_noperspective
199 };
200
201
202 class ir_variable : public ir_instruction {
203 public:
204 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
205
206 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
207
208 virtual ir_variable *as_variable()
209 {
210 return this;
211 }
212
213 virtual void accept(ir_visitor *v)
214 {
215 v->visit(this);
216 }
217
218 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
219
220
221 /**
222 * Get the string value for the interpolation qualifier
223 *
224 * \return The string that would be used in a shader to specify \c
225 * mode will be returned.
226 *
227 * This function should only be used on a shader input or output variable.
228 */
229 const char *interpolation_string() const;
230
231 /**
232 * Calculate the number of slots required to hold this variable
233 *
234 * This is used to determine how many uniform or varying locations a variable
235 * occupies. The count is in units of floating point components.
236 */
237 unsigned component_slots() const;
238
239 /**
240 * Delcared name of the variable
241 */
242 const char *name;
243
244 /**
245 * Highest element accessed with a constant expression array index
246 *
247 * Not used for non-array variables.
248 */
249 unsigned max_array_access;
250
251 /**
252 * Is the variable read-only?
253 *
254 * This is set for variables declared as \c const, shader inputs,
255 * and uniforms.
256 */
257 unsigned read_only:1;
258 unsigned centroid:1;
259 unsigned invariant:1;
260
261 /**
262 * Storage class of the variable.
263 *
264 * \sa ir_variable_mode
265 */
266 unsigned mode:3;
267
268 /**
269 * Interpolation mode for shader inputs / outputs
270 *
271 * \sa ir_variable_interpolation
272 */
273 unsigned interpolation:2;
274
275 /**
276 * Flag that the whole array is assignable
277 *
278 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
279 * equality). This flag enables this behavior.
280 */
281 unsigned array_lvalue:1;
282
283 /**
284 * \name ARB_fragment_coord_conventions
285 * @{
286 */
287 unsigned origin_upper_left:1;
288 unsigned pixel_center_integer:1;
289 /*@}*/
290
291 /**
292 * Storage location of the base of this variable
293 *
294 * The precise meaning of this field depends on the nature of the variable.
295 *
296 * - Vertex shader input: one of the values from \c gl_vert_attrib.
297 * - Vertex shader output: one of the values from \c gl_vert_result.
298 * - Fragment shader input: one of the values from \c gl_frag_attrib.
299 * - Fragment shader output: one of the values from \c gl_frag_result.
300 * - Uniforms: Per-stage uniform slot number.
301 * - Other: This field is not currently used.
302 *
303 * If the variable is a uniform, shader input, or shader output, and the
304 * slot has not been assigned, the value will be -1.
305 */
306 int location;
307
308 /**
309 * Emit a warning if this variable is accessed.
310 */
311 const char *warn_extension;
312
313 /**
314 * Value assigned in the initializer of a variable declared "const"
315 */
316 ir_constant *constant_value;
317 };
318
319
320 /*@{*/
321 /**
322 * The representation of a function instance; may be the full definition or
323 * simply a prototype.
324 */
325 class ir_function_signature : public ir_instruction {
326 /* An ir_function_signature will be part of the list of signatures in
327 * an ir_function.
328 */
329 public:
330 ir_function_signature(const glsl_type *return_type);
331
332 virtual ir_function_signature *clone(void *mem_ctx,
333 struct hash_table *ht) const;
334
335 virtual void accept(ir_visitor *v)
336 {
337 v->visit(this);
338 }
339
340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
341
342 /**
343 * Get the name of the function for which this is a signature
344 */
345 const char *function_name() const;
346
347 /**
348 * Get a handle to the function for which this is a signature
349 *
350 * There is no setter function, this function returns a \c const pointer,
351 * and \c ir_function_signature::_function is private for a reason. The
352 * only way to make a connection between a function and function signature
353 * is via \c ir_function::add_signature. This helps ensure that certain
354 * invariants (i.e., a function signature is in the list of signatures for
355 * its \c _function) are met.
356 *
357 * \sa ir_function::add_signature
358 */
359 inline const class ir_function *function() const
360 {
361 return this->_function;
362 }
363
364 /**
365 * Check whether the qualifiers match between this signature's parameters
366 * and the supplied parameter list. If not, returns the name of the first
367 * parameter with mismatched qualifiers (for use in error messages).
368 */
369 const char *qualifiers_match(exec_list *params);
370
371 /**
372 * Replace the current parameter list with the given one. This is useful
373 * if the current information came from a prototype, and either has invalid
374 * or missing parameter names.
375 */
376 void replace_parameters(exec_list *new_params);
377
378 /**
379 * Function return type.
380 *
381 * \note This discards the optional precision qualifier.
382 */
383 const struct glsl_type *return_type;
384
385 /**
386 * List of ir_variable of function parameters.
387 *
388 * This represents the storage. The paramaters passed in a particular
389 * call will be in ir_call::actual_paramaters.
390 */
391 struct exec_list parameters;
392
393 /** Whether or not this function has a body (which may be empty). */
394 unsigned is_defined:1;
395
396 /** Whether or not this function signature is a built-in. */
397 unsigned is_builtin:1;
398
399 /** Body of instructions in the function. */
400 struct exec_list body;
401
402 private:
403 /** Function of which this signature is one overload. */
404 class ir_function *_function;
405
406 friend class ir_function;
407 };
408
409
410 /**
411 * Header for tracking multiple overloaded functions with the same name.
412 * Contains a list of ir_function_signatures representing each of the
413 * actual functions.
414 */
415 class ir_function : public ir_instruction {
416 public:
417 ir_function(const char *name);
418
419 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
420
421 virtual ir_function *as_function()
422 {
423 return this;
424 }
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433 void add_signature(ir_function_signature *sig)
434 {
435 sig->_function = this;
436 this->signatures.push_tail(sig);
437 }
438
439 /**
440 * Get an iterator for the set of function signatures
441 */
442 exec_list_iterator iterator()
443 {
444 return signatures.iterator();
445 }
446
447 /**
448 * Find a signature that matches a set of actual parameters, taking implicit
449 * conversions into account.
450 */
451 ir_function_signature *matching_signature(const exec_list *actual_param);
452
453 /**
454 * Find a signature that exactly matches a set of actual parameters without
455 * any implicit type conversions.
456 */
457 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
458
459 /**
460 * Name of the function.
461 */
462 const char *name;
463
464 /** Whether or not this function has a signature that isn't a built-in. */
465 bool has_user_signature();
466
467 /**
468 * List of ir_function_signature for each overloaded function with this name.
469 */
470 struct exec_list signatures;
471 };
472
473 inline const char *ir_function_signature::function_name() const
474 {
475 return this->_function->name;
476 }
477 /*@}*/
478
479
480 /**
481 * IR instruction representing high-level if-statements
482 */
483 class ir_if : public ir_instruction {
484 public:
485 ir_if(ir_rvalue *condition)
486 : condition(condition)
487 {
488 ir_type = ir_type_if;
489 }
490
491 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
492
493 virtual ir_if *as_if()
494 {
495 return this;
496 }
497
498 virtual void accept(ir_visitor *v)
499 {
500 v->visit(this);
501 }
502
503 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
504
505 ir_rvalue *condition;
506 /** List of ir_instruction for the body of the then branch */
507 exec_list then_instructions;
508 /** List of ir_instruction for the body of the else branch */
509 exec_list else_instructions;
510 };
511
512
513 /**
514 * IR instruction representing a high-level loop structure.
515 */
516 class ir_loop : public ir_instruction {
517 public:
518 ir_loop();
519
520 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
521
522 virtual void accept(ir_visitor *v)
523 {
524 v->visit(this);
525 }
526
527 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
528
529 virtual ir_loop *as_loop()
530 {
531 return this;
532 }
533
534 /**
535 * Get an iterator for the instructions of the loop body
536 */
537 exec_list_iterator iterator()
538 {
539 return body_instructions.iterator();
540 }
541
542 /** List of ir_instruction that make up the body of the loop. */
543 exec_list body_instructions;
544
545 /**
546 * \name Loop counter and controls
547 *
548 * Represents a loop like a FORTRAN \c do-loop.
549 *
550 * \note
551 * If \c from and \c to are the same value, the loop will execute once.
552 */
553 /*@{*/
554 ir_rvalue *from; /** Value of the loop counter on the first
555 * iteration of the loop.
556 */
557 ir_rvalue *to; /** Value of the loop counter on the last
558 * iteration of the loop.
559 */
560 ir_rvalue *increment;
561 ir_variable *counter;
562
563 /**
564 * Comparison operation in the loop terminator.
565 *
566 * If any of the loop control fields are non-\c NULL, this field must be
567 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
568 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
569 */
570 int cmp;
571 /*@}*/
572 };
573
574
575 class ir_assignment : public ir_instruction {
576 public:
577 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
578
579 /**
580 * Construct an assignment with an explicit write mask
581 *
582 * \note
583 * Since a write mask is supplied, the LHS must already be a bare
584 * \c ir_dereference. The cannot be any swizzles in the LHS.
585 */
586 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
587 unsigned write_mask);
588
589 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
590
591 virtual ir_constant *constant_expression_value();
592
593 virtual void accept(ir_visitor *v)
594 {
595 v->visit(this);
596 }
597
598 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
599
600 virtual ir_assignment * as_assignment()
601 {
602 return this;
603 }
604
605 /**
606 * Get a whole variable written by an assignment
607 *
608 * If the LHS of the assignment writes a whole variable, the variable is
609 * returned. Otherwise \c NULL is returned. Examples of whole-variable
610 * assignment are:
611 *
612 * - Assigning to a scalar
613 * - Assigning to all components of a vector
614 * - Whole array (or matrix) assignment
615 * - Whole structure assignment
616 */
617 ir_variable *whole_variable_written();
618
619 /**
620 * Set the LHS of an assignment
621 */
622 void set_lhs(ir_rvalue *lhs);
623
624 /**
625 * Left-hand side of the assignment.
626 *
627 * This should be treated as read only. If you need to set the LHS of an
628 * assignment, use \c ir_assignment::set_lhs.
629 */
630 ir_dereference *lhs;
631
632 /**
633 * Value being assigned
634 */
635 ir_rvalue *rhs;
636
637 /**
638 * Optional condition for the assignment.
639 */
640 ir_rvalue *condition;
641
642
643 /**
644 * Component mask written
645 *
646 * For non-vector types in the LHS, this field will be zero. For vector
647 * types, a bit will be set for each component that is written. Note that
648 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
649 *
650 * A partially-set write mask means that each enabled channel gets
651 * the value from a consecutive channel of the rhs. For example,
652 * to write just .xyw of gl_FrontColor with color:
653 *
654 * (assign (constant bool (1)) (xyw)
655 * (var_ref gl_FragColor)
656 * (swiz xyw (var_ref color)))
657 */
658 unsigned write_mask:4;
659 };
660
661 /* Update ir_expression::num_operands() and operator_strs when
662 * updating this list.
663 */
664 enum ir_expression_operation {
665 ir_unop_bit_not,
666 ir_unop_logic_not,
667 ir_unop_neg,
668 ir_unop_abs,
669 ir_unop_sign,
670 ir_unop_rcp,
671 ir_unop_rsq,
672 ir_unop_sqrt,
673 ir_unop_exp, /**< Log base e on gentype */
674 ir_unop_log, /**< Natural log on gentype */
675 ir_unop_exp2,
676 ir_unop_log2,
677 ir_unop_f2i, /**< Float-to-integer conversion. */
678 ir_unop_i2f, /**< Integer-to-float conversion. */
679 ir_unop_f2b, /**< Float-to-boolean conversion */
680 ir_unop_b2f, /**< Boolean-to-float conversion */
681 ir_unop_i2b, /**< int-to-boolean conversion */
682 ir_unop_b2i, /**< Boolean-to-int conversion */
683 ir_unop_u2f, /**< Unsigned-to-float conversion. */
684 ir_unop_any,
685
686 /**
687 * \name Unary floating-point rounding operations.
688 */
689 /*@{*/
690 ir_unop_trunc,
691 ir_unop_ceil,
692 ir_unop_floor,
693 ir_unop_fract,
694 /*@}*/
695
696 /**
697 * \name Trigonometric operations.
698 */
699 /*@{*/
700 ir_unop_sin,
701 ir_unop_cos,
702 /*@}*/
703
704 /**
705 * \name Partial derivatives.
706 */
707 /*@{*/
708 ir_unop_dFdx,
709 ir_unop_dFdy,
710 /*@}*/
711
712 ir_unop_noise,
713
714 ir_binop_add,
715 ir_binop_sub,
716 ir_binop_mul,
717 ir_binop_div,
718
719 /**
720 * Takes one of two combinations of arguments:
721 *
722 * - mod(vecN, vecN)
723 * - mod(vecN, float)
724 *
725 * Does not take integer types.
726 */
727 ir_binop_mod,
728
729 /**
730 * \name Binary comparison operators which return a boolean vector.
731 * The type of both operands must be equal.
732 */
733 /*@{*/
734 ir_binop_less,
735 ir_binop_greater,
736 ir_binop_lequal,
737 ir_binop_gequal,
738 ir_binop_equal,
739 ir_binop_nequal,
740 /**
741 * Returns single boolean for whether all components of operands[0]
742 * equal the components of operands[1].
743 */
744 ir_binop_all_equal,
745 /**
746 * Returns single boolean for whether any component of operands[0]
747 * is not equal to the corresponding component of operands[1].
748 */
749 ir_binop_any_nequal,
750 /*@}*/
751
752 /**
753 * \name Bit-wise binary operations.
754 */
755 /*@{*/
756 ir_binop_lshift,
757 ir_binop_rshift,
758 ir_binop_bit_and,
759 ir_binop_bit_xor,
760 ir_binop_bit_or,
761 /*@}*/
762
763 ir_binop_logic_and,
764 ir_binop_logic_xor,
765 ir_binop_logic_or,
766
767 ir_binop_dot,
768 ir_binop_cross,
769 ir_binop_min,
770 ir_binop_max,
771
772 ir_binop_pow
773 };
774
775 class ir_expression : public ir_rvalue {
776 public:
777 ir_expression(int op, const struct glsl_type *type,
778 ir_rvalue *, ir_rvalue *);
779
780 virtual ir_expression *as_expression()
781 {
782 return this;
783 }
784
785 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
786
787 /**
788 * Attempt to constant-fold the expression
789 *
790 * If the expression cannot be constant folded, this method will return
791 * \c NULL.
792 */
793 virtual ir_constant *constant_expression_value();
794
795 /**
796 * Determine the number of operands used by an expression
797 */
798 static unsigned int get_num_operands(ir_expression_operation);
799
800 /**
801 * Determine the number of operands used by an expression
802 */
803 unsigned int get_num_operands() const
804 {
805 return get_num_operands(operation);
806 }
807
808 /**
809 * Return a string representing this expression's operator.
810 */
811 const char *operator_string();
812
813 /**
814 * Return a string representing this expression's operator.
815 */
816 static const char *operator_string(ir_expression_operation);
817
818
819 /**
820 * Do a reverse-lookup to translate the given string into an operator.
821 */
822 static ir_expression_operation get_operator(const char *);
823
824 virtual void accept(ir_visitor *v)
825 {
826 v->visit(this);
827 }
828
829 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
830
831 ir_expression_operation operation;
832 ir_rvalue *operands[2];
833 };
834
835
836 /**
837 * IR instruction representing a function call
838 */
839 class ir_call : public ir_rvalue {
840 public:
841 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
842 : callee(callee)
843 {
844 ir_type = ir_type_call;
845 assert(callee->return_type != NULL);
846 type = callee->return_type;
847 actual_parameters->move_nodes_to(& this->actual_parameters);
848 }
849
850 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
851
852 virtual ir_constant *constant_expression_value();
853
854 virtual ir_call *as_call()
855 {
856 return this;
857 }
858
859 virtual void accept(ir_visitor *v)
860 {
861 v->visit(this);
862 }
863
864 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
865
866 /**
867 * Get a generic ir_call object when an error occurs
868 *
869 * Any allocation will be performed with 'ctx' as talloc owner.
870 */
871 static ir_call *get_error_instruction(void *ctx);
872
873 /**
874 * Get an iterator for the set of acutal parameters
875 */
876 exec_list_iterator iterator()
877 {
878 return actual_parameters.iterator();
879 }
880
881 /**
882 * Get the name of the function being called.
883 */
884 const char *callee_name() const
885 {
886 return callee->function_name();
887 }
888
889 /**
890 * Get the function signature bound to this function call
891 */
892 ir_function_signature *get_callee()
893 {
894 return callee;
895 }
896
897 /**
898 * Set the function call target
899 */
900 void set_callee(ir_function_signature *sig);
901
902 /**
903 * Generates an inline version of the function before @ir,
904 * returning the return value of the function.
905 */
906 ir_rvalue *generate_inline(ir_instruction *ir);
907
908 /* List of ir_rvalue of paramaters passed in this call. */
909 exec_list actual_parameters;
910
911 private:
912 ir_call()
913 : callee(NULL)
914 {
915 this->ir_type = ir_type_call;
916 }
917
918 ir_function_signature *callee;
919 };
920
921
922 /**
923 * \name Jump-like IR instructions.
924 *
925 * These include \c break, \c continue, \c return, and \c discard.
926 */
927 /*@{*/
928 class ir_jump : public ir_instruction {
929 protected:
930 ir_jump()
931 {
932 ir_type = ir_type_unset;
933 }
934 };
935
936 class ir_return : public ir_jump {
937 public:
938 ir_return()
939 : value(NULL)
940 {
941 this->ir_type = ir_type_return;
942 }
943
944 ir_return(ir_rvalue *value)
945 : value(value)
946 {
947 this->ir_type = ir_type_return;
948 }
949
950 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
951
952 virtual ir_return *as_return()
953 {
954 return this;
955 }
956
957 ir_rvalue *get_value() const
958 {
959 return value;
960 }
961
962 virtual void accept(ir_visitor *v)
963 {
964 v->visit(this);
965 }
966
967 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
968
969 ir_rvalue *value;
970 };
971
972
973 /**
974 * Jump instructions used inside loops
975 *
976 * These include \c break and \c continue. The \c break within a loop is
977 * different from the \c break within a switch-statement.
978 *
979 * \sa ir_switch_jump
980 */
981 class ir_loop_jump : public ir_jump {
982 public:
983 enum jump_mode {
984 jump_break,
985 jump_continue
986 };
987
988 ir_loop_jump(jump_mode mode)
989 {
990 this->ir_type = ir_type_loop_jump;
991 this->mode = mode;
992 this->loop = loop;
993 }
994
995 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
996
997 virtual void accept(ir_visitor *v)
998 {
999 v->visit(this);
1000 }
1001
1002 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1003
1004 bool is_break() const
1005 {
1006 return mode == jump_break;
1007 }
1008
1009 bool is_continue() const
1010 {
1011 return mode == jump_continue;
1012 }
1013
1014 /** Mode selector for the jump instruction. */
1015 enum jump_mode mode;
1016 private:
1017 /** Loop containing this break instruction. */
1018 ir_loop *loop;
1019 };
1020
1021 /**
1022 * IR instruction representing discard statements.
1023 */
1024 class ir_discard : public ir_jump {
1025 public:
1026 ir_discard()
1027 {
1028 this->ir_type = ir_type_discard;
1029 this->condition = NULL;
1030 }
1031
1032 ir_discard(ir_rvalue *cond)
1033 {
1034 this->ir_type = ir_type_discard;
1035 this->condition = cond;
1036 }
1037
1038 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1039
1040 virtual void accept(ir_visitor *v)
1041 {
1042 v->visit(this);
1043 }
1044
1045 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1046
1047 ir_rvalue *condition;
1048 };
1049 /*@}*/
1050
1051
1052 /**
1053 * Texture sampling opcodes used in ir_texture
1054 */
1055 enum ir_texture_opcode {
1056 ir_tex, /**< Regular texture look-up */
1057 ir_txb, /**< Texture look-up with LOD bias */
1058 ir_txl, /**< Texture look-up with explicit LOD */
1059 ir_txd, /**< Texture look-up with partial derivatvies */
1060 ir_txf /**< Texel fetch with explicit LOD */
1061 };
1062
1063
1064 /**
1065 * IR instruction to sample a texture
1066 *
1067 * The specific form of the IR instruction depends on the \c mode value
1068 * selected from \c ir_texture_opcodes. In the printed IR, these will
1069 * appear as:
1070 *
1071 * Texel offset
1072 * | Projection divisor
1073 * | | Shadow comparitor
1074 * | | |
1075 * v v v
1076 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1077 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1078 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1079 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1080 * (txf (sampler) (coordinate) (0 0 0) (lod))
1081 */
1082 class ir_texture : public ir_rvalue {
1083 public:
1084 ir_texture(enum ir_texture_opcode op)
1085 : op(op), projector(NULL), shadow_comparitor(NULL)
1086 {
1087 this->ir_type = ir_type_texture;
1088 }
1089
1090 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1091
1092 virtual ir_constant *constant_expression_value();
1093
1094 virtual void accept(ir_visitor *v)
1095 {
1096 v->visit(this);
1097 }
1098
1099 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1100
1101 /**
1102 * Return a string representing the ir_texture_opcode.
1103 */
1104 const char *opcode_string();
1105
1106 /** Set the sampler and infer the type. */
1107 void set_sampler(ir_dereference *sampler);
1108
1109 /**
1110 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1111 */
1112 static ir_texture_opcode get_opcode(const char *);
1113
1114 enum ir_texture_opcode op;
1115
1116 /** Sampler to use for the texture access. */
1117 ir_dereference *sampler;
1118
1119 /** Texture coordinate to sample */
1120 ir_rvalue *coordinate;
1121
1122 /**
1123 * Value used for projective divide.
1124 *
1125 * If there is no projective divide (the common case), this will be
1126 * \c NULL. Optimization passes should check for this to point to a constant
1127 * of 1.0 and replace that with \c NULL.
1128 */
1129 ir_rvalue *projector;
1130
1131 /**
1132 * Coordinate used for comparison on shadow look-ups.
1133 *
1134 * If there is no shadow comparison, this will be \c NULL. For the
1135 * \c ir_txf opcode, this *must* be \c NULL.
1136 */
1137 ir_rvalue *shadow_comparitor;
1138
1139 /** Explicit texel offsets. */
1140 signed char offsets[3];
1141
1142 union {
1143 ir_rvalue *lod; /**< Floating point LOD */
1144 ir_rvalue *bias; /**< Floating point LOD bias */
1145 struct {
1146 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1147 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1148 } grad;
1149 } lod_info;
1150 };
1151
1152
1153 struct ir_swizzle_mask {
1154 unsigned x:2;
1155 unsigned y:2;
1156 unsigned z:2;
1157 unsigned w:2;
1158
1159 /**
1160 * Number of components in the swizzle.
1161 */
1162 unsigned num_components:3;
1163
1164 /**
1165 * Does the swizzle contain duplicate components?
1166 *
1167 * L-value swizzles cannot contain duplicate components.
1168 */
1169 unsigned has_duplicates:1;
1170 };
1171
1172
1173 class ir_swizzle : public ir_rvalue {
1174 public:
1175 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1176 unsigned count);
1177
1178 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1179
1180 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1181
1182 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1183
1184 virtual ir_constant *constant_expression_value();
1185
1186 virtual ir_swizzle *as_swizzle()
1187 {
1188 return this;
1189 }
1190
1191 /**
1192 * Construct an ir_swizzle from the textual representation. Can fail.
1193 */
1194 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1195
1196 virtual void accept(ir_visitor *v)
1197 {
1198 v->visit(this);
1199 }
1200
1201 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1202
1203 bool is_lvalue()
1204 {
1205 return val->is_lvalue() && !mask.has_duplicates;
1206 }
1207
1208 /**
1209 * Get the variable that is ultimately referenced by an r-value
1210 */
1211 virtual ir_variable *variable_referenced();
1212
1213 ir_rvalue *val;
1214 ir_swizzle_mask mask;
1215
1216 private:
1217 /**
1218 * Initialize the mask component of a swizzle
1219 *
1220 * This is used by the \c ir_swizzle constructors.
1221 */
1222 void init_mask(const unsigned *components, unsigned count);
1223 };
1224
1225
1226 class ir_dereference : public ir_rvalue {
1227 public:
1228 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1229
1230 virtual ir_dereference *as_dereference()
1231 {
1232 return this;
1233 }
1234
1235 bool is_lvalue();
1236
1237 /**
1238 * Get the variable that is ultimately referenced by an r-value
1239 */
1240 virtual ir_variable *variable_referenced() = 0;
1241 };
1242
1243
1244 class ir_dereference_variable : public ir_dereference {
1245 public:
1246 ir_dereference_variable(ir_variable *var);
1247
1248 virtual ir_dereference_variable *clone(void *mem_ctx,
1249 struct hash_table *) const;
1250
1251 virtual ir_constant *constant_expression_value();
1252
1253 virtual ir_dereference_variable *as_dereference_variable()
1254 {
1255 return this;
1256 }
1257
1258 /**
1259 * Get the variable that is ultimately referenced by an r-value
1260 */
1261 virtual ir_variable *variable_referenced()
1262 {
1263 return this->var;
1264 }
1265
1266 virtual ir_variable *whole_variable_referenced()
1267 {
1268 /* ir_dereference_variable objects always dereference the entire
1269 * variable. However, if this dereference is dereferenced by anything
1270 * else, the complete deferefernce chain is not a whole-variable
1271 * dereference. This method should only be called on the top most
1272 * ir_rvalue in a dereference chain.
1273 */
1274 return this->var;
1275 }
1276
1277 virtual void accept(ir_visitor *v)
1278 {
1279 v->visit(this);
1280 }
1281
1282 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1283
1284 /**
1285 * Object being dereferenced.
1286 */
1287 ir_variable *var;
1288 };
1289
1290
1291 class ir_dereference_array : public ir_dereference {
1292 public:
1293 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1294
1295 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1296
1297 virtual ir_dereference_array *clone(void *mem_ctx,
1298 struct hash_table *) const;
1299
1300 virtual ir_constant *constant_expression_value();
1301
1302 virtual ir_dereference_array *as_dereference_array()
1303 {
1304 return this;
1305 }
1306
1307 /**
1308 * Get the variable that is ultimately referenced by an r-value
1309 */
1310 virtual ir_variable *variable_referenced()
1311 {
1312 return this->array->variable_referenced();
1313 }
1314
1315 virtual void accept(ir_visitor *v)
1316 {
1317 v->visit(this);
1318 }
1319
1320 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1321
1322 ir_rvalue *array;
1323 ir_rvalue *array_index;
1324
1325 private:
1326 void set_array(ir_rvalue *value);
1327 };
1328
1329
1330 class ir_dereference_record : public ir_dereference {
1331 public:
1332 ir_dereference_record(ir_rvalue *value, const char *field);
1333
1334 ir_dereference_record(ir_variable *var, const char *field);
1335
1336 virtual ir_dereference_record *clone(void *mem_ctx,
1337 struct hash_table *) const;
1338
1339 virtual ir_constant *constant_expression_value();
1340
1341 /**
1342 * Get the variable that is ultimately referenced by an r-value
1343 */
1344 virtual ir_variable *variable_referenced()
1345 {
1346 return this->record->variable_referenced();
1347 }
1348
1349 virtual void accept(ir_visitor *v)
1350 {
1351 v->visit(this);
1352 }
1353
1354 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1355
1356 ir_rvalue *record;
1357 const char *field;
1358 };
1359
1360
1361 /**
1362 * Data stored in an ir_constant
1363 */
1364 union ir_constant_data {
1365 unsigned u[16];
1366 int i[16];
1367 float f[16];
1368 bool b[16];
1369 };
1370
1371
1372 class ir_constant : public ir_rvalue {
1373 public:
1374 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1375 ir_constant(bool b);
1376 ir_constant(unsigned int u);
1377 ir_constant(int i);
1378 ir_constant(float f);
1379
1380 /**
1381 * Construct an ir_constant from a list of ir_constant values
1382 */
1383 ir_constant(const struct glsl_type *type, exec_list *values);
1384
1385 /**
1386 * Construct an ir_constant from a scalar component of another ir_constant
1387 *
1388 * The new \c ir_constant inherits the type of the component from the
1389 * source constant.
1390 *
1391 * \note
1392 * In the case of a matrix constant, the new constant is a scalar, \b not
1393 * a vector.
1394 */
1395 ir_constant(const ir_constant *c, unsigned i);
1396
1397 /**
1398 * Return a new ir_constant of the specified type containing all zeros.
1399 */
1400 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1401
1402 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1403
1404 virtual ir_constant *constant_expression_value();
1405
1406 virtual ir_constant *as_constant()
1407 {
1408 return this;
1409 }
1410
1411 virtual void accept(ir_visitor *v)
1412 {
1413 v->visit(this);
1414 }
1415
1416 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1417
1418 /**
1419 * Get a particular component of a constant as a specific type
1420 *
1421 * This is useful, for example, to get a value from an integer constant
1422 * as a float or bool. This appears frequently when constructors are
1423 * called with all constant parameters.
1424 */
1425 /*@{*/
1426 bool get_bool_component(unsigned i) const;
1427 float get_float_component(unsigned i) const;
1428 int get_int_component(unsigned i) const;
1429 unsigned get_uint_component(unsigned i) const;
1430 /*@}*/
1431
1432 ir_constant *get_array_element(unsigned i) const;
1433
1434 ir_constant *get_record_field(const char *name);
1435
1436 /**
1437 * Determine whether a constant has the same value as another constant
1438 */
1439 bool has_value(const ir_constant *) const;
1440
1441 /**
1442 * Value of the constant.
1443 *
1444 * The field used to back the values supplied by the constant is determined
1445 * by the type associated with the \c ir_instruction. Constants may be
1446 * scalars, vectors, or matrices.
1447 */
1448 union ir_constant_data value;
1449
1450 /* Array elements */
1451 ir_constant **array_elements;
1452
1453 /* Structure fields */
1454 exec_list components;
1455
1456 private:
1457 /**
1458 * Parameterless constructor only used by the clone method
1459 */
1460 ir_constant(void);
1461 };
1462
1463 /*@}*/
1464
1465 /**
1466 * Apply a visitor to each IR node in a list
1467 */
1468 void
1469 visit_exec_list(exec_list *list, ir_visitor *visitor);
1470
1471 /**
1472 * Validate invariants on each IR node in a list
1473 */
1474 void validate_ir_tree(exec_list *instructions);
1475
1476 /**
1477 * Make a clone of each IR instruction in a list
1478 *
1479 * \param in List of IR instructions that are to be cloned
1480 * \param out List to hold the cloned instructions
1481 */
1482 void
1483 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1484
1485 extern void
1486 _mesa_glsl_initialize_variables(exec_list *instructions,
1487 struct _mesa_glsl_parse_state *state);
1488
1489 extern void
1490 _mesa_glsl_initialize_functions(exec_list *instructions,
1491 struct _mesa_glsl_parse_state *state);
1492
1493 extern void
1494 _mesa_glsl_release_functions(void);
1495
1496 extern void
1497 reparent_ir(exec_list *list, void *mem_ctx);
1498
1499 struct glsl_symbol_table;
1500
1501 extern void
1502 import_prototypes(const exec_list *source, exec_list *dest,
1503 struct glsl_symbol_table *symbols, void *mem_ctx);
1504
1505 extern bool
1506 ir_has_call(ir_instruction *ir);
1507
1508 extern void
1509 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1510
1511 #endif /* IR_H */