Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine how this variable should be interpolated based on its
436 * interpolation qualifier (if present), whether it is gl_Color or
437 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
438 * state.
439 *
440 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
441 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
442 */
443 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
444
445 /**
446 * Determine whether or not a variable is part of a uniform or
447 * shader storage block.
448 */
449 inline bool is_in_buffer_block() const
450 {
451 return (this->data.mode == ir_var_uniform ||
452 this->data.mode == ir_var_shader_storage) &&
453 this->interface_type != NULL;
454 }
455
456 /**
457 * Determine whether or not a variable is part of a shader storage block.
458 */
459 inline bool is_in_shader_storage_block() const
460 {
461 return this->data.mode == ir_var_shader_storage &&
462 this->interface_type != NULL;
463 }
464
465 /**
466 * Determine whether or not a variable is the declaration of an interface
467 * block
468 *
469 * For the first declaration below, there will be an \c ir_variable named
470 * "instance" whose type and whose instance_type will be the same
471 * \cglsl_type. For the second declaration, there will be an \c ir_variable
472 * named "f" whose type is float and whose instance_type is B2.
473 *
474 * "instance" is an interface instance variable, but "f" is not.
475 *
476 * uniform B1 {
477 * float f;
478 * } instance;
479 *
480 * uniform B2 {
481 * float f;
482 * };
483 */
484 inline bool is_interface_instance() const
485 {
486 return this->type->without_array() == this->interface_type;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 rzalloc_array(this, unsigned, type->length);
499 }
500 }
501
502 /**
503 * Change this->interface_type on a variable that previously had a
504 * different, but compatible, interface_type. This is used during linking
505 * to set the size of arrays in interface blocks.
506 */
507 void change_interface_type(const struct glsl_type *type)
508 {
509 if (this->u.max_ifc_array_access != NULL) {
510 /* max_ifc_array_access has already been allocated, so make sure the
511 * new interface has the same number of fields as the old one.
512 */
513 assert(this->interface_type->length == type->length);
514 }
515 this->interface_type = type;
516 }
517
518 /**
519 * Change this->interface_type on a variable that previously had a
520 * different, and incompatible, interface_type. This is used during
521 * compilation to handle redeclaration of the built-in gl_PerVertex
522 * interface block.
523 */
524 void reinit_interface_type(const struct glsl_type *type)
525 {
526 if (this->u.max_ifc_array_access != NULL) {
527 #ifndef NDEBUG
528 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
529 * it defines have been accessed yet; so it's safe to throw away the
530 * old max_ifc_array_access pointer, since all of its values are
531 * zero.
532 */
533 for (unsigned i = 0; i < this->interface_type->length; i++)
534 assert(this->u.max_ifc_array_access[i] == 0);
535 #endif
536 ralloc_free(this->u.max_ifc_array_access);
537 this->u.max_ifc_array_access = NULL;
538 }
539 this->interface_type = NULL;
540 init_interface_type(type);
541 }
542
543 const glsl_type *get_interface_type() const
544 {
545 return this->interface_type;
546 }
547
548 /**
549 * Get the max_ifc_array_access pointer
550 *
551 * A "set" function is not needed because the array is dynmically allocated
552 * as necessary.
553 */
554 inline unsigned *get_max_ifc_array_access()
555 {
556 assert(this->data._num_state_slots == 0);
557 return this->u.max_ifc_array_access;
558 }
559
560 inline unsigned get_num_state_slots() const
561 {
562 assert(!this->is_interface_instance()
563 || this->data._num_state_slots == 0);
564 return this->data._num_state_slots;
565 }
566
567 inline void set_num_state_slots(unsigned n)
568 {
569 assert(!this->is_interface_instance()
570 || n == 0);
571 this->data._num_state_slots = n;
572 }
573
574 inline ir_state_slot *get_state_slots()
575 {
576 return this->is_interface_instance() ? NULL : this->u.state_slots;
577 }
578
579 inline const ir_state_slot *get_state_slots() const
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
584 inline ir_state_slot *allocate_state_slots(unsigned n)
585 {
586 assert(!this->is_interface_instance());
587
588 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
589 this->data._num_state_slots = 0;
590
591 if (this->u.state_slots != NULL)
592 this->data._num_state_slots = n;
593
594 return this->u.state_slots;
595 }
596
597 inline bool is_name_ralloced() const
598 {
599 return this->name != ir_variable::tmp_name;
600 }
601
602 /**
603 * Enable emitting extension warnings for this variable
604 */
605 void enable_extension_warning(const char *extension);
606
607 /**
608 * Get the extension warning string for this variable
609 *
610 * If warnings are not enabled, \c NULL is returned.
611 */
612 const char *get_extension_warning() const;
613
614 /**
615 * Declared type of the variable
616 */
617 const struct glsl_type *type;
618
619 /**
620 * Declared name of the variable
621 */
622 const char *name;
623
624 struct ir_variable_data {
625
626 /**
627 * Is the variable read-only?
628 *
629 * This is set for variables declared as \c const, shader inputs,
630 * and uniforms.
631 */
632 unsigned read_only:1;
633 unsigned centroid:1;
634 unsigned sample:1;
635 unsigned patch:1;
636 unsigned invariant:1;
637 unsigned precise:1;
638
639 /**
640 * Has this variable been used for reading or writing?
641 *
642 * Several GLSL semantic checks require knowledge of whether or not a
643 * variable has been used. For example, it is an error to redeclare a
644 * variable as invariant after it has been used.
645 *
646 * This is only maintained in the ast_to_hir.cpp path, not in
647 * Mesa's fixed function or ARB program paths.
648 */
649 unsigned used:1;
650
651 /**
652 * Has this variable been statically assigned?
653 *
654 * This answers whether the variable was assigned in any path of
655 * the shader during ast_to_hir. This doesn't answer whether it is
656 * still written after dead code removal, nor is it maintained in
657 * non-ast_to_hir.cpp (GLSL parsing) paths.
658 */
659 unsigned assigned:1;
660
661 /**
662 * Enum indicating how the variable was declared. See
663 * ir_var_declaration_type.
664 *
665 * This is used to detect certain kinds of illegal variable redeclarations.
666 */
667 unsigned how_declared:2;
668
669 /**
670 * Storage class of the variable.
671 *
672 * \sa ir_variable_mode
673 */
674 unsigned mode:4;
675
676 /**
677 * Interpolation mode for shader inputs / outputs
678 *
679 * \sa ir_variable_interpolation
680 */
681 unsigned interpolation:2;
682
683 /**
684 * \name ARB_fragment_coord_conventions
685 * @{
686 */
687 unsigned origin_upper_left:1;
688 unsigned pixel_center_integer:1;
689 /*@}*/
690
691 /**
692 * Was the location explicitly set in the shader?
693 *
694 * If the location is explicitly set in the shader, it \b cannot be changed
695 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
696 * no effect).
697 */
698 unsigned explicit_location:1;
699 unsigned explicit_index:1;
700
701 /**
702 * Was an initial binding explicitly set in the shader?
703 *
704 * If so, constant_value contains an integer ir_constant representing the
705 * initial binding point.
706 */
707 unsigned explicit_binding:1;
708
709 /**
710 * Does this variable have an initializer?
711 *
712 * This is used by the linker to cross-validiate initializers of global
713 * variables.
714 */
715 unsigned has_initializer:1;
716
717 /**
718 * Is this variable a generic output or input that has not yet been matched
719 * up to a variable in another stage of the pipeline?
720 *
721 * This is used by the linker as scratch storage while assigning locations
722 * to generic inputs and outputs.
723 */
724 unsigned is_unmatched_generic_inout:1;
725
726 /**
727 * If non-zero, then this variable may be packed along with other variables
728 * into a single varying slot, so this offset should be applied when
729 * accessing components. For example, an offset of 1 means that the x
730 * component of this variable is actually stored in component y of the
731 * location specified by \c location.
732 */
733 unsigned location_frac:2;
734
735 /**
736 * Layout of the matrix. Uses glsl_matrix_layout values.
737 */
738 unsigned matrix_layout:2;
739
740 /**
741 * Non-zero if this variable was created by lowering a named interface
742 * block which was not an array.
743 *
744 * Note that this variable and \c from_named_ifc_block_array will never
745 * both be non-zero.
746 */
747 unsigned from_named_ifc_block_nonarray:1;
748
749 /**
750 * Non-zero if this variable was created by lowering a named interface
751 * block which was an array.
752 *
753 * Note that this variable and \c from_named_ifc_block_nonarray will never
754 * both be non-zero.
755 */
756 unsigned from_named_ifc_block_array:1;
757
758 /**
759 * Non-zero if the variable must be a shader input. This is useful for
760 * constraints on function parameters.
761 */
762 unsigned must_be_shader_input:1;
763
764 /**
765 * Output index for dual source blending.
766 *
767 * \note
768 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
769 * source blending.
770 */
771 unsigned index:1;
772
773 /**
774 * Precision qualifier.
775 *
776 * In desktop GLSL we do not care about precision qualifiers at all, in
777 * fact, the spec says that precision qualifiers are ignored.
778 *
779 * To make things easy, we make it so that this field is always
780 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
781 * have the same precision value and the checks we add in the compiler
782 * for this field will never break a desktop shader compile.
783 */
784 unsigned precision:2;
785
786 /**
787 * \brief Layout qualifier for gl_FragDepth.
788 *
789 * This is not equal to \c ir_depth_layout_none if and only if this
790 * variable is \c gl_FragDepth and a layout qualifier is specified.
791 */
792 ir_depth_layout depth_layout:3;
793
794 /**
795 * ARB_shader_image_load_store qualifiers.
796 */
797 unsigned image_read_only:1; /**< "readonly" qualifier. */
798 unsigned image_write_only:1; /**< "writeonly" qualifier. */
799 unsigned image_coherent:1;
800 unsigned image_volatile:1;
801 unsigned image_restrict:1;
802
803 /**
804 * ARB_shader_storage_buffer_object
805 */
806 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
807
808 /**
809 * Emit a warning if this variable is accessed.
810 */
811 private:
812 uint8_t warn_extension_index;
813
814 public:
815 /** Image internal format if specified explicitly, otherwise GL_NONE. */
816 uint16_t image_format;
817
818 private:
819 /**
820 * Number of state slots used
821 *
822 * \note
823 * This could be stored in as few as 7-bits, if necessary. If it is made
824 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
825 * be safe.
826 */
827 uint16_t _num_state_slots;
828
829 public:
830 /**
831 * Initial binding point for a sampler, atomic, or UBO.
832 *
833 * For array types, this represents the binding point for the first element.
834 */
835 int16_t binding;
836
837 /**
838 * Storage location of the base of this variable
839 *
840 * The precise meaning of this field depends on the nature of the variable.
841 *
842 * - Vertex shader input: one of the values from \c gl_vert_attrib.
843 * - Vertex shader output: one of the values from \c gl_varying_slot.
844 * - Geometry shader input: one of the values from \c gl_varying_slot.
845 * - Geometry shader output: one of the values from \c gl_varying_slot.
846 * - Fragment shader input: one of the values from \c gl_varying_slot.
847 * - Fragment shader output: one of the values from \c gl_frag_result.
848 * - Uniforms: Per-stage uniform slot number for default uniform block.
849 * - Uniforms: Index within the uniform block definition for UBO members.
850 * - Non-UBO Uniforms: explicit location until linking then reused to
851 * store uniform slot number.
852 * - Other: This field is not currently used.
853 *
854 * If the variable is a uniform, shader input, or shader output, and the
855 * slot has not been assigned, the value will be -1.
856 */
857 int location;
858
859 /**
860 * Vertex stream output identifier.
861 */
862 unsigned stream;
863
864 /**
865 * Location an atomic counter is stored at.
866 */
867 struct {
868 unsigned offset;
869 } atomic;
870
871 /**
872 * Highest element accessed with a constant expression array index
873 *
874 * Not used for non-array variables.
875 */
876 unsigned max_array_access;
877
878 /**
879 * Allow (only) ir_variable direct access private members.
880 */
881 friend class ir_variable;
882 } data;
883
884 /**
885 * Value assigned in the initializer of a variable declared "const"
886 */
887 ir_constant *constant_value;
888
889 /**
890 * Constant expression assigned in the initializer of the variable
891 *
892 * \warning
893 * This field and \c ::constant_value are distinct. Even if the two fields
894 * refer to constants with the same value, they must point to separate
895 * objects.
896 */
897 ir_constant *constant_initializer;
898
899 private:
900 static const char *const warn_extension_table[];
901
902 union {
903 /**
904 * For variables which satisfy the is_interface_instance() predicate,
905 * this points to an array of integers such that if the ith member of
906 * the interface block is an array, max_ifc_array_access[i] is the
907 * maximum array element of that member that has been accessed. If the
908 * ith member of the interface block is not an array,
909 * max_ifc_array_access[i] is unused.
910 *
911 * For variables whose type is not an interface block, this pointer is
912 * NULL.
913 */
914 unsigned *max_ifc_array_access;
915
916 /**
917 * Built-in state that backs this uniform
918 *
919 * Once set at variable creation, \c state_slots must remain invariant.
920 *
921 * If the variable is not a uniform, \c _num_state_slots will be zero
922 * and \c state_slots will be \c NULL.
923 */
924 ir_state_slot *state_slots;
925 } u;
926
927 /**
928 * For variables that are in an interface block or are an instance of an
929 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
930 *
931 * \sa ir_variable::location
932 */
933 const glsl_type *interface_type;
934
935 /**
936 * Name used for anonymous compiler temporaries
937 */
938 static const char tmp_name[];
939
940 public:
941 /**
942 * Should the construct keep names for ir_var_temporary variables?
943 *
944 * When this global is false, names passed to the constructor for
945 * \c ir_var_temporary variables will be dropped. Instead, the variable will
946 * be named "compiler_temp". This name will be in static storage.
947 *
948 * \warning
949 * \b NEVER change the mode of an \c ir_var_temporary.
950 *
951 * \warning
952 * This variable is \b not thread-safe. It is global, \b not
953 * per-context. It begins life false. A context can, at some point, make
954 * it true. From that point on, it will be true forever. This should be
955 * okay since it will only be set true while debugging.
956 */
957 static bool temporaries_allocate_names;
958 };
959
960 /**
961 * A function that returns whether a built-in function is available in the
962 * current shading language (based on version, ES or desktop, and extensions).
963 */
964 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
965
966 /*@{*/
967 /**
968 * The representation of a function instance; may be the full definition or
969 * simply a prototype.
970 */
971 class ir_function_signature : public ir_instruction {
972 /* An ir_function_signature will be part of the list of signatures in
973 * an ir_function.
974 */
975 public:
976 ir_function_signature(const glsl_type *return_type,
977 builtin_available_predicate builtin_avail = NULL);
978
979 virtual ir_function_signature *clone(void *mem_ctx,
980 struct hash_table *ht) const;
981 ir_function_signature *clone_prototype(void *mem_ctx,
982 struct hash_table *ht) const;
983
984 virtual void accept(ir_visitor *v)
985 {
986 v->visit(this);
987 }
988
989 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
990
991 /**
992 * Attempt to evaluate this function as a constant expression,
993 * given a list of the actual parameters and the variable context.
994 * Returns NULL for non-built-ins.
995 */
996 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
997
998 /**
999 * Get the name of the function for which this is a signature
1000 */
1001 const char *function_name() const;
1002
1003 /**
1004 * Get a handle to the function for which this is a signature
1005 *
1006 * There is no setter function, this function returns a \c const pointer,
1007 * and \c ir_function_signature::_function is private for a reason. The
1008 * only way to make a connection between a function and function signature
1009 * is via \c ir_function::add_signature. This helps ensure that certain
1010 * invariants (i.e., a function signature is in the list of signatures for
1011 * its \c _function) are met.
1012 *
1013 * \sa ir_function::add_signature
1014 */
1015 inline const class ir_function *function() const
1016 {
1017 return this->_function;
1018 }
1019
1020 /**
1021 * Check whether the qualifiers match between this signature's parameters
1022 * and the supplied parameter list. If not, returns the name of the first
1023 * parameter with mismatched qualifiers (for use in error messages).
1024 */
1025 const char *qualifiers_match(exec_list *params);
1026
1027 /**
1028 * Replace the current parameter list with the given one. This is useful
1029 * if the current information came from a prototype, and either has invalid
1030 * or missing parameter names.
1031 */
1032 void replace_parameters(exec_list *new_params);
1033
1034 /**
1035 * Function return type.
1036 *
1037 * \note This discards the optional precision qualifier.
1038 */
1039 const struct glsl_type *return_type;
1040
1041 /**
1042 * List of ir_variable of function parameters.
1043 *
1044 * This represents the storage. The paramaters passed in a particular
1045 * call will be in ir_call::actual_paramaters.
1046 */
1047 struct exec_list parameters;
1048
1049 /** Whether or not this function has a body (which may be empty). */
1050 unsigned is_defined:1;
1051
1052 /** Whether or not this function signature is a built-in. */
1053 bool is_builtin() const;
1054
1055 /**
1056 * Whether or not this function is an intrinsic to be implemented
1057 * by the driver.
1058 */
1059 bool is_intrinsic;
1060
1061 /** Whether or not a built-in is available for this shader. */
1062 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1063
1064 /** Body of instructions in the function. */
1065 struct exec_list body;
1066
1067 private:
1068 /**
1069 * A function pointer to a predicate that answers whether a built-in
1070 * function is available in the current shader. NULL if not a built-in.
1071 */
1072 builtin_available_predicate builtin_avail;
1073
1074 /** Function of which this signature is one overload. */
1075 class ir_function *_function;
1076
1077 /** Function signature of which this one is a prototype clone */
1078 const ir_function_signature *origin;
1079
1080 friend class ir_function;
1081
1082 /**
1083 * Helper function to run a list of instructions for constant
1084 * expression evaluation.
1085 *
1086 * The hash table represents the values of the visible variables.
1087 * There are no scoping issues because the table is indexed on
1088 * ir_variable pointers, not variable names.
1089 *
1090 * Returns false if the expression is not constant, true otherwise,
1091 * and the value in *result if result is non-NULL.
1092 */
1093 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1094 struct hash_table *variable_context,
1095 ir_constant **result);
1096 };
1097
1098
1099 /**
1100 * Header for tracking multiple overloaded functions with the same name.
1101 * Contains a list of ir_function_signatures representing each of the
1102 * actual functions.
1103 */
1104 class ir_function : public ir_instruction {
1105 public:
1106 ir_function(const char *name);
1107
1108 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1109
1110 virtual void accept(ir_visitor *v)
1111 {
1112 v->visit(this);
1113 }
1114
1115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1116
1117 void add_signature(ir_function_signature *sig)
1118 {
1119 sig->_function = this;
1120 this->signatures.push_tail(sig);
1121 }
1122
1123 /**
1124 * Find a signature that matches a set of actual parameters, taking implicit
1125 * conversions into account. Also flags whether the match was exact.
1126 */
1127 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1128 const exec_list *actual_param,
1129 bool allow_builtins,
1130 bool *match_is_exact);
1131
1132 /**
1133 * Find a signature that matches a set of actual parameters, taking implicit
1134 * conversions into account.
1135 */
1136 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1137 const exec_list *actual_param,
1138 bool allow_builtins);
1139
1140 /**
1141 * Find a signature that exactly matches a set of actual parameters without
1142 * any implicit type conversions.
1143 */
1144 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1145 const exec_list *actual_ps);
1146
1147 /**
1148 * Name of the function.
1149 */
1150 const char *name;
1151
1152 /** Whether or not this function has a signature that isn't a built-in. */
1153 bool has_user_signature();
1154
1155 /**
1156 * List of ir_function_signature for each overloaded function with this name.
1157 */
1158 struct exec_list signatures;
1159
1160 /**
1161 * is this function a subroutine type declaration
1162 * e.g. subroutine void type1(float arg1);
1163 */
1164 bool is_subroutine;
1165
1166 /**
1167 * is this function associated to a subroutine type
1168 * e.g. subroutine (type1, type2) function_name { function_body };
1169 * would have num_subroutine_types 2,
1170 * and pointers to the type1 and type2 types.
1171 */
1172 int num_subroutine_types;
1173 const struct glsl_type **subroutine_types;
1174 };
1175
1176 inline const char *ir_function_signature::function_name() const
1177 {
1178 return this->_function->name;
1179 }
1180 /*@}*/
1181
1182
1183 /**
1184 * IR instruction representing high-level if-statements
1185 */
1186 class ir_if : public ir_instruction {
1187 public:
1188 ir_if(ir_rvalue *condition)
1189 : ir_instruction(ir_type_if), condition(condition)
1190 {
1191 }
1192
1193 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1194
1195 virtual void accept(ir_visitor *v)
1196 {
1197 v->visit(this);
1198 }
1199
1200 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1201
1202 ir_rvalue *condition;
1203 /** List of ir_instruction for the body of the then branch */
1204 exec_list then_instructions;
1205 /** List of ir_instruction for the body of the else branch */
1206 exec_list else_instructions;
1207 };
1208
1209
1210 /**
1211 * IR instruction representing a high-level loop structure.
1212 */
1213 class ir_loop : public ir_instruction {
1214 public:
1215 ir_loop();
1216
1217 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1218
1219 virtual void accept(ir_visitor *v)
1220 {
1221 v->visit(this);
1222 }
1223
1224 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1225
1226 /** List of ir_instruction that make up the body of the loop. */
1227 exec_list body_instructions;
1228 };
1229
1230
1231 class ir_assignment : public ir_instruction {
1232 public:
1233 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1234
1235 /**
1236 * Construct an assignment with an explicit write mask
1237 *
1238 * \note
1239 * Since a write mask is supplied, the LHS must already be a bare
1240 * \c ir_dereference. The cannot be any swizzles in the LHS.
1241 */
1242 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1243 unsigned write_mask);
1244
1245 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1246
1247 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1248
1249 virtual void accept(ir_visitor *v)
1250 {
1251 v->visit(this);
1252 }
1253
1254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1255
1256 /**
1257 * Get a whole variable written by an assignment
1258 *
1259 * If the LHS of the assignment writes a whole variable, the variable is
1260 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1261 * assignment are:
1262 *
1263 * - Assigning to a scalar
1264 * - Assigning to all components of a vector
1265 * - Whole array (or matrix) assignment
1266 * - Whole structure assignment
1267 */
1268 ir_variable *whole_variable_written();
1269
1270 /**
1271 * Set the LHS of an assignment
1272 */
1273 void set_lhs(ir_rvalue *lhs);
1274
1275 /**
1276 * Left-hand side of the assignment.
1277 *
1278 * This should be treated as read only. If you need to set the LHS of an
1279 * assignment, use \c ir_assignment::set_lhs.
1280 */
1281 ir_dereference *lhs;
1282
1283 /**
1284 * Value being assigned
1285 */
1286 ir_rvalue *rhs;
1287
1288 /**
1289 * Optional condition for the assignment.
1290 */
1291 ir_rvalue *condition;
1292
1293
1294 /**
1295 * Component mask written
1296 *
1297 * For non-vector types in the LHS, this field will be zero. For vector
1298 * types, a bit will be set for each component that is written. Note that
1299 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1300 *
1301 * A partially-set write mask means that each enabled channel gets
1302 * the value from a consecutive channel of the rhs. For example,
1303 * to write just .xyw of gl_FrontColor with color:
1304 *
1305 * (assign (constant bool (1)) (xyw)
1306 * (var_ref gl_FragColor)
1307 * (swiz xyw (var_ref color)))
1308 */
1309 unsigned write_mask:4;
1310 };
1311
1312 /* Update ir_expression::get_num_operands() and operator_strs when
1313 * updating this list.
1314 */
1315 enum ir_expression_operation {
1316 ir_unop_bit_not,
1317 ir_unop_logic_not,
1318 ir_unop_neg,
1319 ir_unop_abs,
1320 ir_unop_sign,
1321 ir_unop_rcp,
1322 ir_unop_rsq,
1323 ir_unop_sqrt,
1324 ir_unop_exp, /**< Log base e on gentype */
1325 ir_unop_log, /**< Natural log on gentype */
1326 ir_unop_exp2,
1327 ir_unop_log2,
1328 ir_unop_f2i, /**< Float-to-integer conversion. */
1329 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1330 ir_unop_i2f, /**< Integer-to-float conversion. */
1331 ir_unop_f2b, /**< Float-to-boolean conversion */
1332 ir_unop_b2f, /**< Boolean-to-float conversion */
1333 ir_unop_i2b, /**< int-to-boolean conversion */
1334 ir_unop_b2i, /**< Boolean-to-int conversion */
1335 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1336 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1337 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1338 ir_unop_d2f, /**< Double-to-float conversion. */
1339 ir_unop_f2d, /**< Float-to-double conversion. */
1340 ir_unop_d2i, /**< Double-to-integer conversion. */
1341 ir_unop_i2d, /**< Integer-to-double conversion. */
1342 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1343 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1344 ir_unop_d2b, /**< Double-to-boolean conversion. */
1345 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1346 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1347 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1348 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1349 ir_unop_any,
1350
1351 /**
1352 * \name Unary floating-point rounding operations.
1353 */
1354 /*@{*/
1355 ir_unop_trunc,
1356 ir_unop_ceil,
1357 ir_unop_floor,
1358 ir_unop_fract,
1359 ir_unop_round_even,
1360 /*@}*/
1361
1362 /**
1363 * \name Trigonometric operations.
1364 */
1365 /*@{*/
1366 ir_unop_sin,
1367 ir_unop_cos,
1368 /*@}*/
1369
1370 /**
1371 * \name Partial derivatives.
1372 */
1373 /*@{*/
1374 ir_unop_dFdx,
1375 ir_unop_dFdx_coarse,
1376 ir_unop_dFdx_fine,
1377 ir_unop_dFdy,
1378 ir_unop_dFdy_coarse,
1379 ir_unop_dFdy_fine,
1380 /*@}*/
1381
1382 /**
1383 * \name Floating point pack and unpack operations.
1384 */
1385 /*@{*/
1386 ir_unop_pack_snorm_2x16,
1387 ir_unop_pack_snorm_4x8,
1388 ir_unop_pack_unorm_2x16,
1389 ir_unop_pack_unorm_4x8,
1390 ir_unop_pack_half_2x16,
1391 ir_unop_unpack_snorm_2x16,
1392 ir_unop_unpack_snorm_4x8,
1393 ir_unop_unpack_unorm_2x16,
1394 ir_unop_unpack_unorm_4x8,
1395 ir_unop_unpack_half_2x16,
1396 /*@}*/
1397
1398 /**
1399 * \name Lowered floating point unpacking operations.
1400 *
1401 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1402 */
1403 /*@{*/
1404 ir_unop_unpack_half_2x16_split_x,
1405 ir_unop_unpack_half_2x16_split_y,
1406 /*@}*/
1407
1408 /**
1409 * \name Bit operations, part of ARB_gpu_shader5.
1410 */
1411 /*@{*/
1412 ir_unop_bitfield_reverse,
1413 ir_unop_bit_count,
1414 ir_unop_find_msb,
1415 ir_unop_find_lsb,
1416 /*@}*/
1417
1418 ir_unop_saturate,
1419
1420 /**
1421 * \name Double packing, part of ARB_gpu_shader_fp64.
1422 */
1423 /*@{*/
1424 ir_unop_pack_double_2x32,
1425 ir_unop_unpack_double_2x32,
1426 /*@}*/
1427
1428 ir_unop_frexp_sig,
1429 ir_unop_frexp_exp,
1430
1431 ir_unop_noise,
1432
1433 ir_unop_subroutine_to_int,
1434 /**
1435 * Interpolate fs input at centroid
1436 *
1437 * operand0 is the fs input.
1438 */
1439 ir_unop_interpolate_at_centroid,
1440
1441 /**
1442 * Ask the driver for the total size of a buffer block.
1443 *
1444 * operand0 is the ir_constant buffer block index in the linked shader.
1445 */
1446 ir_unop_get_buffer_size,
1447
1448 /**
1449 * Calculate length of an unsized array inside a buffer block.
1450 * This opcode is going to be replaced in a lowering pass inside
1451 * the linker.
1452 *
1453 * operand0 is the unsized array's ir_value for the calculation
1454 * of its length.
1455 */
1456 ir_unop_ssbo_unsized_array_length,
1457
1458 /**
1459 * A sentinel marking the last of the unary operations.
1460 */
1461 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1462
1463 ir_binop_add,
1464 ir_binop_sub,
1465 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1466 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1467 ir_binop_div,
1468
1469 /**
1470 * Returns the carry resulting from the addition of the two arguments.
1471 */
1472 /*@{*/
1473 ir_binop_carry,
1474 /*@}*/
1475
1476 /**
1477 * Returns the borrow resulting from the subtraction of the second argument
1478 * from the first argument.
1479 */
1480 /*@{*/
1481 ir_binop_borrow,
1482 /*@}*/
1483
1484 /**
1485 * Takes one of two combinations of arguments:
1486 *
1487 * - mod(vecN, vecN)
1488 * - mod(vecN, float)
1489 *
1490 * Does not take integer types.
1491 */
1492 ir_binop_mod,
1493
1494 /**
1495 * \name Binary comparison operators which return a boolean vector.
1496 * The type of both operands must be equal.
1497 */
1498 /*@{*/
1499 ir_binop_less,
1500 ir_binop_greater,
1501 ir_binop_lequal,
1502 ir_binop_gequal,
1503 ir_binop_equal,
1504 ir_binop_nequal,
1505 /**
1506 * Returns single boolean for whether all components of operands[0]
1507 * equal the components of operands[1].
1508 */
1509 ir_binop_all_equal,
1510 /**
1511 * Returns single boolean for whether any component of operands[0]
1512 * is not equal to the corresponding component of operands[1].
1513 */
1514 ir_binop_any_nequal,
1515 /*@}*/
1516
1517 /**
1518 * \name Bit-wise binary operations.
1519 */
1520 /*@{*/
1521 ir_binop_lshift,
1522 ir_binop_rshift,
1523 ir_binop_bit_and,
1524 ir_binop_bit_xor,
1525 ir_binop_bit_or,
1526 /*@}*/
1527
1528 ir_binop_logic_and,
1529 ir_binop_logic_xor,
1530 ir_binop_logic_or,
1531
1532 ir_binop_dot,
1533 ir_binop_min,
1534 ir_binop_max,
1535
1536 ir_binop_pow,
1537
1538 /**
1539 * \name Lowered floating point packing operations.
1540 *
1541 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1542 */
1543 /*@{*/
1544 ir_binop_pack_half_2x16_split,
1545 /*@}*/
1546
1547 /**
1548 * \name First half of a lowered bitfieldInsert() operation.
1549 *
1550 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1551 */
1552 /*@{*/
1553 ir_binop_bfm,
1554 /*@}*/
1555
1556 /**
1557 * Load a value the size of a given GLSL type from a uniform block.
1558 *
1559 * operand0 is the ir_constant uniform block index in the linked shader.
1560 * operand1 is a byte offset within the uniform block.
1561 */
1562 ir_binop_ubo_load,
1563
1564 /**
1565 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1566 */
1567 /*@{*/
1568 ir_binop_ldexp,
1569 /*@}*/
1570
1571 /**
1572 * Extract a scalar from a vector
1573 *
1574 * operand0 is the vector
1575 * operand1 is the index of the field to read from operand0
1576 */
1577 ir_binop_vector_extract,
1578
1579 /**
1580 * Interpolate fs input at offset
1581 *
1582 * operand0 is the fs input
1583 * operand1 is the offset from the pixel center
1584 */
1585 ir_binop_interpolate_at_offset,
1586
1587 /**
1588 * Interpolate fs input at sample position
1589 *
1590 * operand0 is the fs input
1591 * operand1 is the sample ID
1592 */
1593 ir_binop_interpolate_at_sample,
1594
1595 /**
1596 * A sentinel marking the last of the binary operations.
1597 */
1598 ir_last_binop = ir_binop_interpolate_at_sample,
1599
1600 /**
1601 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1602 */
1603 /*@{*/
1604 ir_triop_fma,
1605 /*@}*/
1606
1607 ir_triop_lrp,
1608
1609 /**
1610 * \name Conditional Select
1611 *
1612 * A vector conditional select instruction (like ?:, but operating per-
1613 * component on vectors).
1614 *
1615 * \see lower_instructions_visitor::ldexp_to_arith
1616 */
1617 /*@{*/
1618 ir_triop_csel,
1619 /*@}*/
1620
1621 /**
1622 * \name Second half of a lowered bitfieldInsert() operation.
1623 *
1624 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1625 */
1626 /*@{*/
1627 ir_triop_bfi,
1628 /*@}*/
1629
1630 ir_triop_bitfield_extract,
1631
1632 /**
1633 * Generate a value with one field of a vector changed
1634 *
1635 * operand0 is the vector
1636 * operand1 is the value to write into the vector result
1637 * operand2 is the index in operand0 to be modified
1638 */
1639 ir_triop_vector_insert,
1640
1641 /**
1642 * A sentinel marking the last of the ternary operations.
1643 */
1644 ir_last_triop = ir_triop_vector_insert,
1645
1646 ir_quadop_bitfield_insert,
1647
1648 ir_quadop_vector,
1649
1650 /**
1651 * A sentinel marking the last of the ternary operations.
1652 */
1653 ir_last_quadop = ir_quadop_vector,
1654
1655 /**
1656 * A sentinel marking the last of all operations.
1657 */
1658 ir_last_opcode = ir_quadop_vector
1659 };
1660
1661 class ir_expression : public ir_rvalue {
1662 public:
1663 ir_expression(int op, const struct glsl_type *type,
1664 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1665 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1666
1667 /**
1668 * Constructor for unary operation expressions
1669 */
1670 ir_expression(int op, ir_rvalue *);
1671
1672 /**
1673 * Constructor for binary operation expressions
1674 */
1675 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1676
1677 /**
1678 * Constructor for ternary operation expressions
1679 */
1680 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1681
1682 virtual bool equals(const ir_instruction *ir,
1683 enum ir_node_type ignore = ir_type_unset) const;
1684
1685 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1686
1687 /**
1688 * Attempt to constant-fold the expression
1689 *
1690 * The "variable_context" hash table links ir_variable * to ir_constant *
1691 * that represent the variables' values. \c NULL represents an empty
1692 * context.
1693 *
1694 * If the expression cannot be constant folded, this method will return
1695 * \c NULL.
1696 */
1697 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1698
1699 /**
1700 * Determine the number of operands used by an expression
1701 */
1702 static unsigned int get_num_operands(ir_expression_operation);
1703
1704 /**
1705 * Determine the number of operands used by an expression
1706 */
1707 unsigned int get_num_operands() const
1708 {
1709 return (this->operation == ir_quadop_vector)
1710 ? this->type->vector_elements : get_num_operands(operation);
1711 }
1712
1713 /**
1714 * Return whether the expression operates on vectors horizontally.
1715 */
1716 bool is_horizontal() const
1717 {
1718 return operation == ir_binop_all_equal ||
1719 operation == ir_binop_any_nequal ||
1720 operation == ir_unop_any ||
1721 operation == ir_binop_dot ||
1722 operation == ir_quadop_vector;
1723 }
1724
1725 /**
1726 * Return a string representing this expression's operator.
1727 */
1728 const char *operator_string();
1729
1730 /**
1731 * Return a string representing this expression's operator.
1732 */
1733 static const char *operator_string(ir_expression_operation);
1734
1735
1736 /**
1737 * Do a reverse-lookup to translate the given string into an operator.
1738 */
1739 static ir_expression_operation get_operator(const char *);
1740
1741 virtual void accept(ir_visitor *v)
1742 {
1743 v->visit(this);
1744 }
1745
1746 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1747
1748 virtual ir_variable *variable_referenced() const;
1749
1750 ir_expression_operation operation;
1751 ir_rvalue *operands[4];
1752 };
1753
1754
1755 /**
1756 * HIR instruction representing a high-level function call, containing a list
1757 * of parameters and returning a value in the supplied temporary.
1758 */
1759 class ir_call : public ir_instruction {
1760 public:
1761 ir_call(ir_function_signature *callee,
1762 ir_dereference_variable *return_deref,
1763 exec_list *actual_parameters)
1764 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1765 {
1766 assert(callee->return_type != NULL);
1767 actual_parameters->move_nodes_to(& this->actual_parameters);
1768 this->use_builtin = callee->is_builtin();
1769 }
1770
1771 ir_call(ir_function_signature *callee,
1772 ir_dereference_variable *return_deref,
1773 exec_list *actual_parameters,
1774 ir_variable *var, ir_rvalue *array_idx)
1775 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1776 {
1777 assert(callee->return_type != NULL);
1778 actual_parameters->move_nodes_to(& this->actual_parameters);
1779 this->use_builtin = callee->is_builtin();
1780 }
1781
1782 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1783
1784 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1785
1786 virtual void accept(ir_visitor *v)
1787 {
1788 v->visit(this);
1789 }
1790
1791 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1792
1793 /**
1794 * Get the name of the function being called.
1795 */
1796 const char *callee_name() const
1797 {
1798 return callee->function_name();
1799 }
1800
1801 /**
1802 * Generates an inline version of the function before @ir,
1803 * storing the return value in return_deref.
1804 */
1805 void generate_inline(ir_instruction *ir);
1806
1807 /**
1808 * Storage for the function's return value.
1809 * This must be NULL if the return type is void.
1810 */
1811 ir_dereference_variable *return_deref;
1812
1813 /**
1814 * The specific function signature being called.
1815 */
1816 ir_function_signature *callee;
1817
1818 /* List of ir_rvalue of paramaters passed in this call. */
1819 exec_list actual_parameters;
1820
1821 /** Should this call only bind to a built-in function? */
1822 bool use_builtin;
1823
1824 /*
1825 * ARB_shader_subroutine support -
1826 * the subroutine uniform variable and array index
1827 * rvalue to be used in the lowering pass later.
1828 */
1829 ir_variable *sub_var;
1830 ir_rvalue *array_idx;
1831 };
1832
1833
1834 /**
1835 * \name Jump-like IR instructions.
1836 *
1837 * These include \c break, \c continue, \c return, and \c discard.
1838 */
1839 /*@{*/
1840 class ir_jump : public ir_instruction {
1841 protected:
1842 ir_jump(enum ir_node_type t)
1843 : ir_instruction(t)
1844 {
1845 }
1846 };
1847
1848 class ir_return : public ir_jump {
1849 public:
1850 ir_return()
1851 : ir_jump(ir_type_return), value(NULL)
1852 {
1853 }
1854
1855 ir_return(ir_rvalue *value)
1856 : ir_jump(ir_type_return), value(value)
1857 {
1858 }
1859
1860 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1861
1862 ir_rvalue *get_value() const
1863 {
1864 return value;
1865 }
1866
1867 virtual void accept(ir_visitor *v)
1868 {
1869 v->visit(this);
1870 }
1871
1872 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1873
1874 ir_rvalue *value;
1875 };
1876
1877
1878 /**
1879 * Jump instructions used inside loops
1880 *
1881 * These include \c break and \c continue. The \c break within a loop is
1882 * different from the \c break within a switch-statement.
1883 *
1884 * \sa ir_switch_jump
1885 */
1886 class ir_loop_jump : public ir_jump {
1887 public:
1888 enum jump_mode {
1889 jump_break,
1890 jump_continue
1891 };
1892
1893 ir_loop_jump(jump_mode mode)
1894 : ir_jump(ir_type_loop_jump)
1895 {
1896 this->mode = mode;
1897 }
1898
1899 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1900
1901 virtual void accept(ir_visitor *v)
1902 {
1903 v->visit(this);
1904 }
1905
1906 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1907
1908 bool is_break() const
1909 {
1910 return mode == jump_break;
1911 }
1912
1913 bool is_continue() const
1914 {
1915 return mode == jump_continue;
1916 }
1917
1918 /** Mode selector for the jump instruction. */
1919 enum jump_mode mode;
1920 };
1921
1922 /**
1923 * IR instruction representing discard statements.
1924 */
1925 class ir_discard : public ir_jump {
1926 public:
1927 ir_discard()
1928 : ir_jump(ir_type_discard)
1929 {
1930 this->condition = NULL;
1931 }
1932
1933 ir_discard(ir_rvalue *cond)
1934 : ir_jump(ir_type_discard)
1935 {
1936 this->condition = cond;
1937 }
1938
1939 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1940
1941 virtual void accept(ir_visitor *v)
1942 {
1943 v->visit(this);
1944 }
1945
1946 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1947
1948 ir_rvalue *condition;
1949 };
1950 /*@}*/
1951
1952
1953 /**
1954 * Texture sampling opcodes used in ir_texture
1955 */
1956 enum ir_texture_opcode {
1957 ir_tex, /**< Regular texture look-up */
1958 ir_txb, /**< Texture look-up with LOD bias */
1959 ir_txl, /**< Texture look-up with explicit LOD */
1960 ir_txd, /**< Texture look-up with partial derivatvies */
1961 ir_txf, /**< Texel fetch with explicit LOD */
1962 ir_txf_ms, /**< Multisample texture fetch */
1963 ir_txs, /**< Texture size */
1964 ir_lod, /**< Texture lod query */
1965 ir_tg4, /**< Texture gather */
1966 ir_query_levels, /**< Texture levels query */
1967 ir_texture_samples, /**< Texture samples query */
1968 };
1969
1970
1971 /**
1972 * IR instruction to sample a texture
1973 *
1974 * The specific form of the IR instruction depends on the \c mode value
1975 * selected from \c ir_texture_opcodes. In the printed IR, these will
1976 * appear as:
1977 *
1978 * Texel offset (0 or an expression)
1979 * | Projection divisor
1980 * | | Shadow comparitor
1981 * | | |
1982 * v v v
1983 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1984 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1985 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1986 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1987 * (txf <type> <sampler> <coordinate> 0 <lod>)
1988 * (txf_ms
1989 * <type> <sampler> <coordinate> <sample_index>)
1990 * (txs <type> <sampler> <lod>)
1991 * (lod <type> <sampler> <coordinate>)
1992 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1993 * (query_levels <type> <sampler>)
1994 */
1995 class ir_texture : public ir_rvalue {
1996 public:
1997 ir_texture(enum ir_texture_opcode op)
1998 : ir_rvalue(ir_type_texture),
1999 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
2000 shadow_comparitor(NULL), offset(NULL)
2001 {
2002 memset(&lod_info, 0, sizeof(lod_info));
2003 }
2004
2005 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
2006
2007 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2008
2009 virtual void accept(ir_visitor *v)
2010 {
2011 v->visit(this);
2012 }
2013
2014 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2015
2016 virtual bool equals(const ir_instruction *ir,
2017 enum ir_node_type ignore = ir_type_unset) const;
2018
2019 /**
2020 * Return a string representing the ir_texture_opcode.
2021 */
2022 const char *opcode_string();
2023
2024 /** Set the sampler and type. */
2025 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2026
2027 /**
2028 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2029 */
2030 static ir_texture_opcode get_opcode(const char *);
2031
2032 enum ir_texture_opcode op;
2033
2034 /** Sampler to use for the texture access. */
2035 ir_dereference *sampler;
2036
2037 /** Texture coordinate to sample */
2038 ir_rvalue *coordinate;
2039
2040 /**
2041 * Value used for projective divide.
2042 *
2043 * If there is no projective divide (the common case), this will be
2044 * \c NULL. Optimization passes should check for this to point to a constant
2045 * of 1.0 and replace that with \c NULL.
2046 */
2047 ir_rvalue *projector;
2048
2049 /**
2050 * Coordinate used for comparison on shadow look-ups.
2051 *
2052 * If there is no shadow comparison, this will be \c NULL. For the
2053 * \c ir_txf opcode, this *must* be \c NULL.
2054 */
2055 ir_rvalue *shadow_comparitor;
2056
2057 /** Texel offset. */
2058 ir_rvalue *offset;
2059
2060 union {
2061 ir_rvalue *lod; /**< Floating point LOD */
2062 ir_rvalue *bias; /**< Floating point LOD bias */
2063 ir_rvalue *sample_index; /**< MSAA sample index */
2064 ir_rvalue *component; /**< Gather component selector */
2065 struct {
2066 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2067 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2068 } grad;
2069 } lod_info;
2070 };
2071
2072
2073 struct ir_swizzle_mask {
2074 unsigned x:2;
2075 unsigned y:2;
2076 unsigned z:2;
2077 unsigned w:2;
2078
2079 /**
2080 * Number of components in the swizzle.
2081 */
2082 unsigned num_components:3;
2083
2084 /**
2085 * Does the swizzle contain duplicate components?
2086 *
2087 * L-value swizzles cannot contain duplicate components.
2088 */
2089 unsigned has_duplicates:1;
2090 };
2091
2092
2093 class ir_swizzle : public ir_rvalue {
2094 public:
2095 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2096 unsigned count);
2097
2098 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2099
2100 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2101
2102 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2103
2104 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2105
2106 /**
2107 * Construct an ir_swizzle from the textual representation. Can fail.
2108 */
2109 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2110
2111 virtual void accept(ir_visitor *v)
2112 {
2113 v->visit(this);
2114 }
2115
2116 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2117
2118 virtual bool equals(const ir_instruction *ir,
2119 enum ir_node_type ignore = ir_type_unset) const;
2120
2121 bool is_lvalue() const
2122 {
2123 return val->is_lvalue() && !mask.has_duplicates;
2124 }
2125
2126 /**
2127 * Get the variable that is ultimately referenced by an r-value
2128 */
2129 virtual ir_variable *variable_referenced() const;
2130
2131 ir_rvalue *val;
2132 ir_swizzle_mask mask;
2133
2134 private:
2135 /**
2136 * Initialize the mask component of a swizzle
2137 *
2138 * This is used by the \c ir_swizzle constructors.
2139 */
2140 void init_mask(const unsigned *components, unsigned count);
2141 };
2142
2143
2144 class ir_dereference : public ir_rvalue {
2145 public:
2146 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2147
2148 bool is_lvalue() const;
2149
2150 /**
2151 * Get the variable that is ultimately referenced by an r-value
2152 */
2153 virtual ir_variable *variable_referenced() const = 0;
2154
2155 protected:
2156 ir_dereference(enum ir_node_type t)
2157 : ir_rvalue(t)
2158 {
2159 }
2160 };
2161
2162
2163 class ir_dereference_variable : public ir_dereference {
2164 public:
2165 ir_dereference_variable(ir_variable *var);
2166
2167 virtual ir_dereference_variable *clone(void *mem_ctx,
2168 struct hash_table *) const;
2169
2170 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2171
2172 virtual bool equals(const ir_instruction *ir,
2173 enum ir_node_type ignore = ir_type_unset) const;
2174
2175 /**
2176 * Get the variable that is ultimately referenced by an r-value
2177 */
2178 virtual ir_variable *variable_referenced() const
2179 {
2180 return this->var;
2181 }
2182
2183 virtual ir_variable *whole_variable_referenced()
2184 {
2185 /* ir_dereference_variable objects always dereference the entire
2186 * variable. However, if this dereference is dereferenced by anything
2187 * else, the complete deferefernce chain is not a whole-variable
2188 * dereference. This method should only be called on the top most
2189 * ir_rvalue in a dereference chain.
2190 */
2191 return this->var;
2192 }
2193
2194 virtual void accept(ir_visitor *v)
2195 {
2196 v->visit(this);
2197 }
2198
2199 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2200
2201 /**
2202 * Object being dereferenced.
2203 */
2204 ir_variable *var;
2205 };
2206
2207
2208 class ir_dereference_array : public ir_dereference {
2209 public:
2210 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2211
2212 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2213
2214 virtual ir_dereference_array *clone(void *mem_ctx,
2215 struct hash_table *) const;
2216
2217 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2218
2219 virtual bool equals(const ir_instruction *ir,
2220 enum ir_node_type ignore = ir_type_unset) const;
2221
2222 /**
2223 * Get the variable that is ultimately referenced by an r-value
2224 */
2225 virtual ir_variable *variable_referenced() const
2226 {
2227 return this->array->variable_referenced();
2228 }
2229
2230 virtual void accept(ir_visitor *v)
2231 {
2232 v->visit(this);
2233 }
2234
2235 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2236
2237 ir_rvalue *array;
2238 ir_rvalue *array_index;
2239
2240 private:
2241 void set_array(ir_rvalue *value);
2242 };
2243
2244
2245 class ir_dereference_record : public ir_dereference {
2246 public:
2247 ir_dereference_record(ir_rvalue *value, const char *field);
2248
2249 ir_dereference_record(ir_variable *var, const char *field);
2250
2251 virtual ir_dereference_record *clone(void *mem_ctx,
2252 struct hash_table *) const;
2253
2254 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2255
2256 /**
2257 * Get the variable that is ultimately referenced by an r-value
2258 */
2259 virtual ir_variable *variable_referenced() const
2260 {
2261 return this->record->variable_referenced();
2262 }
2263
2264 virtual void accept(ir_visitor *v)
2265 {
2266 v->visit(this);
2267 }
2268
2269 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2270
2271 ir_rvalue *record;
2272 const char *field;
2273 };
2274
2275
2276 /**
2277 * Data stored in an ir_constant
2278 */
2279 union ir_constant_data {
2280 unsigned u[16];
2281 int i[16];
2282 float f[16];
2283 bool b[16];
2284 double d[16];
2285 };
2286
2287
2288 class ir_constant : public ir_rvalue {
2289 public:
2290 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2291 ir_constant(bool b, unsigned vector_elements=1);
2292 ir_constant(unsigned int u, unsigned vector_elements=1);
2293 ir_constant(int i, unsigned vector_elements=1);
2294 ir_constant(float f, unsigned vector_elements=1);
2295 ir_constant(double d, unsigned vector_elements=1);
2296
2297 /**
2298 * Construct an ir_constant from a list of ir_constant values
2299 */
2300 ir_constant(const struct glsl_type *type, exec_list *values);
2301
2302 /**
2303 * Construct an ir_constant from a scalar component of another ir_constant
2304 *
2305 * The new \c ir_constant inherits the type of the component from the
2306 * source constant.
2307 *
2308 * \note
2309 * In the case of a matrix constant, the new constant is a scalar, \b not
2310 * a vector.
2311 */
2312 ir_constant(const ir_constant *c, unsigned i);
2313
2314 /**
2315 * Return a new ir_constant of the specified type containing all zeros.
2316 */
2317 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2318
2319 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2320
2321 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2322
2323 virtual void accept(ir_visitor *v)
2324 {
2325 v->visit(this);
2326 }
2327
2328 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2329
2330 virtual bool equals(const ir_instruction *ir,
2331 enum ir_node_type ignore = ir_type_unset) const;
2332
2333 /**
2334 * Get a particular component of a constant as a specific type
2335 *
2336 * This is useful, for example, to get a value from an integer constant
2337 * as a float or bool. This appears frequently when constructors are
2338 * called with all constant parameters.
2339 */
2340 /*@{*/
2341 bool get_bool_component(unsigned i) const;
2342 float get_float_component(unsigned i) const;
2343 double get_double_component(unsigned i) const;
2344 int get_int_component(unsigned i) const;
2345 unsigned get_uint_component(unsigned i) const;
2346 /*@}*/
2347
2348 ir_constant *get_array_element(unsigned i) const;
2349
2350 ir_constant *get_record_field(const char *name);
2351
2352 /**
2353 * Copy the values on another constant at a given offset.
2354 *
2355 * The offset is ignored for array or struct copies, it's only for
2356 * scalars or vectors into vectors or matrices.
2357 *
2358 * With identical types on both sides and zero offset it's clone()
2359 * without creating a new object.
2360 */
2361
2362 void copy_offset(ir_constant *src, int offset);
2363
2364 /**
2365 * Copy the values on another constant at a given offset and
2366 * following an assign-like mask.
2367 *
2368 * The mask is ignored for scalars.
2369 *
2370 * Note that this function only handles what assign can handle,
2371 * i.e. at most a vector as source and a column of a matrix as
2372 * destination.
2373 */
2374
2375 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2376
2377 /**
2378 * Determine whether a constant has the same value as another constant
2379 *
2380 * \sa ir_constant::is_zero, ir_constant::is_one,
2381 * ir_constant::is_negative_one
2382 */
2383 bool has_value(const ir_constant *) const;
2384
2385 /**
2386 * Return true if this ir_constant represents the given value.
2387 *
2388 * For vectors, this checks that each component is the given value.
2389 */
2390 virtual bool is_value(float f, int i) const;
2391 virtual bool is_zero() const;
2392 virtual bool is_one() const;
2393 virtual bool is_negative_one() const;
2394
2395 /**
2396 * Return true for constants that could be stored as 16-bit unsigned values.
2397 *
2398 * Note that this will return true even for signed integer ir_constants, as
2399 * long as the value is non-negative and fits in 16-bits.
2400 */
2401 virtual bool is_uint16_constant() const;
2402
2403 /**
2404 * Value of the constant.
2405 *
2406 * The field used to back the values supplied by the constant is determined
2407 * by the type associated with the \c ir_instruction. Constants may be
2408 * scalars, vectors, or matrices.
2409 */
2410 union ir_constant_data value;
2411
2412 /* Array elements */
2413 ir_constant **array_elements;
2414
2415 /* Structure fields */
2416 exec_list components;
2417
2418 private:
2419 /**
2420 * Parameterless constructor only used by the clone method
2421 */
2422 ir_constant(void);
2423 };
2424
2425 /**
2426 * IR instruction to emit a vertex in a geometry shader.
2427 */
2428 class ir_emit_vertex : public ir_instruction {
2429 public:
2430 ir_emit_vertex(ir_rvalue *stream)
2431 : ir_instruction(ir_type_emit_vertex),
2432 stream(stream)
2433 {
2434 assert(stream);
2435 }
2436
2437 virtual void accept(ir_visitor *v)
2438 {
2439 v->visit(this);
2440 }
2441
2442 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2443 {
2444 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2445 }
2446
2447 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2448
2449 int stream_id() const
2450 {
2451 return stream->as_constant()->value.i[0];
2452 }
2453
2454 ir_rvalue *stream;
2455 };
2456
2457 /**
2458 * IR instruction to complete the current primitive and start a new one in a
2459 * geometry shader.
2460 */
2461 class ir_end_primitive : public ir_instruction {
2462 public:
2463 ir_end_primitive(ir_rvalue *stream)
2464 : ir_instruction(ir_type_end_primitive),
2465 stream(stream)
2466 {
2467 assert(stream);
2468 }
2469
2470 virtual void accept(ir_visitor *v)
2471 {
2472 v->visit(this);
2473 }
2474
2475 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2476 {
2477 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2478 }
2479
2480 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2481
2482 int stream_id() const
2483 {
2484 return stream->as_constant()->value.i[0];
2485 }
2486
2487 ir_rvalue *stream;
2488 };
2489
2490 /**
2491 * IR instruction for tessellation control and compute shader barrier.
2492 */
2493 class ir_barrier : public ir_instruction {
2494 public:
2495 ir_barrier()
2496 : ir_instruction(ir_type_barrier)
2497 {
2498 }
2499
2500 virtual void accept(ir_visitor *v)
2501 {
2502 v->visit(this);
2503 }
2504
2505 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2506 {
2507 return new(mem_ctx) ir_barrier();
2508 }
2509
2510 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2511 };
2512
2513 /*@}*/
2514
2515 /**
2516 * Apply a visitor to each IR node in a list
2517 */
2518 void
2519 visit_exec_list(exec_list *list, ir_visitor *visitor);
2520
2521 /**
2522 * Validate invariants on each IR node in a list
2523 */
2524 void validate_ir_tree(exec_list *instructions);
2525
2526 struct _mesa_glsl_parse_state;
2527 struct gl_shader_program;
2528
2529 /**
2530 * Detect whether an unlinked shader contains static recursion
2531 *
2532 * If the list of instructions is determined to contain static recursion,
2533 * \c _mesa_glsl_error will be called to emit error messages for each function
2534 * that is in the recursion cycle.
2535 */
2536 void
2537 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2538 exec_list *instructions);
2539
2540 /**
2541 * Detect whether a linked shader contains static recursion
2542 *
2543 * If the list of instructions is determined to contain static recursion,
2544 * \c link_error_printf will be called to emit error messages for each function
2545 * that is in the recursion cycle. In addition,
2546 * \c gl_shader_program::LinkStatus will be set to false.
2547 */
2548 void
2549 detect_recursion_linked(struct gl_shader_program *prog,
2550 exec_list *instructions);
2551
2552 /**
2553 * Make a clone of each IR instruction in a list
2554 *
2555 * \param in List of IR instructions that are to be cloned
2556 * \param out List to hold the cloned instructions
2557 */
2558 void
2559 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2560
2561 extern void
2562 _mesa_glsl_initialize_variables(exec_list *instructions,
2563 struct _mesa_glsl_parse_state *state);
2564
2565 extern void
2566 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2567
2568 extern void
2569 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2570
2571 extern void
2572 _mesa_glsl_initialize_builtin_functions();
2573
2574 extern ir_function_signature *
2575 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2576 const char *name, exec_list *actual_parameters);
2577
2578 extern ir_function *
2579 _mesa_glsl_find_builtin_function_by_name(const char *name);
2580
2581 extern gl_shader *
2582 _mesa_glsl_get_builtin_function_shader(void);
2583
2584 extern ir_function_signature *
2585 _mesa_get_main_function_signature(gl_shader *sh);
2586
2587 extern void
2588 _mesa_glsl_release_functions(void);
2589
2590 extern void
2591 _mesa_glsl_release_builtin_functions(void);
2592
2593 extern void
2594 reparent_ir(exec_list *list, void *mem_ctx);
2595
2596 struct glsl_symbol_table;
2597
2598 extern void
2599 import_prototypes(const exec_list *source, exec_list *dest,
2600 struct glsl_symbol_table *symbols, void *mem_ctx);
2601
2602 extern bool
2603 ir_has_call(ir_instruction *ir);
2604
2605 extern void
2606 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2607 gl_shader_stage shader_stage);
2608
2609 extern char *
2610 prototype_string(const glsl_type *return_type, const char *name,
2611 exec_list *parameters);
2612
2613 const char *
2614 mode_string(const ir_variable *var);
2615
2616 /**
2617 * Built-in / reserved GL variables names start with "gl_"
2618 */
2619 static inline bool
2620 is_gl_identifier(const char *s)
2621 {
2622 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2623 }
2624
2625 extern "C" {
2626 #endif /* __cplusplus */
2627
2628 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2629 struct _mesa_glsl_parse_state *state);
2630
2631 extern void
2632 fprint_ir(FILE *f, const void *instruction);
2633
2634 #ifdef __cplusplus
2635 } /* extern "C" */
2636 #endif
2637
2638 unsigned
2639 vertices_per_prim(GLenum prim);
2640
2641 #endif /* IR_H */