glsl: Add comments to clarify the types of comparison binops.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 /**
45 * \defgroup IR Intermediate representation nodes
46 *
47 * @{
48 */
49
50 /**
51 * Class tags
52 *
53 * Each concrete class derived from \c ir_instruction has a value in this
54 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
55 * by the constructor. While using type tags is not very C++, it is extremely
56 * convenient. For example, during debugging you can simply inspect
57 * \c ir_instruction::ir_type to find out the actual type of the object.
58 *
59 * In addition, it is possible to use a switch-statement based on \c
60 * \c ir_instruction::ir_type to select different behavior for different object
61 * types. For functions that have only slight differences for several object
62 * types, this allows writing very straightforward, readable code.
63 */
64 enum ir_node_type {
65 /**
66 * Zero is unused so that the IR validator can detect cases where
67 * \c ir_instruction::ir_type has not been initialized.
68 */
69 ir_type_unset,
70 ir_type_variable,
71 ir_type_assignment,
72 ir_type_call,
73 ir_type_constant,
74 ir_type_dereference_array,
75 ir_type_dereference_record,
76 ir_type_dereference_variable,
77 ir_type_discard,
78 ir_type_expression,
79 ir_type_function,
80 ir_type_function_signature,
81 ir_type_if,
82 ir_type_loop,
83 ir_type_loop_jump,
84 ir_type_return,
85 ir_type_swizzle,
86 ir_type_texture,
87 ir_type_max /**< maximum ir_type enum number, for validation */
88 };
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96 const struct glsl_type *type;
97
98 /** ir_print_visitor helper for debugging. */
99 void print(void) const;
100
101 virtual void accept(ir_visitor *) = 0;
102 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
103 virtual ir_instruction *clone(void *mem_ctx,
104 struct hash_table *ht) const = 0;
105
106 /**
107 * \name IR instruction downcast functions
108 *
109 * These functions either cast the object to a derived class or return
110 * \c NULL if the object's type does not match the specified derived class.
111 * Additional downcast functions will be added as needed.
112 */
113 /*@{*/
114 virtual class ir_variable * as_variable() { return NULL; }
115 virtual class ir_function * as_function() { return NULL; }
116 virtual class ir_dereference * as_dereference() { return NULL; }
117 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
118 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
119 virtual class ir_expression * as_expression() { return NULL; }
120 virtual class ir_rvalue * as_rvalue() { return NULL; }
121 virtual class ir_loop * as_loop() { return NULL; }
122 virtual class ir_assignment * as_assignment() { return NULL; }
123 virtual class ir_call * as_call() { return NULL; }
124 virtual class ir_return * as_return() { return NULL; }
125 virtual class ir_if * as_if() { return NULL; }
126 virtual class ir_swizzle * as_swizzle() { return NULL; }
127 virtual class ir_constant * as_constant() { return NULL; }
128 /*@}*/
129
130 protected:
131 ir_instruction()
132 {
133 ir_type = ir_type_unset;
134 type = NULL;
135 }
136 };
137
138
139 class ir_rvalue : public ir_instruction {
140 public:
141 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
142
143 virtual ir_constant *constant_expression_value() = 0;
144
145 virtual ir_rvalue * as_rvalue()
146 {
147 return this;
148 }
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 protected:
179 ir_rvalue();
180 };
181
182
183 /**
184 * Variable storage classes
185 */
186 enum ir_variable_mode {
187 ir_var_auto = 0, /**< Function local variables and globals. */
188 ir_var_uniform, /**< Variable declared as a uniform. */
189 ir_var_in,
190 ir_var_out,
191 ir_var_inout,
192 ir_var_temporary /**< Temporary variable generated during compilation. */
193 };
194
195 enum ir_variable_interpolation {
196 ir_var_smooth = 0,
197 ir_var_flat,
198 ir_var_noperspective
199 };
200
201
202 class ir_variable : public ir_instruction {
203 public:
204 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
205
206 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
207
208 virtual ir_variable *as_variable()
209 {
210 return this;
211 }
212
213 virtual void accept(ir_visitor *v)
214 {
215 v->visit(this);
216 }
217
218 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
219
220
221 /**
222 * Get the string value for the interpolation qualifier
223 *
224 * \return The string that would be used in a shader to specify \c
225 * mode will be returned.
226 *
227 * This function should only be used on a shader input or output variable.
228 */
229 const char *interpolation_string() const;
230
231 /**
232 * Calculate the number of slots required to hold this variable
233 *
234 * This is used to determine how many uniform or varying locations a variable
235 * occupies. The count is in units of floating point components.
236 */
237 unsigned component_slots() const;
238
239 /**
240 * Delcared name of the variable
241 */
242 const char *name;
243
244 /**
245 * Highest element accessed with a constant expression array index
246 *
247 * Not used for non-array variables.
248 */
249 unsigned max_array_access;
250
251 /**
252 * Is the variable read-only?
253 *
254 * This is set for variables declared as \c const, shader inputs,
255 * and uniforms.
256 */
257 unsigned read_only:1;
258 unsigned centroid:1;
259 unsigned invariant:1;
260
261 /**
262 * Storage class of the variable.
263 *
264 * \sa ir_variable_mode
265 */
266 unsigned mode:3;
267
268 /**
269 * Interpolation mode for shader inputs / outputs
270 *
271 * \sa ir_variable_interpolation
272 */
273 unsigned interpolation:2;
274
275 /**
276 * Flag that the whole array is assignable
277 *
278 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
279 * equality). This flag enables this behavior.
280 */
281 unsigned array_lvalue:1;
282
283 /**
284 * \name ARB_fragment_coord_conventions
285 * @{
286 */
287 unsigned origin_upper_left:1;
288 unsigned pixel_center_integer:1;
289 /*@}*/
290
291 /**
292 * Storage location of the base of this variable
293 *
294 * The precise meaning of this field depends on the nature of the variable.
295 *
296 * - Vertex shader input: one of the values from \c gl_vert_attrib.
297 * - Vertex shader output: one of the values from \c gl_vert_result.
298 * - Fragment shader input: one of the values from \c gl_frag_attrib.
299 * - Fragment shader output: one of the values from \c gl_frag_result.
300 * - Uniforms: Per-stage uniform slot number.
301 * - Other: This field is not currently used.
302 *
303 * If the variable is a uniform, shader input, or shader output, and the
304 * slot has not been assigned, the value will be -1.
305 */
306 int location;
307
308 /**
309 * Emit a warning if this variable is accessed.
310 */
311 const char *warn_extension;
312
313 /**
314 * Value assigned in the initializer of a variable declared "const"
315 */
316 ir_constant *constant_value;
317 };
318
319
320 /*@{*/
321 /**
322 * The representation of a function instance; may be the full definition or
323 * simply a prototype.
324 */
325 class ir_function_signature : public ir_instruction {
326 /* An ir_function_signature will be part of the list of signatures in
327 * an ir_function.
328 */
329 public:
330 ir_function_signature(const glsl_type *return_type);
331
332 virtual ir_function_signature *clone(void *mem_ctx,
333 struct hash_table *ht) const;
334
335 virtual void accept(ir_visitor *v)
336 {
337 v->visit(this);
338 }
339
340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
341
342 /**
343 * Get the name of the function for which this is a signature
344 */
345 const char *function_name() const;
346
347 /**
348 * Get a handle to the function for which this is a signature
349 *
350 * There is no setter function, this function returns a \c const pointer,
351 * and \c ir_function_signature::_function is private for a reason. The
352 * only way to make a connection between a function and function signature
353 * is via \c ir_function::add_signature. This helps ensure that certain
354 * invariants (i.e., a function signature is in the list of signatures for
355 * its \c _function) are met.
356 *
357 * \sa ir_function::add_signature
358 */
359 inline const class ir_function *function() const
360 {
361 return this->_function;
362 }
363
364 /**
365 * Check whether the qualifiers match between this signature's parameters
366 * and the supplied parameter list. If not, returns the name of the first
367 * parameter with mismatched qualifiers (for use in error messages).
368 */
369 const char *qualifiers_match(exec_list *params);
370
371 /**
372 * Replace the current parameter list with the given one. This is useful
373 * if the current information came from a prototype, and either has invalid
374 * or missing parameter names.
375 */
376 void replace_parameters(exec_list *new_params);
377
378 /**
379 * Function return type.
380 *
381 * \note This discards the optional precision qualifier.
382 */
383 const struct glsl_type *return_type;
384
385 /**
386 * List of ir_variable of function parameters.
387 *
388 * This represents the storage. The paramaters passed in a particular
389 * call will be in ir_call::actual_paramaters.
390 */
391 struct exec_list parameters;
392
393 /** Whether or not this function has a body (which may be empty). */
394 unsigned is_defined:1;
395
396 /** Whether or not this function signature is a built-in. */
397 unsigned is_builtin:1;
398
399 /** Body of instructions in the function. */
400 struct exec_list body;
401
402 private:
403 /** Function of which this signature is one overload. */
404 class ir_function *_function;
405
406 friend class ir_function;
407 };
408
409
410 /**
411 * Header for tracking multiple overloaded functions with the same name.
412 * Contains a list of ir_function_signatures representing each of the
413 * actual functions.
414 */
415 class ir_function : public ir_instruction {
416 public:
417 ir_function(const char *name);
418
419 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
420
421 virtual ir_function *as_function()
422 {
423 return this;
424 }
425
426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433 void add_signature(ir_function_signature *sig)
434 {
435 sig->_function = this;
436 this->signatures.push_tail(sig);
437 }
438
439 /**
440 * Get an iterator for the set of function signatures
441 */
442 exec_list_iterator iterator()
443 {
444 return signatures.iterator();
445 }
446
447 /**
448 * Find a signature that matches a set of actual parameters, taking implicit
449 * conversions into account.
450 */
451 ir_function_signature *matching_signature(const exec_list *actual_param);
452
453 /**
454 * Find a signature that exactly matches a set of actual parameters without
455 * any implicit type conversions.
456 */
457 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
458
459 /**
460 * Name of the function.
461 */
462 const char *name;
463
464 /** Whether or not this function has a signature that isn't a built-in. */
465 bool has_user_signature();
466
467 /**
468 * List of ir_function_signature for each overloaded function with this name.
469 */
470 struct exec_list signatures;
471 };
472
473 inline const char *ir_function_signature::function_name() const
474 {
475 return this->_function->name;
476 }
477 /*@}*/
478
479
480 /**
481 * IR instruction representing high-level if-statements
482 */
483 class ir_if : public ir_instruction {
484 public:
485 ir_if(ir_rvalue *condition)
486 : condition(condition)
487 {
488 ir_type = ir_type_if;
489 }
490
491 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
492
493 virtual ir_if *as_if()
494 {
495 return this;
496 }
497
498 virtual void accept(ir_visitor *v)
499 {
500 v->visit(this);
501 }
502
503 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
504
505 ir_rvalue *condition;
506 /** List of ir_instruction for the body of the then branch */
507 exec_list then_instructions;
508 /** List of ir_instruction for the body of the else branch */
509 exec_list else_instructions;
510 };
511
512
513 /**
514 * IR instruction representing a high-level loop structure.
515 */
516 class ir_loop : public ir_instruction {
517 public:
518 ir_loop();
519
520 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
521
522 virtual void accept(ir_visitor *v)
523 {
524 v->visit(this);
525 }
526
527 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
528
529 virtual ir_loop *as_loop()
530 {
531 return this;
532 }
533
534 /**
535 * Get an iterator for the instructions of the loop body
536 */
537 exec_list_iterator iterator()
538 {
539 return body_instructions.iterator();
540 }
541
542 /** List of ir_instruction that make up the body of the loop. */
543 exec_list body_instructions;
544
545 /**
546 * \name Loop counter and controls
547 *
548 * Represents a loop like a FORTRAN \c do-loop.
549 *
550 * \note
551 * If \c from and \c to are the same value, the loop will execute once.
552 */
553 /*@{*/
554 ir_rvalue *from; /** Value of the loop counter on the first
555 * iteration of the loop.
556 */
557 ir_rvalue *to; /** Value of the loop counter on the last
558 * iteration of the loop.
559 */
560 ir_rvalue *increment;
561 ir_variable *counter;
562
563 /**
564 * Comparison operation in the loop terminator.
565 *
566 * If any of the loop control fields are non-\c NULL, this field must be
567 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
568 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
569 */
570 int cmp;
571 /*@}*/
572 };
573
574
575 class ir_assignment : public ir_instruction {
576 public:
577 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
578
579 /**
580 * Construct an assignment with an explicit write mask
581 *
582 * \note
583 * Since a write mask is supplied, the LHS must already be a bare
584 * \c ir_dereference. The cannot be any swizzles in the LHS.
585 */
586 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
587 unsigned write_mask);
588
589 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
590
591 virtual ir_constant *constant_expression_value();
592
593 virtual void accept(ir_visitor *v)
594 {
595 v->visit(this);
596 }
597
598 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
599
600 virtual ir_assignment * as_assignment()
601 {
602 return this;
603 }
604
605 /**
606 * Get a whole variable written by an assignment
607 *
608 * If the LHS of the assignment writes a whole variable, the variable is
609 * returned. Otherwise \c NULL is returned. Examples of whole-variable
610 * assignment are:
611 *
612 * - Assigning to a scalar
613 * - Assigning to all components of a vector
614 * - Whole array (or matrix) assignment
615 * - Whole structure assignment
616 */
617 ir_variable *whole_variable_written();
618
619 /**
620 * Set the LHS of an assignment
621 */
622 void set_lhs(ir_rvalue *lhs);
623
624 /**
625 * Left-hand side of the assignment.
626 *
627 * This should be treated as read only. If you need to set the LHS of an
628 * assignment, use \c ir_assignment::set_lhs.
629 */
630 ir_dereference *lhs;
631
632 /**
633 * Value being assigned
634 */
635 ir_rvalue *rhs;
636
637 /**
638 * Optional condition for the assignment.
639 */
640 ir_rvalue *condition;
641
642
643 /**
644 * Component mask written
645 *
646 * For non-vector types in the LHS, this field will be zero. For vector
647 * types, a bit will be set for each component that is written. Note that
648 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
649 */
650 unsigned write_mask:4;
651 };
652
653 /* Update ir_expression::num_operands() and operator_strs when
654 * updating this list.
655 */
656 enum ir_expression_operation {
657 ir_unop_bit_not,
658 ir_unop_logic_not,
659 ir_unop_neg,
660 ir_unop_abs,
661 ir_unop_sign,
662 ir_unop_rcp,
663 ir_unop_rsq,
664 ir_unop_sqrt,
665 ir_unop_exp, /**< Log base e on gentype */
666 ir_unop_log, /**< Natural log on gentype */
667 ir_unop_exp2,
668 ir_unop_log2,
669 ir_unop_f2i, /**< Float-to-integer conversion. */
670 ir_unop_i2f, /**< Integer-to-float conversion. */
671 ir_unop_f2b, /**< Float-to-boolean conversion */
672 ir_unop_b2f, /**< Boolean-to-float conversion */
673 ir_unop_i2b, /**< int-to-boolean conversion */
674 ir_unop_b2i, /**< Boolean-to-int conversion */
675 ir_unop_u2f, /**< Unsigned-to-float conversion. */
676 ir_unop_any,
677
678 /**
679 * \name Unary floating-point rounding operations.
680 */
681 /*@{*/
682 ir_unop_trunc,
683 ir_unop_ceil,
684 ir_unop_floor,
685 ir_unop_fract,
686 /*@}*/
687
688 /**
689 * \name Trigonometric operations.
690 */
691 /*@{*/
692 ir_unop_sin,
693 ir_unop_cos,
694 /*@}*/
695
696 /**
697 * \name Partial derivatives.
698 */
699 /*@{*/
700 ir_unop_dFdx,
701 ir_unop_dFdy,
702 /*@}*/
703
704 ir_unop_noise,
705
706 ir_binop_add,
707 ir_binop_sub,
708 ir_binop_mul,
709 ir_binop_div,
710
711 /**
712 * Takes one of two combinations of arguments:
713 *
714 * - mod(vecN, vecN)
715 * - mod(vecN, float)
716 *
717 * Does not take integer types.
718 */
719 ir_binop_mod,
720
721 /**
722 * \name Binary comparison operators which return a boolean vector.
723 * The type of both operands must be equal.
724 */
725 /*@{*/
726 ir_binop_less,
727 ir_binop_greater,
728 ir_binop_lequal,
729 ir_binop_gequal,
730 ir_binop_equal,
731 ir_binop_nequal,
732 /**
733 * Returns single boolean for whether all components of operands[0]
734 * equal the components of operands[1].
735 */
736 ir_binop_all_equal,
737 /**
738 * Returns single boolean for whether any component of operands[0]
739 * is not equal to the corresponding component of operands[1].
740 */
741 ir_binop_any_nequal,
742 /*@}*/
743
744 /**
745 * \name Bit-wise binary operations.
746 */
747 /*@{*/
748 ir_binop_lshift,
749 ir_binop_rshift,
750 ir_binop_bit_and,
751 ir_binop_bit_xor,
752 ir_binop_bit_or,
753 /*@}*/
754
755 ir_binop_logic_and,
756 ir_binop_logic_xor,
757 ir_binop_logic_or,
758
759 ir_binop_dot,
760 ir_binop_cross,
761 ir_binop_min,
762 ir_binop_max,
763
764 ir_binop_pow
765 };
766
767 class ir_expression : public ir_rvalue {
768 public:
769 ir_expression(int op, const struct glsl_type *type,
770 ir_rvalue *, ir_rvalue *);
771
772 virtual ir_expression *as_expression()
773 {
774 return this;
775 }
776
777 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
778
779 /**
780 * Attempt to constant-fold the expression
781 *
782 * If the expression cannot be constant folded, this method will return
783 * \c NULL.
784 */
785 virtual ir_constant *constant_expression_value();
786
787 /**
788 * Determine the number of operands used by an expression
789 */
790 static unsigned int get_num_operands(ir_expression_operation);
791
792 /**
793 * Determine the number of operands used by an expression
794 */
795 unsigned int get_num_operands() const
796 {
797 return get_num_operands(operation);
798 }
799
800 /**
801 * Return a string representing this expression's operator.
802 */
803 const char *operator_string();
804
805 /**
806 * Return a string representing this expression's operator.
807 */
808 static const char *operator_string(ir_expression_operation);
809
810
811 /**
812 * Do a reverse-lookup to translate the given string into an operator.
813 */
814 static ir_expression_operation get_operator(const char *);
815
816 virtual void accept(ir_visitor *v)
817 {
818 v->visit(this);
819 }
820
821 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
822
823 ir_expression_operation operation;
824 ir_rvalue *operands[2];
825 };
826
827
828 /**
829 * IR instruction representing a function call
830 */
831 class ir_call : public ir_rvalue {
832 public:
833 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
834 : callee(callee)
835 {
836 ir_type = ir_type_call;
837 assert(callee->return_type != NULL);
838 type = callee->return_type;
839 actual_parameters->move_nodes_to(& this->actual_parameters);
840 }
841
842 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
843
844 virtual ir_constant *constant_expression_value();
845
846 virtual ir_call *as_call()
847 {
848 return this;
849 }
850
851 virtual void accept(ir_visitor *v)
852 {
853 v->visit(this);
854 }
855
856 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
857
858 /**
859 * Get a generic ir_call object when an error occurs
860 *
861 * Any allocation will be performed with 'ctx' as talloc owner.
862 */
863 static ir_call *get_error_instruction(void *ctx);
864
865 /**
866 * Get an iterator for the set of acutal parameters
867 */
868 exec_list_iterator iterator()
869 {
870 return actual_parameters.iterator();
871 }
872
873 /**
874 * Get the name of the function being called.
875 */
876 const char *callee_name() const
877 {
878 return callee->function_name();
879 }
880
881 /**
882 * Get the function signature bound to this function call
883 */
884 ir_function_signature *get_callee()
885 {
886 return callee;
887 }
888
889 /**
890 * Set the function call target
891 */
892 void set_callee(ir_function_signature *sig);
893
894 /**
895 * Generates an inline version of the function before @ir,
896 * returning the return value of the function.
897 */
898 ir_rvalue *generate_inline(ir_instruction *ir);
899
900 /* List of ir_rvalue of paramaters passed in this call. */
901 exec_list actual_parameters;
902
903 private:
904 ir_call()
905 : callee(NULL)
906 {
907 this->ir_type = ir_type_call;
908 }
909
910 ir_function_signature *callee;
911 };
912
913
914 /**
915 * \name Jump-like IR instructions.
916 *
917 * These include \c break, \c continue, \c return, and \c discard.
918 */
919 /*@{*/
920 class ir_jump : public ir_instruction {
921 protected:
922 ir_jump()
923 {
924 ir_type = ir_type_unset;
925 }
926 };
927
928 class ir_return : public ir_jump {
929 public:
930 ir_return()
931 : value(NULL)
932 {
933 this->ir_type = ir_type_return;
934 }
935
936 ir_return(ir_rvalue *value)
937 : value(value)
938 {
939 this->ir_type = ir_type_return;
940 }
941
942 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
943
944 virtual ir_return *as_return()
945 {
946 return this;
947 }
948
949 ir_rvalue *get_value() const
950 {
951 return value;
952 }
953
954 virtual void accept(ir_visitor *v)
955 {
956 v->visit(this);
957 }
958
959 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
960
961 ir_rvalue *value;
962 };
963
964
965 /**
966 * Jump instructions used inside loops
967 *
968 * These include \c break and \c continue. The \c break within a loop is
969 * different from the \c break within a switch-statement.
970 *
971 * \sa ir_switch_jump
972 */
973 class ir_loop_jump : public ir_jump {
974 public:
975 enum jump_mode {
976 jump_break,
977 jump_continue
978 };
979
980 ir_loop_jump(jump_mode mode)
981 {
982 this->ir_type = ir_type_loop_jump;
983 this->mode = mode;
984 this->loop = loop;
985 }
986
987 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
988
989 virtual void accept(ir_visitor *v)
990 {
991 v->visit(this);
992 }
993
994 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
995
996 bool is_break() const
997 {
998 return mode == jump_break;
999 }
1000
1001 bool is_continue() const
1002 {
1003 return mode == jump_continue;
1004 }
1005
1006 /** Mode selector for the jump instruction. */
1007 enum jump_mode mode;
1008 private:
1009 /** Loop containing this break instruction. */
1010 ir_loop *loop;
1011 };
1012
1013 /**
1014 * IR instruction representing discard statements.
1015 */
1016 class ir_discard : public ir_jump {
1017 public:
1018 ir_discard()
1019 {
1020 this->ir_type = ir_type_discard;
1021 this->condition = NULL;
1022 }
1023
1024 ir_discard(ir_rvalue *cond)
1025 {
1026 this->ir_type = ir_type_discard;
1027 this->condition = cond;
1028 }
1029
1030 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1031
1032 virtual void accept(ir_visitor *v)
1033 {
1034 v->visit(this);
1035 }
1036
1037 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1038
1039 ir_rvalue *condition;
1040 };
1041 /*@}*/
1042
1043
1044 /**
1045 * Texture sampling opcodes used in ir_texture
1046 */
1047 enum ir_texture_opcode {
1048 ir_tex, /**< Regular texture look-up */
1049 ir_txb, /**< Texture look-up with LOD bias */
1050 ir_txl, /**< Texture look-up with explicit LOD */
1051 ir_txd, /**< Texture look-up with partial derivatvies */
1052 ir_txf /**< Texel fetch with explicit LOD */
1053 };
1054
1055
1056 /**
1057 * IR instruction to sample a texture
1058 *
1059 * The specific form of the IR instruction depends on the \c mode value
1060 * selected from \c ir_texture_opcodes. In the printed IR, these will
1061 * appear as:
1062 *
1063 * Texel offset
1064 * | Projection divisor
1065 * | | Shadow comparitor
1066 * | | |
1067 * v v v
1068 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1069 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1070 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1071 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1072 * (txf (sampler) (coordinate) (0 0 0) (lod))
1073 */
1074 class ir_texture : public ir_rvalue {
1075 public:
1076 ir_texture(enum ir_texture_opcode op)
1077 : op(op), projector(NULL), shadow_comparitor(NULL)
1078 {
1079 this->ir_type = ir_type_texture;
1080 }
1081
1082 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1083
1084 virtual ir_constant *constant_expression_value();
1085
1086 virtual void accept(ir_visitor *v)
1087 {
1088 v->visit(this);
1089 }
1090
1091 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1092
1093 /**
1094 * Return a string representing the ir_texture_opcode.
1095 */
1096 const char *opcode_string();
1097
1098 /** Set the sampler and infer the type. */
1099 void set_sampler(ir_dereference *sampler);
1100
1101 /**
1102 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1103 */
1104 static ir_texture_opcode get_opcode(const char *);
1105
1106 enum ir_texture_opcode op;
1107
1108 /** Sampler to use for the texture access. */
1109 ir_dereference *sampler;
1110
1111 /** Texture coordinate to sample */
1112 ir_rvalue *coordinate;
1113
1114 /**
1115 * Value used for projective divide.
1116 *
1117 * If there is no projective divide (the common case), this will be
1118 * \c NULL. Optimization passes should check for this to point to a constant
1119 * of 1.0 and replace that with \c NULL.
1120 */
1121 ir_rvalue *projector;
1122
1123 /**
1124 * Coordinate used for comparison on shadow look-ups.
1125 *
1126 * If there is no shadow comparison, this will be \c NULL. For the
1127 * \c ir_txf opcode, this *must* be \c NULL.
1128 */
1129 ir_rvalue *shadow_comparitor;
1130
1131 /** Explicit texel offsets. */
1132 signed char offsets[3];
1133
1134 union {
1135 ir_rvalue *lod; /**< Floating point LOD */
1136 ir_rvalue *bias; /**< Floating point LOD bias */
1137 struct {
1138 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1139 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1140 } grad;
1141 } lod_info;
1142 };
1143
1144
1145 struct ir_swizzle_mask {
1146 unsigned x:2;
1147 unsigned y:2;
1148 unsigned z:2;
1149 unsigned w:2;
1150
1151 /**
1152 * Number of components in the swizzle.
1153 */
1154 unsigned num_components:3;
1155
1156 /**
1157 * Does the swizzle contain duplicate components?
1158 *
1159 * L-value swizzles cannot contain duplicate components.
1160 */
1161 unsigned has_duplicates:1;
1162 };
1163
1164
1165 class ir_swizzle : public ir_rvalue {
1166 public:
1167 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1168 unsigned count);
1169
1170 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1171
1172 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1173
1174 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1175
1176 virtual ir_constant *constant_expression_value();
1177
1178 virtual ir_swizzle *as_swizzle()
1179 {
1180 return this;
1181 }
1182
1183 /**
1184 * Construct an ir_swizzle from the textual representation. Can fail.
1185 */
1186 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1187
1188 virtual void accept(ir_visitor *v)
1189 {
1190 v->visit(this);
1191 }
1192
1193 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1194
1195 bool is_lvalue()
1196 {
1197 return val->is_lvalue() && !mask.has_duplicates;
1198 }
1199
1200 /**
1201 * Get the variable that is ultimately referenced by an r-value
1202 */
1203 virtual ir_variable *variable_referenced();
1204
1205 ir_rvalue *val;
1206 ir_swizzle_mask mask;
1207
1208 private:
1209 /**
1210 * Initialize the mask component of a swizzle
1211 *
1212 * This is used by the \c ir_swizzle constructors.
1213 */
1214 void init_mask(const unsigned *components, unsigned count);
1215 };
1216
1217
1218 class ir_dereference : public ir_rvalue {
1219 public:
1220 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1221
1222 virtual ir_dereference *as_dereference()
1223 {
1224 return this;
1225 }
1226
1227 bool is_lvalue();
1228
1229 /**
1230 * Get the variable that is ultimately referenced by an r-value
1231 */
1232 virtual ir_variable *variable_referenced() = 0;
1233 };
1234
1235
1236 class ir_dereference_variable : public ir_dereference {
1237 public:
1238 ir_dereference_variable(ir_variable *var);
1239
1240 virtual ir_dereference_variable *clone(void *mem_ctx,
1241 struct hash_table *) const;
1242
1243 virtual ir_constant *constant_expression_value();
1244
1245 virtual ir_dereference_variable *as_dereference_variable()
1246 {
1247 return this;
1248 }
1249
1250 /**
1251 * Get the variable that is ultimately referenced by an r-value
1252 */
1253 virtual ir_variable *variable_referenced()
1254 {
1255 return this->var;
1256 }
1257
1258 virtual ir_variable *whole_variable_referenced()
1259 {
1260 /* ir_dereference_variable objects always dereference the entire
1261 * variable. However, if this dereference is dereferenced by anything
1262 * else, the complete deferefernce chain is not a whole-variable
1263 * dereference. This method should only be called on the top most
1264 * ir_rvalue in a dereference chain.
1265 */
1266 return this->var;
1267 }
1268
1269 virtual void accept(ir_visitor *v)
1270 {
1271 v->visit(this);
1272 }
1273
1274 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1275
1276 /**
1277 * Object being dereferenced.
1278 */
1279 ir_variable *var;
1280 };
1281
1282
1283 class ir_dereference_array : public ir_dereference {
1284 public:
1285 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1286
1287 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1288
1289 virtual ir_dereference_array *clone(void *mem_ctx,
1290 struct hash_table *) const;
1291
1292 virtual ir_constant *constant_expression_value();
1293
1294 virtual ir_dereference_array *as_dereference_array()
1295 {
1296 return this;
1297 }
1298
1299 /**
1300 * Get the variable that is ultimately referenced by an r-value
1301 */
1302 virtual ir_variable *variable_referenced()
1303 {
1304 return this->array->variable_referenced();
1305 }
1306
1307 virtual void accept(ir_visitor *v)
1308 {
1309 v->visit(this);
1310 }
1311
1312 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1313
1314 ir_rvalue *array;
1315 ir_rvalue *array_index;
1316
1317 private:
1318 void set_array(ir_rvalue *value);
1319 };
1320
1321
1322 class ir_dereference_record : public ir_dereference {
1323 public:
1324 ir_dereference_record(ir_rvalue *value, const char *field);
1325
1326 ir_dereference_record(ir_variable *var, const char *field);
1327
1328 virtual ir_dereference_record *clone(void *mem_ctx,
1329 struct hash_table *) const;
1330
1331 virtual ir_constant *constant_expression_value();
1332
1333 /**
1334 * Get the variable that is ultimately referenced by an r-value
1335 */
1336 virtual ir_variable *variable_referenced()
1337 {
1338 return this->record->variable_referenced();
1339 }
1340
1341 virtual void accept(ir_visitor *v)
1342 {
1343 v->visit(this);
1344 }
1345
1346 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1347
1348 ir_rvalue *record;
1349 const char *field;
1350 };
1351
1352
1353 /**
1354 * Data stored in an ir_constant
1355 */
1356 union ir_constant_data {
1357 unsigned u[16];
1358 int i[16];
1359 float f[16];
1360 bool b[16];
1361 };
1362
1363
1364 class ir_constant : public ir_rvalue {
1365 public:
1366 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1367 ir_constant(bool b);
1368 ir_constant(unsigned int u);
1369 ir_constant(int i);
1370 ir_constant(float f);
1371
1372 /**
1373 * Construct an ir_constant from a list of ir_constant values
1374 */
1375 ir_constant(const struct glsl_type *type, exec_list *values);
1376
1377 /**
1378 * Construct an ir_constant from a scalar component of another ir_constant
1379 *
1380 * The new \c ir_constant inherits the type of the component from the
1381 * source constant.
1382 *
1383 * \note
1384 * In the case of a matrix constant, the new constant is a scalar, \b not
1385 * a vector.
1386 */
1387 ir_constant(const ir_constant *c, unsigned i);
1388
1389 /**
1390 * Return a new ir_constant of the specified type containing all zeros.
1391 */
1392 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1393
1394 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1395
1396 virtual ir_constant *constant_expression_value();
1397
1398 virtual ir_constant *as_constant()
1399 {
1400 return this;
1401 }
1402
1403 virtual void accept(ir_visitor *v)
1404 {
1405 v->visit(this);
1406 }
1407
1408 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1409
1410 /**
1411 * Get a particular component of a constant as a specific type
1412 *
1413 * This is useful, for example, to get a value from an integer constant
1414 * as a float or bool. This appears frequently when constructors are
1415 * called with all constant parameters.
1416 */
1417 /*@{*/
1418 bool get_bool_component(unsigned i) const;
1419 float get_float_component(unsigned i) const;
1420 int get_int_component(unsigned i) const;
1421 unsigned get_uint_component(unsigned i) const;
1422 /*@}*/
1423
1424 ir_constant *get_array_element(unsigned i) const;
1425
1426 ir_constant *get_record_field(const char *name);
1427
1428 /**
1429 * Determine whether a constant has the same value as another constant
1430 */
1431 bool has_value(const ir_constant *) const;
1432
1433 /**
1434 * Value of the constant.
1435 *
1436 * The field used to back the values supplied by the constant is determined
1437 * by the type associated with the \c ir_instruction. Constants may be
1438 * scalars, vectors, or matrices.
1439 */
1440 union ir_constant_data value;
1441
1442 /* Array elements */
1443 ir_constant **array_elements;
1444
1445 /* Structure fields */
1446 exec_list components;
1447
1448 private:
1449 /**
1450 * Parameterless constructor only used by the clone method
1451 */
1452 ir_constant(void);
1453 };
1454
1455 /*@}*/
1456
1457 /**
1458 * Apply a visitor to each IR node in a list
1459 */
1460 void
1461 visit_exec_list(exec_list *list, ir_visitor *visitor);
1462
1463 /**
1464 * Validate invariants on each IR node in a list
1465 */
1466 void validate_ir_tree(exec_list *instructions);
1467
1468 /**
1469 * Make a clone of each IR instruction in a list
1470 *
1471 * \param in List of IR instructions that are to be cloned
1472 * \param out List to hold the cloned instructions
1473 */
1474 void
1475 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1476
1477 extern void
1478 _mesa_glsl_initialize_variables(exec_list *instructions,
1479 struct _mesa_glsl_parse_state *state);
1480
1481 extern void
1482 _mesa_glsl_initialize_functions(exec_list *instructions,
1483 struct _mesa_glsl_parse_state *state);
1484
1485 extern void
1486 _mesa_glsl_release_functions(void);
1487
1488 extern void
1489 reparent_ir(exec_list *list, void *mem_ctx);
1490
1491 struct glsl_symbol_table;
1492
1493 extern void
1494 import_prototypes(const exec_list *source, exec_list *dest,
1495 struct glsl_symbol_table *symbols, void *mem_ctx);
1496
1497 extern bool
1498 ir_has_call(ir_instruction *ir);
1499
1500 extern void
1501 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1502
1503 #endif /* IR_H */