glsl: Put all bitfields in ir_variable together for better packing
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91 const struct glsl_type *type;
92
93 /** ir_print_visitor helper for debugging. */
94 void print(void) const;
95
96 virtual void accept(ir_visitor *) = 0;
97 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
98 virtual ir_instruction *clone(void *mem_ctx,
99 struct hash_table *ht) const = 0;
100
101 /**
102 * \name IR instruction downcast functions
103 *
104 * These functions either cast the object to a derived class or return
105 * \c NULL if the object's type does not match the specified derived class.
106 * Additional downcast functions will be added as needed.
107 */
108 /*@{*/
109 virtual class ir_variable * as_variable() { return NULL; }
110 virtual class ir_function * as_function() { return NULL; }
111 virtual class ir_dereference * as_dereference() { return NULL; }
112 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
113 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
114 virtual class ir_expression * as_expression() { return NULL; }
115 virtual class ir_rvalue * as_rvalue() { return NULL; }
116 virtual class ir_loop * as_loop() { return NULL; }
117 virtual class ir_assignment * as_assignment() { return NULL; }
118 virtual class ir_call * as_call() { return NULL; }
119 virtual class ir_return * as_return() { return NULL; }
120 virtual class ir_if * as_if() { return NULL; }
121 virtual class ir_swizzle * as_swizzle() { return NULL; }
122 virtual class ir_constant * as_constant() { return NULL; }
123 virtual class ir_discard * as_discard() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 class ir_rvalue : public ir_instruction {
136 public:
137 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
138
139 virtual ir_constant *constant_expression_value() = 0;
140
141 virtual ir_rvalue * as_rvalue()
142 {
143 return this;
144 }
145
146 ir_rvalue *as_rvalue_to_saturate();
147
148 virtual bool is_lvalue() const
149 {
150 return false;
151 }
152
153 /**
154 * Get the variable that is ultimately referenced by an r-value
155 */
156 virtual ir_variable *variable_referenced() const
157 {
158 return NULL;
159 }
160
161
162 /**
163 * If an r-value is a reference to a whole variable, get that variable
164 *
165 * \return
166 * Pointer to a variable that is completely dereferenced by the r-value. If
167 * the r-value is not a dereference or the dereference does not access the
168 * entire variable (i.e., it's just one array element, struct field), \c NULL
169 * is returned.
170 */
171 virtual ir_variable *whole_variable_referenced()
172 {
173 return NULL;
174 }
175
176 /**
177 * Determine if an r-value has the value zero
178 *
179 * The base implementation of this function always returns \c false. The
180 * \c ir_constant class over-rides this function to return \c true \b only
181 * for vector and scalar types that have all elements set to the value
182 * zero (or \c false for booleans).
183 *
184 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
185 */
186 virtual bool is_zero() const;
187
188 /**
189 * Determine if an r-value has the value one
190 *
191 * The base implementation of this function always returns \c false. The
192 * \c ir_constant class over-rides this function to return \c true \b only
193 * for vector and scalar types that have all elements set to the value
194 * one (or \c true for booleans).
195 *
196 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
197 */
198 virtual bool is_one() const;
199
200 /**
201 * Determine if an r-value has the value negative one
202 *
203 * The base implementation of this function always returns \c false. The
204 * \c ir_constant class over-rides this function to return \c true \b only
205 * for vector and scalar types that have all elements set to the value
206 * negative one. For boolean times, the result is always \c false.
207 *
208 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
209 */
210 virtual bool is_negative_one() const;
211
212 protected:
213 ir_rvalue();
214 };
215
216
217 /**
218 * Variable storage classes
219 */
220 enum ir_variable_mode {
221 ir_var_auto = 0, /**< Function local variables and globals. */
222 ir_var_uniform, /**< Variable declared as a uniform. */
223 ir_var_in,
224 ir_var_out,
225 ir_var_inout,
226 ir_var_const_in, /**< "in" param that must be a constant expression */
227 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 /**
232 * \brief Layout qualifiers for gl_FragDepth.
233 *
234 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
235 * with a layout qualifier.
236 */
237 enum ir_depth_layout {
238 ir_depth_layout_none, /**< No depth layout is specified. */
239 ir_depth_layout_any,
240 ir_depth_layout_greater,
241 ir_depth_layout_less,
242 ir_depth_layout_unchanged
243 };
244
245 /**
246 * \brief Convert depth layout qualifier to string.
247 */
248 const char*
249 depth_layout_string(ir_depth_layout layout);
250
251 /**
252 * Description of built-in state associated with a uniform
253 *
254 * \sa ir_variable::state_slots
255 */
256 struct ir_state_slot {
257 int tokens[5];
258 int swizzle;
259 };
260
261 class ir_variable : public ir_instruction {
262 public:
263 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
264
265 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
266
267 virtual ir_variable *as_variable()
268 {
269 return this;
270 }
271
272 virtual void accept(ir_visitor *v)
273 {
274 v->visit(this);
275 }
276
277 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
278
279
280 /**
281 * Get the string value for the interpolation qualifier
282 *
283 * \return The string that would be used in a shader to specify \c
284 * mode will be returned.
285 *
286 * This function is used to generate error messages of the form "shader
287 * uses %s interpolation qualifier", so in the case where there is no
288 * interpolation qualifier, it returns "no".
289 *
290 * This function should only be used on a shader input or output variable.
291 */
292 const char *interpolation_string() const;
293
294 /**
295 * Determine how this variable should be interpolated based on its
296 * interpolation qualifier (if present), whether it is gl_Color or
297 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
298 * state.
299 *
300 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
301 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
302 */
303 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
304
305 /**
306 * Delcared name of the variable
307 */
308 const char *name;
309
310 /**
311 * Highest element accessed with a constant expression array index
312 *
313 * Not used for non-array variables.
314 */
315 unsigned max_array_access;
316
317 /**
318 * Is the variable read-only?
319 *
320 * This is set for variables declared as \c const, shader inputs,
321 * and uniforms.
322 */
323 unsigned read_only:1;
324 unsigned centroid:1;
325 unsigned invariant:1;
326
327 /**
328 * Has this variable been used for reading or writing?
329 *
330 * Several GLSL semantic checks require knowledge of whether or not a
331 * variable has been used. For example, it is an error to redeclare a
332 * variable as invariant after it has been used.
333 */
334 unsigned used:1;
335
336 /**
337 * Storage class of the variable.
338 *
339 * \sa ir_variable_mode
340 */
341 unsigned mode:3;
342
343 /**
344 * Interpolation mode for shader inputs / outputs
345 *
346 * \sa ir_variable_interpolation
347 */
348 unsigned interpolation:2;
349
350 /**
351 * \name ARB_fragment_coord_conventions
352 * @{
353 */
354 unsigned origin_upper_left:1;
355 unsigned pixel_center_integer:1;
356 /*@}*/
357
358 /**
359 * Was the location explicitly set in the shader?
360 *
361 * If the location is explicitly set in the shader, it \b cannot be changed
362 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
363 * no effect).
364 */
365 unsigned explicit_location:1;
366
367 /**
368 * \brief Layout qualifier for gl_FragDepth.
369 *
370 * This is not equal to \c ir_depth_layout_none if and only if this
371 * variable is \c gl_FragDepth and a layout qualifier is specified.
372 */
373 ir_depth_layout depth_layout;
374
375 /**
376 * Storage location of the base of this variable
377 *
378 * The precise meaning of this field depends on the nature of the variable.
379 *
380 * - Vertex shader input: one of the values from \c gl_vert_attrib.
381 * - Vertex shader output: one of the values from \c gl_vert_result.
382 * - Fragment shader input: one of the values from \c gl_frag_attrib.
383 * - Fragment shader output: one of the values from \c gl_frag_result.
384 * - Uniforms: Per-stage uniform slot number.
385 * - Other: This field is not currently used.
386 *
387 * If the variable is a uniform, shader input, or shader output, and the
388 * slot has not been assigned, the value will be -1.
389 */
390 int location;
391
392 /**
393 * Built-in state that backs this uniform
394 *
395 * Once set at variable creation, \c state_slots must remain invariant.
396 * This is because, ideally, this array would be shared by all clones of
397 * this variable in the IR tree. In other words, we'd really like for it
398 * to be a fly-weight.
399 *
400 * If the variable is not a uniform, \c num_state_slots will be zero and
401 * \c state_slots will be \c NULL.
402 */
403 /*@{*/
404 unsigned num_state_slots; /**< Number of state slots used */
405 ir_state_slot *state_slots; /**< State descriptors. */
406 /*@}*/
407
408 /**
409 * Emit a warning if this variable is accessed.
410 */
411 const char *warn_extension;
412
413 /**
414 * Value assigned in the initializer of a variable declared "const"
415 */
416 ir_constant *constant_value;
417 };
418
419
420 /*@{*/
421 /**
422 * The representation of a function instance; may be the full definition or
423 * simply a prototype.
424 */
425 class ir_function_signature : public ir_instruction {
426 /* An ir_function_signature will be part of the list of signatures in
427 * an ir_function.
428 */
429 public:
430 ir_function_signature(const glsl_type *return_type);
431
432 virtual ir_function_signature *clone(void *mem_ctx,
433 struct hash_table *ht) const;
434 ir_function_signature *clone_prototype(void *mem_ctx,
435 struct hash_table *ht) const;
436
437 virtual void accept(ir_visitor *v)
438 {
439 v->visit(this);
440 }
441
442 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
443
444 /**
445 * Get the name of the function for which this is a signature
446 */
447 const char *function_name() const;
448
449 /**
450 * Get a handle to the function for which this is a signature
451 *
452 * There is no setter function, this function returns a \c const pointer,
453 * and \c ir_function_signature::_function is private for a reason. The
454 * only way to make a connection between a function and function signature
455 * is via \c ir_function::add_signature. This helps ensure that certain
456 * invariants (i.e., a function signature is in the list of signatures for
457 * its \c _function) are met.
458 *
459 * \sa ir_function::add_signature
460 */
461 inline const class ir_function *function() const
462 {
463 return this->_function;
464 }
465
466 /**
467 * Check whether the qualifiers match between this signature's parameters
468 * and the supplied parameter list. If not, returns the name of the first
469 * parameter with mismatched qualifiers (for use in error messages).
470 */
471 const char *qualifiers_match(exec_list *params);
472
473 /**
474 * Replace the current parameter list with the given one. This is useful
475 * if the current information came from a prototype, and either has invalid
476 * or missing parameter names.
477 */
478 void replace_parameters(exec_list *new_params);
479
480 /**
481 * Function return type.
482 *
483 * \note This discards the optional precision qualifier.
484 */
485 const struct glsl_type *return_type;
486
487 /**
488 * List of ir_variable of function parameters.
489 *
490 * This represents the storage. The paramaters passed in a particular
491 * call will be in ir_call::actual_paramaters.
492 */
493 struct exec_list parameters;
494
495 /** Whether or not this function has a body (which may be empty). */
496 unsigned is_defined:1;
497
498 /** Whether or not this function signature is a built-in. */
499 unsigned is_builtin:1;
500
501 /** Body of instructions in the function. */
502 struct exec_list body;
503
504 private:
505 /** Function of which this signature is one overload. */
506 class ir_function *_function;
507
508 friend class ir_function;
509 };
510
511
512 /**
513 * Header for tracking multiple overloaded functions with the same name.
514 * Contains a list of ir_function_signatures representing each of the
515 * actual functions.
516 */
517 class ir_function : public ir_instruction {
518 public:
519 ir_function(const char *name);
520
521 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
522
523 virtual ir_function *as_function()
524 {
525 return this;
526 }
527
528 virtual void accept(ir_visitor *v)
529 {
530 v->visit(this);
531 }
532
533 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
534
535 void add_signature(ir_function_signature *sig)
536 {
537 sig->_function = this;
538 this->signatures.push_tail(sig);
539 }
540
541 /**
542 * Get an iterator for the set of function signatures
543 */
544 exec_list_iterator iterator()
545 {
546 return signatures.iterator();
547 }
548
549 /**
550 * Find a signature that matches a set of actual parameters, taking implicit
551 * conversions into account.
552 */
553 ir_function_signature *matching_signature(const exec_list *actual_param);
554
555 /**
556 * Find a signature that exactly matches a set of actual parameters without
557 * any implicit type conversions.
558 */
559 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
560
561 /**
562 * Name of the function.
563 */
564 const char *name;
565
566 /** Whether or not this function has a signature that isn't a built-in. */
567 bool has_user_signature();
568
569 /**
570 * List of ir_function_signature for each overloaded function with this name.
571 */
572 struct exec_list signatures;
573 };
574
575 inline const char *ir_function_signature::function_name() const
576 {
577 return this->_function->name;
578 }
579 /*@}*/
580
581
582 /**
583 * IR instruction representing high-level if-statements
584 */
585 class ir_if : public ir_instruction {
586 public:
587 ir_if(ir_rvalue *condition)
588 : condition(condition)
589 {
590 ir_type = ir_type_if;
591 }
592
593 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
594
595 virtual ir_if *as_if()
596 {
597 return this;
598 }
599
600 virtual void accept(ir_visitor *v)
601 {
602 v->visit(this);
603 }
604
605 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
606
607 ir_rvalue *condition;
608 /** List of ir_instruction for the body of the then branch */
609 exec_list then_instructions;
610 /** List of ir_instruction for the body of the else branch */
611 exec_list else_instructions;
612 };
613
614
615 /**
616 * IR instruction representing a high-level loop structure.
617 */
618 class ir_loop : public ir_instruction {
619 public:
620 ir_loop();
621
622 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
623
624 virtual void accept(ir_visitor *v)
625 {
626 v->visit(this);
627 }
628
629 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
630
631 virtual ir_loop *as_loop()
632 {
633 return this;
634 }
635
636 /**
637 * Get an iterator for the instructions of the loop body
638 */
639 exec_list_iterator iterator()
640 {
641 return body_instructions.iterator();
642 }
643
644 /** List of ir_instruction that make up the body of the loop. */
645 exec_list body_instructions;
646
647 /**
648 * \name Loop counter and controls
649 *
650 * Represents a loop like a FORTRAN \c do-loop.
651 *
652 * \note
653 * If \c from and \c to are the same value, the loop will execute once.
654 */
655 /*@{*/
656 ir_rvalue *from; /** Value of the loop counter on the first
657 * iteration of the loop.
658 */
659 ir_rvalue *to; /** Value of the loop counter on the last
660 * iteration of the loop.
661 */
662 ir_rvalue *increment;
663 ir_variable *counter;
664
665 /**
666 * Comparison operation in the loop terminator.
667 *
668 * If any of the loop control fields are non-\c NULL, this field must be
669 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
670 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
671 */
672 int cmp;
673 /*@}*/
674 };
675
676
677 class ir_assignment : public ir_instruction {
678 public:
679 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
680
681 /**
682 * Construct an assignment with an explicit write mask
683 *
684 * \note
685 * Since a write mask is supplied, the LHS must already be a bare
686 * \c ir_dereference. The cannot be any swizzles in the LHS.
687 */
688 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
689 unsigned write_mask);
690
691 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
692
693 virtual ir_constant *constant_expression_value();
694
695 virtual void accept(ir_visitor *v)
696 {
697 v->visit(this);
698 }
699
700 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
701
702 virtual ir_assignment * as_assignment()
703 {
704 return this;
705 }
706
707 /**
708 * Get a whole variable written by an assignment
709 *
710 * If the LHS of the assignment writes a whole variable, the variable is
711 * returned. Otherwise \c NULL is returned. Examples of whole-variable
712 * assignment are:
713 *
714 * - Assigning to a scalar
715 * - Assigning to all components of a vector
716 * - Whole array (or matrix) assignment
717 * - Whole structure assignment
718 */
719 ir_variable *whole_variable_written();
720
721 /**
722 * Set the LHS of an assignment
723 */
724 void set_lhs(ir_rvalue *lhs);
725
726 /**
727 * Left-hand side of the assignment.
728 *
729 * This should be treated as read only. If you need to set the LHS of an
730 * assignment, use \c ir_assignment::set_lhs.
731 */
732 ir_dereference *lhs;
733
734 /**
735 * Value being assigned
736 */
737 ir_rvalue *rhs;
738
739 /**
740 * Optional condition for the assignment.
741 */
742 ir_rvalue *condition;
743
744
745 /**
746 * Component mask written
747 *
748 * For non-vector types in the LHS, this field will be zero. For vector
749 * types, a bit will be set for each component that is written. Note that
750 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
751 *
752 * A partially-set write mask means that each enabled channel gets
753 * the value from a consecutive channel of the rhs. For example,
754 * to write just .xyw of gl_FrontColor with color:
755 *
756 * (assign (constant bool (1)) (xyw)
757 * (var_ref gl_FragColor)
758 * (swiz xyw (var_ref color)))
759 */
760 unsigned write_mask:4;
761 };
762
763 /* Update ir_expression::num_operands() and operator_strs when
764 * updating this list.
765 */
766 enum ir_expression_operation {
767 ir_unop_bit_not,
768 ir_unop_logic_not,
769 ir_unop_neg,
770 ir_unop_abs,
771 ir_unop_sign,
772 ir_unop_rcp,
773 ir_unop_rsq,
774 ir_unop_sqrt,
775 ir_unop_exp, /**< Log base e on gentype */
776 ir_unop_log, /**< Natural log on gentype */
777 ir_unop_exp2,
778 ir_unop_log2,
779 ir_unop_f2i, /**< Float-to-integer conversion. */
780 ir_unop_i2f, /**< Integer-to-float conversion. */
781 ir_unop_f2b, /**< Float-to-boolean conversion */
782 ir_unop_b2f, /**< Boolean-to-float conversion */
783 ir_unop_i2b, /**< int-to-boolean conversion */
784 ir_unop_b2i, /**< Boolean-to-int conversion */
785 ir_unop_u2f, /**< Unsigned-to-float conversion. */
786 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
787 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
788 ir_unop_any,
789
790 /**
791 * \name Unary floating-point rounding operations.
792 */
793 /*@{*/
794 ir_unop_trunc,
795 ir_unop_ceil,
796 ir_unop_floor,
797 ir_unop_fract,
798 ir_unop_round_even,
799 /*@}*/
800
801 /**
802 * \name Trigonometric operations.
803 */
804 /*@{*/
805 ir_unop_sin,
806 ir_unop_cos,
807 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
808 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
809 /*@}*/
810
811 /**
812 * \name Partial derivatives.
813 */
814 /*@{*/
815 ir_unop_dFdx,
816 ir_unop_dFdy,
817 /*@}*/
818
819 ir_unop_noise,
820
821 /**
822 * A sentinel marking the last of the unary operations.
823 */
824 ir_last_unop = ir_unop_noise,
825
826 ir_binop_add,
827 ir_binop_sub,
828 ir_binop_mul,
829 ir_binop_div,
830
831 /**
832 * Takes one of two combinations of arguments:
833 *
834 * - mod(vecN, vecN)
835 * - mod(vecN, float)
836 *
837 * Does not take integer types.
838 */
839 ir_binop_mod,
840
841 /**
842 * \name Binary comparison operators which return a boolean vector.
843 * The type of both operands must be equal.
844 */
845 /*@{*/
846 ir_binop_less,
847 ir_binop_greater,
848 ir_binop_lequal,
849 ir_binop_gequal,
850 ir_binop_equal,
851 ir_binop_nequal,
852 /**
853 * Returns single boolean for whether all components of operands[0]
854 * equal the components of operands[1].
855 */
856 ir_binop_all_equal,
857 /**
858 * Returns single boolean for whether any component of operands[0]
859 * is not equal to the corresponding component of operands[1].
860 */
861 ir_binop_any_nequal,
862 /*@}*/
863
864 /**
865 * \name Bit-wise binary operations.
866 */
867 /*@{*/
868 ir_binop_lshift,
869 ir_binop_rshift,
870 ir_binop_bit_and,
871 ir_binop_bit_xor,
872 ir_binop_bit_or,
873 /*@}*/
874
875 ir_binop_logic_and,
876 ir_binop_logic_xor,
877 ir_binop_logic_or,
878
879 ir_binop_dot,
880 ir_binop_min,
881 ir_binop_max,
882
883 ir_binop_pow,
884
885 /**
886 * A sentinel marking the last of the binary operations.
887 */
888 ir_last_binop = ir_binop_pow,
889
890 ir_quadop_vector,
891
892 /**
893 * A sentinel marking the last of all operations.
894 */
895 ir_last_opcode = ir_last_binop
896 };
897
898 class ir_expression : public ir_rvalue {
899 public:
900 /**
901 * Constructor for unary operation expressions
902 */
903 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
904 ir_expression(int op, ir_rvalue *);
905
906 /**
907 * Constructor for binary operation expressions
908 */
909 ir_expression(int op, const struct glsl_type *type,
910 ir_rvalue *, ir_rvalue *);
911 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
912
913 /**
914 * Constructor for quad operator expressions
915 */
916 ir_expression(int op, const struct glsl_type *type,
917 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
918
919 virtual ir_expression *as_expression()
920 {
921 return this;
922 }
923
924 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
925
926 /**
927 * Attempt to constant-fold the expression
928 *
929 * If the expression cannot be constant folded, this method will return
930 * \c NULL.
931 */
932 virtual ir_constant *constant_expression_value();
933
934 /**
935 * Determine the number of operands used by an expression
936 */
937 static unsigned int get_num_operands(ir_expression_operation);
938
939 /**
940 * Determine the number of operands used by an expression
941 */
942 unsigned int get_num_operands() const
943 {
944 return (this->operation == ir_quadop_vector)
945 ? this->type->vector_elements : get_num_operands(operation);
946 }
947
948 /**
949 * Return a string representing this expression's operator.
950 */
951 const char *operator_string();
952
953 /**
954 * Return a string representing this expression's operator.
955 */
956 static const char *operator_string(ir_expression_operation);
957
958
959 /**
960 * Do a reverse-lookup to translate the given string into an operator.
961 */
962 static ir_expression_operation get_operator(const char *);
963
964 virtual void accept(ir_visitor *v)
965 {
966 v->visit(this);
967 }
968
969 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
970
971 ir_expression_operation operation;
972 ir_rvalue *operands[4];
973 };
974
975
976 /**
977 * IR instruction representing a function call
978 */
979 class ir_call : public ir_rvalue {
980 public:
981 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
982 : callee(callee)
983 {
984 ir_type = ir_type_call;
985 assert(callee->return_type != NULL);
986 type = callee->return_type;
987 actual_parameters->move_nodes_to(& this->actual_parameters);
988 this->use_builtin = callee->is_builtin;
989 }
990
991 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
992
993 virtual ir_constant *constant_expression_value();
994
995 virtual ir_call *as_call()
996 {
997 return this;
998 }
999
1000 virtual void accept(ir_visitor *v)
1001 {
1002 v->visit(this);
1003 }
1004
1005 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1006
1007 /**
1008 * Get a generic ir_call object when an error occurs
1009 *
1010 * Any allocation will be performed with 'ctx' as ralloc owner.
1011 */
1012 static ir_call *get_error_instruction(void *ctx);
1013
1014 /**
1015 * Get an iterator for the set of acutal parameters
1016 */
1017 exec_list_iterator iterator()
1018 {
1019 return actual_parameters.iterator();
1020 }
1021
1022 /**
1023 * Get the name of the function being called.
1024 */
1025 const char *callee_name() const
1026 {
1027 return callee->function_name();
1028 }
1029
1030 /**
1031 * Get the function signature bound to this function call
1032 */
1033 ir_function_signature *get_callee()
1034 {
1035 return callee;
1036 }
1037
1038 /**
1039 * Set the function call target
1040 */
1041 void set_callee(ir_function_signature *sig);
1042
1043 /**
1044 * Generates an inline version of the function before @ir,
1045 * returning the return value of the function.
1046 */
1047 ir_rvalue *generate_inline(ir_instruction *ir);
1048
1049 /* List of ir_rvalue of paramaters passed in this call. */
1050 exec_list actual_parameters;
1051
1052 /** Should this call only bind to a built-in function? */
1053 bool use_builtin;
1054
1055 private:
1056 ir_call()
1057 : callee(NULL)
1058 {
1059 this->ir_type = ir_type_call;
1060 }
1061
1062 ir_function_signature *callee;
1063 };
1064
1065
1066 /**
1067 * \name Jump-like IR instructions.
1068 *
1069 * These include \c break, \c continue, \c return, and \c discard.
1070 */
1071 /*@{*/
1072 class ir_jump : public ir_instruction {
1073 protected:
1074 ir_jump()
1075 {
1076 ir_type = ir_type_unset;
1077 }
1078 };
1079
1080 class ir_return : public ir_jump {
1081 public:
1082 ir_return()
1083 : value(NULL)
1084 {
1085 this->ir_type = ir_type_return;
1086 }
1087
1088 ir_return(ir_rvalue *value)
1089 : value(value)
1090 {
1091 this->ir_type = ir_type_return;
1092 }
1093
1094 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1095
1096 virtual ir_return *as_return()
1097 {
1098 return this;
1099 }
1100
1101 ir_rvalue *get_value() const
1102 {
1103 return value;
1104 }
1105
1106 virtual void accept(ir_visitor *v)
1107 {
1108 v->visit(this);
1109 }
1110
1111 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1112
1113 ir_rvalue *value;
1114 };
1115
1116
1117 /**
1118 * Jump instructions used inside loops
1119 *
1120 * These include \c break and \c continue. The \c break within a loop is
1121 * different from the \c break within a switch-statement.
1122 *
1123 * \sa ir_switch_jump
1124 */
1125 class ir_loop_jump : public ir_jump {
1126 public:
1127 enum jump_mode {
1128 jump_break,
1129 jump_continue
1130 };
1131
1132 ir_loop_jump(jump_mode mode)
1133 {
1134 this->ir_type = ir_type_loop_jump;
1135 this->mode = mode;
1136 this->loop = loop;
1137 }
1138
1139 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1140
1141 virtual void accept(ir_visitor *v)
1142 {
1143 v->visit(this);
1144 }
1145
1146 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1147
1148 bool is_break() const
1149 {
1150 return mode == jump_break;
1151 }
1152
1153 bool is_continue() const
1154 {
1155 return mode == jump_continue;
1156 }
1157
1158 /** Mode selector for the jump instruction. */
1159 enum jump_mode mode;
1160 private:
1161 /** Loop containing this break instruction. */
1162 ir_loop *loop;
1163 };
1164
1165 /**
1166 * IR instruction representing discard statements.
1167 */
1168 class ir_discard : public ir_jump {
1169 public:
1170 ir_discard()
1171 {
1172 this->ir_type = ir_type_discard;
1173 this->condition = NULL;
1174 }
1175
1176 ir_discard(ir_rvalue *cond)
1177 {
1178 this->ir_type = ir_type_discard;
1179 this->condition = cond;
1180 }
1181
1182 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1183
1184 virtual void accept(ir_visitor *v)
1185 {
1186 v->visit(this);
1187 }
1188
1189 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1190
1191 virtual ir_discard *as_discard()
1192 {
1193 return this;
1194 }
1195
1196 ir_rvalue *condition;
1197 };
1198 /*@}*/
1199
1200
1201 /**
1202 * Texture sampling opcodes used in ir_texture
1203 */
1204 enum ir_texture_opcode {
1205 ir_tex, /**< Regular texture look-up */
1206 ir_txb, /**< Texture look-up with LOD bias */
1207 ir_txl, /**< Texture look-up with explicit LOD */
1208 ir_txd, /**< Texture look-up with partial derivatvies */
1209 ir_txf, /**< Texel fetch with explicit LOD */
1210 ir_txs /**< Texture size */
1211 };
1212
1213
1214 /**
1215 * IR instruction to sample a texture
1216 *
1217 * The specific form of the IR instruction depends on the \c mode value
1218 * selected from \c ir_texture_opcodes. In the printed IR, these will
1219 * appear as:
1220 *
1221 * Texel offset (0 or an expression)
1222 * | Projection divisor
1223 * | | Shadow comparitor
1224 * | | |
1225 * v v v
1226 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1227 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1228 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1229 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1230 * (txf <type> <sampler> <coordinate> 0 <lod>)
1231 * (txs <type> <sampler> <lod>)
1232 */
1233 class ir_texture : public ir_rvalue {
1234 public:
1235 ir_texture(enum ir_texture_opcode op)
1236 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1237 {
1238 this->ir_type = ir_type_texture;
1239 }
1240
1241 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1242
1243 virtual ir_constant *constant_expression_value();
1244
1245 virtual void accept(ir_visitor *v)
1246 {
1247 v->visit(this);
1248 }
1249
1250 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1251
1252 /**
1253 * Return a string representing the ir_texture_opcode.
1254 */
1255 const char *opcode_string();
1256
1257 /** Set the sampler and type. */
1258 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1259
1260 /**
1261 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1262 */
1263 static ir_texture_opcode get_opcode(const char *);
1264
1265 enum ir_texture_opcode op;
1266
1267 /** Sampler to use for the texture access. */
1268 ir_dereference *sampler;
1269
1270 /** Texture coordinate to sample */
1271 ir_rvalue *coordinate;
1272
1273 /**
1274 * Value used for projective divide.
1275 *
1276 * If there is no projective divide (the common case), this will be
1277 * \c NULL. Optimization passes should check for this to point to a constant
1278 * of 1.0 and replace that with \c NULL.
1279 */
1280 ir_rvalue *projector;
1281
1282 /**
1283 * Coordinate used for comparison on shadow look-ups.
1284 *
1285 * If there is no shadow comparison, this will be \c NULL. For the
1286 * \c ir_txf opcode, this *must* be \c NULL.
1287 */
1288 ir_rvalue *shadow_comparitor;
1289
1290 /** Texel offset. */
1291 ir_rvalue *offset;
1292
1293 union {
1294 ir_rvalue *lod; /**< Floating point LOD */
1295 ir_rvalue *bias; /**< Floating point LOD bias */
1296 struct {
1297 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1298 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1299 } grad;
1300 } lod_info;
1301 };
1302
1303
1304 struct ir_swizzle_mask {
1305 unsigned x:2;
1306 unsigned y:2;
1307 unsigned z:2;
1308 unsigned w:2;
1309
1310 /**
1311 * Number of components in the swizzle.
1312 */
1313 unsigned num_components:3;
1314
1315 /**
1316 * Does the swizzle contain duplicate components?
1317 *
1318 * L-value swizzles cannot contain duplicate components.
1319 */
1320 unsigned has_duplicates:1;
1321 };
1322
1323
1324 class ir_swizzle : public ir_rvalue {
1325 public:
1326 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1327 unsigned count);
1328
1329 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1330
1331 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1332
1333 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1334
1335 virtual ir_constant *constant_expression_value();
1336
1337 virtual ir_swizzle *as_swizzle()
1338 {
1339 return this;
1340 }
1341
1342 /**
1343 * Construct an ir_swizzle from the textual representation. Can fail.
1344 */
1345 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1346
1347 virtual void accept(ir_visitor *v)
1348 {
1349 v->visit(this);
1350 }
1351
1352 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1353
1354 bool is_lvalue() const
1355 {
1356 return val->is_lvalue() && !mask.has_duplicates;
1357 }
1358
1359 /**
1360 * Get the variable that is ultimately referenced by an r-value
1361 */
1362 virtual ir_variable *variable_referenced() const;
1363
1364 ir_rvalue *val;
1365 ir_swizzle_mask mask;
1366
1367 private:
1368 /**
1369 * Initialize the mask component of a swizzle
1370 *
1371 * This is used by the \c ir_swizzle constructors.
1372 */
1373 void init_mask(const unsigned *components, unsigned count);
1374 };
1375
1376
1377 class ir_dereference : public ir_rvalue {
1378 public:
1379 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1380
1381 virtual ir_dereference *as_dereference()
1382 {
1383 return this;
1384 }
1385
1386 bool is_lvalue() const;
1387
1388 /**
1389 * Get the variable that is ultimately referenced by an r-value
1390 */
1391 virtual ir_variable *variable_referenced() const = 0;
1392 };
1393
1394
1395 class ir_dereference_variable : public ir_dereference {
1396 public:
1397 ir_dereference_variable(ir_variable *var);
1398
1399 virtual ir_dereference_variable *clone(void *mem_ctx,
1400 struct hash_table *) const;
1401
1402 virtual ir_constant *constant_expression_value();
1403
1404 virtual ir_dereference_variable *as_dereference_variable()
1405 {
1406 return this;
1407 }
1408
1409 /**
1410 * Get the variable that is ultimately referenced by an r-value
1411 */
1412 virtual ir_variable *variable_referenced() const
1413 {
1414 return this->var;
1415 }
1416
1417 virtual ir_variable *whole_variable_referenced()
1418 {
1419 /* ir_dereference_variable objects always dereference the entire
1420 * variable. However, if this dereference is dereferenced by anything
1421 * else, the complete deferefernce chain is not a whole-variable
1422 * dereference. This method should only be called on the top most
1423 * ir_rvalue in a dereference chain.
1424 */
1425 return this->var;
1426 }
1427
1428 virtual void accept(ir_visitor *v)
1429 {
1430 v->visit(this);
1431 }
1432
1433 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1434
1435 /**
1436 * Object being dereferenced.
1437 */
1438 ir_variable *var;
1439 };
1440
1441
1442 class ir_dereference_array : public ir_dereference {
1443 public:
1444 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1445
1446 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1447
1448 virtual ir_dereference_array *clone(void *mem_ctx,
1449 struct hash_table *) const;
1450
1451 virtual ir_constant *constant_expression_value();
1452
1453 virtual ir_dereference_array *as_dereference_array()
1454 {
1455 return this;
1456 }
1457
1458 /**
1459 * Get the variable that is ultimately referenced by an r-value
1460 */
1461 virtual ir_variable *variable_referenced() const
1462 {
1463 return this->array->variable_referenced();
1464 }
1465
1466 virtual void accept(ir_visitor *v)
1467 {
1468 v->visit(this);
1469 }
1470
1471 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1472
1473 ir_rvalue *array;
1474 ir_rvalue *array_index;
1475
1476 private:
1477 void set_array(ir_rvalue *value);
1478 };
1479
1480
1481 class ir_dereference_record : public ir_dereference {
1482 public:
1483 ir_dereference_record(ir_rvalue *value, const char *field);
1484
1485 ir_dereference_record(ir_variable *var, const char *field);
1486
1487 virtual ir_dereference_record *clone(void *mem_ctx,
1488 struct hash_table *) const;
1489
1490 virtual ir_constant *constant_expression_value();
1491
1492 /**
1493 * Get the variable that is ultimately referenced by an r-value
1494 */
1495 virtual ir_variable *variable_referenced() const
1496 {
1497 return this->record->variable_referenced();
1498 }
1499
1500 virtual void accept(ir_visitor *v)
1501 {
1502 v->visit(this);
1503 }
1504
1505 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1506
1507 ir_rvalue *record;
1508 const char *field;
1509 };
1510
1511
1512 /**
1513 * Data stored in an ir_constant
1514 */
1515 union ir_constant_data {
1516 unsigned u[16];
1517 int i[16];
1518 float f[16];
1519 bool b[16];
1520 };
1521
1522
1523 class ir_constant : public ir_rvalue {
1524 public:
1525 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1526 ir_constant(bool b);
1527 ir_constant(unsigned int u);
1528 ir_constant(int i);
1529 ir_constant(float f);
1530
1531 /**
1532 * Construct an ir_constant from a list of ir_constant values
1533 */
1534 ir_constant(const struct glsl_type *type, exec_list *values);
1535
1536 /**
1537 * Construct an ir_constant from a scalar component of another ir_constant
1538 *
1539 * The new \c ir_constant inherits the type of the component from the
1540 * source constant.
1541 *
1542 * \note
1543 * In the case of a matrix constant, the new constant is a scalar, \b not
1544 * a vector.
1545 */
1546 ir_constant(const ir_constant *c, unsigned i);
1547
1548 /**
1549 * Return a new ir_constant of the specified type containing all zeros.
1550 */
1551 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1552
1553 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1554
1555 virtual ir_constant *constant_expression_value();
1556
1557 virtual ir_constant *as_constant()
1558 {
1559 return this;
1560 }
1561
1562 virtual void accept(ir_visitor *v)
1563 {
1564 v->visit(this);
1565 }
1566
1567 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1568
1569 /**
1570 * Get a particular component of a constant as a specific type
1571 *
1572 * This is useful, for example, to get a value from an integer constant
1573 * as a float or bool. This appears frequently when constructors are
1574 * called with all constant parameters.
1575 */
1576 /*@{*/
1577 bool get_bool_component(unsigned i) const;
1578 float get_float_component(unsigned i) const;
1579 int get_int_component(unsigned i) const;
1580 unsigned get_uint_component(unsigned i) const;
1581 /*@}*/
1582
1583 ir_constant *get_array_element(unsigned i) const;
1584
1585 ir_constant *get_record_field(const char *name);
1586
1587 /**
1588 * Determine whether a constant has the same value as another constant
1589 *
1590 * \sa ir_constant::is_zero, ir_constant::is_one,
1591 * ir_constant::is_negative_one
1592 */
1593 bool has_value(const ir_constant *) const;
1594
1595 virtual bool is_zero() const;
1596 virtual bool is_one() const;
1597 virtual bool is_negative_one() const;
1598
1599 /**
1600 * Value of the constant.
1601 *
1602 * The field used to back the values supplied by the constant is determined
1603 * by the type associated with the \c ir_instruction. Constants may be
1604 * scalars, vectors, or matrices.
1605 */
1606 union ir_constant_data value;
1607
1608 /* Array elements */
1609 ir_constant **array_elements;
1610
1611 /* Structure fields */
1612 exec_list components;
1613
1614 private:
1615 /**
1616 * Parameterless constructor only used by the clone method
1617 */
1618 ir_constant(void);
1619 };
1620
1621 /*@}*/
1622
1623 /**
1624 * Apply a visitor to each IR node in a list
1625 */
1626 void
1627 visit_exec_list(exec_list *list, ir_visitor *visitor);
1628
1629 /**
1630 * Validate invariants on each IR node in a list
1631 */
1632 void validate_ir_tree(exec_list *instructions);
1633
1634 struct _mesa_glsl_parse_state;
1635 struct gl_shader_program;
1636
1637 /**
1638 * Detect whether an unlinked shader contains static recursion
1639 *
1640 * If the list of instructions is determined to contain static recursion,
1641 * \c _mesa_glsl_error will be called to emit error messages for each function
1642 * that is in the recursion cycle.
1643 */
1644 void
1645 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1646 exec_list *instructions);
1647
1648 /**
1649 * Detect whether a linked shader contains static recursion
1650 *
1651 * If the list of instructions is determined to contain static recursion,
1652 * \c link_error_printf will be called to emit error messages for each function
1653 * that is in the recursion cycle. In addition,
1654 * \c gl_shader_program::LinkStatus will be set to false.
1655 */
1656 void
1657 detect_recursion_linked(struct gl_shader_program *prog,
1658 exec_list *instructions);
1659
1660 /**
1661 * Make a clone of each IR instruction in a list
1662 *
1663 * \param in List of IR instructions that are to be cloned
1664 * \param out List to hold the cloned instructions
1665 */
1666 void
1667 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1668
1669 extern void
1670 _mesa_glsl_initialize_variables(exec_list *instructions,
1671 struct _mesa_glsl_parse_state *state);
1672
1673 extern void
1674 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1675
1676 extern void
1677 _mesa_glsl_release_functions(void);
1678
1679 extern void
1680 reparent_ir(exec_list *list, void *mem_ctx);
1681
1682 struct glsl_symbol_table;
1683
1684 extern void
1685 import_prototypes(const exec_list *source, exec_list *dest,
1686 struct glsl_symbol_table *symbols, void *mem_ctx);
1687
1688 extern bool
1689 ir_has_call(ir_instruction *ir);
1690
1691 extern void
1692 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1693 bool is_fragment_shader);
1694
1695 extern char *
1696 prototype_string(const glsl_type *return_type, const char *name,
1697 exec_list *parameters);
1698
1699 #endif /* IR_H */