Merge remote branch 'origin/nv50-compiler'
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 enum ir_node_type {
45 ir_type_unset,
46 ir_type_variable,
47 ir_type_assignment,
48 ir_type_call,
49 ir_type_constant,
50 ir_type_dereference_array,
51 ir_type_dereference_record,
52 ir_type_dereference_variable,
53 ir_type_discard,
54 ir_type_expression,
55 ir_type_function,
56 ir_type_function_signature,
57 ir_type_if,
58 ir_type_loop,
59 ir_type_loop_jump,
60 ir_type_return,
61 ir_type_swizzle,
62 ir_type_texture,
63 ir_type_max /**< maximum ir_type enum number, for validation */
64 };
65
66 /**
67 * Base class of all IR instructions
68 */
69 class ir_instruction : public exec_node {
70 public:
71 enum ir_node_type ir_type;
72 const struct glsl_type *type;
73
74 /** ir_print_visitor helper for debugging. */
75 void print(void) const;
76
77 virtual void accept(ir_visitor *) = 0;
78 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
79 virtual ir_instruction *clone(void *mem_ctx,
80 struct hash_table *ht) const = 0;
81
82 /**
83 * \name IR instruction downcast functions
84 *
85 * These functions either cast the object to a derived class or return
86 * \c NULL if the object's type does not match the specified derived class.
87 * Additional downcast functions will be added as needed.
88 */
89 /*@{*/
90 virtual class ir_variable * as_variable() { return NULL; }
91 virtual class ir_function * as_function() { return NULL; }
92 virtual class ir_dereference * as_dereference() { return NULL; }
93 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
94 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
95 virtual class ir_expression * as_expression() { return NULL; }
96 virtual class ir_rvalue * as_rvalue() { return NULL; }
97 virtual class ir_loop * as_loop() { return NULL; }
98 virtual class ir_assignment * as_assignment() { return NULL; }
99 virtual class ir_call * as_call() { return NULL; }
100 virtual class ir_return * as_return() { return NULL; }
101 virtual class ir_if * as_if() { return NULL; }
102 virtual class ir_swizzle * as_swizzle() { return NULL; }
103 virtual class ir_constant * as_constant() { return NULL; }
104 /*@}*/
105
106 protected:
107 ir_instruction()
108 {
109 ir_type = ir_type_unset;
110 type = NULL;
111 }
112 };
113
114
115 class ir_rvalue : public ir_instruction {
116 public:
117 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
118
119 virtual ir_constant *constant_expression_value() = 0;
120
121 virtual ir_rvalue * as_rvalue()
122 {
123 return this;
124 }
125
126 virtual bool is_lvalue()
127 {
128 return false;
129 }
130
131 /**
132 * Get the variable that is ultimately referenced by an r-value
133 */
134 virtual ir_variable *variable_referenced()
135 {
136 return NULL;
137 }
138
139
140 /**
141 * If an r-value is a reference to a whole variable, get that variable
142 *
143 * \return
144 * Pointer to a variable that is completely dereferenced by the r-value. If
145 * the r-value is not a dereference or the dereference does not access the
146 * entire variable (i.e., it's just one array element, struct field), \c NULL
147 * is returned.
148 */
149 virtual ir_variable *whole_variable_referenced()
150 {
151 return NULL;
152 }
153
154 protected:
155 ir_rvalue();
156 };
157
158
159 enum ir_variable_mode {
160 ir_var_auto = 0,
161 ir_var_uniform,
162 ir_var_in,
163 ir_var_out,
164 ir_var_inout,
165 ir_var_temporary /**< Temporary variable generated during compilation. */
166 };
167
168 enum ir_variable_interpolation {
169 ir_var_smooth = 0,
170 ir_var_flat,
171 ir_var_noperspective
172 };
173
174
175 class ir_variable : public ir_instruction {
176 public:
177 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
178
179 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
180
181 virtual ir_variable *as_variable()
182 {
183 return this;
184 }
185
186 virtual void accept(ir_visitor *v)
187 {
188 v->visit(this);
189 }
190
191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
192
193
194 /**
195 * Get the string value for the interpolation qualifier
196 *
197 * \return The string that would be used in a shader to specify \c
198 * mode will be returned.
199 *
200 * This function should only be used on a shader input or output variable.
201 */
202 const char *interpolation_string() const;
203
204 /**
205 * Calculate the number of slots required to hold this variable
206 *
207 * This is used to determine how many uniform or varying locations a variable
208 * occupies. The count is in units of floating point components.
209 */
210 unsigned component_slots() const;
211
212 const char *name;
213
214 /**
215 * Highest element accessed with a constant expression array index
216 *
217 * Not used for non-array variables.
218 */
219 unsigned max_array_access;
220
221 unsigned read_only:1;
222 unsigned centroid:1;
223 unsigned invariant:1;
224
225 unsigned mode:3;
226 unsigned interpolation:2;
227
228 /**
229 * Flag that the whole array is assignable
230 *
231 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
232 * equality). This flag enables this behavior.
233 */
234 unsigned array_lvalue:1;
235
236 /* ARB_fragment_coord_conventions */
237 unsigned origin_upper_left:1;
238 unsigned pixel_center_integer:1;
239
240 /**
241 * Storage location of the base of this variable
242 *
243 * The precise meaning of this field depends on the nature of the variable.
244 *
245 * - Vertex shader input: one of the values from \c gl_vert_attrib.
246 * - Vertex shader output: one of the values from \c gl_vert_result.
247 * - Fragment shader input: one of the values from \c gl_frag_attrib.
248 * - Fragment shader output: one of the values from \c gl_frag_result.
249 * - Uniforms: Per-stage uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * Emit a warning if this variable is accessed.
259 */
260 const char *warn_extension;
261
262 /**
263 * Value assigned in the initializer of a variable declared "const"
264 */
265 ir_constant *constant_value;
266 };
267
268
269 /*@{*/
270 /**
271 * The representation of a function instance; may be the full definition or
272 * simply a prototype.
273 */
274 class ir_function_signature : public ir_instruction {
275 /* An ir_function_signature will be part of the list of signatures in
276 * an ir_function.
277 */
278 public:
279 ir_function_signature(const glsl_type *return_type);
280
281 virtual ir_function_signature *clone(void *mem_ctx,
282 struct hash_table *ht) const;
283
284 virtual void accept(ir_visitor *v)
285 {
286 v->visit(this);
287 }
288
289 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
290
291 /**
292 * Get the name of the function for which this is a signature
293 */
294 const char *function_name() const;
295
296 /**
297 * Get a handle to the function for which this is a signature
298 *
299 * There is no setter function, this function returns a \c const pointer,
300 * and \c ir_function_signature::_function is private for a reason. The
301 * only way to make a connection between a function and function signature
302 * is via \c ir_function::add_signature. This helps ensure that certain
303 * invariants (i.e., a function signature is in the list of signatures for
304 * its \c _function) are met.
305 *
306 * \sa ir_function::add_signature
307 */
308 inline const class ir_function *function() const
309 {
310 return this->_function;
311 }
312
313 /**
314 * Check whether the qualifiers match between this signature's parameters
315 * and the supplied parameter list. If not, returns the name of the first
316 * parameter with mismatched qualifiers (for use in error messages).
317 */
318 const char *qualifiers_match(exec_list *params);
319
320 /**
321 * Replace the current parameter list with the given one. This is useful
322 * if the current information came from a prototype, and either has invalid
323 * or missing parameter names.
324 */
325 void replace_parameters(exec_list *new_params);
326
327 /**
328 * Function return type.
329 *
330 * \note This discards the optional precision qualifier.
331 */
332 const struct glsl_type *return_type;
333
334 /**
335 * List of ir_variable of function parameters.
336 *
337 * This represents the storage. The paramaters passed in a particular
338 * call will be in ir_call::actual_paramaters.
339 */
340 struct exec_list parameters;
341
342 /** Whether or not this function has a body (which may be empty). */
343 unsigned is_defined:1;
344
345 /** Whether or not this function signature is a built-in. */
346 unsigned is_builtin:1;
347
348 /** Body of instructions in the function. */
349 struct exec_list body;
350
351 private:
352 /** Function of which this signature is one overload. */
353 class ir_function *_function;
354
355 friend class ir_function;
356 };
357
358
359 /**
360 * Header for tracking multiple overloaded functions with the same name.
361 * Contains a list of ir_function_signatures representing each of the
362 * actual functions.
363 */
364 class ir_function : public ir_instruction {
365 public:
366 ir_function(const char *name);
367
368 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
369
370 virtual ir_function *as_function()
371 {
372 return this;
373 }
374
375 virtual void accept(ir_visitor *v)
376 {
377 v->visit(this);
378 }
379
380 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
381
382 void add_signature(ir_function_signature *sig)
383 {
384 sig->_function = this;
385 this->signatures.push_tail(sig);
386 }
387
388 /**
389 * Get an iterator for the set of function signatures
390 */
391 exec_list_iterator iterator()
392 {
393 return signatures.iterator();
394 }
395
396 /**
397 * Find a signature that matches a set of actual parameters, taking implicit
398 * conversions into account.
399 */
400 ir_function_signature *matching_signature(const exec_list *actual_param);
401
402 /**
403 * Find a signature that exactly matches a set of actual parameters without
404 * any implicit type conversions.
405 */
406 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
407
408 /**
409 * Name of the function.
410 */
411 const char *name;
412
413 /** Whether or not this function has a signature that is a built-in. */
414 bool has_builtin_signature();
415
416 /**
417 * List of ir_function_signature for each overloaded function with this name.
418 */
419 struct exec_list signatures;
420 };
421
422 inline const char *ir_function_signature::function_name() const
423 {
424 return this->_function->name;
425 }
426 /*@}*/
427
428
429 /**
430 * IR instruction representing high-level if-statements
431 */
432 class ir_if : public ir_instruction {
433 public:
434 ir_if(ir_rvalue *condition)
435 : condition(condition)
436 {
437 ir_type = ir_type_if;
438 }
439
440 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
441
442 virtual ir_if *as_if()
443 {
444 return this;
445 }
446
447 virtual void accept(ir_visitor *v)
448 {
449 v->visit(this);
450 }
451
452 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
453
454 ir_rvalue *condition;
455 /** List of ir_instruction for the body of the then branch */
456 exec_list then_instructions;
457 /** List of ir_instruction for the body of the else branch */
458 exec_list else_instructions;
459 };
460
461
462 /**
463 * IR instruction representing a high-level loop structure.
464 */
465 class ir_loop : public ir_instruction {
466 public:
467 ir_loop();
468
469 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
470
471 virtual void accept(ir_visitor *v)
472 {
473 v->visit(this);
474 }
475
476 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478 virtual ir_loop *as_loop()
479 {
480 return this;
481 }
482
483 /**
484 * Get an iterator for the instructions of the loop body
485 */
486 exec_list_iterator iterator()
487 {
488 return body_instructions.iterator();
489 }
490
491 /** List of ir_instruction that make up the body of the loop. */
492 exec_list body_instructions;
493
494 /**
495 * \name Loop counter and controls
496 *
497 * Represents a loop like a FORTRAN \c do-loop.
498 *
499 * \note
500 * If \c from and \c to are the same value, the loop will execute once.
501 */
502 /*@{*/
503 ir_rvalue *from; /** Value of the loop counter on the first
504 * iteration of the loop.
505 */
506 ir_rvalue *to; /** Value of the loop counter on the last
507 * iteration of the loop.
508 */
509 ir_rvalue *increment;
510 ir_variable *counter;
511
512 /**
513 * Comparison operation in the loop terminator.
514 *
515 * If any of the loop control fields are non-\c NULL, this field must be
516 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
517 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
518 */
519 int cmp;
520 /*@}*/
521 };
522
523
524 class ir_assignment : public ir_instruction {
525 public:
526 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
527
528 /**
529 * Construct an assignment with an explicit write mask
530 *
531 * \note
532 * Since a write mask is supplied, the LHS must already be a bare
533 * \c ir_dereference. The cannot be any swizzles in the LHS.
534 */
535 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
536 unsigned write_mask);
537
538 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
539
540 virtual ir_constant *constant_expression_value();
541
542 virtual void accept(ir_visitor *v)
543 {
544 v->visit(this);
545 }
546
547 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
548
549 virtual ir_assignment * as_assignment()
550 {
551 return this;
552 }
553
554 /**
555 * Get a whole variable written by an assignment
556 *
557 * If the LHS of the assignment writes a whole variable, the variable is
558 * returned. Otherwise \c NULL is returned. Examples of whole-variable
559 * assignment are:
560 *
561 * - Assigning to a scalar
562 * - Assigning to all components of a vector
563 * - Whole array (or matrix) assignment
564 * - Whole structure assignment
565 */
566 ir_variable *whole_variable_written();
567
568 /**
569 * Set the LHS of an assignment
570 */
571 void set_lhs(ir_rvalue *lhs);
572
573 /**
574 * Left-hand side of the assignment.
575 *
576 * This should be treated as read only. If you need to set the LHS of an
577 * assignment, use \c ir_assignment::set_lhs.
578 */
579 ir_dereference *lhs;
580
581 /**
582 * Value being assigned
583 */
584 ir_rvalue *rhs;
585
586 /**
587 * Optional condition for the assignment.
588 */
589 ir_rvalue *condition;
590
591
592 /**
593 * Component mask written
594 *
595 * For non-vector types in the LHS, this field will be zero. For vector
596 * types, a bit will be set for each component that is written. Note that
597 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
598 */
599 unsigned write_mask:4;
600 };
601
602 /* Update ir_expression::num_operands() and operator_strs when
603 * updating this list.
604 */
605 enum ir_expression_operation {
606 ir_unop_bit_not,
607 ir_unop_logic_not,
608 ir_unop_neg,
609 ir_unop_abs,
610 ir_unop_sign,
611 ir_unop_rcp,
612 ir_unop_rsq,
613 ir_unop_sqrt,
614 ir_unop_exp, /**< Log base e on gentype */
615 ir_unop_log, /**< Natural log on gentype */
616 ir_unop_exp2,
617 ir_unop_log2,
618 ir_unop_f2i, /**< Float-to-integer conversion. */
619 ir_unop_i2f, /**< Integer-to-float conversion. */
620 ir_unop_f2b, /**< Float-to-boolean conversion */
621 ir_unop_b2f, /**< Boolean-to-float conversion */
622 ir_unop_i2b, /**< int-to-boolean conversion */
623 ir_unop_b2i, /**< Boolean-to-int conversion */
624 ir_unop_u2f, /**< Unsigned-to-float conversion. */
625 ir_unop_any,
626
627 /**
628 * \name Unary floating-point rounding operations.
629 */
630 /*@{*/
631 ir_unop_trunc,
632 ir_unop_ceil,
633 ir_unop_floor,
634 ir_unop_fract,
635 /*@}*/
636
637 /**
638 * \name Trigonometric operations.
639 */
640 /*@{*/
641 ir_unop_sin,
642 ir_unop_cos,
643 /*@}*/
644
645 /**
646 * \name Partial derivatives.
647 */
648 /*@{*/
649 ir_unop_dFdx,
650 ir_unop_dFdy,
651 /*@}*/
652
653 ir_unop_noise,
654
655 ir_binop_add,
656 ir_binop_sub,
657 ir_binop_mul,
658 ir_binop_div,
659
660 /**
661 * Takes one of two combinations of arguments:
662 *
663 * - mod(vecN, vecN)
664 * - mod(vecN, float)
665 *
666 * Does not take integer types.
667 */
668 ir_binop_mod,
669
670 /**
671 * \name Binary comparison operators
672 */
673 /*@{*/
674 ir_binop_less,
675 ir_binop_greater,
676 ir_binop_lequal,
677 ir_binop_gequal,
678 ir_binop_equal,
679 ir_binop_nequal,
680 /**
681 * Returns single boolean for whether all components of operands[0]
682 * equal the components of operands[1].
683 */
684 ir_binop_all_equal,
685 /**
686 * Returns single boolean for whether any component of operands[0]
687 * is not equal to the corresponding component of operands[1].
688 */
689 ir_binop_any_nequal,
690 /*@}*/
691
692 /**
693 * \name Bit-wise binary operations.
694 */
695 /*@{*/
696 ir_binop_lshift,
697 ir_binop_rshift,
698 ir_binop_bit_and,
699 ir_binop_bit_xor,
700 ir_binop_bit_or,
701 /*@}*/
702
703 ir_binop_logic_and,
704 ir_binop_logic_xor,
705 ir_binop_logic_or,
706
707 ir_binop_dot,
708 ir_binop_cross,
709 ir_binop_min,
710 ir_binop_max,
711
712 ir_binop_pow
713 };
714
715 class ir_expression : public ir_rvalue {
716 public:
717 ir_expression(int op, const struct glsl_type *type,
718 ir_rvalue *, ir_rvalue *);
719
720 virtual ir_expression *as_expression()
721 {
722 return this;
723 }
724
725 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
726
727 virtual ir_constant *constant_expression_value();
728
729 static unsigned int get_num_operands(ir_expression_operation);
730 unsigned int get_num_operands() const
731 {
732 return get_num_operands(operation);
733 }
734
735 /**
736 * Return a string representing this expression's operator.
737 */
738 const char *operator_string();
739
740 /**
741 * Return a string representing this expression's operator.
742 */
743 static const char *operator_string(ir_expression_operation);
744
745
746 /**
747 * Do a reverse-lookup to translate the given string into an operator.
748 */
749 static ir_expression_operation get_operator(const char *);
750
751 virtual void accept(ir_visitor *v)
752 {
753 v->visit(this);
754 }
755
756 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
757
758 ir_expression_operation operation;
759 ir_rvalue *operands[2];
760 };
761
762
763 /**
764 * IR instruction representing a function call
765 */
766 class ir_call : public ir_rvalue {
767 public:
768 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
769 : callee(callee)
770 {
771 ir_type = ir_type_call;
772 assert(callee->return_type != NULL);
773 type = callee->return_type;
774 actual_parameters->move_nodes_to(& this->actual_parameters);
775 }
776
777 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
778
779 virtual ir_constant *constant_expression_value();
780
781 virtual ir_call *as_call()
782 {
783 return this;
784 }
785
786 virtual void accept(ir_visitor *v)
787 {
788 v->visit(this);
789 }
790
791 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
792
793 /**
794 * Get a generic ir_call object when an error occurs
795 *
796 * Any allocation will be performed with 'ctx' as talloc owner.
797 */
798 static ir_call *get_error_instruction(void *ctx);
799
800 /**
801 * Get an iterator for the set of acutal parameters
802 */
803 exec_list_iterator iterator()
804 {
805 return actual_parameters.iterator();
806 }
807
808 /**
809 * Get the name of the function being called.
810 */
811 const char *callee_name() const
812 {
813 return callee->function_name();
814 }
815
816 ir_function_signature *get_callee()
817 {
818 return callee;
819 }
820
821 /**
822 * Set the function call target
823 */
824 void set_callee(ir_function_signature *sig);
825
826 /**
827 * Generates an inline version of the function before @ir,
828 * returning the return value of the function.
829 */
830 ir_rvalue *generate_inline(ir_instruction *ir);
831
832 /* List of ir_rvalue of paramaters passed in this call. */
833 exec_list actual_parameters;
834
835 private:
836 ir_call()
837 : callee(NULL)
838 {
839 this->ir_type = ir_type_call;
840 }
841
842 ir_function_signature *callee;
843 };
844
845
846 /**
847 * \name Jump-like IR instructions.
848 *
849 * These include \c break, \c continue, \c return, and \c discard.
850 */
851 /*@{*/
852 class ir_jump : public ir_instruction {
853 protected:
854 ir_jump()
855 {
856 ir_type = ir_type_unset;
857 }
858 };
859
860 class ir_return : public ir_jump {
861 public:
862 ir_return()
863 : value(NULL)
864 {
865 this->ir_type = ir_type_return;
866 }
867
868 ir_return(ir_rvalue *value)
869 : value(value)
870 {
871 this->ir_type = ir_type_return;
872 }
873
874 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
875
876 virtual ir_return *as_return()
877 {
878 return this;
879 }
880
881 ir_rvalue *get_value() const
882 {
883 return value;
884 }
885
886 virtual void accept(ir_visitor *v)
887 {
888 v->visit(this);
889 }
890
891 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
892
893 ir_rvalue *value;
894 };
895
896
897 /**
898 * Jump instructions used inside loops
899 *
900 * These include \c break and \c continue. The \c break within a loop is
901 * different from the \c break within a switch-statement.
902 *
903 * \sa ir_switch_jump
904 */
905 class ir_loop_jump : public ir_jump {
906 public:
907 enum jump_mode {
908 jump_break,
909 jump_continue
910 };
911
912 ir_loop_jump(jump_mode mode)
913 {
914 this->ir_type = ir_type_loop_jump;
915 this->mode = mode;
916 this->loop = loop;
917 }
918
919 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
920
921 virtual void accept(ir_visitor *v)
922 {
923 v->visit(this);
924 }
925
926 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
927
928 bool is_break() const
929 {
930 return mode == jump_break;
931 }
932
933 bool is_continue() const
934 {
935 return mode == jump_continue;
936 }
937
938 /** Mode selector for the jump instruction. */
939 enum jump_mode mode;
940 private:
941 /** Loop containing this break instruction. */
942 ir_loop *loop;
943 };
944
945 /**
946 * IR instruction representing discard statements.
947 */
948 class ir_discard : public ir_jump {
949 public:
950 ir_discard()
951 {
952 this->ir_type = ir_type_discard;
953 this->condition = NULL;
954 }
955
956 ir_discard(ir_rvalue *cond)
957 {
958 this->ir_type = ir_type_discard;
959 this->condition = cond;
960 }
961
962 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
963
964 virtual void accept(ir_visitor *v)
965 {
966 v->visit(this);
967 }
968
969 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
970
971 ir_rvalue *condition;
972 };
973 /*@}*/
974
975
976 /**
977 * Texture sampling opcodes used in ir_texture
978 */
979 enum ir_texture_opcode {
980 ir_tex, /* Regular texture look-up */
981 ir_txb, /* Texture look-up with LOD bias */
982 ir_txl, /* Texture look-up with explicit LOD */
983 ir_txd, /* Texture look-up with partial derivatvies */
984 ir_txf /* Texel fetch with explicit LOD */
985 };
986
987
988 /**
989 * IR instruction to sample a texture
990 *
991 * The specific form of the IR instruction depends on the \c mode value
992 * selected from \c ir_texture_opcodes. In the printed IR, these will
993 * appear as:
994 *
995 * Texel offset
996 * | Projection divisor
997 * | | Shadow comparitor
998 * | | |
999 * v v v
1000 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1001 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1002 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1003 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1004 * (txf (sampler) (coordinate) (0 0 0) (lod))
1005 */
1006 class ir_texture : public ir_rvalue {
1007 public:
1008 ir_texture(enum ir_texture_opcode op)
1009 : op(op), projector(NULL), shadow_comparitor(NULL)
1010 {
1011 this->ir_type = ir_type_texture;
1012 }
1013
1014 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1015
1016 virtual ir_constant *constant_expression_value();
1017
1018 virtual void accept(ir_visitor *v)
1019 {
1020 v->visit(this);
1021 }
1022
1023 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1024
1025 /**
1026 * Return a string representing the ir_texture_opcode.
1027 */
1028 const char *opcode_string();
1029
1030 /** Set the sampler and infer the type. */
1031 void set_sampler(ir_dereference *sampler);
1032
1033 /**
1034 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1035 */
1036 static ir_texture_opcode get_opcode(const char *);
1037
1038 enum ir_texture_opcode op;
1039
1040 /** Sampler to use for the texture access. */
1041 ir_dereference *sampler;
1042
1043 /** Texture coordinate to sample */
1044 ir_rvalue *coordinate;
1045
1046 /**
1047 * Value used for projective divide.
1048 *
1049 * If there is no projective divide (the common case), this will be
1050 * \c NULL. Optimization passes should check for this to point to a constant
1051 * of 1.0 and replace that with \c NULL.
1052 */
1053 ir_rvalue *projector;
1054
1055 /**
1056 * Coordinate used for comparison on shadow look-ups.
1057 *
1058 * If there is no shadow comparison, this will be \c NULL. For the
1059 * \c ir_txf opcode, this *must* be \c NULL.
1060 */
1061 ir_rvalue *shadow_comparitor;
1062
1063 /** Explicit texel offsets. */
1064 signed char offsets[3];
1065
1066 union {
1067 ir_rvalue *lod; /**< Floating point LOD */
1068 ir_rvalue *bias; /**< Floating point LOD bias */
1069 struct {
1070 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1071 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1072 } grad;
1073 } lod_info;
1074 };
1075
1076
1077 struct ir_swizzle_mask {
1078 unsigned x:2;
1079 unsigned y:2;
1080 unsigned z:2;
1081 unsigned w:2;
1082
1083 /**
1084 * Number of components in the swizzle.
1085 */
1086 unsigned num_components:3;
1087
1088 /**
1089 * Does the swizzle contain duplicate components?
1090 *
1091 * L-value swizzles cannot contain duplicate components.
1092 */
1093 unsigned has_duplicates:1;
1094 };
1095
1096
1097 class ir_swizzle : public ir_rvalue {
1098 public:
1099 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1100 unsigned count);
1101
1102 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1103
1104 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1105
1106 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1107
1108 virtual ir_constant *constant_expression_value();
1109
1110 virtual ir_swizzle *as_swizzle()
1111 {
1112 return this;
1113 }
1114
1115 /**
1116 * Construct an ir_swizzle from the textual representation. Can fail.
1117 */
1118 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1119
1120 virtual void accept(ir_visitor *v)
1121 {
1122 v->visit(this);
1123 }
1124
1125 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1126
1127 bool is_lvalue()
1128 {
1129 return val->is_lvalue() && !mask.has_duplicates;
1130 }
1131
1132 /**
1133 * Get the variable that is ultimately referenced by an r-value
1134 */
1135 virtual ir_variable *variable_referenced();
1136
1137 ir_rvalue *val;
1138 ir_swizzle_mask mask;
1139
1140 private:
1141 /**
1142 * Initialize the mask component of a swizzle
1143 *
1144 * This is used by the \c ir_swizzle constructors.
1145 */
1146 void init_mask(const unsigned *components, unsigned count);
1147 };
1148
1149
1150 class ir_dereference : public ir_rvalue {
1151 public:
1152 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1153
1154 virtual ir_dereference *as_dereference()
1155 {
1156 return this;
1157 }
1158
1159 bool is_lvalue();
1160
1161 /**
1162 * Get the variable that is ultimately referenced by an r-value
1163 */
1164 virtual ir_variable *variable_referenced() = 0;
1165 };
1166
1167
1168 class ir_dereference_variable : public ir_dereference {
1169 public:
1170 ir_dereference_variable(ir_variable *var);
1171
1172 virtual ir_dereference_variable *clone(void *mem_ctx,
1173 struct hash_table *) const;
1174
1175 virtual ir_constant *constant_expression_value();
1176
1177 virtual ir_dereference_variable *as_dereference_variable()
1178 {
1179 return this;
1180 }
1181
1182 /**
1183 * Get the variable that is ultimately referenced by an r-value
1184 */
1185 virtual ir_variable *variable_referenced()
1186 {
1187 return this->var;
1188 }
1189
1190 virtual ir_variable *whole_variable_referenced()
1191 {
1192 /* ir_dereference_variable objects always dereference the entire
1193 * variable. However, if this dereference is dereferenced by anything
1194 * else, the complete deferefernce chain is not a whole-variable
1195 * dereference. This method should only be called on the top most
1196 * ir_rvalue in a dereference chain.
1197 */
1198 return this->var;
1199 }
1200
1201 virtual void accept(ir_visitor *v)
1202 {
1203 v->visit(this);
1204 }
1205
1206 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1207
1208 /**
1209 * Object being dereferenced.
1210 */
1211 ir_variable *var;
1212 };
1213
1214
1215 class ir_dereference_array : public ir_dereference {
1216 public:
1217 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1218
1219 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1220
1221 virtual ir_dereference_array *clone(void *mem_ctx,
1222 struct hash_table *) const;
1223
1224 virtual ir_constant *constant_expression_value();
1225
1226 virtual ir_dereference_array *as_dereference_array()
1227 {
1228 return this;
1229 }
1230
1231 /**
1232 * Get the variable that is ultimately referenced by an r-value
1233 */
1234 virtual ir_variable *variable_referenced()
1235 {
1236 return this->array->variable_referenced();
1237 }
1238
1239 virtual void accept(ir_visitor *v)
1240 {
1241 v->visit(this);
1242 }
1243
1244 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1245
1246 ir_rvalue *array;
1247 ir_rvalue *array_index;
1248
1249 private:
1250 void set_array(ir_rvalue *value);
1251 };
1252
1253
1254 class ir_dereference_record : public ir_dereference {
1255 public:
1256 ir_dereference_record(ir_rvalue *value, const char *field);
1257
1258 ir_dereference_record(ir_variable *var, const char *field);
1259
1260 virtual ir_dereference_record *clone(void *mem_ctx,
1261 struct hash_table *) const;
1262
1263 virtual ir_constant *constant_expression_value();
1264
1265 /**
1266 * Get the variable that is ultimately referenced by an r-value
1267 */
1268 virtual ir_variable *variable_referenced()
1269 {
1270 return this->record->variable_referenced();
1271 }
1272
1273 virtual void accept(ir_visitor *v)
1274 {
1275 v->visit(this);
1276 }
1277
1278 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1279
1280 ir_rvalue *record;
1281 const char *field;
1282 };
1283
1284
1285 /**
1286 * Data stored in an ir_constant
1287 */
1288 union ir_constant_data {
1289 unsigned u[16];
1290 int i[16];
1291 float f[16];
1292 bool b[16];
1293 };
1294
1295
1296 class ir_constant : public ir_rvalue {
1297 public:
1298 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1299 ir_constant(bool b);
1300 ir_constant(unsigned int u);
1301 ir_constant(int i);
1302 ir_constant(float f);
1303
1304 /**
1305 * Construct an ir_constant from a list of ir_constant values
1306 */
1307 ir_constant(const struct glsl_type *type, exec_list *values);
1308
1309 /**
1310 * Construct an ir_constant from a scalar component of another ir_constant
1311 *
1312 * The new \c ir_constant inherits the type of the component from the
1313 * source constant.
1314 *
1315 * \note
1316 * In the case of a matrix constant, the new constant is a scalar, \b not
1317 * a vector.
1318 */
1319 ir_constant(const ir_constant *c, unsigned i);
1320
1321 /**
1322 * Return a new ir_constant of the specified type containing all zeros.
1323 */
1324 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1325
1326 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1327
1328 virtual ir_constant *constant_expression_value();
1329
1330 virtual ir_constant *as_constant()
1331 {
1332 return this;
1333 }
1334
1335 virtual void accept(ir_visitor *v)
1336 {
1337 v->visit(this);
1338 }
1339
1340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
1342 /**
1343 * Get a particular component of a constant as a specific type
1344 *
1345 * This is useful, for example, to get a value from an integer constant
1346 * as a float or bool. This appears frequently when constructors are
1347 * called with all constant parameters.
1348 */
1349 /*@{*/
1350 bool get_bool_component(unsigned i) const;
1351 float get_float_component(unsigned i) const;
1352 int get_int_component(unsigned i) const;
1353 unsigned get_uint_component(unsigned i) const;
1354 /*@}*/
1355
1356 ir_constant *get_array_element(unsigned i) const;
1357
1358 ir_constant *get_record_field(const char *name);
1359
1360 /**
1361 * Determine whether a constant has the same value as another constant
1362 */
1363 bool has_value(const ir_constant *) const;
1364
1365 /**
1366 * Value of the constant.
1367 *
1368 * The field used to back the values supplied by the constant is determined
1369 * by the type associated with the \c ir_instruction. Constants may be
1370 * scalars, vectors, or matrices.
1371 */
1372 union ir_constant_data value;
1373
1374 /* Array elements */
1375 ir_constant **array_elements;
1376
1377 /* Structure fields */
1378 exec_list components;
1379
1380 private:
1381 /**
1382 * Parameterless constructor only used by the clone method
1383 */
1384 ir_constant(void);
1385 };
1386
1387 void
1388 visit_exec_list(exec_list *list, ir_visitor *visitor);
1389
1390 void validate_ir_tree(exec_list *instructions);
1391
1392 /**
1393 * Make a clone of each IR instruction in a list
1394 *
1395 * \param in List of IR instructions that are to be cloned
1396 * \param out List to hold the cloned instructions
1397 */
1398 void
1399 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1400
1401 extern void
1402 _mesa_glsl_initialize_variables(exec_list *instructions,
1403 struct _mesa_glsl_parse_state *state);
1404
1405 extern void
1406 _mesa_glsl_initialize_functions(exec_list *instructions,
1407 struct _mesa_glsl_parse_state *state);
1408
1409 extern void
1410 _mesa_glsl_release_functions(void);
1411
1412 extern void
1413 reparent_ir(exec_list *list, void *mem_ctx);
1414
1415 struct glsl_symbol_table;
1416
1417 extern void
1418 import_prototypes(const exec_list *source, exec_list *dest,
1419 struct glsl_symbol_table *symbols, void *mem_ctx);
1420
1421 extern bool
1422 ir_has_call(ir_instruction *ir);
1423
1424 extern void
1425 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1426
1427 #endif /* IR_H */