glsl: Add a "ubo_load" expression type for fetches from UBOs.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_in,
269 ir_var_out,
270 ir_var_inout,
271 ir_var_const_in, /**< "in" param that must be a constant expression */
272 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
273 ir_var_temporary /**< Temporary variable generated during compilation. */
274 };
275
276 /**
277 * \brief Layout qualifiers for gl_FragDepth.
278 *
279 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
280 * with a layout qualifier.
281 */
282 enum ir_depth_layout {
283 ir_depth_layout_none, /**< No depth layout is specified. */
284 ir_depth_layout_any,
285 ir_depth_layout_greater,
286 ir_depth_layout_less,
287 ir_depth_layout_unchanged
288 };
289
290 /**
291 * \brief Convert depth layout qualifier to string.
292 */
293 const char*
294 depth_layout_string(ir_depth_layout layout);
295
296 /**
297 * Description of built-in state associated with a uniform
298 *
299 * \sa ir_variable::state_slots
300 */
301 struct ir_state_slot {
302 int tokens[5];
303 int swizzle;
304 };
305
306 class ir_variable : public ir_instruction {
307 public:
308 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
309
310 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
311
312 virtual ir_variable *as_variable()
313 {
314 return this;
315 }
316
317 virtual void accept(ir_visitor *v)
318 {
319 v->visit(this);
320 }
321
322 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
323
324
325 /**
326 * Get the string value for the interpolation qualifier
327 *
328 * \return The string that would be used in a shader to specify \c
329 * mode will be returned.
330 *
331 * This function is used to generate error messages of the form "shader
332 * uses %s interpolation qualifier", so in the case where there is no
333 * interpolation qualifier, it returns "no".
334 *
335 * This function should only be used on a shader input or output variable.
336 */
337 const char *interpolation_string() const;
338
339 /**
340 * Determine how this variable should be interpolated based on its
341 * interpolation qualifier (if present), whether it is gl_Color or
342 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
343 * state.
344 *
345 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
346 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
347 */
348 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
349
350 /**
351 * Declared type of the variable
352 */
353 const struct glsl_type *type;
354
355 /**
356 * Declared name of the variable
357 */
358 const char *name;
359
360 /**
361 * Highest element accessed with a constant expression array index
362 *
363 * Not used for non-array variables.
364 */
365 unsigned max_array_access;
366
367 /**
368 * Is the variable read-only?
369 *
370 * This is set for variables declared as \c const, shader inputs,
371 * and uniforms.
372 */
373 unsigned read_only:1;
374 unsigned centroid:1;
375 unsigned invariant:1;
376
377 /**
378 * Has this variable been used for reading or writing?
379 *
380 * Several GLSL semantic checks require knowledge of whether or not a
381 * variable has been used. For example, it is an error to redeclare a
382 * variable as invariant after it has been used.
383 *
384 * This is only maintained in the ast_to_hir.cpp path, not in
385 * Mesa's fixed function or ARB program paths.
386 */
387 unsigned used:1;
388
389 /**
390 * Has this variable been statically assigned?
391 *
392 * This answers whether the variable was assigned in any path of
393 * the shader during ast_to_hir. This doesn't answer whether it is
394 * still written after dead code removal, nor is it maintained in
395 * non-ast_to_hir.cpp (GLSL parsing) paths.
396 */
397 unsigned assigned:1;
398
399 /**
400 * Storage class of the variable.
401 *
402 * \sa ir_variable_mode
403 */
404 unsigned mode:3;
405
406 /**
407 * Interpolation mode for shader inputs / outputs
408 *
409 * \sa ir_variable_interpolation
410 */
411 unsigned interpolation:2;
412
413 /**
414 * \name ARB_fragment_coord_conventions
415 * @{
416 */
417 unsigned origin_upper_left:1;
418 unsigned pixel_center_integer:1;
419 /*@}*/
420
421 /**
422 * Was the location explicitly set in the shader?
423 *
424 * If the location is explicitly set in the shader, it \b cannot be changed
425 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
426 * no effect).
427 */
428 unsigned explicit_location:1;
429 unsigned explicit_index:1;
430
431 /**
432 * Does this variable have an initializer?
433 *
434 * This is used by the linker to cross-validiate initializers of global
435 * variables.
436 */
437 unsigned has_initializer:1;
438
439 /**
440 * \brief Layout qualifier for gl_FragDepth.
441 *
442 * This is not equal to \c ir_depth_layout_none if and only if this
443 * variable is \c gl_FragDepth and a layout qualifier is specified.
444 */
445 ir_depth_layout depth_layout;
446
447 /**
448 * Storage location of the base of this variable
449 *
450 * The precise meaning of this field depends on the nature of the variable.
451 *
452 * - Vertex shader input: one of the values from \c gl_vert_attrib.
453 * - Vertex shader output: one of the values from \c gl_vert_result.
454 * - Fragment shader input: one of the values from \c gl_frag_attrib.
455 * - Fragment shader output: one of the values from \c gl_frag_result.
456 * - Uniforms: Per-stage uniform slot number for default uniform block.
457 * - Uniforms: Index within the uniform block definition for UBO members.
458 * - Other: This field is not currently used.
459 *
460 * If the variable is a uniform, shader input, or shader output, and the
461 * slot has not been assigned, the value will be -1.
462 */
463 int location;
464
465 /**
466 * Uniform block number for uniforms.
467 *
468 * This index is into the shader's list of uniform blocks, not the
469 * linked program's merged list.
470 *
471 * If the variable is not in a uniform block, the value will be -1.
472 */
473 int uniform_block;
474
475 /**
476 * output index for dual source blending.
477 */
478 int index;
479
480 /**
481 * Built-in state that backs this uniform
482 *
483 * Once set at variable creation, \c state_slots must remain invariant.
484 * This is because, ideally, this array would be shared by all clones of
485 * this variable in the IR tree. In other words, we'd really like for it
486 * to be a fly-weight.
487 *
488 * If the variable is not a uniform, \c num_state_slots will be zero and
489 * \c state_slots will be \c NULL.
490 */
491 /*@{*/
492 unsigned num_state_slots; /**< Number of state slots used */
493 ir_state_slot *state_slots; /**< State descriptors. */
494 /*@}*/
495
496 /**
497 * Emit a warning if this variable is accessed.
498 */
499 const char *warn_extension;
500
501 /**
502 * Value assigned in the initializer of a variable declared "const"
503 */
504 ir_constant *constant_value;
505
506 /**
507 * Constant expression assigned in the initializer of the variable
508 *
509 * \warning
510 * This field and \c ::constant_value are distinct. Even if the two fields
511 * refer to constants with the same value, they must point to separate
512 * objects.
513 */
514 ir_constant *constant_initializer;
515 };
516
517
518 /*@{*/
519 /**
520 * The representation of a function instance; may be the full definition or
521 * simply a prototype.
522 */
523 class ir_function_signature : public ir_instruction {
524 /* An ir_function_signature will be part of the list of signatures in
525 * an ir_function.
526 */
527 public:
528 ir_function_signature(const glsl_type *return_type);
529
530 virtual ir_function_signature *clone(void *mem_ctx,
531 struct hash_table *ht) const;
532 ir_function_signature *clone_prototype(void *mem_ctx,
533 struct hash_table *ht) const;
534
535 virtual void accept(ir_visitor *v)
536 {
537 v->visit(this);
538 }
539
540 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
541
542 /**
543 * Attempt to evaluate this function as a constant expression,
544 * given a list of the actual parameters and the variable context.
545 * Returns NULL for non-built-ins.
546 */
547 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
548
549 /**
550 * Get the name of the function for which this is a signature
551 */
552 const char *function_name() const;
553
554 /**
555 * Get a handle to the function for which this is a signature
556 *
557 * There is no setter function, this function returns a \c const pointer,
558 * and \c ir_function_signature::_function is private for a reason. The
559 * only way to make a connection between a function and function signature
560 * is via \c ir_function::add_signature. This helps ensure that certain
561 * invariants (i.e., a function signature is in the list of signatures for
562 * its \c _function) are met.
563 *
564 * \sa ir_function::add_signature
565 */
566 inline const class ir_function *function() const
567 {
568 return this->_function;
569 }
570
571 /**
572 * Check whether the qualifiers match between this signature's parameters
573 * and the supplied parameter list. If not, returns the name of the first
574 * parameter with mismatched qualifiers (for use in error messages).
575 */
576 const char *qualifiers_match(exec_list *params);
577
578 /**
579 * Replace the current parameter list with the given one. This is useful
580 * if the current information came from a prototype, and either has invalid
581 * or missing parameter names.
582 */
583 void replace_parameters(exec_list *new_params);
584
585 /**
586 * Function return type.
587 *
588 * \note This discards the optional precision qualifier.
589 */
590 const struct glsl_type *return_type;
591
592 /**
593 * List of ir_variable of function parameters.
594 *
595 * This represents the storage. The paramaters passed in a particular
596 * call will be in ir_call::actual_paramaters.
597 */
598 struct exec_list parameters;
599
600 /** Whether or not this function has a body (which may be empty). */
601 unsigned is_defined:1;
602
603 /** Whether or not this function signature is a built-in. */
604 unsigned is_builtin:1;
605
606 /** Body of instructions in the function. */
607 struct exec_list body;
608
609 private:
610 /** Function of which this signature is one overload. */
611 class ir_function *_function;
612
613 /** Function signature of which this one is a prototype clone */
614 const ir_function_signature *origin;
615
616 friend class ir_function;
617
618 /**
619 * Helper function to run a list of instructions for constant
620 * expression evaluation.
621 *
622 * The hash table represents the values of the visible variables.
623 * There are no scoping issues because the table is indexed on
624 * ir_variable pointers, not variable names.
625 *
626 * Returns false if the expression is not constant, true otherwise,
627 * and the value in *result if result is non-NULL.
628 */
629 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
630 struct hash_table *variable_context,
631 ir_constant **result);
632 };
633
634
635 /**
636 * Header for tracking multiple overloaded functions with the same name.
637 * Contains a list of ir_function_signatures representing each of the
638 * actual functions.
639 */
640 class ir_function : public ir_instruction {
641 public:
642 ir_function(const char *name);
643
644 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
645
646 virtual ir_function *as_function()
647 {
648 return this;
649 }
650
651 virtual void accept(ir_visitor *v)
652 {
653 v->visit(this);
654 }
655
656 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
657
658 void add_signature(ir_function_signature *sig)
659 {
660 sig->_function = this;
661 this->signatures.push_tail(sig);
662 }
663
664 /**
665 * Get an iterator for the set of function signatures
666 */
667 exec_list_iterator iterator()
668 {
669 return signatures.iterator();
670 }
671
672 /**
673 * Find a signature that matches a set of actual parameters, taking implicit
674 * conversions into account. Also flags whether the match was exact.
675 */
676 ir_function_signature *matching_signature(const exec_list *actual_param,
677 bool *match_is_exact);
678
679 /**
680 * Find a signature that matches a set of actual parameters, taking implicit
681 * conversions into account.
682 */
683 ir_function_signature *matching_signature(const exec_list *actual_param);
684
685 /**
686 * Find a signature that exactly matches a set of actual parameters without
687 * any implicit type conversions.
688 */
689 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
690
691 /**
692 * Name of the function.
693 */
694 const char *name;
695
696 /** Whether or not this function has a signature that isn't a built-in. */
697 bool has_user_signature();
698
699 /**
700 * List of ir_function_signature for each overloaded function with this name.
701 */
702 struct exec_list signatures;
703 };
704
705 inline const char *ir_function_signature::function_name() const
706 {
707 return this->_function->name;
708 }
709 /*@}*/
710
711
712 /**
713 * IR instruction representing high-level if-statements
714 */
715 class ir_if : public ir_instruction {
716 public:
717 ir_if(ir_rvalue *condition)
718 : condition(condition)
719 {
720 ir_type = ir_type_if;
721 }
722
723 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
724
725 virtual ir_if *as_if()
726 {
727 return this;
728 }
729
730 virtual void accept(ir_visitor *v)
731 {
732 v->visit(this);
733 }
734
735 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
736
737 ir_rvalue *condition;
738 /** List of ir_instruction for the body of the then branch */
739 exec_list then_instructions;
740 /** List of ir_instruction for the body of the else branch */
741 exec_list else_instructions;
742 };
743
744
745 /**
746 * IR instruction representing a high-level loop structure.
747 */
748 class ir_loop : public ir_instruction {
749 public:
750 ir_loop();
751
752 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
753
754 virtual void accept(ir_visitor *v)
755 {
756 v->visit(this);
757 }
758
759 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
760
761 virtual ir_loop *as_loop()
762 {
763 return this;
764 }
765
766 /**
767 * Get an iterator for the instructions of the loop body
768 */
769 exec_list_iterator iterator()
770 {
771 return body_instructions.iterator();
772 }
773
774 /** List of ir_instruction that make up the body of the loop. */
775 exec_list body_instructions;
776
777 /**
778 * \name Loop counter and controls
779 *
780 * Represents a loop like a FORTRAN \c do-loop.
781 *
782 * \note
783 * If \c from and \c to are the same value, the loop will execute once.
784 */
785 /*@{*/
786 ir_rvalue *from; /** Value of the loop counter on the first
787 * iteration of the loop.
788 */
789 ir_rvalue *to; /** Value of the loop counter on the last
790 * iteration of the loop.
791 */
792 ir_rvalue *increment;
793 ir_variable *counter;
794
795 /**
796 * Comparison operation in the loop terminator.
797 *
798 * If any of the loop control fields are non-\c NULL, this field must be
799 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
800 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
801 */
802 int cmp;
803 /*@}*/
804 };
805
806
807 class ir_assignment : public ir_instruction {
808 public:
809 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
810
811 /**
812 * Construct an assignment with an explicit write mask
813 *
814 * \note
815 * Since a write mask is supplied, the LHS must already be a bare
816 * \c ir_dereference. The cannot be any swizzles in the LHS.
817 */
818 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
819 unsigned write_mask);
820
821 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
822
823 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
824
825 virtual void accept(ir_visitor *v)
826 {
827 v->visit(this);
828 }
829
830 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
831
832 virtual ir_assignment * as_assignment()
833 {
834 return this;
835 }
836
837 /**
838 * Get a whole variable written by an assignment
839 *
840 * If the LHS of the assignment writes a whole variable, the variable is
841 * returned. Otherwise \c NULL is returned. Examples of whole-variable
842 * assignment are:
843 *
844 * - Assigning to a scalar
845 * - Assigning to all components of a vector
846 * - Whole array (or matrix) assignment
847 * - Whole structure assignment
848 */
849 ir_variable *whole_variable_written();
850
851 /**
852 * Set the LHS of an assignment
853 */
854 void set_lhs(ir_rvalue *lhs);
855
856 /**
857 * Left-hand side of the assignment.
858 *
859 * This should be treated as read only. If you need to set the LHS of an
860 * assignment, use \c ir_assignment::set_lhs.
861 */
862 ir_dereference *lhs;
863
864 /**
865 * Value being assigned
866 */
867 ir_rvalue *rhs;
868
869 /**
870 * Optional condition for the assignment.
871 */
872 ir_rvalue *condition;
873
874
875 /**
876 * Component mask written
877 *
878 * For non-vector types in the LHS, this field will be zero. For vector
879 * types, a bit will be set for each component that is written. Note that
880 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
881 *
882 * A partially-set write mask means that each enabled channel gets
883 * the value from a consecutive channel of the rhs. For example,
884 * to write just .xyw of gl_FrontColor with color:
885 *
886 * (assign (constant bool (1)) (xyw)
887 * (var_ref gl_FragColor)
888 * (swiz xyw (var_ref color)))
889 */
890 unsigned write_mask:4;
891 };
892
893 /* Update ir_expression::num_operands() and operator_strs when
894 * updating this list.
895 */
896 enum ir_expression_operation {
897 ir_unop_bit_not,
898 ir_unop_logic_not,
899 ir_unop_neg,
900 ir_unop_abs,
901 ir_unop_sign,
902 ir_unop_rcp,
903 ir_unop_rsq,
904 ir_unop_sqrt,
905 ir_unop_exp, /**< Log base e on gentype */
906 ir_unop_log, /**< Natural log on gentype */
907 ir_unop_exp2,
908 ir_unop_log2,
909 ir_unop_f2i, /**< Float-to-integer conversion. */
910 ir_unop_f2u, /**< Float-to-unsigned conversion. */
911 ir_unop_i2f, /**< Integer-to-float conversion. */
912 ir_unop_f2b, /**< Float-to-boolean conversion */
913 ir_unop_b2f, /**< Boolean-to-float conversion */
914 ir_unop_i2b, /**< int-to-boolean conversion */
915 ir_unop_b2i, /**< Boolean-to-int conversion */
916 ir_unop_u2f, /**< Unsigned-to-float conversion. */
917 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
918 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
919 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
920 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
921 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
922 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
923 ir_unop_any,
924
925 /**
926 * \name Unary floating-point rounding operations.
927 */
928 /*@{*/
929 ir_unop_trunc,
930 ir_unop_ceil,
931 ir_unop_floor,
932 ir_unop_fract,
933 ir_unop_round_even,
934 /*@}*/
935
936 /**
937 * \name Trigonometric operations.
938 */
939 /*@{*/
940 ir_unop_sin,
941 ir_unop_cos,
942 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
943 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
944 /*@}*/
945
946 /**
947 * \name Partial derivatives.
948 */
949 /*@{*/
950 ir_unop_dFdx,
951 ir_unop_dFdy,
952 /*@}*/
953
954 ir_unop_noise,
955
956 /**
957 * A sentinel marking the last of the unary operations.
958 */
959 ir_last_unop = ir_unop_noise,
960
961 ir_binop_add,
962 ir_binop_sub,
963 ir_binop_mul,
964 ir_binop_div,
965
966 /**
967 * Takes one of two combinations of arguments:
968 *
969 * - mod(vecN, vecN)
970 * - mod(vecN, float)
971 *
972 * Does not take integer types.
973 */
974 ir_binop_mod,
975
976 /**
977 * \name Binary comparison operators which return a boolean vector.
978 * The type of both operands must be equal.
979 */
980 /*@{*/
981 ir_binop_less,
982 ir_binop_greater,
983 ir_binop_lequal,
984 ir_binop_gequal,
985 ir_binop_equal,
986 ir_binop_nequal,
987 /**
988 * Returns single boolean for whether all components of operands[0]
989 * equal the components of operands[1].
990 */
991 ir_binop_all_equal,
992 /**
993 * Returns single boolean for whether any component of operands[0]
994 * is not equal to the corresponding component of operands[1].
995 */
996 ir_binop_any_nequal,
997 /*@}*/
998
999 /**
1000 * \name Bit-wise binary operations.
1001 */
1002 /*@{*/
1003 ir_binop_lshift,
1004 ir_binop_rshift,
1005 ir_binop_bit_and,
1006 ir_binop_bit_xor,
1007 ir_binop_bit_or,
1008 /*@}*/
1009
1010 ir_binop_logic_and,
1011 ir_binop_logic_xor,
1012 ir_binop_logic_or,
1013
1014 ir_binop_dot,
1015 ir_binop_min,
1016 ir_binop_max,
1017
1018 ir_binop_pow,
1019
1020 /**
1021 * Load a value the size of a given GLSL type from a uniform block.
1022 *
1023 * operand0 is the ir_constant uniform block index in the linked shader.
1024 * operand1 is a byte offset within the uniform block.
1025 */
1026 ir_binop_ubo_load,
1027
1028 /**
1029 * A sentinel marking the last of the binary operations.
1030 */
1031 ir_last_binop = ir_binop_ubo_load,
1032
1033 ir_quadop_vector,
1034
1035 /**
1036 * A sentinel marking the last of all operations.
1037 */
1038 ir_last_opcode = ir_quadop_vector
1039 };
1040
1041 class ir_expression : public ir_rvalue {
1042 public:
1043 /**
1044 * Constructor for unary operation expressions
1045 */
1046 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1047 ir_expression(int op, ir_rvalue *);
1048
1049 /**
1050 * Constructor for binary operation expressions
1051 */
1052 ir_expression(int op, const struct glsl_type *type,
1053 ir_rvalue *, ir_rvalue *);
1054 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1055
1056 /**
1057 * Constructor for quad operator expressions
1058 */
1059 ir_expression(int op, const struct glsl_type *type,
1060 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1061
1062 virtual ir_expression *as_expression()
1063 {
1064 return this;
1065 }
1066
1067 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1068
1069 /**
1070 * Attempt to constant-fold the expression
1071 *
1072 * The "variable_context" hash table links ir_variable * to ir_constant *
1073 * that represent the variables' values. \c NULL represents an empty
1074 * context.
1075 *
1076 * If the expression cannot be constant folded, this method will return
1077 * \c NULL.
1078 */
1079 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1080
1081 /**
1082 * Determine the number of operands used by an expression
1083 */
1084 static unsigned int get_num_operands(ir_expression_operation);
1085
1086 /**
1087 * Determine the number of operands used by an expression
1088 */
1089 unsigned int get_num_operands() const
1090 {
1091 return (this->operation == ir_quadop_vector)
1092 ? this->type->vector_elements : get_num_operands(operation);
1093 }
1094
1095 /**
1096 * Return a string representing this expression's operator.
1097 */
1098 const char *operator_string();
1099
1100 /**
1101 * Return a string representing this expression's operator.
1102 */
1103 static const char *operator_string(ir_expression_operation);
1104
1105
1106 /**
1107 * Do a reverse-lookup to translate the given string into an operator.
1108 */
1109 static ir_expression_operation get_operator(const char *);
1110
1111 virtual void accept(ir_visitor *v)
1112 {
1113 v->visit(this);
1114 }
1115
1116 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1117
1118 ir_expression_operation operation;
1119 ir_rvalue *operands[4];
1120 };
1121
1122
1123 /**
1124 * HIR instruction representing a high-level function call, containing a list
1125 * of parameters and returning a value in the supplied temporary.
1126 */
1127 class ir_call : public ir_instruction {
1128 public:
1129 ir_call(ir_function_signature *callee,
1130 ir_dereference_variable *return_deref,
1131 exec_list *actual_parameters)
1132 : return_deref(return_deref), callee(callee)
1133 {
1134 ir_type = ir_type_call;
1135 assert(callee->return_type != NULL);
1136 actual_parameters->move_nodes_to(& this->actual_parameters);
1137 this->use_builtin = callee->is_builtin;
1138 }
1139
1140 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1141
1142 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1143
1144 virtual ir_call *as_call()
1145 {
1146 return this;
1147 }
1148
1149 virtual void accept(ir_visitor *v)
1150 {
1151 v->visit(this);
1152 }
1153
1154 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1155
1156 /**
1157 * Get an iterator for the set of acutal parameters
1158 */
1159 exec_list_iterator iterator()
1160 {
1161 return actual_parameters.iterator();
1162 }
1163
1164 /**
1165 * Get the name of the function being called.
1166 */
1167 const char *callee_name() const
1168 {
1169 return callee->function_name();
1170 }
1171
1172 /**
1173 * Generates an inline version of the function before @ir,
1174 * storing the return value in return_deref.
1175 */
1176 void generate_inline(ir_instruction *ir);
1177
1178 /**
1179 * Storage for the function's return value.
1180 * This must be NULL if the return type is void.
1181 */
1182 ir_dereference_variable *return_deref;
1183
1184 /**
1185 * The specific function signature being called.
1186 */
1187 ir_function_signature *callee;
1188
1189 /* List of ir_rvalue of paramaters passed in this call. */
1190 exec_list actual_parameters;
1191
1192 /** Should this call only bind to a built-in function? */
1193 bool use_builtin;
1194 };
1195
1196
1197 /**
1198 * \name Jump-like IR instructions.
1199 *
1200 * These include \c break, \c continue, \c return, and \c discard.
1201 */
1202 /*@{*/
1203 class ir_jump : public ir_instruction {
1204 protected:
1205 ir_jump()
1206 {
1207 ir_type = ir_type_unset;
1208 }
1209 };
1210
1211 class ir_return : public ir_jump {
1212 public:
1213 ir_return()
1214 : value(NULL)
1215 {
1216 this->ir_type = ir_type_return;
1217 }
1218
1219 ir_return(ir_rvalue *value)
1220 : value(value)
1221 {
1222 this->ir_type = ir_type_return;
1223 }
1224
1225 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1226
1227 virtual ir_return *as_return()
1228 {
1229 return this;
1230 }
1231
1232 ir_rvalue *get_value() const
1233 {
1234 return value;
1235 }
1236
1237 virtual void accept(ir_visitor *v)
1238 {
1239 v->visit(this);
1240 }
1241
1242 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1243
1244 ir_rvalue *value;
1245 };
1246
1247
1248 /**
1249 * Jump instructions used inside loops
1250 *
1251 * These include \c break and \c continue. The \c break within a loop is
1252 * different from the \c break within a switch-statement.
1253 *
1254 * \sa ir_switch_jump
1255 */
1256 class ir_loop_jump : public ir_jump {
1257 public:
1258 enum jump_mode {
1259 jump_break,
1260 jump_continue
1261 };
1262
1263 ir_loop_jump(jump_mode mode)
1264 {
1265 this->ir_type = ir_type_loop_jump;
1266 this->mode = mode;
1267 }
1268
1269 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1270
1271 virtual void accept(ir_visitor *v)
1272 {
1273 v->visit(this);
1274 }
1275
1276 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1277
1278 bool is_break() const
1279 {
1280 return mode == jump_break;
1281 }
1282
1283 bool is_continue() const
1284 {
1285 return mode == jump_continue;
1286 }
1287
1288 /** Mode selector for the jump instruction. */
1289 enum jump_mode mode;
1290 };
1291
1292 /**
1293 * IR instruction representing discard statements.
1294 */
1295 class ir_discard : public ir_jump {
1296 public:
1297 ir_discard()
1298 {
1299 this->ir_type = ir_type_discard;
1300 this->condition = NULL;
1301 }
1302
1303 ir_discard(ir_rvalue *cond)
1304 {
1305 this->ir_type = ir_type_discard;
1306 this->condition = cond;
1307 }
1308
1309 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1310
1311 virtual void accept(ir_visitor *v)
1312 {
1313 v->visit(this);
1314 }
1315
1316 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1317
1318 virtual ir_discard *as_discard()
1319 {
1320 return this;
1321 }
1322
1323 ir_rvalue *condition;
1324 };
1325 /*@}*/
1326
1327
1328 /**
1329 * Texture sampling opcodes used in ir_texture
1330 */
1331 enum ir_texture_opcode {
1332 ir_tex, /**< Regular texture look-up */
1333 ir_txb, /**< Texture look-up with LOD bias */
1334 ir_txl, /**< Texture look-up with explicit LOD */
1335 ir_txd, /**< Texture look-up with partial derivatvies */
1336 ir_txf, /**< Texel fetch with explicit LOD */
1337 ir_txs /**< Texture size */
1338 };
1339
1340
1341 /**
1342 * IR instruction to sample a texture
1343 *
1344 * The specific form of the IR instruction depends on the \c mode value
1345 * selected from \c ir_texture_opcodes. In the printed IR, these will
1346 * appear as:
1347 *
1348 * Texel offset (0 or an expression)
1349 * | Projection divisor
1350 * | | Shadow comparitor
1351 * | | |
1352 * v v v
1353 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1354 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1355 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1356 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1357 * (txf <type> <sampler> <coordinate> 0 <lod>)
1358 * (txs <type> <sampler> <lod>)
1359 */
1360 class ir_texture : public ir_rvalue {
1361 public:
1362 ir_texture(enum ir_texture_opcode op)
1363 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1364 offset(NULL)
1365 {
1366 this->ir_type = ir_type_texture;
1367 }
1368
1369 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1370
1371 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1372
1373 virtual void accept(ir_visitor *v)
1374 {
1375 v->visit(this);
1376 }
1377
1378 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1379
1380 /**
1381 * Return a string representing the ir_texture_opcode.
1382 */
1383 const char *opcode_string();
1384
1385 /** Set the sampler and type. */
1386 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1387
1388 /**
1389 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1390 */
1391 static ir_texture_opcode get_opcode(const char *);
1392
1393 enum ir_texture_opcode op;
1394
1395 /** Sampler to use for the texture access. */
1396 ir_dereference *sampler;
1397
1398 /** Texture coordinate to sample */
1399 ir_rvalue *coordinate;
1400
1401 /**
1402 * Value used for projective divide.
1403 *
1404 * If there is no projective divide (the common case), this will be
1405 * \c NULL. Optimization passes should check for this to point to a constant
1406 * of 1.0 and replace that with \c NULL.
1407 */
1408 ir_rvalue *projector;
1409
1410 /**
1411 * Coordinate used for comparison on shadow look-ups.
1412 *
1413 * If there is no shadow comparison, this will be \c NULL. For the
1414 * \c ir_txf opcode, this *must* be \c NULL.
1415 */
1416 ir_rvalue *shadow_comparitor;
1417
1418 /** Texel offset. */
1419 ir_rvalue *offset;
1420
1421 union {
1422 ir_rvalue *lod; /**< Floating point LOD */
1423 ir_rvalue *bias; /**< Floating point LOD bias */
1424 struct {
1425 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1426 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1427 } grad;
1428 } lod_info;
1429 };
1430
1431
1432 struct ir_swizzle_mask {
1433 unsigned x:2;
1434 unsigned y:2;
1435 unsigned z:2;
1436 unsigned w:2;
1437
1438 /**
1439 * Number of components in the swizzle.
1440 */
1441 unsigned num_components:3;
1442
1443 /**
1444 * Does the swizzle contain duplicate components?
1445 *
1446 * L-value swizzles cannot contain duplicate components.
1447 */
1448 unsigned has_duplicates:1;
1449 };
1450
1451
1452 class ir_swizzle : public ir_rvalue {
1453 public:
1454 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1455 unsigned count);
1456
1457 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1458
1459 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1460
1461 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1462
1463 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1464
1465 virtual ir_swizzle *as_swizzle()
1466 {
1467 return this;
1468 }
1469
1470 /**
1471 * Construct an ir_swizzle from the textual representation. Can fail.
1472 */
1473 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1474
1475 virtual void accept(ir_visitor *v)
1476 {
1477 v->visit(this);
1478 }
1479
1480 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1481
1482 bool is_lvalue() const
1483 {
1484 return val->is_lvalue() && !mask.has_duplicates;
1485 }
1486
1487 /**
1488 * Get the variable that is ultimately referenced by an r-value
1489 */
1490 virtual ir_variable *variable_referenced() const;
1491
1492 ir_rvalue *val;
1493 ir_swizzle_mask mask;
1494
1495 private:
1496 /**
1497 * Initialize the mask component of a swizzle
1498 *
1499 * This is used by the \c ir_swizzle constructors.
1500 */
1501 void init_mask(const unsigned *components, unsigned count);
1502 };
1503
1504
1505 class ir_dereference : public ir_rvalue {
1506 public:
1507 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1508
1509 virtual ir_dereference *as_dereference()
1510 {
1511 return this;
1512 }
1513
1514 bool is_lvalue() const;
1515
1516 /**
1517 * Get the variable that is ultimately referenced by an r-value
1518 */
1519 virtual ir_variable *variable_referenced() const = 0;
1520
1521 /**
1522 * Get the constant that is ultimately referenced by an r-value,
1523 * in a constant expression evaluation context.
1524 *
1525 * The offset is used when the reference is to a specific column of
1526 * a matrix.
1527 */
1528 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1529 };
1530
1531
1532 class ir_dereference_variable : public ir_dereference {
1533 public:
1534 ir_dereference_variable(ir_variable *var);
1535
1536 virtual ir_dereference_variable *clone(void *mem_ctx,
1537 struct hash_table *) const;
1538
1539 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1540
1541 virtual ir_dereference_variable *as_dereference_variable()
1542 {
1543 return this;
1544 }
1545
1546 /**
1547 * Get the variable that is ultimately referenced by an r-value
1548 */
1549 virtual ir_variable *variable_referenced() const
1550 {
1551 return this->var;
1552 }
1553
1554 /**
1555 * Get the constant that is ultimately referenced by an r-value,
1556 * in a constant expression evaluation context.
1557 *
1558 * The offset is used when the reference is to a specific column of
1559 * a matrix.
1560 */
1561 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1562
1563 virtual ir_variable *whole_variable_referenced()
1564 {
1565 /* ir_dereference_variable objects always dereference the entire
1566 * variable. However, if this dereference is dereferenced by anything
1567 * else, the complete deferefernce chain is not a whole-variable
1568 * dereference. This method should only be called on the top most
1569 * ir_rvalue in a dereference chain.
1570 */
1571 return this->var;
1572 }
1573
1574 virtual void accept(ir_visitor *v)
1575 {
1576 v->visit(this);
1577 }
1578
1579 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1580
1581 /**
1582 * Object being dereferenced.
1583 */
1584 ir_variable *var;
1585 };
1586
1587
1588 class ir_dereference_array : public ir_dereference {
1589 public:
1590 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1591
1592 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1593
1594 virtual ir_dereference_array *clone(void *mem_ctx,
1595 struct hash_table *) const;
1596
1597 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1598
1599 virtual ir_dereference_array *as_dereference_array()
1600 {
1601 return this;
1602 }
1603
1604 /**
1605 * Get the variable that is ultimately referenced by an r-value
1606 */
1607 virtual ir_variable *variable_referenced() const
1608 {
1609 return this->array->variable_referenced();
1610 }
1611
1612 /**
1613 * Get the constant that is ultimately referenced by an r-value,
1614 * in a constant expression evaluation context.
1615 *
1616 * The offset is used when the reference is to a specific column of
1617 * a matrix.
1618 */
1619 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1620
1621 virtual void accept(ir_visitor *v)
1622 {
1623 v->visit(this);
1624 }
1625
1626 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1627
1628 ir_rvalue *array;
1629 ir_rvalue *array_index;
1630
1631 private:
1632 void set_array(ir_rvalue *value);
1633 };
1634
1635
1636 class ir_dereference_record : public ir_dereference {
1637 public:
1638 ir_dereference_record(ir_rvalue *value, const char *field);
1639
1640 ir_dereference_record(ir_variable *var, const char *field);
1641
1642 virtual ir_dereference_record *clone(void *mem_ctx,
1643 struct hash_table *) const;
1644
1645 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1646
1647 /**
1648 * Get the variable that is ultimately referenced by an r-value
1649 */
1650 virtual ir_variable *variable_referenced() const
1651 {
1652 return this->record->variable_referenced();
1653 }
1654
1655 /**
1656 * Get the constant that is ultimately referenced by an r-value,
1657 * in a constant expression evaluation context.
1658 *
1659 * The offset is used when the reference is to a specific column of
1660 * a matrix.
1661 */
1662 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1663
1664 virtual void accept(ir_visitor *v)
1665 {
1666 v->visit(this);
1667 }
1668
1669 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1670
1671 ir_rvalue *record;
1672 const char *field;
1673 };
1674
1675
1676 /**
1677 * Data stored in an ir_constant
1678 */
1679 union ir_constant_data {
1680 unsigned u[16];
1681 int i[16];
1682 float f[16];
1683 bool b[16];
1684 };
1685
1686
1687 class ir_constant : public ir_rvalue {
1688 public:
1689 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1690 ir_constant(bool b);
1691 ir_constant(unsigned int u);
1692 ir_constant(int i);
1693 ir_constant(float f);
1694
1695 /**
1696 * Construct an ir_constant from a list of ir_constant values
1697 */
1698 ir_constant(const struct glsl_type *type, exec_list *values);
1699
1700 /**
1701 * Construct an ir_constant from a scalar component of another ir_constant
1702 *
1703 * The new \c ir_constant inherits the type of the component from the
1704 * source constant.
1705 *
1706 * \note
1707 * In the case of a matrix constant, the new constant is a scalar, \b not
1708 * a vector.
1709 */
1710 ir_constant(const ir_constant *c, unsigned i);
1711
1712 /**
1713 * Return a new ir_constant of the specified type containing all zeros.
1714 */
1715 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1716
1717 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1718
1719 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1720
1721 virtual ir_constant *as_constant()
1722 {
1723 return this;
1724 }
1725
1726 virtual void accept(ir_visitor *v)
1727 {
1728 v->visit(this);
1729 }
1730
1731 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1732
1733 /**
1734 * Get a particular component of a constant as a specific type
1735 *
1736 * This is useful, for example, to get a value from an integer constant
1737 * as a float or bool. This appears frequently when constructors are
1738 * called with all constant parameters.
1739 */
1740 /*@{*/
1741 bool get_bool_component(unsigned i) const;
1742 float get_float_component(unsigned i) const;
1743 int get_int_component(unsigned i) const;
1744 unsigned get_uint_component(unsigned i) const;
1745 /*@}*/
1746
1747 ir_constant *get_array_element(unsigned i) const;
1748
1749 ir_constant *get_record_field(const char *name);
1750
1751 /**
1752 * Copy the values on another constant at a given offset.
1753 *
1754 * The offset is ignored for array or struct copies, it's only for
1755 * scalars or vectors into vectors or matrices.
1756 *
1757 * With identical types on both sides and zero offset it's clone()
1758 * without creating a new object.
1759 */
1760
1761 void copy_offset(ir_constant *src, int offset);
1762
1763 /**
1764 * Copy the values on another constant at a given offset and
1765 * following an assign-like mask.
1766 *
1767 * The mask is ignored for scalars.
1768 *
1769 * Note that this function only handles what assign can handle,
1770 * i.e. at most a vector as source and a column of a matrix as
1771 * destination.
1772 */
1773
1774 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1775
1776 /**
1777 * Determine whether a constant has the same value as another constant
1778 *
1779 * \sa ir_constant::is_zero, ir_constant::is_one,
1780 * ir_constant::is_negative_one, ir_constant::is_basis
1781 */
1782 bool has_value(const ir_constant *) const;
1783
1784 virtual bool is_zero() const;
1785 virtual bool is_one() const;
1786 virtual bool is_negative_one() const;
1787 virtual bool is_basis() const;
1788
1789 /**
1790 * Value of the constant.
1791 *
1792 * The field used to back the values supplied by the constant is determined
1793 * by the type associated with the \c ir_instruction. Constants may be
1794 * scalars, vectors, or matrices.
1795 */
1796 union ir_constant_data value;
1797
1798 /* Array elements */
1799 ir_constant **array_elements;
1800
1801 /* Structure fields */
1802 exec_list components;
1803
1804 private:
1805 /**
1806 * Parameterless constructor only used by the clone method
1807 */
1808 ir_constant(void);
1809 };
1810
1811 /*@}*/
1812
1813 /**
1814 * Apply a visitor to each IR node in a list
1815 */
1816 void
1817 visit_exec_list(exec_list *list, ir_visitor *visitor);
1818
1819 /**
1820 * Validate invariants on each IR node in a list
1821 */
1822 void validate_ir_tree(exec_list *instructions);
1823
1824 struct _mesa_glsl_parse_state;
1825 struct gl_shader_program;
1826
1827 /**
1828 * Detect whether an unlinked shader contains static recursion
1829 *
1830 * If the list of instructions is determined to contain static recursion,
1831 * \c _mesa_glsl_error will be called to emit error messages for each function
1832 * that is in the recursion cycle.
1833 */
1834 void
1835 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1836 exec_list *instructions);
1837
1838 /**
1839 * Detect whether a linked shader contains static recursion
1840 *
1841 * If the list of instructions is determined to contain static recursion,
1842 * \c link_error_printf will be called to emit error messages for each function
1843 * that is in the recursion cycle. In addition,
1844 * \c gl_shader_program::LinkStatus will be set to false.
1845 */
1846 void
1847 detect_recursion_linked(struct gl_shader_program *prog,
1848 exec_list *instructions);
1849
1850 /**
1851 * Make a clone of each IR instruction in a list
1852 *
1853 * \param in List of IR instructions that are to be cloned
1854 * \param out List to hold the cloned instructions
1855 */
1856 void
1857 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1858
1859 extern void
1860 _mesa_glsl_initialize_variables(exec_list *instructions,
1861 struct _mesa_glsl_parse_state *state);
1862
1863 extern void
1864 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1865
1866 extern void
1867 _mesa_glsl_release_functions(void);
1868
1869 extern void
1870 reparent_ir(exec_list *list, void *mem_ctx);
1871
1872 struct glsl_symbol_table;
1873
1874 extern void
1875 import_prototypes(const exec_list *source, exec_list *dest,
1876 struct glsl_symbol_table *symbols, void *mem_ctx);
1877
1878 extern bool
1879 ir_has_call(ir_instruction *ir);
1880
1881 extern void
1882 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1883 bool is_fragment_shader);
1884
1885 extern char *
1886 prototype_string(const glsl_type *return_type, const char *name,
1887 exec_list *parameters);
1888
1889 #endif /* IR_H */