glsl: Add an origin pointer in the function signature object.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /** ir_print_visitor helper for debugging. */
93 void print(void) const;
94
95 virtual void accept(ir_visitor *) = 0;
96 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97 virtual ir_instruction *clone(void *mem_ctx,
98 struct hash_table *ht) const = 0;
99
100 /**
101 * \name IR instruction downcast functions
102 *
103 * These functions either cast the object to a derived class or return
104 * \c NULL if the object's type does not match the specified derived class.
105 * Additional downcast functions will be added as needed.
106 */
107 /*@{*/
108 virtual class ir_variable * as_variable() { return NULL; }
109 virtual class ir_function * as_function() { return NULL; }
110 virtual class ir_dereference * as_dereference() { return NULL; }
111 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
112 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113 virtual class ir_expression * as_expression() { return NULL; }
114 virtual class ir_rvalue * as_rvalue() { return NULL; }
115 virtual class ir_loop * as_loop() { return NULL; }
116 virtual class ir_assignment * as_assignment() { return NULL; }
117 virtual class ir_call * as_call() { return NULL; }
118 virtual class ir_return * as_return() { return NULL; }
119 virtual class ir_if * as_if() { return NULL; }
120 virtual class ir_swizzle * as_swizzle() { return NULL; }
121 virtual class ir_constant * as_constant() { return NULL; }
122 virtual class ir_discard * as_discard() { return NULL; }
123 /*@}*/
124
125 protected:
126 ir_instruction()
127 {
128 ir_type = ir_type_unset;
129 }
130 };
131
132
133 /**
134 * The base class for all "values"/expression trees.
135 */
136 class ir_rvalue : public ir_instruction {
137 public:
138 const struct glsl_type *type;
139
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142 virtual void accept(ir_visitor *v)
143 {
144 v->visit(this);
145 }
146
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
150
151 virtual ir_rvalue * as_rvalue()
152 {
153 return this;
154 }
155
156 ir_rvalue *as_rvalue_to_saturate();
157
158 virtual bool is_lvalue() const
159 {
160 return false;
161 }
162
163 /**
164 * Get the variable that is ultimately referenced by an r-value
165 */
166 virtual ir_variable *variable_referenced() const
167 {
168 return NULL;
169 }
170
171
172 /**
173 * If an r-value is a reference to a whole variable, get that variable
174 *
175 * \return
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
179 * is returned.
180 */
181 virtual ir_variable *whole_variable_referenced()
182 {
183 return NULL;
184 }
185
186 /**
187 * Determine if an r-value has the value zero
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195 */
196 virtual bool is_zero() const;
197
198 /**
199 * Determine if an r-value has the value one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207 */
208 virtual bool is_one() const;
209
210 /**
211 * Determine if an r-value has the value negative one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219 */
220 virtual bool is_negative_one() const;
221
222
223 /**
224 * Return a generic value of error_type.
225 *
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
227 */
228 static ir_rvalue *error_value(void *mem_ctx);
229
230 protected:
231 ir_rvalue();
232 };
233
234
235 /**
236 * Variable storage classes
237 */
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
241 ir_var_in,
242 ir_var_out,
243 ir_var_inout,
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
247 };
248
249 /**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
257 ir_depth_layout_any,
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
261 };
262
263 /**
264 * \brief Convert depth layout qualifier to string.
265 */
266 const char*
267 depth_layout_string(ir_depth_layout layout);
268
269 /**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274 struct ir_state_slot {
275 int tokens[5];
276 int swizzle;
277 };
278
279 class ir_variable : public ir_instruction {
280 public:
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285 virtual ir_variable *as_variable()
286 {
287 return this;
288 }
289
290 virtual void accept(ir_visitor *v)
291 {
292 v->visit(this);
293 }
294
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298 /**
299 * Get the string value for the interpolation qualifier
300 *
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
303 *
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
307 *
308 * This function should only be used on a shader input or output variable.
309 */
310 const char *interpolation_string() const;
311
312 /**
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316 * state.
317 *
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320 */
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323 /**
324 * Declared type of the variable
325 */
326 const struct glsl_type *type;
327
328 /**
329 * Delcared name of the variable
330 */
331 const char *name;
332
333 /**
334 * Highest element accessed with a constant expression array index
335 *
336 * Not used for non-array variables.
337 */
338 unsigned max_array_access;
339
340 /**
341 * Is the variable read-only?
342 *
343 * This is set for variables declared as \c const, shader inputs,
344 * and uniforms.
345 */
346 unsigned read_only:1;
347 unsigned centroid:1;
348 unsigned invariant:1;
349
350 /**
351 * Has this variable been used for reading or writing?
352 *
353 * Several GLSL semantic checks require knowledge of whether or not a
354 * variable has been used. For example, it is an error to redeclare a
355 * variable as invariant after it has been used.
356 *
357 * This is only maintained in the ast_to_hir.cpp path, not in
358 * Mesa's fixed function or ARB program paths.
359 */
360 unsigned used:1;
361
362 /**
363 * Has this variable been statically assigned?
364 *
365 * This answers whether the variable was assigned in any path of
366 * the shader during ast_to_hir. This doesn't answer whether it is
367 * still written after dead code removal, nor is it maintained in
368 * non-ast_to_hir.cpp (GLSL parsing) paths.
369 */
370 unsigned assigned:1;
371
372 /**
373 * Storage class of the variable.
374 *
375 * \sa ir_variable_mode
376 */
377 unsigned mode:3;
378
379 /**
380 * Interpolation mode for shader inputs / outputs
381 *
382 * \sa ir_variable_interpolation
383 */
384 unsigned interpolation:2;
385
386 /**
387 * \name ARB_fragment_coord_conventions
388 * @{
389 */
390 unsigned origin_upper_left:1;
391 unsigned pixel_center_integer:1;
392 /*@}*/
393
394 /**
395 * Was the location explicitly set in the shader?
396 *
397 * If the location is explicitly set in the shader, it \b cannot be changed
398 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
399 * no effect).
400 */
401 unsigned explicit_location:1;
402 unsigned explicit_index:1;
403
404 /**
405 * Does this variable have an initializer?
406 *
407 * This is used by the linker to cross-validiate initializers of global
408 * variables.
409 */
410 unsigned has_initializer:1;
411
412 /**
413 * \brief Layout qualifier for gl_FragDepth.
414 *
415 * This is not equal to \c ir_depth_layout_none if and only if this
416 * variable is \c gl_FragDepth and a layout qualifier is specified.
417 */
418 ir_depth_layout depth_layout;
419
420 /**
421 * Storage location of the base of this variable
422 *
423 * The precise meaning of this field depends on the nature of the variable.
424 *
425 * - Vertex shader input: one of the values from \c gl_vert_attrib.
426 * - Vertex shader output: one of the values from \c gl_vert_result.
427 * - Fragment shader input: one of the values from \c gl_frag_attrib.
428 * - Fragment shader output: one of the values from \c gl_frag_result.
429 * - Uniforms: Per-stage uniform slot number.
430 * - Other: This field is not currently used.
431 *
432 * If the variable is a uniform, shader input, or shader output, and the
433 * slot has not been assigned, the value will be -1.
434 */
435 int location;
436
437 /**
438 * output index for dual source blending.
439 */
440 int index;
441
442 /**
443 * Built-in state that backs this uniform
444 *
445 * Once set at variable creation, \c state_slots must remain invariant.
446 * This is because, ideally, this array would be shared by all clones of
447 * this variable in the IR tree. In other words, we'd really like for it
448 * to be a fly-weight.
449 *
450 * If the variable is not a uniform, \c num_state_slots will be zero and
451 * \c state_slots will be \c NULL.
452 */
453 /*@{*/
454 unsigned num_state_slots; /**< Number of state slots used */
455 ir_state_slot *state_slots; /**< State descriptors. */
456 /*@}*/
457
458 /**
459 * Emit a warning if this variable is accessed.
460 */
461 const char *warn_extension;
462
463 /**
464 * Value assigned in the initializer of a variable declared "const"
465 */
466 ir_constant *constant_value;
467
468 /**
469 * Constant expression assigned in the initializer of the variable
470 *
471 * \warning
472 * This field and \c ::constant_value are distinct. Even if the two fields
473 * refer to constants with the same value, they must point to separate
474 * objects.
475 */
476 ir_constant *constant_initializer;
477 };
478
479
480 /*@{*/
481 /**
482 * The representation of a function instance; may be the full definition or
483 * simply a prototype.
484 */
485 class ir_function_signature : public ir_instruction {
486 /* An ir_function_signature will be part of the list of signatures in
487 * an ir_function.
488 */
489 public:
490 ir_function_signature(const glsl_type *return_type);
491
492 virtual ir_function_signature *clone(void *mem_ctx,
493 struct hash_table *ht) const;
494 ir_function_signature *clone_prototype(void *mem_ctx,
495 struct hash_table *ht) const;
496
497 virtual void accept(ir_visitor *v)
498 {
499 v->visit(this);
500 }
501
502 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
503
504 /**
505 * Attempt to evaluate this function as a constant expression,
506 * given a list of the actual parameters and the variable context.
507 * Returns NULL for non-built-ins.
508 */
509 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
510
511 /**
512 * Get the name of the function for which this is a signature
513 */
514 const char *function_name() const;
515
516 /**
517 * Get a handle to the function for which this is a signature
518 *
519 * There is no setter function, this function returns a \c const pointer,
520 * and \c ir_function_signature::_function is private for a reason. The
521 * only way to make a connection between a function and function signature
522 * is via \c ir_function::add_signature. This helps ensure that certain
523 * invariants (i.e., a function signature is in the list of signatures for
524 * its \c _function) are met.
525 *
526 * \sa ir_function::add_signature
527 */
528 inline const class ir_function *function() const
529 {
530 return this->_function;
531 }
532
533 /**
534 * Check whether the qualifiers match between this signature's parameters
535 * and the supplied parameter list. If not, returns the name of the first
536 * parameter with mismatched qualifiers (for use in error messages).
537 */
538 const char *qualifiers_match(exec_list *params);
539
540 /**
541 * Replace the current parameter list with the given one. This is useful
542 * if the current information came from a prototype, and either has invalid
543 * or missing parameter names.
544 */
545 void replace_parameters(exec_list *new_params);
546
547 /**
548 * Function return type.
549 *
550 * \note This discards the optional precision qualifier.
551 */
552 const struct glsl_type *return_type;
553
554 /**
555 * List of ir_variable of function parameters.
556 *
557 * This represents the storage. The paramaters passed in a particular
558 * call will be in ir_call::actual_paramaters.
559 */
560 struct exec_list parameters;
561
562 /** Whether or not this function has a body (which may be empty). */
563 unsigned is_defined:1;
564
565 /** Whether or not this function signature is a built-in. */
566 unsigned is_builtin:1;
567
568 /** Body of instructions in the function. */
569 struct exec_list body;
570
571 private:
572 /** Function of which this signature is one overload. */
573 class ir_function *_function;
574
575 /** Function signature of which this one is a prototype clone */
576 const ir_function_signature *origin;
577
578 friend class ir_function;
579 };
580
581
582 /**
583 * Header for tracking multiple overloaded functions with the same name.
584 * Contains a list of ir_function_signatures representing each of the
585 * actual functions.
586 */
587 class ir_function : public ir_instruction {
588 public:
589 ir_function(const char *name);
590
591 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
592
593 virtual ir_function *as_function()
594 {
595 return this;
596 }
597
598 virtual void accept(ir_visitor *v)
599 {
600 v->visit(this);
601 }
602
603 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
604
605 void add_signature(ir_function_signature *sig)
606 {
607 sig->_function = this;
608 this->signatures.push_tail(sig);
609 }
610
611 /**
612 * Get an iterator for the set of function signatures
613 */
614 exec_list_iterator iterator()
615 {
616 return signatures.iterator();
617 }
618
619 /**
620 * Find a signature that matches a set of actual parameters, taking implicit
621 * conversions into account. Also flags whether the match was exact.
622 */
623 ir_function_signature *matching_signature(const exec_list *actual_param,
624 bool *match_is_exact);
625
626 /**
627 * Find a signature that matches a set of actual parameters, taking implicit
628 * conversions into account.
629 */
630 ir_function_signature *matching_signature(const exec_list *actual_param);
631
632 /**
633 * Find a signature that exactly matches a set of actual parameters without
634 * any implicit type conversions.
635 */
636 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
637
638 /**
639 * Name of the function.
640 */
641 const char *name;
642
643 /** Whether or not this function has a signature that isn't a built-in. */
644 bool has_user_signature();
645
646 /**
647 * List of ir_function_signature for each overloaded function with this name.
648 */
649 struct exec_list signatures;
650 };
651
652 inline const char *ir_function_signature::function_name() const
653 {
654 return this->_function->name;
655 }
656 /*@}*/
657
658
659 /**
660 * IR instruction representing high-level if-statements
661 */
662 class ir_if : public ir_instruction {
663 public:
664 ir_if(ir_rvalue *condition)
665 : condition(condition)
666 {
667 ir_type = ir_type_if;
668 }
669
670 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
671
672 virtual ir_if *as_if()
673 {
674 return this;
675 }
676
677 virtual void accept(ir_visitor *v)
678 {
679 v->visit(this);
680 }
681
682 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
683
684 ir_rvalue *condition;
685 /** List of ir_instruction for the body of the then branch */
686 exec_list then_instructions;
687 /** List of ir_instruction for the body of the else branch */
688 exec_list else_instructions;
689 };
690
691
692 /**
693 * IR instruction representing a high-level loop structure.
694 */
695 class ir_loop : public ir_instruction {
696 public:
697 ir_loop();
698
699 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
700
701 virtual void accept(ir_visitor *v)
702 {
703 v->visit(this);
704 }
705
706 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
707
708 virtual ir_loop *as_loop()
709 {
710 return this;
711 }
712
713 /**
714 * Get an iterator for the instructions of the loop body
715 */
716 exec_list_iterator iterator()
717 {
718 return body_instructions.iterator();
719 }
720
721 /** List of ir_instruction that make up the body of the loop. */
722 exec_list body_instructions;
723
724 /**
725 * \name Loop counter and controls
726 *
727 * Represents a loop like a FORTRAN \c do-loop.
728 *
729 * \note
730 * If \c from and \c to are the same value, the loop will execute once.
731 */
732 /*@{*/
733 ir_rvalue *from; /** Value of the loop counter on the first
734 * iteration of the loop.
735 */
736 ir_rvalue *to; /** Value of the loop counter on the last
737 * iteration of the loop.
738 */
739 ir_rvalue *increment;
740 ir_variable *counter;
741
742 /**
743 * Comparison operation in the loop terminator.
744 *
745 * If any of the loop control fields are non-\c NULL, this field must be
746 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
747 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
748 */
749 int cmp;
750 /*@}*/
751 };
752
753
754 class ir_assignment : public ir_instruction {
755 public:
756 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
757
758 /**
759 * Construct an assignment with an explicit write mask
760 *
761 * \note
762 * Since a write mask is supplied, the LHS must already be a bare
763 * \c ir_dereference. The cannot be any swizzles in the LHS.
764 */
765 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
766 unsigned write_mask);
767
768 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
769
770 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
771
772 virtual void accept(ir_visitor *v)
773 {
774 v->visit(this);
775 }
776
777 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
778
779 virtual ir_assignment * as_assignment()
780 {
781 return this;
782 }
783
784 /**
785 * Get a whole variable written by an assignment
786 *
787 * If the LHS of the assignment writes a whole variable, the variable is
788 * returned. Otherwise \c NULL is returned. Examples of whole-variable
789 * assignment are:
790 *
791 * - Assigning to a scalar
792 * - Assigning to all components of a vector
793 * - Whole array (or matrix) assignment
794 * - Whole structure assignment
795 */
796 ir_variable *whole_variable_written();
797
798 /**
799 * Set the LHS of an assignment
800 */
801 void set_lhs(ir_rvalue *lhs);
802
803 /**
804 * Left-hand side of the assignment.
805 *
806 * This should be treated as read only. If you need to set the LHS of an
807 * assignment, use \c ir_assignment::set_lhs.
808 */
809 ir_dereference *lhs;
810
811 /**
812 * Value being assigned
813 */
814 ir_rvalue *rhs;
815
816 /**
817 * Optional condition for the assignment.
818 */
819 ir_rvalue *condition;
820
821
822 /**
823 * Component mask written
824 *
825 * For non-vector types in the LHS, this field will be zero. For vector
826 * types, a bit will be set for each component that is written. Note that
827 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
828 *
829 * A partially-set write mask means that each enabled channel gets
830 * the value from a consecutive channel of the rhs. For example,
831 * to write just .xyw of gl_FrontColor with color:
832 *
833 * (assign (constant bool (1)) (xyw)
834 * (var_ref gl_FragColor)
835 * (swiz xyw (var_ref color)))
836 */
837 unsigned write_mask:4;
838 };
839
840 /* Update ir_expression::num_operands() and operator_strs when
841 * updating this list.
842 */
843 enum ir_expression_operation {
844 ir_unop_bit_not,
845 ir_unop_logic_not,
846 ir_unop_neg,
847 ir_unop_abs,
848 ir_unop_sign,
849 ir_unop_rcp,
850 ir_unop_rsq,
851 ir_unop_sqrt,
852 ir_unop_exp, /**< Log base e on gentype */
853 ir_unop_log, /**< Natural log on gentype */
854 ir_unop_exp2,
855 ir_unop_log2,
856 ir_unop_f2i, /**< Float-to-integer conversion. */
857 ir_unop_i2f, /**< Integer-to-float conversion. */
858 ir_unop_f2b, /**< Float-to-boolean conversion */
859 ir_unop_b2f, /**< Boolean-to-float conversion */
860 ir_unop_i2b, /**< int-to-boolean conversion */
861 ir_unop_b2i, /**< Boolean-to-int conversion */
862 ir_unop_u2f, /**< Unsigned-to-float conversion. */
863 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
864 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
865 ir_unop_any,
866
867 /**
868 * \name Unary floating-point rounding operations.
869 */
870 /*@{*/
871 ir_unop_trunc,
872 ir_unop_ceil,
873 ir_unop_floor,
874 ir_unop_fract,
875 ir_unop_round_even,
876 /*@}*/
877
878 /**
879 * \name Trigonometric operations.
880 */
881 /*@{*/
882 ir_unop_sin,
883 ir_unop_cos,
884 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
885 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
886 /*@}*/
887
888 /**
889 * \name Partial derivatives.
890 */
891 /*@{*/
892 ir_unop_dFdx,
893 ir_unop_dFdy,
894 /*@}*/
895
896 ir_unop_noise,
897
898 /**
899 * A sentinel marking the last of the unary operations.
900 */
901 ir_last_unop = ir_unop_noise,
902
903 ir_binop_add,
904 ir_binop_sub,
905 ir_binop_mul,
906 ir_binop_div,
907
908 /**
909 * Takes one of two combinations of arguments:
910 *
911 * - mod(vecN, vecN)
912 * - mod(vecN, float)
913 *
914 * Does not take integer types.
915 */
916 ir_binop_mod,
917
918 /**
919 * \name Binary comparison operators which return a boolean vector.
920 * The type of both operands must be equal.
921 */
922 /*@{*/
923 ir_binop_less,
924 ir_binop_greater,
925 ir_binop_lequal,
926 ir_binop_gequal,
927 ir_binop_equal,
928 ir_binop_nequal,
929 /**
930 * Returns single boolean for whether all components of operands[0]
931 * equal the components of operands[1].
932 */
933 ir_binop_all_equal,
934 /**
935 * Returns single boolean for whether any component of operands[0]
936 * is not equal to the corresponding component of operands[1].
937 */
938 ir_binop_any_nequal,
939 /*@}*/
940
941 /**
942 * \name Bit-wise binary operations.
943 */
944 /*@{*/
945 ir_binop_lshift,
946 ir_binop_rshift,
947 ir_binop_bit_and,
948 ir_binop_bit_xor,
949 ir_binop_bit_or,
950 /*@}*/
951
952 ir_binop_logic_and,
953 ir_binop_logic_xor,
954 ir_binop_logic_or,
955
956 ir_binop_dot,
957 ir_binop_min,
958 ir_binop_max,
959
960 ir_binop_pow,
961
962 /**
963 * A sentinel marking the last of the binary operations.
964 */
965 ir_last_binop = ir_binop_pow,
966
967 ir_quadop_vector,
968
969 /**
970 * A sentinel marking the last of all operations.
971 */
972 ir_last_opcode = ir_last_binop
973 };
974
975 class ir_expression : public ir_rvalue {
976 public:
977 /**
978 * Constructor for unary operation expressions
979 */
980 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
981 ir_expression(int op, ir_rvalue *);
982
983 /**
984 * Constructor for binary operation expressions
985 */
986 ir_expression(int op, const struct glsl_type *type,
987 ir_rvalue *, ir_rvalue *);
988 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
989
990 /**
991 * Constructor for quad operator expressions
992 */
993 ir_expression(int op, const struct glsl_type *type,
994 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
995
996 virtual ir_expression *as_expression()
997 {
998 return this;
999 }
1000
1001 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1002
1003 /**
1004 * Attempt to constant-fold the expression
1005 *
1006 * The "variable_context" hash table links ir_variable * to ir_constant *
1007 * that represent the variables' values. \c NULL represents an empty
1008 * context.
1009 *
1010 * If the expression cannot be constant folded, this method will return
1011 * \c NULL.
1012 */
1013 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1014
1015 /**
1016 * Determine the number of operands used by an expression
1017 */
1018 static unsigned int get_num_operands(ir_expression_operation);
1019
1020 /**
1021 * Determine the number of operands used by an expression
1022 */
1023 unsigned int get_num_operands() const
1024 {
1025 return (this->operation == ir_quadop_vector)
1026 ? this->type->vector_elements : get_num_operands(operation);
1027 }
1028
1029 /**
1030 * Return a string representing this expression's operator.
1031 */
1032 const char *operator_string();
1033
1034 /**
1035 * Return a string representing this expression's operator.
1036 */
1037 static const char *operator_string(ir_expression_operation);
1038
1039
1040 /**
1041 * Do a reverse-lookup to translate the given string into an operator.
1042 */
1043 static ir_expression_operation get_operator(const char *);
1044
1045 virtual void accept(ir_visitor *v)
1046 {
1047 v->visit(this);
1048 }
1049
1050 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1051
1052 ir_expression_operation operation;
1053 ir_rvalue *operands[4];
1054 };
1055
1056
1057 /**
1058 * HIR instruction representing a high-level function call, containing a list
1059 * of parameters and returning a value in the supplied temporary.
1060 */
1061 class ir_call : public ir_instruction {
1062 public:
1063 ir_call(ir_function_signature *callee,
1064 ir_dereference_variable *return_deref,
1065 exec_list *actual_parameters)
1066 : return_deref(return_deref), callee(callee)
1067 {
1068 ir_type = ir_type_call;
1069 assert(callee->return_type != NULL);
1070 actual_parameters->move_nodes_to(& this->actual_parameters);
1071 this->use_builtin = callee->is_builtin;
1072 }
1073
1074 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1075
1076 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1077
1078 virtual ir_call *as_call()
1079 {
1080 return this;
1081 }
1082
1083 virtual void accept(ir_visitor *v)
1084 {
1085 v->visit(this);
1086 }
1087
1088 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1089
1090 /**
1091 * Get an iterator for the set of acutal parameters
1092 */
1093 exec_list_iterator iterator()
1094 {
1095 return actual_parameters.iterator();
1096 }
1097
1098 /**
1099 * Get the name of the function being called.
1100 */
1101 const char *callee_name() const
1102 {
1103 return callee->function_name();
1104 }
1105
1106 /**
1107 * Generates an inline version of the function before @ir,
1108 * storing the return value in return_deref.
1109 */
1110 void generate_inline(ir_instruction *ir);
1111
1112 /**
1113 * Storage for the function's return value.
1114 * This must be NULL if the return type is void.
1115 */
1116 ir_dereference_variable *return_deref;
1117
1118 /**
1119 * The specific function signature being called.
1120 */
1121 ir_function_signature *callee;
1122
1123 /* List of ir_rvalue of paramaters passed in this call. */
1124 exec_list actual_parameters;
1125
1126 /** Should this call only bind to a built-in function? */
1127 bool use_builtin;
1128 };
1129
1130
1131 /**
1132 * \name Jump-like IR instructions.
1133 *
1134 * These include \c break, \c continue, \c return, and \c discard.
1135 */
1136 /*@{*/
1137 class ir_jump : public ir_instruction {
1138 protected:
1139 ir_jump()
1140 {
1141 ir_type = ir_type_unset;
1142 }
1143 };
1144
1145 class ir_return : public ir_jump {
1146 public:
1147 ir_return()
1148 : value(NULL)
1149 {
1150 this->ir_type = ir_type_return;
1151 }
1152
1153 ir_return(ir_rvalue *value)
1154 : value(value)
1155 {
1156 this->ir_type = ir_type_return;
1157 }
1158
1159 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1160
1161 virtual ir_return *as_return()
1162 {
1163 return this;
1164 }
1165
1166 ir_rvalue *get_value() const
1167 {
1168 return value;
1169 }
1170
1171 virtual void accept(ir_visitor *v)
1172 {
1173 v->visit(this);
1174 }
1175
1176 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1177
1178 ir_rvalue *value;
1179 };
1180
1181
1182 /**
1183 * Jump instructions used inside loops
1184 *
1185 * These include \c break and \c continue. The \c break within a loop is
1186 * different from the \c break within a switch-statement.
1187 *
1188 * \sa ir_switch_jump
1189 */
1190 class ir_loop_jump : public ir_jump {
1191 public:
1192 enum jump_mode {
1193 jump_break,
1194 jump_continue
1195 };
1196
1197 ir_loop_jump(jump_mode mode)
1198 {
1199 this->ir_type = ir_type_loop_jump;
1200 this->mode = mode;
1201 this->loop = loop;
1202 }
1203
1204 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1205
1206 virtual void accept(ir_visitor *v)
1207 {
1208 v->visit(this);
1209 }
1210
1211 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1212
1213 bool is_break() const
1214 {
1215 return mode == jump_break;
1216 }
1217
1218 bool is_continue() const
1219 {
1220 return mode == jump_continue;
1221 }
1222
1223 /** Mode selector for the jump instruction. */
1224 enum jump_mode mode;
1225 private:
1226 /** Loop containing this break instruction. */
1227 ir_loop *loop;
1228 };
1229
1230 /**
1231 * IR instruction representing discard statements.
1232 */
1233 class ir_discard : public ir_jump {
1234 public:
1235 ir_discard()
1236 {
1237 this->ir_type = ir_type_discard;
1238 this->condition = NULL;
1239 }
1240
1241 ir_discard(ir_rvalue *cond)
1242 {
1243 this->ir_type = ir_type_discard;
1244 this->condition = cond;
1245 }
1246
1247 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1248
1249 virtual void accept(ir_visitor *v)
1250 {
1251 v->visit(this);
1252 }
1253
1254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1255
1256 virtual ir_discard *as_discard()
1257 {
1258 return this;
1259 }
1260
1261 ir_rvalue *condition;
1262 };
1263 /*@}*/
1264
1265
1266 /**
1267 * Texture sampling opcodes used in ir_texture
1268 */
1269 enum ir_texture_opcode {
1270 ir_tex, /**< Regular texture look-up */
1271 ir_txb, /**< Texture look-up with LOD bias */
1272 ir_txl, /**< Texture look-up with explicit LOD */
1273 ir_txd, /**< Texture look-up with partial derivatvies */
1274 ir_txf, /**< Texel fetch with explicit LOD */
1275 ir_txs /**< Texture size */
1276 };
1277
1278
1279 /**
1280 * IR instruction to sample a texture
1281 *
1282 * The specific form of the IR instruction depends on the \c mode value
1283 * selected from \c ir_texture_opcodes. In the printed IR, these will
1284 * appear as:
1285 *
1286 * Texel offset (0 or an expression)
1287 * | Projection divisor
1288 * | | Shadow comparitor
1289 * | | |
1290 * v v v
1291 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1292 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1293 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1294 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1295 * (txf <type> <sampler> <coordinate> 0 <lod>)
1296 * (txs <type> <sampler> <lod>)
1297 */
1298 class ir_texture : public ir_rvalue {
1299 public:
1300 ir_texture(enum ir_texture_opcode op)
1301 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1302 {
1303 this->ir_type = ir_type_texture;
1304 }
1305
1306 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1307
1308 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1309
1310 virtual void accept(ir_visitor *v)
1311 {
1312 v->visit(this);
1313 }
1314
1315 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1316
1317 /**
1318 * Return a string representing the ir_texture_opcode.
1319 */
1320 const char *opcode_string();
1321
1322 /** Set the sampler and type. */
1323 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1324
1325 /**
1326 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1327 */
1328 static ir_texture_opcode get_opcode(const char *);
1329
1330 enum ir_texture_opcode op;
1331
1332 /** Sampler to use for the texture access. */
1333 ir_dereference *sampler;
1334
1335 /** Texture coordinate to sample */
1336 ir_rvalue *coordinate;
1337
1338 /**
1339 * Value used for projective divide.
1340 *
1341 * If there is no projective divide (the common case), this will be
1342 * \c NULL. Optimization passes should check for this to point to a constant
1343 * of 1.0 and replace that with \c NULL.
1344 */
1345 ir_rvalue *projector;
1346
1347 /**
1348 * Coordinate used for comparison on shadow look-ups.
1349 *
1350 * If there is no shadow comparison, this will be \c NULL. For the
1351 * \c ir_txf opcode, this *must* be \c NULL.
1352 */
1353 ir_rvalue *shadow_comparitor;
1354
1355 /** Texel offset. */
1356 ir_rvalue *offset;
1357
1358 union {
1359 ir_rvalue *lod; /**< Floating point LOD */
1360 ir_rvalue *bias; /**< Floating point LOD bias */
1361 struct {
1362 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1363 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1364 } grad;
1365 } lod_info;
1366 };
1367
1368
1369 struct ir_swizzle_mask {
1370 unsigned x:2;
1371 unsigned y:2;
1372 unsigned z:2;
1373 unsigned w:2;
1374
1375 /**
1376 * Number of components in the swizzle.
1377 */
1378 unsigned num_components:3;
1379
1380 /**
1381 * Does the swizzle contain duplicate components?
1382 *
1383 * L-value swizzles cannot contain duplicate components.
1384 */
1385 unsigned has_duplicates:1;
1386 };
1387
1388
1389 class ir_swizzle : public ir_rvalue {
1390 public:
1391 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1392 unsigned count);
1393
1394 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1395
1396 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1397
1398 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1399
1400 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1401
1402 virtual ir_swizzle *as_swizzle()
1403 {
1404 return this;
1405 }
1406
1407 /**
1408 * Construct an ir_swizzle from the textual representation. Can fail.
1409 */
1410 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1411
1412 virtual void accept(ir_visitor *v)
1413 {
1414 v->visit(this);
1415 }
1416
1417 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1418
1419 bool is_lvalue() const
1420 {
1421 return val->is_lvalue() && !mask.has_duplicates;
1422 }
1423
1424 /**
1425 * Get the variable that is ultimately referenced by an r-value
1426 */
1427 virtual ir_variable *variable_referenced() const;
1428
1429 ir_rvalue *val;
1430 ir_swizzle_mask mask;
1431
1432 private:
1433 /**
1434 * Initialize the mask component of a swizzle
1435 *
1436 * This is used by the \c ir_swizzle constructors.
1437 */
1438 void init_mask(const unsigned *components, unsigned count);
1439 };
1440
1441
1442 class ir_dereference : public ir_rvalue {
1443 public:
1444 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1445
1446 virtual ir_dereference *as_dereference()
1447 {
1448 return this;
1449 }
1450
1451 bool is_lvalue() const;
1452
1453 /**
1454 * Get the variable that is ultimately referenced by an r-value
1455 */
1456 virtual ir_variable *variable_referenced() const = 0;
1457
1458 /**
1459 * Get the constant that is ultimately referenced by an r-value,
1460 * in a constant expression evaluation context.
1461 *
1462 * The offset is used when the reference is to a specific column of
1463 * a matrix.
1464 */
1465 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1466 };
1467
1468
1469 class ir_dereference_variable : public ir_dereference {
1470 public:
1471 ir_dereference_variable(ir_variable *var);
1472
1473 virtual ir_dereference_variable *clone(void *mem_ctx,
1474 struct hash_table *) const;
1475
1476 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1477
1478 virtual ir_dereference_variable *as_dereference_variable()
1479 {
1480 return this;
1481 }
1482
1483 /**
1484 * Get the variable that is ultimately referenced by an r-value
1485 */
1486 virtual ir_variable *variable_referenced() const
1487 {
1488 return this->var;
1489 }
1490
1491 /**
1492 * Get the constant that is ultimately referenced by an r-value,
1493 * in a constant expression evaluation context.
1494 *
1495 * The offset is used when the reference is to a specific column of
1496 * a matrix.
1497 */
1498 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1499
1500 virtual ir_variable *whole_variable_referenced()
1501 {
1502 /* ir_dereference_variable objects always dereference the entire
1503 * variable. However, if this dereference is dereferenced by anything
1504 * else, the complete deferefernce chain is not a whole-variable
1505 * dereference. This method should only be called on the top most
1506 * ir_rvalue in a dereference chain.
1507 */
1508 return this->var;
1509 }
1510
1511 virtual void accept(ir_visitor *v)
1512 {
1513 v->visit(this);
1514 }
1515
1516 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1517
1518 /**
1519 * Object being dereferenced.
1520 */
1521 ir_variable *var;
1522 };
1523
1524
1525 class ir_dereference_array : public ir_dereference {
1526 public:
1527 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1528
1529 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1530
1531 virtual ir_dereference_array *clone(void *mem_ctx,
1532 struct hash_table *) const;
1533
1534 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1535
1536 virtual ir_dereference_array *as_dereference_array()
1537 {
1538 return this;
1539 }
1540
1541 /**
1542 * Get the variable that is ultimately referenced by an r-value
1543 */
1544 virtual ir_variable *variable_referenced() const
1545 {
1546 return this->array->variable_referenced();
1547 }
1548
1549 /**
1550 * Get the constant that is ultimately referenced by an r-value,
1551 * in a constant expression evaluation context.
1552 *
1553 * The offset is used when the reference is to a specific column of
1554 * a matrix.
1555 */
1556 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1557
1558 virtual void accept(ir_visitor *v)
1559 {
1560 v->visit(this);
1561 }
1562
1563 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1564
1565 ir_rvalue *array;
1566 ir_rvalue *array_index;
1567
1568 private:
1569 void set_array(ir_rvalue *value);
1570 };
1571
1572
1573 class ir_dereference_record : public ir_dereference {
1574 public:
1575 ir_dereference_record(ir_rvalue *value, const char *field);
1576
1577 ir_dereference_record(ir_variable *var, const char *field);
1578
1579 virtual ir_dereference_record *clone(void *mem_ctx,
1580 struct hash_table *) const;
1581
1582 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1583
1584 /**
1585 * Get the variable that is ultimately referenced by an r-value
1586 */
1587 virtual ir_variable *variable_referenced() const
1588 {
1589 return this->record->variable_referenced();
1590 }
1591
1592 /**
1593 * Get the constant that is ultimately referenced by an r-value,
1594 * in a constant expression evaluation context.
1595 *
1596 * The offset is used when the reference is to a specific column of
1597 * a matrix.
1598 */
1599 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1600
1601 virtual void accept(ir_visitor *v)
1602 {
1603 v->visit(this);
1604 }
1605
1606 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1607
1608 ir_rvalue *record;
1609 const char *field;
1610 };
1611
1612
1613 /**
1614 * Data stored in an ir_constant
1615 */
1616 union ir_constant_data {
1617 unsigned u[16];
1618 int i[16];
1619 float f[16];
1620 bool b[16];
1621 };
1622
1623
1624 class ir_constant : public ir_rvalue {
1625 public:
1626 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1627 ir_constant(bool b);
1628 ir_constant(unsigned int u);
1629 ir_constant(int i);
1630 ir_constant(float f);
1631
1632 /**
1633 * Construct an ir_constant from a list of ir_constant values
1634 */
1635 ir_constant(const struct glsl_type *type, exec_list *values);
1636
1637 /**
1638 * Construct an ir_constant from a scalar component of another ir_constant
1639 *
1640 * The new \c ir_constant inherits the type of the component from the
1641 * source constant.
1642 *
1643 * \note
1644 * In the case of a matrix constant, the new constant is a scalar, \b not
1645 * a vector.
1646 */
1647 ir_constant(const ir_constant *c, unsigned i);
1648
1649 /**
1650 * Return a new ir_constant of the specified type containing all zeros.
1651 */
1652 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1653
1654 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1655
1656 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1657
1658 virtual ir_constant *as_constant()
1659 {
1660 return this;
1661 }
1662
1663 virtual void accept(ir_visitor *v)
1664 {
1665 v->visit(this);
1666 }
1667
1668 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1669
1670 /**
1671 * Get a particular component of a constant as a specific type
1672 *
1673 * This is useful, for example, to get a value from an integer constant
1674 * as a float or bool. This appears frequently when constructors are
1675 * called with all constant parameters.
1676 */
1677 /*@{*/
1678 bool get_bool_component(unsigned i) const;
1679 float get_float_component(unsigned i) const;
1680 int get_int_component(unsigned i) const;
1681 unsigned get_uint_component(unsigned i) const;
1682 /*@}*/
1683
1684 ir_constant *get_array_element(unsigned i) const;
1685
1686 ir_constant *get_record_field(const char *name);
1687
1688 /**
1689 * Copy the values on another constant at a given offset.
1690 *
1691 * The offset is ignored for array or struct copies, it's only for
1692 * scalars or vectors into vectors or matrices.
1693 *
1694 * With identical types on both sides and zero offset it's clone()
1695 * without creating a new object.
1696 */
1697
1698 void copy_offset(ir_constant *src, int offset);
1699
1700 /**
1701 * Copy the values on another constant at a given offset and
1702 * following an assign-like mask.
1703 *
1704 * The mask is ignored for scalars.
1705 *
1706 * Note that this function only handles what assign can handle,
1707 * i.e. at most a vector as source and a column of a matrix as
1708 * destination.
1709 */
1710
1711 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1712
1713 /**
1714 * Determine whether a constant has the same value as another constant
1715 *
1716 * \sa ir_constant::is_zero, ir_constant::is_one,
1717 * ir_constant::is_negative_one
1718 */
1719 bool has_value(const ir_constant *) const;
1720
1721 virtual bool is_zero() const;
1722 virtual bool is_one() const;
1723 virtual bool is_negative_one() const;
1724
1725 /**
1726 * Value of the constant.
1727 *
1728 * The field used to back the values supplied by the constant is determined
1729 * by the type associated with the \c ir_instruction. Constants may be
1730 * scalars, vectors, or matrices.
1731 */
1732 union ir_constant_data value;
1733
1734 /* Array elements */
1735 ir_constant **array_elements;
1736
1737 /* Structure fields */
1738 exec_list components;
1739
1740 private:
1741 /**
1742 * Parameterless constructor only used by the clone method
1743 */
1744 ir_constant(void);
1745 };
1746
1747 /*@}*/
1748
1749 /**
1750 * Apply a visitor to each IR node in a list
1751 */
1752 void
1753 visit_exec_list(exec_list *list, ir_visitor *visitor);
1754
1755 /**
1756 * Validate invariants on each IR node in a list
1757 */
1758 void validate_ir_tree(exec_list *instructions);
1759
1760 struct _mesa_glsl_parse_state;
1761 struct gl_shader_program;
1762
1763 /**
1764 * Detect whether an unlinked shader contains static recursion
1765 *
1766 * If the list of instructions is determined to contain static recursion,
1767 * \c _mesa_glsl_error will be called to emit error messages for each function
1768 * that is in the recursion cycle.
1769 */
1770 void
1771 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1772 exec_list *instructions);
1773
1774 /**
1775 * Detect whether a linked shader contains static recursion
1776 *
1777 * If the list of instructions is determined to contain static recursion,
1778 * \c link_error_printf will be called to emit error messages for each function
1779 * that is in the recursion cycle. In addition,
1780 * \c gl_shader_program::LinkStatus will be set to false.
1781 */
1782 void
1783 detect_recursion_linked(struct gl_shader_program *prog,
1784 exec_list *instructions);
1785
1786 /**
1787 * Make a clone of each IR instruction in a list
1788 *
1789 * \param in List of IR instructions that are to be cloned
1790 * \param out List to hold the cloned instructions
1791 */
1792 void
1793 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1794
1795 extern void
1796 _mesa_glsl_initialize_variables(exec_list *instructions,
1797 struct _mesa_glsl_parse_state *state);
1798
1799 extern void
1800 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1801
1802 extern void
1803 _mesa_glsl_release_functions(void);
1804
1805 extern void
1806 reparent_ir(exec_list *list, void *mem_ctx);
1807
1808 struct glsl_symbol_table;
1809
1810 extern void
1811 import_prototypes(const exec_list *source, exec_list *dest,
1812 struct glsl_symbol_table *symbols, void *mem_ctx);
1813
1814 extern bool
1815 ir_has_call(ir_instruction *ir);
1816
1817 extern void
1818 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1819 bool is_fragment_shader);
1820
1821 extern char *
1822 prototype_string(const glsl_type *return_type, const char *name,
1823 exec_list *parameters);
1824
1825 #endif /* IR_H */