glsl2: Add cmp field to ir_loop
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 enum ir_node_type {
45 ir_type_unset,
46 ir_type_variable,
47 ir_type_assignment,
48 ir_type_call,
49 ir_type_constant,
50 ir_type_dereference_array,
51 ir_type_dereference_record,
52 ir_type_dereference_variable,
53 ir_type_discard,
54 ir_type_expression,
55 ir_type_function,
56 ir_type_function_signature,
57 ir_type_if,
58 ir_type_loop,
59 ir_type_loop_jump,
60 ir_type_return,
61 ir_type_swizzle,
62 ir_type_texture,
63 ir_type_max /**< maximum ir_type enum number, for validation */
64 };
65
66 /**
67 * Base class of all IR instructions
68 */
69 class ir_instruction : public exec_node {
70 public:
71 enum ir_node_type ir_type;
72 const struct glsl_type *type;
73
74 /** ir_print_visitor helper for debugging. */
75 void print(void) const;
76
77 virtual void accept(ir_visitor *) = 0;
78 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
79 virtual ir_instruction *clone(void *mem_ctx,
80 struct hash_table *ht) const = 0;
81
82 /**
83 * \name IR instruction downcast functions
84 *
85 * These functions either cast the object to a derived class or return
86 * \c NULL if the object's type does not match the specified derived class.
87 * Additional downcast functions will be added as needed.
88 */
89 /*@{*/
90 virtual class ir_variable * as_variable() { return NULL; }
91 virtual class ir_function * as_function() { return NULL; }
92 virtual class ir_dereference * as_dereference() { return NULL; }
93 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
94 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
95 virtual class ir_expression * as_expression() { return NULL; }
96 virtual class ir_rvalue * as_rvalue() { return NULL; }
97 virtual class ir_loop * as_loop() { return NULL; }
98 virtual class ir_assignment * as_assignment() { return NULL; }
99 virtual class ir_call * as_call() { return NULL; }
100 virtual class ir_return * as_return() { return NULL; }
101 virtual class ir_if * as_if() { return NULL; }
102 virtual class ir_swizzle * as_swizzle() { return NULL; }
103 virtual class ir_constant * as_constant() { return NULL; }
104 /*@}*/
105
106 protected:
107 ir_instruction()
108 {
109 ir_type = ir_type_unset;
110 type = NULL;
111 }
112 };
113
114
115 class ir_rvalue : public ir_instruction {
116 public:
117 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
118
119 virtual ir_constant *constant_expression_value() = 0;
120
121 virtual ir_rvalue * as_rvalue()
122 {
123 return this;
124 }
125
126 virtual bool is_lvalue()
127 {
128 return false;
129 }
130
131 /**
132 * Get the variable that is ultimately referenced by an r-value
133 */
134 virtual ir_variable *variable_referenced()
135 {
136 return NULL;
137 }
138
139
140 /**
141 * If an r-value is a reference to a whole variable, get that variable
142 *
143 * \return
144 * Pointer to a variable that is completely dereferenced by the r-value. If
145 * the r-value is not a dereference or the dereference does not access the
146 * entire variable (i.e., it's just one array element, struct field), \c NULL
147 * is returned.
148 */
149 virtual ir_variable *whole_variable_referenced()
150 {
151 return NULL;
152 }
153
154 protected:
155 ir_rvalue();
156 };
157
158
159 enum ir_variable_mode {
160 ir_var_auto = 0,
161 ir_var_uniform,
162 ir_var_in,
163 ir_var_out,
164 ir_var_inout,
165 ir_var_temporary /**< Temporary variable generated during compilation. */
166 };
167
168 enum ir_variable_interpolation {
169 ir_var_smooth = 0,
170 ir_var_flat,
171 ir_var_noperspective
172 };
173
174
175 class ir_variable : public ir_instruction {
176 public:
177 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
178
179 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
180
181 virtual ir_variable *as_variable()
182 {
183 return this;
184 }
185
186 virtual void accept(ir_visitor *v)
187 {
188 v->visit(this);
189 }
190
191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
192
193
194 /**
195 * Get the string value for the interpolation qualifier
196 *
197 * \return The string that would be used in a shader to specify \c
198 * mode will be returned.
199 *
200 * This function should only be used on a shader input or output variable.
201 */
202 const char *interpolation_string() const;
203
204 /**
205 * Calculate the number of slots required to hold this variable
206 *
207 * This is used to determine how many uniform or varying locations a variable
208 * occupies. The count is in units of floating point components.
209 */
210 unsigned component_slots() const;
211
212 const char *name;
213
214 /**
215 * Highest element accessed with a constant expression array index
216 *
217 * Not used for non-array variables.
218 */
219 unsigned max_array_access;
220
221 unsigned read_only:1;
222 unsigned centroid:1;
223 unsigned invariant:1;
224
225 unsigned mode:3;
226 unsigned interpolation:2;
227
228 /**
229 * Flag that the whole array is assignable
230 *
231 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
232 * equality). This flag enables this behavior.
233 */
234 unsigned array_lvalue:1;
235
236 /* ARB_fragment_coord_conventions */
237 unsigned origin_upper_left:1;
238 unsigned pixel_center_integer:1;
239
240 /**
241 * Storage location of the base of this variable
242 *
243 * The precise meaning of this field depends on the nature of the variable.
244 *
245 * - Vertex shader input: one of the values from \c gl_vert_attrib.
246 * - Vertex shader output: one of the values from \c gl_vert_result.
247 * - Fragment shader input: one of the values from \c gl_frag_attrib.
248 * - Fragment shader output: one of the values from \c gl_frag_result.
249 * - Uniforms: Per-stage uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * Emit a warning if this variable is accessed.
259 */
260 const char *warn_extension;
261
262 /**
263 * Value assigned in the initializer of a variable declared "const"
264 */
265 ir_constant *constant_value;
266 };
267
268
269 /*@{*/
270 /**
271 * The representation of a function instance; may be the full definition or
272 * simply a prototype.
273 */
274 class ir_function_signature : public ir_instruction {
275 /* An ir_function_signature will be part of the list of signatures in
276 * an ir_function.
277 */
278 public:
279 ir_function_signature(const glsl_type *return_type);
280
281 virtual ir_function_signature *clone(void *mem_ctx,
282 struct hash_table *ht) const;
283
284 virtual void accept(ir_visitor *v)
285 {
286 v->visit(this);
287 }
288
289 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
290
291 /**
292 * Get the name of the function for which this is a signature
293 */
294 const char *function_name() const;
295
296 /**
297 * Get a handle to the function for which this is a signature
298 *
299 * There is no setter function, this function returns a \c const pointer,
300 * and \c ir_function_signature::_function is private for a reason. The
301 * only way to make a connection between a function and function signature
302 * is via \c ir_function::add_signature. This helps ensure that certain
303 * invariants (i.e., a function signature is in the list of signatures for
304 * its \c _function) are met.
305 *
306 * \sa ir_function::add_signature
307 */
308 inline const class ir_function *function() const
309 {
310 return this->_function;
311 }
312
313 /**
314 * Check whether the qualifiers match between this signature's parameters
315 * and the supplied parameter list. If not, returns the name of the first
316 * parameter with mismatched qualifiers (for use in error messages).
317 */
318 const char *qualifiers_match(exec_list *params);
319
320 /**
321 * Replace the current parameter list with the given one. This is useful
322 * if the current information came from a prototype, and either has invalid
323 * or missing parameter names.
324 */
325 void replace_parameters(exec_list *new_params);
326
327 /**
328 * Function return type.
329 *
330 * \note This discards the optional precision qualifier.
331 */
332 const struct glsl_type *return_type;
333
334 /**
335 * List of ir_variable of function parameters.
336 *
337 * This represents the storage. The paramaters passed in a particular
338 * call will be in ir_call::actual_paramaters.
339 */
340 struct exec_list parameters;
341
342 /** Whether or not this function has a body (which may be empty). */
343 unsigned is_defined:1;
344
345 /** Body of instructions in the function. */
346 struct exec_list body;
347
348 private:
349 /** Function of which this signature is one overload. */
350 class ir_function *_function;
351
352 friend class ir_function;
353 };
354
355
356 /**
357 * Header for tracking multiple overloaded functions with the same name.
358 * Contains a list of ir_function_signatures representing each of the
359 * actual functions.
360 */
361 class ir_function : public ir_instruction {
362 public:
363 ir_function(const char *name);
364
365 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
366
367 virtual ir_function *as_function()
368 {
369 return this;
370 }
371
372 virtual void accept(ir_visitor *v)
373 {
374 v->visit(this);
375 }
376
377 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
378
379 void add_signature(ir_function_signature *sig)
380 {
381 sig->_function = this;
382 this->signatures.push_tail(sig);
383 }
384
385 /**
386 * Get an iterator for the set of function signatures
387 */
388 exec_list_iterator iterator()
389 {
390 return signatures.iterator();
391 }
392
393 /**
394 * Find a signature that matches a set of actual parameters, taking implicit
395 * conversions into account.
396 */
397 ir_function_signature *matching_signature(const exec_list *actual_param);
398
399 /**
400 * Find a signature that exactly matches a set of actual parameters without
401 * any implicit type conversions.
402 */
403 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
404
405 /**
406 * Name of the function.
407 */
408 const char *name;
409
410 /** Whether or not this function is a built-in. */
411 unsigned is_builtin:1;
412
413 /**
414 * List of ir_function_signature for each overloaded function with this name.
415 */
416 struct exec_list signatures;
417 };
418
419 inline const char *ir_function_signature::function_name() const
420 {
421 return this->_function->name;
422 }
423 /*@}*/
424
425
426 /**
427 * IR instruction representing high-level if-statements
428 */
429 class ir_if : public ir_instruction {
430 public:
431 ir_if(ir_rvalue *condition)
432 : condition(condition)
433 {
434 ir_type = ir_type_if;
435 }
436
437 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
438
439 virtual ir_if *as_if()
440 {
441 return this;
442 }
443
444 virtual void accept(ir_visitor *v)
445 {
446 v->visit(this);
447 }
448
449 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
450
451 ir_rvalue *condition;
452 /** List of ir_instruction for the body of the then branch */
453 exec_list then_instructions;
454 /** List of ir_instruction for the body of the else branch */
455 exec_list else_instructions;
456 };
457
458
459 /**
460 * IR instruction representing a high-level loop structure.
461 */
462 class ir_loop : public ir_instruction {
463 public:
464 ir_loop();
465
466 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
467
468 virtual void accept(ir_visitor *v)
469 {
470 v->visit(this);
471 }
472
473 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
474
475 virtual ir_loop *as_loop()
476 {
477 return this;
478 }
479
480 /**
481 * Get an iterator for the instructions of the loop body
482 */
483 exec_list_iterator iterator()
484 {
485 return body_instructions.iterator();
486 }
487
488 /** List of ir_instruction that make up the body of the loop. */
489 exec_list body_instructions;
490
491 /**
492 * \name Loop counter and controls
493 *
494 * Represents a loop like a FORTRAN \c do-loop.
495 *
496 * \note
497 * If \c from and \c to are the same value, the loop will execute once.
498 */
499 /*@{*/
500 ir_rvalue *from; /** Value of the loop counter on the first
501 * iteration of the loop.
502 */
503 ir_rvalue *to; /** Value of the loop counter on the last
504 * iteration of the loop.
505 */
506 ir_rvalue *increment;
507 ir_variable *counter;
508
509 /**
510 * Comparison operation in the loop terminator.
511 *
512 * If any of the loop control fields are non-\c NULL, this field must be
513 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
514 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
515 */
516 int cmp;
517 /*@}*/
518 };
519
520
521 class ir_assignment : public ir_instruction {
522 public:
523 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
524
525 /**
526 * Construct an assignment with an explicit write mask
527 *
528 * \note
529 * Since a write mask is supplied, the LHS must already be a bare
530 * \c ir_dereference. The cannot be any swizzles in the LHS.
531 */
532 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
533 unsigned write_mask);
534
535 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
536
537 virtual ir_constant *constant_expression_value();
538
539 virtual void accept(ir_visitor *v)
540 {
541 v->visit(this);
542 }
543
544 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
545
546 virtual ir_assignment * as_assignment()
547 {
548 return this;
549 }
550
551 /**
552 * Get a whole variable written by an assignment
553 *
554 * If the LHS of the assignment writes a whole variable, the variable is
555 * returned. Otherwise \c NULL is returned. Examples of whole-variable
556 * assignment are:
557 *
558 * - Assigning to a scalar
559 * - Assigning to all components of a vector
560 * - Whole array (or matrix) assignment
561 * - Whole structure assignment
562 */
563 ir_variable *whole_variable_written();
564
565 /**
566 * Set the LHS of an assignment
567 */
568 void set_lhs(ir_rvalue *lhs);
569
570 /**
571 * Left-hand side of the assignment.
572 *
573 * This should be treated as read only. If you need to set the LHS of an
574 * assignment, use \c ir_assignment::set_lhs.
575 */
576 ir_dereference *lhs;
577
578 /**
579 * Value being assigned
580 */
581 ir_rvalue *rhs;
582
583 /**
584 * Optional condition for the assignment.
585 */
586 ir_rvalue *condition;
587
588
589 /**
590 * Component mask written
591 *
592 * For non-vector types in the LHS, this field will be zero. For vector
593 * types, a bit will be set for each component that is written. Note that
594 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
595 */
596 unsigned write_mask:4;
597 };
598
599 /* Update ir_expression::num_operands() and operator_strs when
600 * updating this list.
601 */
602 enum ir_expression_operation {
603 ir_unop_bit_not,
604 ir_unop_logic_not,
605 ir_unop_neg,
606 ir_unop_abs,
607 ir_unop_sign,
608 ir_unop_rcp,
609 ir_unop_rsq,
610 ir_unop_sqrt,
611 ir_unop_exp, /**< Log base e on gentype */
612 ir_unop_log, /**< Natural log on gentype */
613 ir_unop_exp2,
614 ir_unop_log2,
615 ir_unop_f2i, /**< Float-to-integer conversion. */
616 ir_unop_i2f, /**< Integer-to-float conversion. */
617 ir_unop_f2b, /**< Float-to-boolean conversion */
618 ir_unop_b2f, /**< Boolean-to-float conversion */
619 ir_unop_i2b, /**< int-to-boolean conversion */
620 ir_unop_b2i, /**< Boolean-to-int conversion */
621 ir_unop_u2f, /**< Unsigned-to-float conversion. */
622 ir_unop_any,
623
624 /**
625 * \name Unary floating-point rounding operations.
626 */
627 /*@{*/
628 ir_unop_trunc,
629 ir_unop_ceil,
630 ir_unop_floor,
631 ir_unop_fract,
632 /*@}*/
633
634 /**
635 * \name Trigonometric operations.
636 */
637 /*@{*/
638 ir_unop_sin,
639 ir_unop_cos,
640 /*@}*/
641
642 /**
643 * \name Partial derivatives.
644 */
645 /*@{*/
646 ir_unop_dFdx,
647 ir_unop_dFdy,
648 /*@}*/
649
650 ir_binop_add,
651 ir_binop_sub,
652 ir_binop_mul,
653 ir_binop_div,
654
655 /**
656 * Takes one of two combinations of arguments:
657 *
658 * - mod(vecN, vecN)
659 * - mod(vecN, float)
660 *
661 * Does not take integer types.
662 */
663 ir_binop_mod,
664
665 /**
666 * \name Binary comparison operators
667 */
668 /*@{*/
669 ir_binop_less,
670 ir_binop_greater,
671 ir_binop_lequal,
672 ir_binop_gequal,
673 /**
674 * Returns single boolean for whether all components of operands[0]
675 * equal the components of operands[1].
676 */
677 ir_binop_equal,
678 /**
679 * Returns single boolean for whether any component of operands[0]
680 * is not equal to the corresponding component of operands[1].
681 */
682 ir_binop_nequal,
683 /*@}*/
684
685 /**
686 * \name Bit-wise binary operations.
687 */
688 /*@{*/
689 ir_binop_lshift,
690 ir_binop_rshift,
691 ir_binop_bit_and,
692 ir_binop_bit_xor,
693 ir_binop_bit_or,
694 /*@}*/
695
696 ir_binop_logic_and,
697 ir_binop_logic_xor,
698 ir_binop_logic_or,
699
700 ir_binop_dot,
701 ir_binop_cross,
702 ir_binop_min,
703 ir_binop_max,
704
705 ir_binop_pow
706 };
707
708 class ir_expression : public ir_rvalue {
709 public:
710 ir_expression(int op, const struct glsl_type *type,
711 ir_rvalue *, ir_rvalue *);
712
713 virtual ir_expression *as_expression()
714 {
715 return this;
716 }
717
718 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
719
720 virtual ir_constant *constant_expression_value();
721
722 static unsigned int get_num_operands(ir_expression_operation);
723 unsigned int get_num_operands() const
724 {
725 return get_num_operands(operation);
726 }
727
728 /**
729 * Return a string representing this expression's operator.
730 */
731 const char *operator_string();
732
733 /**
734 * Do a reverse-lookup to translate the given string into an operator.
735 */
736 static ir_expression_operation get_operator(const char *);
737
738 virtual void accept(ir_visitor *v)
739 {
740 v->visit(this);
741 }
742
743 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
744
745 ir_expression_operation operation;
746 ir_rvalue *operands[2];
747 };
748
749
750 /**
751 * IR instruction representing a function call
752 */
753 class ir_call : public ir_rvalue {
754 public:
755 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
756 : callee(callee)
757 {
758 ir_type = ir_type_call;
759 assert(callee->return_type != NULL);
760 type = callee->return_type;
761 actual_parameters->move_nodes_to(& this->actual_parameters);
762 }
763
764 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
765
766 virtual ir_constant *constant_expression_value();
767
768 virtual ir_call *as_call()
769 {
770 return this;
771 }
772
773 virtual void accept(ir_visitor *v)
774 {
775 v->visit(this);
776 }
777
778 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
779
780 /**
781 * Get a generic ir_call object when an error occurs
782 *
783 * Any allocation will be performed with 'ctx' as talloc owner.
784 */
785 static ir_call *get_error_instruction(void *ctx);
786
787 /**
788 * Get an iterator for the set of acutal parameters
789 */
790 exec_list_iterator iterator()
791 {
792 return actual_parameters.iterator();
793 }
794
795 /**
796 * Get the name of the function being called.
797 */
798 const char *callee_name() const
799 {
800 return callee->function_name();
801 }
802
803 ir_function_signature *get_callee()
804 {
805 return callee;
806 }
807
808 /**
809 * Set the function call target
810 */
811 void set_callee(ir_function_signature *sig);
812
813 /**
814 * Generates an inline version of the function before @ir,
815 * returning the return value of the function.
816 */
817 ir_rvalue *generate_inline(ir_instruction *ir);
818
819 /* List of ir_rvalue of paramaters passed in this call. */
820 exec_list actual_parameters;
821
822 private:
823 ir_call()
824 : callee(NULL)
825 {
826 this->ir_type = ir_type_call;
827 }
828
829 ir_function_signature *callee;
830 };
831
832
833 /**
834 * \name Jump-like IR instructions.
835 *
836 * These include \c break, \c continue, \c return, and \c discard.
837 */
838 /*@{*/
839 class ir_jump : public ir_instruction {
840 protected:
841 ir_jump()
842 {
843 ir_type = ir_type_unset;
844 }
845 };
846
847 class ir_return : public ir_jump {
848 public:
849 ir_return()
850 : value(NULL)
851 {
852 this->ir_type = ir_type_return;
853 }
854
855 ir_return(ir_rvalue *value)
856 : value(value)
857 {
858 this->ir_type = ir_type_return;
859 }
860
861 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
862
863 virtual ir_return *as_return()
864 {
865 return this;
866 }
867
868 ir_rvalue *get_value() const
869 {
870 return value;
871 }
872
873 virtual void accept(ir_visitor *v)
874 {
875 v->visit(this);
876 }
877
878 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
879
880 ir_rvalue *value;
881 };
882
883
884 /**
885 * Jump instructions used inside loops
886 *
887 * These include \c break and \c continue. The \c break within a loop is
888 * different from the \c break within a switch-statement.
889 *
890 * \sa ir_switch_jump
891 */
892 class ir_loop_jump : public ir_jump {
893 public:
894 enum jump_mode {
895 jump_break,
896 jump_continue
897 };
898
899 ir_loop_jump(jump_mode mode)
900 {
901 this->ir_type = ir_type_loop_jump;
902 this->mode = mode;
903 this->loop = loop;
904 }
905
906 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
907
908 virtual void accept(ir_visitor *v)
909 {
910 v->visit(this);
911 }
912
913 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
914
915 bool is_break() const
916 {
917 return mode == jump_break;
918 }
919
920 bool is_continue() const
921 {
922 return mode == jump_continue;
923 }
924
925 /** Mode selector for the jump instruction. */
926 enum jump_mode mode;
927 private:
928 /** Loop containing this break instruction. */
929 ir_loop *loop;
930 };
931
932 /**
933 * IR instruction representing discard statements.
934 */
935 class ir_discard : public ir_jump {
936 public:
937 ir_discard()
938 {
939 this->ir_type = ir_type_discard;
940 this->condition = NULL;
941 }
942
943 ir_discard(ir_rvalue *cond)
944 {
945 this->ir_type = ir_type_discard;
946 this->condition = cond;
947 }
948
949 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
950
951 virtual void accept(ir_visitor *v)
952 {
953 v->visit(this);
954 }
955
956 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
957
958 ir_rvalue *condition;
959 };
960 /*@}*/
961
962
963 /**
964 * Texture sampling opcodes used in ir_texture
965 */
966 enum ir_texture_opcode {
967 ir_tex, /* Regular texture look-up */
968 ir_txb, /* Texture look-up with LOD bias */
969 ir_txl, /* Texture look-up with explicit LOD */
970 ir_txd, /* Texture look-up with partial derivatvies */
971 ir_txf /* Texel fetch with explicit LOD */
972 };
973
974
975 /**
976 * IR instruction to sample a texture
977 *
978 * The specific form of the IR instruction depends on the \c mode value
979 * selected from \c ir_texture_opcodes. In the printed IR, these will
980 * appear as:
981 *
982 * Texel offset
983 * | Projection divisor
984 * | | Shadow comparitor
985 * | | |
986 * v v v
987 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
988 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
989 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
990 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
991 * (txf (sampler) (coordinate) (0 0 0) (lod))
992 */
993 class ir_texture : public ir_rvalue {
994 public:
995 ir_texture(enum ir_texture_opcode op)
996 : op(op), projector(NULL), shadow_comparitor(NULL)
997 {
998 this->ir_type = ir_type_texture;
999 }
1000
1001 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1002
1003 virtual ir_constant *constant_expression_value();
1004
1005 virtual void accept(ir_visitor *v)
1006 {
1007 v->visit(this);
1008 }
1009
1010 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1011
1012 /**
1013 * Return a string representing the ir_texture_opcode.
1014 */
1015 const char *opcode_string();
1016
1017 /** Set the sampler and infer the type. */
1018 void set_sampler(ir_dereference *sampler);
1019
1020 /**
1021 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1022 */
1023 static ir_texture_opcode get_opcode(const char *);
1024
1025 enum ir_texture_opcode op;
1026
1027 /** Sampler to use for the texture access. */
1028 ir_dereference *sampler;
1029
1030 /** Texture coordinate to sample */
1031 ir_rvalue *coordinate;
1032
1033 /**
1034 * Value used for projective divide.
1035 *
1036 * If there is no projective divide (the common case), this will be
1037 * \c NULL. Optimization passes should check for this to point to a constant
1038 * of 1.0 and replace that with \c NULL.
1039 */
1040 ir_rvalue *projector;
1041
1042 /**
1043 * Coordinate used for comparison on shadow look-ups.
1044 *
1045 * If there is no shadow comparison, this will be \c NULL. For the
1046 * \c ir_txf opcode, this *must* be \c NULL.
1047 */
1048 ir_rvalue *shadow_comparitor;
1049
1050 /** Explicit texel offsets. */
1051 signed char offsets[3];
1052
1053 union {
1054 ir_rvalue *lod; /**< Floating point LOD */
1055 ir_rvalue *bias; /**< Floating point LOD bias */
1056 struct {
1057 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1058 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1059 } grad;
1060 } lod_info;
1061 };
1062
1063
1064 struct ir_swizzle_mask {
1065 unsigned x:2;
1066 unsigned y:2;
1067 unsigned z:2;
1068 unsigned w:2;
1069
1070 /**
1071 * Number of components in the swizzle.
1072 */
1073 unsigned num_components:3;
1074
1075 /**
1076 * Does the swizzle contain duplicate components?
1077 *
1078 * L-value swizzles cannot contain duplicate components.
1079 */
1080 unsigned has_duplicates:1;
1081 };
1082
1083
1084 class ir_swizzle : public ir_rvalue {
1085 public:
1086 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1087 unsigned count);
1088
1089 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1090
1091 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1092
1093 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1094
1095 virtual ir_constant *constant_expression_value();
1096
1097 virtual ir_swizzle *as_swizzle()
1098 {
1099 return this;
1100 }
1101
1102 /**
1103 * Construct an ir_swizzle from the textual representation. Can fail.
1104 */
1105 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1106
1107 virtual void accept(ir_visitor *v)
1108 {
1109 v->visit(this);
1110 }
1111
1112 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1113
1114 bool is_lvalue()
1115 {
1116 return val->is_lvalue() && !mask.has_duplicates;
1117 }
1118
1119 /**
1120 * Get the variable that is ultimately referenced by an r-value
1121 */
1122 virtual ir_variable *variable_referenced();
1123
1124 ir_rvalue *val;
1125 ir_swizzle_mask mask;
1126
1127 private:
1128 /**
1129 * Initialize the mask component of a swizzle
1130 *
1131 * This is used by the \c ir_swizzle constructors.
1132 */
1133 void init_mask(const unsigned *components, unsigned count);
1134 };
1135
1136
1137 class ir_dereference : public ir_rvalue {
1138 public:
1139 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1140
1141 virtual ir_dereference *as_dereference()
1142 {
1143 return this;
1144 }
1145
1146 bool is_lvalue();
1147
1148 /**
1149 * Get the variable that is ultimately referenced by an r-value
1150 */
1151 virtual ir_variable *variable_referenced() = 0;
1152 };
1153
1154
1155 class ir_dereference_variable : public ir_dereference {
1156 public:
1157 ir_dereference_variable(ir_variable *var);
1158
1159 virtual ir_dereference_variable *clone(void *mem_ctx,
1160 struct hash_table *) const;
1161
1162 virtual ir_constant *constant_expression_value();
1163
1164 virtual ir_dereference_variable *as_dereference_variable()
1165 {
1166 return this;
1167 }
1168
1169 /**
1170 * Get the variable that is ultimately referenced by an r-value
1171 */
1172 virtual ir_variable *variable_referenced()
1173 {
1174 return this->var;
1175 }
1176
1177 virtual ir_variable *whole_variable_referenced()
1178 {
1179 /* ir_dereference_variable objects always dereference the entire
1180 * variable. However, if this dereference is dereferenced by anything
1181 * else, the complete deferefernce chain is not a whole-variable
1182 * dereference. This method should only be called on the top most
1183 * ir_rvalue in a dereference chain.
1184 */
1185 return this->var;
1186 }
1187
1188 virtual void accept(ir_visitor *v)
1189 {
1190 v->visit(this);
1191 }
1192
1193 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1194
1195 /**
1196 * Object being dereferenced.
1197 */
1198 ir_variable *var;
1199 };
1200
1201
1202 class ir_dereference_array : public ir_dereference {
1203 public:
1204 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1205
1206 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1207
1208 virtual ir_dereference_array *clone(void *mem_ctx,
1209 struct hash_table *) const;
1210
1211 virtual ir_constant *constant_expression_value();
1212
1213 virtual ir_dereference_array *as_dereference_array()
1214 {
1215 return this;
1216 }
1217
1218 /**
1219 * Get the variable that is ultimately referenced by an r-value
1220 */
1221 virtual ir_variable *variable_referenced()
1222 {
1223 return this->array->variable_referenced();
1224 }
1225
1226 virtual void accept(ir_visitor *v)
1227 {
1228 v->visit(this);
1229 }
1230
1231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1232
1233 ir_rvalue *array;
1234 ir_rvalue *array_index;
1235
1236 private:
1237 void set_array(ir_rvalue *value);
1238 };
1239
1240
1241 class ir_dereference_record : public ir_dereference {
1242 public:
1243 ir_dereference_record(ir_rvalue *value, const char *field);
1244
1245 ir_dereference_record(ir_variable *var, const char *field);
1246
1247 virtual ir_dereference_record *clone(void *mem_ctx,
1248 struct hash_table *) const;
1249
1250 virtual ir_constant *constant_expression_value();
1251
1252 /**
1253 * Get the variable that is ultimately referenced by an r-value
1254 */
1255 virtual ir_variable *variable_referenced()
1256 {
1257 return this->record->variable_referenced();
1258 }
1259
1260 virtual void accept(ir_visitor *v)
1261 {
1262 v->visit(this);
1263 }
1264
1265 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1266
1267 ir_rvalue *record;
1268 const char *field;
1269 };
1270
1271
1272 /**
1273 * Data stored in an ir_constant
1274 */
1275 union ir_constant_data {
1276 unsigned u[16];
1277 int i[16];
1278 float f[16];
1279 bool b[16];
1280 };
1281
1282
1283 class ir_constant : public ir_rvalue {
1284 public:
1285 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1286 ir_constant(bool b);
1287 ir_constant(unsigned int u);
1288 ir_constant(int i);
1289 ir_constant(float f);
1290
1291 /**
1292 * Construct an ir_constant from a list of ir_constant values
1293 */
1294 ir_constant(const struct glsl_type *type, exec_list *values);
1295
1296 /**
1297 * Construct an ir_constant from a scalar component of another ir_constant
1298 *
1299 * The new \c ir_constant inherits the type of the component from the
1300 * source constant.
1301 *
1302 * \note
1303 * In the case of a matrix constant, the new constant is a scalar, \b not
1304 * a vector.
1305 */
1306 ir_constant(const ir_constant *c, unsigned i);
1307
1308 /**
1309 * Return a new ir_constant of the specified type containing all zeros.
1310 */
1311 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1312
1313 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1314
1315 virtual ir_constant *constant_expression_value();
1316
1317 virtual ir_constant *as_constant()
1318 {
1319 return this;
1320 }
1321
1322 virtual void accept(ir_visitor *v)
1323 {
1324 v->visit(this);
1325 }
1326
1327 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1328
1329 /**
1330 * Get a particular component of a constant as a specific type
1331 *
1332 * This is useful, for example, to get a value from an integer constant
1333 * as a float or bool. This appears frequently when constructors are
1334 * called with all constant parameters.
1335 */
1336 /*@{*/
1337 bool get_bool_component(unsigned i) const;
1338 float get_float_component(unsigned i) const;
1339 int get_int_component(unsigned i) const;
1340 unsigned get_uint_component(unsigned i) const;
1341 /*@}*/
1342
1343 ir_constant *get_array_element(unsigned i) const;
1344
1345 ir_constant *get_record_field(const char *name);
1346
1347 /**
1348 * Determine whether a constant has the same value as another constant
1349 */
1350 bool has_value(const ir_constant *) const;
1351
1352 /**
1353 * Value of the constant.
1354 *
1355 * The field used to back the values supplied by the constant is determined
1356 * by the type associated with the \c ir_instruction. Constants may be
1357 * scalars, vectors, or matrices.
1358 */
1359 union ir_constant_data value;
1360
1361 /* Array elements */
1362 ir_constant **array_elements;
1363
1364 /* Structure fields */
1365 exec_list components;
1366
1367 private:
1368 /**
1369 * Parameterless constructor only used by the clone method
1370 */
1371 ir_constant(void);
1372 };
1373
1374 void
1375 visit_exec_list(exec_list *list, ir_visitor *visitor);
1376
1377 void validate_ir_tree(exec_list *instructions);
1378
1379 /**
1380 * Make a clone of each IR instruction in a list
1381 *
1382 * \param in List of IR instructions that are to be cloned
1383 * \param out List to hold the cloned instructions
1384 */
1385 void
1386 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1387
1388 extern void
1389 _mesa_glsl_initialize_variables(exec_list *instructions,
1390 struct _mesa_glsl_parse_state *state);
1391
1392 extern void
1393 _mesa_glsl_initialize_functions(exec_list *instructions,
1394 struct _mesa_glsl_parse_state *state);
1395
1396 extern void
1397 _mesa_glsl_release_functions(void);
1398
1399 extern void
1400 reparent_ir(exec_list *list, void *mem_ctx);
1401
1402 struct glsl_symbol_table;
1403
1404 extern void
1405 import_prototypes(const exec_list *source, exec_list *dest,
1406 struct glsl_symbol_table *symbols, void *mem_ctx);
1407
1408 extern bool
1409 ir_has_call(ir_instruction *ir);
1410
1411 extern void
1412 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1413
1414 #endif /* IR_H */