glsl: Add ir support for `sample` qualifier; adjust compiler and linker
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_emit_vertex,
85 ir_type_end_primitive,
86 ir_type_max /**< maximum ir_type enum number, for validation */
87 };
88
89 /**
90 * Base class of all IR instructions
91 */
92 class ir_instruction : public exec_node {
93 public:
94 enum ir_node_type ir_type;
95
96 /**
97 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
98 * there's a virtual destructor present. Because we almost
99 * universally use ralloc for our memory management of
100 * ir_instructions, the destructor doesn't need to do any work.
101 */
102 virtual ~ir_instruction()
103 {
104 }
105
106 /** ir_print_visitor helper for debugging. */
107 void print(void) const;
108
109 virtual void accept(ir_visitor *) = 0;
110 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111 virtual ir_instruction *clone(void *mem_ctx,
112 struct hash_table *ht) const = 0;
113
114 /**
115 * \name IR instruction downcast functions
116 *
117 * These functions either cast the object to a derived class or return
118 * \c NULL if the object's type does not match the specified derived class.
119 * Additional downcast functions will be added as needed.
120 */
121 /*@{*/
122 virtual class ir_variable * as_variable() { return NULL; }
123 virtual class ir_function * as_function() { return NULL; }
124 virtual class ir_dereference * as_dereference() { return NULL; }
125 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
126 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
127 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
128 virtual class ir_expression * as_expression() { return NULL; }
129 virtual class ir_rvalue * as_rvalue() { return NULL; }
130 virtual class ir_loop * as_loop() { return NULL; }
131 virtual class ir_assignment * as_assignment() { return NULL; }
132 virtual class ir_call * as_call() { return NULL; }
133 virtual class ir_return * as_return() { return NULL; }
134 virtual class ir_if * as_if() { return NULL; }
135 virtual class ir_swizzle * as_swizzle() { return NULL; }
136 virtual class ir_texture * as_texture() { return NULL; }
137 virtual class ir_constant * as_constant() { return NULL; }
138 virtual class ir_discard * as_discard() { return NULL; }
139 virtual class ir_jump * as_jump() { return NULL; }
140 /*@}*/
141
142 /**
143 * IR equality method: Return true if the referenced instruction would
144 * return the same value as this one.
145 *
146 * This intended to be used for CSE and algebraic optimizations, on rvalues
147 * in particular. No support for other instruction types (assignments,
148 * jumps, calls, etc.) is planned.
149 */
150 virtual bool equals(ir_instruction *ir);
151
152 protected:
153 ir_instruction()
154 {
155 ir_type = ir_type_unset;
156 }
157 };
158
159
160 /**
161 * The base class for all "values"/expression trees.
162 */
163 class ir_rvalue : public ir_instruction {
164 public:
165 const struct glsl_type *type;
166
167 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
168
169 virtual void accept(ir_visitor *v)
170 {
171 v->visit(this);
172 }
173
174 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
175
176 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
177
178 virtual ir_rvalue * as_rvalue()
179 {
180 return this;
181 }
182
183 ir_rvalue *as_rvalue_to_saturate();
184
185 virtual bool is_lvalue() const
186 {
187 return false;
188 }
189
190 /**
191 * Get the variable that is ultimately referenced by an r-value
192 */
193 virtual ir_variable *variable_referenced() const
194 {
195 return NULL;
196 }
197
198
199 /**
200 * If an r-value is a reference to a whole variable, get that variable
201 *
202 * \return
203 * Pointer to a variable that is completely dereferenced by the r-value. If
204 * the r-value is not a dereference or the dereference does not access the
205 * entire variable (i.e., it's just one array element, struct field), \c NULL
206 * is returned.
207 */
208 virtual ir_variable *whole_variable_referenced()
209 {
210 return NULL;
211 }
212
213 /**
214 * Determine if an r-value has the value zero
215 *
216 * The base implementation of this function always returns \c false. The
217 * \c ir_constant class over-rides this function to return \c true \b only
218 * for vector and scalar types that have all elements set to the value
219 * zero (or \c false for booleans).
220 *
221 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
222 * ir_constant::is_basis
223 */
224 virtual bool is_zero() const;
225
226 /**
227 * Determine if an r-value has the value one
228 *
229 * The base implementation of this function always returns \c false. The
230 * \c ir_constant class over-rides this function to return \c true \b only
231 * for vector and scalar types that have all elements set to the value
232 * one (or \c true for booleans).
233 *
234 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
235 * ir_constant::is_basis
236 */
237 virtual bool is_one() const;
238
239 /**
240 * Determine if an r-value has the value negative one
241 *
242 * The base implementation of this function always returns \c false. The
243 * \c ir_constant class over-rides this function to return \c true \b only
244 * for vector and scalar types that have all elements set to the value
245 * negative one. For boolean types, the result is always \c false.
246 *
247 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
248 * ir_constant::is_basis
249 */
250 virtual bool is_negative_one() const;
251
252 /**
253 * Determine if an r-value is a basis vector
254 *
255 * The base implementation of this function always returns \c false. The
256 * \c ir_constant class over-rides this function to return \c true \b only
257 * for vector and scalar types that have one element set to the value one,
258 * and the other elements set to the value zero. For boolean types, the
259 * result is always \c false.
260 *
261 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
262 * is_constant::is_negative_one
263 */
264 virtual bool is_basis() const;
265
266
267 /**
268 * Return a generic value of error_type.
269 *
270 * Allocation will be performed with 'mem_ctx' as ralloc owner.
271 */
272 static ir_rvalue *error_value(void *mem_ctx);
273
274 protected:
275 ir_rvalue();
276 };
277
278
279 /**
280 * Variable storage classes
281 */
282 enum ir_variable_mode {
283 ir_var_auto = 0, /**< Function local variables and globals. */
284 ir_var_uniform, /**< Variable declared as a uniform. */
285 ir_var_shader_in,
286 ir_var_shader_out,
287 ir_var_function_in,
288 ir_var_function_out,
289 ir_var_function_inout,
290 ir_var_const_in, /**< "in" param that must be a constant expression */
291 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
292 ir_var_temporary, /**< Temporary variable generated during compilation. */
293 ir_var_mode_count /**< Number of variable modes */
294 };
295
296 /**
297 * Enum keeping track of how a variable was declared. For error checking of
298 * the gl_PerVertex redeclaration rules.
299 */
300 enum ir_var_declaration_type {
301 /**
302 * Normal declaration (for most variables, this means an explicit
303 * declaration. Exception: temporaries are always implicitly declared, but
304 * they still use ir_var_declared_normally).
305 *
306 * Note: an ir_variable that represents a named interface block uses
307 * ir_var_declared_normally.
308 */
309 ir_var_declared_normally = 0,
310
311 /**
312 * Variable was explicitly declared (or re-declared) in an unnamed
313 * interface block.
314 */
315 ir_var_declared_in_block,
316
317 /**
318 * Variable is an implicitly declared built-in that has not been explicitly
319 * re-declared by the shader.
320 */
321 ir_var_declared_implicitly,
322 };
323
324 /**
325 * \brief Layout qualifiers for gl_FragDepth.
326 *
327 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
328 * with a layout qualifier.
329 */
330 enum ir_depth_layout {
331 ir_depth_layout_none, /**< No depth layout is specified. */
332 ir_depth_layout_any,
333 ir_depth_layout_greater,
334 ir_depth_layout_less,
335 ir_depth_layout_unchanged
336 };
337
338 /**
339 * \brief Convert depth layout qualifier to string.
340 */
341 const char*
342 depth_layout_string(ir_depth_layout layout);
343
344 /**
345 * Description of built-in state associated with a uniform
346 *
347 * \sa ir_variable::state_slots
348 */
349 struct ir_state_slot {
350 int tokens[5];
351 int swizzle;
352 };
353
354
355 /**
356 * Get the string value for an interpolation qualifier
357 *
358 * \return The string that would be used in a shader to specify \c
359 * mode will be returned.
360 *
361 * This function is used to generate error messages of the form "shader
362 * uses %s interpolation qualifier", so in the case where there is no
363 * interpolation qualifier, it returns "no".
364 *
365 * This function should only be used on a shader input or output variable.
366 */
367 const char *interpolation_string(unsigned interpolation);
368
369
370 class ir_variable : public ir_instruction {
371 public:
372 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
373
374 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
375
376 virtual ir_variable *as_variable()
377 {
378 return this;
379 }
380
381 virtual void accept(ir_visitor *v)
382 {
383 v->visit(this);
384 }
385
386 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
387
388
389 /**
390 * Determine how this variable should be interpolated based on its
391 * interpolation qualifier (if present), whether it is gl_Color or
392 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
393 * state.
394 *
395 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
396 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
397 */
398 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
399
400 /**
401 * Determine whether or not a variable is part of a uniform block.
402 */
403 inline bool is_in_uniform_block() const
404 {
405 return this->mode == ir_var_uniform && this->interface_type != NULL;
406 }
407
408 /**
409 * Determine whether or not a variable is the declaration of an interface
410 * block
411 *
412 * For the first declaration below, there will be an \c ir_variable named
413 * "instance" whose type and whose instance_type will be the same
414 * \cglsl_type. For the second declaration, there will be an \c ir_variable
415 * named "f" whose type is float and whose instance_type is B2.
416 *
417 * "instance" is an interface instance variable, but "f" is not.
418 *
419 * uniform B1 {
420 * float f;
421 * } instance;
422 *
423 * uniform B2 {
424 * float f;
425 * };
426 */
427 inline bool is_interface_instance() const
428 {
429 const glsl_type *const t = this->type;
430
431 return (t == this->interface_type)
432 || (t->is_array() && t->fields.array == this->interface_type);
433 }
434
435 /**
436 * Set this->interface_type on a newly created variable.
437 */
438 void init_interface_type(const struct glsl_type *type)
439 {
440 assert(this->interface_type == NULL);
441 this->interface_type = type;
442 if (this->is_interface_instance()) {
443 this->max_ifc_array_access =
444 rzalloc_array(this, unsigned, type->length);
445 }
446 }
447
448 /**
449 * Change this->interface_type on a variable that previously had a
450 * different, but compatible, interface_type. This is used during linking
451 * to set the size of arrays in interface blocks.
452 */
453 void change_interface_type(const struct glsl_type *type)
454 {
455 if (this->max_ifc_array_access != NULL) {
456 /* max_ifc_array_access has already been allocated, so make sure the
457 * new interface has the same number of fields as the old one.
458 */
459 assert(this->interface_type->length == type->length);
460 }
461 this->interface_type = type;
462 }
463
464 /**
465 * Change this->interface_type on a variable that previously had a
466 * different, and incompatible, interface_type. This is used during
467 * compilation to handle redeclaration of the built-in gl_PerVertex
468 * interface block.
469 */
470 void reinit_interface_type(const struct glsl_type *type)
471 {
472 if (this->max_ifc_array_access != NULL) {
473 #ifndef _NDEBUG
474 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
475 * it defines have been accessed yet; so it's safe to throw away the
476 * old max_ifc_array_access pointer, since all of its values are
477 * zero.
478 */
479 for (unsigned i = 0; i < this->interface_type->length; i++)
480 assert(this->max_ifc_array_access[i] == 0);
481 #endif
482 ralloc_free(this->max_ifc_array_access);
483 this->max_ifc_array_access = NULL;
484 }
485 this->interface_type = NULL;
486 init_interface_type(type);
487 }
488
489 const glsl_type *get_interface_type() const
490 {
491 return this->interface_type;
492 }
493
494 /**
495 * Declared type of the variable
496 */
497 const struct glsl_type *type;
498
499 /**
500 * Declared name of the variable
501 */
502 const char *name;
503
504 /**
505 * Highest element accessed with a constant expression array index
506 *
507 * Not used for non-array variables.
508 */
509 unsigned max_array_access;
510
511 /**
512 * For variables which satisfy the is_interface_instance() predicate, this
513 * points to an array of integers such that if the ith member of the
514 * interface block is an array, max_ifc_array_access[i] is the maximum
515 * array element of that member that has been accessed. If the ith member
516 * of the interface block is not an array, max_ifc_array_access[i] is
517 * unused.
518 *
519 * For variables whose type is not an interface block, this pointer is
520 * NULL.
521 */
522 unsigned *max_ifc_array_access;
523
524 /**
525 * Is the variable read-only?
526 *
527 * This is set for variables declared as \c const, shader inputs,
528 * and uniforms.
529 */
530 unsigned read_only:1;
531 unsigned centroid:1;
532 unsigned sample:1;
533 unsigned invariant:1;
534
535 /**
536 * Has this variable been used for reading or writing?
537 *
538 * Several GLSL semantic checks require knowledge of whether or not a
539 * variable has been used. For example, it is an error to redeclare a
540 * variable as invariant after it has been used.
541 *
542 * This is only maintained in the ast_to_hir.cpp path, not in
543 * Mesa's fixed function or ARB program paths.
544 */
545 unsigned used:1;
546
547 /**
548 * Has this variable been statically assigned?
549 *
550 * This answers whether the variable was assigned in any path of
551 * the shader during ast_to_hir. This doesn't answer whether it is
552 * still written after dead code removal, nor is it maintained in
553 * non-ast_to_hir.cpp (GLSL parsing) paths.
554 */
555 unsigned assigned:1;
556
557 /**
558 * Enum indicating how the variable was declared. See
559 * ir_var_declaration_type.
560 *
561 * This is used to detect certain kinds of illegal variable redeclarations.
562 */
563 unsigned how_declared:2;
564
565 /**
566 * Storage class of the variable.
567 *
568 * \sa ir_variable_mode
569 */
570 unsigned mode:4;
571
572 /**
573 * Interpolation mode for shader inputs / outputs
574 *
575 * \sa ir_variable_interpolation
576 */
577 unsigned interpolation:2;
578
579 /**
580 * \name ARB_fragment_coord_conventions
581 * @{
582 */
583 unsigned origin_upper_left:1;
584 unsigned pixel_center_integer:1;
585 /*@}*/
586
587 /**
588 * Was the location explicitly set in the shader?
589 *
590 * If the location is explicitly set in the shader, it \b cannot be changed
591 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
592 * no effect).
593 */
594 unsigned explicit_location:1;
595 unsigned explicit_index:1;
596
597 /**
598 * Was an initial binding explicitly set in the shader?
599 *
600 * If so, constant_value contains an integer ir_constant representing the
601 * initial binding point.
602 */
603 unsigned explicit_binding:1;
604
605 /**
606 * Does this variable have an initializer?
607 *
608 * This is used by the linker to cross-validiate initializers of global
609 * variables.
610 */
611 unsigned has_initializer:1;
612
613 /**
614 * Is this variable a generic output or input that has not yet been matched
615 * up to a variable in another stage of the pipeline?
616 *
617 * This is used by the linker as scratch storage while assigning locations
618 * to generic inputs and outputs.
619 */
620 unsigned is_unmatched_generic_inout:1;
621
622 /**
623 * If non-zero, then this variable may be packed along with other variables
624 * into a single varying slot, so this offset should be applied when
625 * accessing components. For example, an offset of 1 means that the x
626 * component of this variable is actually stored in component y of the
627 * location specified by \c location.
628 */
629 unsigned location_frac:2;
630
631 /**
632 * Non-zero if this variable was created by lowering a named interface
633 * block which was not an array.
634 *
635 * Note that this variable and \c from_named_ifc_block_array will never
636 * both be non-zero.
637 */
638 unsigned from_named_ifc_block_nonarray:1;
639
640 /**
641 * Non-zero if this variable was created by lowering a named interface
642 * block which was an array.
643 *
644 * Note that this variable and \c from_named_ifc_block_nonarray will never
645 * both be non-zero.
646 */
647 unsigned from_named_ifc_block_array:1;
648
649 /**
650 * \brief Layout qualifier for gl_FragDepth.
651 *
652 * This is not equal to \c ir_depth_layout_none if and only if this
653 * variable is \c gl_FragDepth and a layout qualifier is specified.
654 */
655 ir_depth_layout depth_layout;
656
657 /**
658 * Storage location of the base of this variable
659 *
660 * The precise meaning of this field depends on the nature of the variable.
661 *
662 * - Vertex shader input: one of the values from \c gl_vert_attrib.
663 * - Vertex shader output: one of the values from \c gl_varying_slot.
664 * - Geometry shader input: one of the values from \c gl_varying_slot.
665 * - Geometry shader output: one of the values from \c gl_varying_slot.
666 * - Fragment shader input: one of the values from \c gl_varying_slot.
667 * - Fragment shader output: one of the values from \c gl_frag_result.
668 * - Uniforms: Per-stage uniform slot number for default uniform block.
669 * - Uniforms: Index within the uniform block definition for UBO members.
670 * - Other: This field is not currently used.
671 *
672 * If the variable is a uniform, shader input, or shader output, and the
673 * slot has not been assigned, the value will be -1.
674 */
675 int location;
676
677 /**
678 * output index for dual source blending.
679 */
680 int index;
681
682 /**
683 * Initial binding point for a sampler or UBO.
684 *
685 * For array types, this represents the binding point for the first element.
686 */
687 int binding;
688
689 /**
690 * Location an atomic counter is stored at.
691 */
692 struct {
693 unsigned buffer_index;
694 unsigned offset;
695 } atomic;
696
697 /**
698 * Built-in state that backs this uniform
699 *
700 * Once set at variable creation, \c state_slots must remain invariant.
701 * This is because, ideally, this array would be shared by all clones of
702 * this variable in the IR tree. In other words, we'd really like for it
703 * to be a fly-weight.
704 *
705 * If the variable is not a uniform, \c num_state_slots will be zero and
706 * \c state_slots will be \c NULL.
707 */
708 /*@{*/
709 unsigned num_state_slots; /**< Number of state slots used */
710 ir_state_slot *state_slots; /**< State descriptors. */
711 /*@}*/
712
713 /**
714 * Emit a warning if this variable is accessed.
715 */
716 const char *warn_extension;
717
718 /**
719 * Value assigned in the initializer of a variable declared "const"
720 */
721 ir_constant *constant_value;
722
723 /**
724 * Constant expression assigned in the initializer of the variable
725 *
726 * \warning
727 * This field and \c ::constant_value are distinct. Even if the two fields
728 * refer to constants with the same value, they must point to separate
729 * objects.
730 */
731 ir_constant *constant_initializer;
732
733 private:
734 /**
735 * For variables that are in an interface block or are an instance of an
736 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
737 *
738 * \sa ir_variable::location
739 */
740 const glsl_type *interface_type;
741 };
742
743 /**
744 * A function that returns whether a built-in function is available in the
745 * current shading language (based on version, ES or desktop, and extensions).
746 */
747 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
748
749 /*@{*/
750 /**
751 * The representation of a function instance; may be the full definition or
752 * simply a prototype.
753 */
754 class ir_function_signature : public ir_instruction {
755 /* An ir_function_signature will be part of the list of signatures in
756 * an ir_function.
757 */
758 public:
759 ir_function_signature(const glsl_type *return_type,
760 builtin_available_predicate builtin_avail = NULL);
761
762 virtual ir_function_signature *clone(void *mem_ctx,
763 struct hash_table *ht) const;
764 ir_function_signature *clone_prototype(void *mem_ctx,
765 struct hash_table *ht) const;
766
767 virtual void accept(ir_visitor *v)
768 {
769 v->visit(this);
770 }
771
772 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
773
774 /**
775 * Attempt to evaluate this function as a constant expression,
776 * given a list of the actual parameters and the variable context.
777 * Returns NULL for non-built-ins.
778 */
779 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
780
781 /**
782 * Get the name of the function for which this is a signature
783 */
784 const char *function_name() const;
785
786 /**
787 * Get a handle to the function for which this is a signature
788 *
789 * There is no setter function, this function returns a \c const pointer,
790 * and \c ir_function_signature::_function is private for a reason. The
791 * only way to make a connection between a function and function signature
792 * is via \c ir_function::add_signature. This helps ensure that certain
793 * invariants (i.e., a function signature is in the list of signatures for
794 * its \c _function) are met.
795 *
796 * \sa ir_function::add_signature
797 */
798 inline const class ir_function *function() const
799 {
800 return this->_function;
801 }
802
803 /**
804 * Check whether the qualifiers match between this signature's parameters
805 * and the supplied parameter list. If not, returns the name of the first
806 * parameter with mismatched qualifiers (for use in error messages).
807 */
808 const char *qualifiers_match(exec_list *params);
809
810 /**
811 * Replace the current parameter list with the given one. This is useful
812 * if the current information came from a prototype, and either has invalid
813 * or missing parameter names.
814 */
815 void replace_parameters(exec_list *new_params);
816
817 /**
818 * Function return type.
819 *
820 * \note This discards the optional precision qualifier.
821 */
822 const struct glsl_type *return_type;
823
824 /**
825 * List of ir_variable of function parameters.
826 *
827 * This represents the storage. The paramaters passed in a particular
828 * call will be in ir_call::actual_paramaters.
829 */
830 struct exec_list parameters;
831
832 /** Whether or not this function has a body (which may be empty). */
833 unsigned is_defined:1;
834
835 /** Whether or not this function signature is a built-in. */
836 bool is_builtin() const;
837
838 /**
839 * Whether or not this function is an intrinsic to be implemented
840 * by the driver.
841 */
842 bool is_intrinsic;
843
844 /** Whether or not a built-in is available for this shader. */
845 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
846
847 /** Body of instructions in the function. */
848 struct exec_list body;
849
850 private:
851 /**
852 * A function pointer to a predicate that answers whether a built-in
853 * function is available in the current shader. NULL if not a built-in.
854 */
855 builtin_available_predicate builtin_avail;
856
857 /** Function of which this signature is one overload. */
858 class ir_function *_function;
859
860 /** Function signature of which this one is a prototype clone */
861 const ir_function_signature *origin;
862
863 friend class ir_function;
864
865 /**
866 * Helper function to run a list of instructions for constant
867 * expression evaluation.
868 *
869 * The hash table represents the values of the visible variables.
870 * There are no scoping issues because the table is indexed on
871 * ir_variable pointers, not variable names.
872 *
873 * Returns false if the expression is not constant, true otherwise,
874 * and the value in *result if result is non-NULL.
875 */
876 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
877 struct hash_table *variable_context,
878 ir_constant **result);
879 };
880
881
882 /**
883 * Header for tracking multiple overloaded functions with the same name.
884 * Contains a list of ir_function_signatures representing each of the
885 * actual functions.
886 */
887 class ir_function : public ir_instruction {
888 public:
889 ir_function(const char *name);
890
891 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
892
893 virtual ir_function *as_function()
894 {
895 return this;
896 }
897
898 virtual void accept(ir_visitor *v)
899 {
900 v->visit(this);
901 }
902
903 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
904
905 void add_signature(ir_function_signature *sig)
906 {
907 sig->_function = this;
908 this->signatures.push_tail(sig);
909 }
910
911 /**
912 * Get an iterator for the set of function signatures
913 */
914 exec_list_iterator iterator()
915 {
916 return signatures.iterator();
917 }
918
919 /**
920 * Find a signature that matches a set of actual parameters, taking implicit
921 * conversions into account. Also flags whether the match was exact.
922 */
923 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
924 const exec_list *actual_param,
925 bool *match_is_exact);
926
927 /**
928 * Find a signature that matches a set of actual parameters, taking implicit
929 * conversions into account.
930 */
931 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
932 const exec_list *actual_param);
933
934 /**
935 * Find a signature that exactly matches a set of actual parameters without
936 * any implicit type conversions.
937 */
938 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
939 const exec_list *actual_ps);
940
941 /**
942 * Name of the function.
943 */
944 const char *name;
945
946 /** Whether or not this function has a signature that isn't a built-in. */
947 bool has_user_signature();
948
949 /**
950 * List of ir_function_signature for each overloaded function with this name.
951 */
952 struct exec_list signatures;
953 };
954
955 inline const char *ir_function_signature::function_name() const
956 {
957 return this->_function->name;
958 }
959 /*@}*/
960
961
962 /**
963 * IR instruction representing high-level if-statements
964 */
965 class ir_if : public ir_instruction {
966 public:
967 ir_if(ir_rvalue *condition)
968 : condition(condition)
969 {
970 ir_type = ir_type_if;
971 }
972
973 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
974
975 virtual ir_if *as_if()
976 {
977 return this;
978 }
979
980 virtual void accept(ir_visitor *v)
981 {
982 v->visit(this);
983 }
984
985 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
986
987 ir_rvalue *condition;
988 /** List of ir_instruction for the body of the then branch */
989 exec_list then_instructions;
990 /** List of ir_instruction for the body of the else branch */
991 exec_list else_instructions;
992 };
993
994
995 /**
996 * IR instruction representing a high-level loop structure.
997 */
998 class ir_loop : public ir_instruction {
999 public:
1000 ir_loop();
1001
1002 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1003
1004 virtual void accept(ir_visitor *v)
1005 {
1006 v->visit(this);
1007 }
1008
1009 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1010
1011 virtual ir_loop *as_loop()
1012 {
1013 return this;
1014 }
1015
1016 /**
1017 * Get an iterator for the instructions of the loop body
1018 */
1019 exec_list_iterator iterator()
1020 {
1021 return body_instructions.iterator();
1022 }
1023
1024 /** List of ir_instruction that make up the body of the loop. */
1025 exec_list body_instructions;
1026
1027 /**
1028 * \name Loop counter and controls
1029 *
1030 * Represents a loop like a FORTRAN \c do-loop.
1031 *
1032 * \note
1033 * If \c from and \c to are the same value, the loop will execute once.
1034 */
1035 /*@{*/
1036
1037 /**
1038 * Value which should be assigned to \c counter before the first iteration
1039 * of the loop. Must be non-null whenever \c counter is non-null, and vice
1040 * versa.
1041 */
1042 ir_rvalue *from;
1043
1044 /**
1045 * Value which \c counter should be compared to in order to determine
1046 * whether to exit the loop. Must be non-null whenever \c counter is
1047 * non-null, and vice versa.
1048 */
1049 ir_rvalue *to;
1050
1051 /**
1052 * Value which should be added to \c counter at the end of each loop
1053 * iteration. Must be non-null whenever \c counter is non-null, and vice
1054 * versa.
1055 */
1056 ir_rvalue *increment;
1057
1058 /**
1059 * Variable which counts loop iterations. This is a brand new ir_variable
1060 * declaration (not a reference to a previously declared ir_variable, as in
1061 * ir_dereference_variable).
1062 */
1063 ir_variable *counter;
1064
1065 /**
1066 * Comparison operation in the loop terminator.
1067 *
1068 * If any of the loop control fields are non-\c NULL, this field must be
1069 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
1070 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
1071 *
1072 * Ignored if \c counter is NULL.
1073 */
1074 int cmp;
1075 /*@}*/
1076 };
1077
1078
1079 class ir_assignment : public ir_instruction {
1080 public:
1081 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1082
1083 /**
1084 * Construct an assignment with an explicit write mask
1085 *
1086 * \note
1087 * Since a write mask is supplied, the LHS must already be a bare
1088 * \c ir_dereference. The cannot be any swizzles in the LHS.
1089 */
1090 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1091 unsigned write_mask);
1092
1093 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1094
1095 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1096
1097 virtual void accept(ir_visitor *v)
1098 {
1099 v->visit(this);
1100 }
1101
1102 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1103
1104 virtual ir_assignment * as_assignment()
1105 {
1106 return this;
1107 }
1108
1109 /**
1110 * Get a whole variable written by an assignment
1111 *
1112 * If the LHS of the assignment writes a whole variable, the variable is
1113 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1114 * assignment are:
1115 *
1116 * - Assigning to a scalar
1117 * - Assigning to all components of a vector
1118 * - Whole array (or matrix) assignment
1119 * - Whole structure assignment
1120 */
1121 ir_variable *whole_variable_written();
1122
1123 /**
1124 * Set the LHS of an assignment
1125 */
1126 void set_lhs(ir_rvalue *lhs);
1127
1128 /**
1129 * Left-hand side of the assignment.
1130 *
1131 * This should be treated as read only. If you need to set the LHS of an
1132 * assignment, use \c ir_assignment::set_lhs.
1133 */
1134 ir_dereference *lhs;
1135
1136 /**
1137 * Value being assigned
1138 */
1139 ir_rvalue *rhs;
1140
1141 /**
1142 * Optional condition for the assignment.
1143 */
1144 ir_rvalue *condition;
1145
1146
1147 /**
1148 * Component mask written
1149 *
1150 * For non-vector types in the LHS, this field will be zero. For vector
1151 * types, a bit will be set for each component that is written. Note that
1152 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1153 *
1154 * A partially-set write mask means that each enabled channel gets
1155 * the value from a consecutive channel of the rhs. For example,
1156 * to write just .xyw of gl_FrontColor with color:
1157 *
1158 * (assign (constant bool (1)) (xyw)
1159 * (var_ref gl_FragColor)
1160 * (swiz xyw (var_ref color)))
1161 */
1162 unsigned write_mask:4;
1163 };
1164
1165 /* Update ir_expression::get_num_operands() and operator_strs when
1166 * updating this list.
1167 */
1168 enum ir_expression_operation {
1169 ir_unop_bit_not,
1170 ir_unop_logic_not,
1171 ir_unop_neg,
1172 ir_unop_abs,
1173 ir_unop_sign,
1174 ir_unop_rcp,
1175 ir_unop_rsq,
1176 ir_unop_sqrt,
1177 ir_unop_exp, /**< Log base e on gentype */
1178 ir_unop_log, /**< Natural log on gentype */
1179 ir_unop_exp2,
1180 ir_unop_log2,
1181 ir_unop_f2i, /**< Float-to-integer conversion. */
1182 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1183 ir_unop_i2f, /**< Integer-to-float conversion. */
1184 ir_unop_f2b, /**< Float-to-boolean conversion */
1185 ir_unop_b2f, /**< Boolean-to-float conversion */
1186 ir_unop_i2b, /**< int-to-boolean conversion */
1187 ir_unop_b2i, /**< Boolean-to-int conversion */
1188 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1189 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1190 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1191 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1192 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1193 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1194 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1195 ir_unop_any,
1196
1197 /**
1198 * \name Unary floating-point rounding operations.
1199 */
1200 /*@{*/
1201 ir_unop_trunc,
1202 ir_unop_ceil,
1203 ir_unop_floor,
1204 ir_unop_fract,
1205 ir_unop_round_even,
1206 /*@}*/
1207
1208 /**
1209 * \name Trigonometric operations.
1210 */
1211 /*@{*/
1212 ir_unop_sin,
1213 ir_unop_cos,
1214 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
1215 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
1216 /*@}*/
1217
1218 /**
1219 * \name Partial derivatives.
1220 */
1221 /*@{*/
1222 ir_unop_dFdx,
1223 ir_unop_dFdy,
1224 /*@}*/
1225
1226 /**
1227 * \name Floating point pack and unpack operations.
1228 */
1229 /*@{*/
1230 ir_unop_pack_snorm_2x16,
1231 ir_unop_pack_snorm_4x8,
1232 ir_unop_pack_unorm_2x16,
1233 ir_unop_pack_unorm_4x8,
1234 ir_unop_pack_half_2x16,
1235 ir_unop_unpack_snorm_2x16,
1236 ir_unop_unpack_snorm_4x8,
1237 ir_unop_unpack_unorm_2x16,
1238 ir_unop_unpack_unorm_4x8,
1239 ir_unop_unpack_half_2x16,
1240 /*@}*/
1241
1242 /**
1243 * \name Lowered floating point unpacking operations.
1244 *
1245 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1246 */
1247 /*@{*/
1248 ir_unop_unpack_half_2x16_split_x,
1249 ir_unop_unpack_half_2x16_split_y,
1250 /*@}*/
1251
1252 /**
1253 * \name Bit operations, part of ARB_gpu_shader5.
1254 */
1255 /*@{*/
1256 ir_unop_bitfield_reverse,
1257 ir_unop_bit_count,
1258 ir_unop_find_msb,
1259 ir_unop_find_lsb,
1260 /*@}*/
1261
1262 ir_unop_noise,
1263
1264 /**
1265 * A sentinel marking the last of the unary operations.
1266 */
1267 ir_last_unop = ir_unop_noise,
1268
1269 ir_binop_add,
1270 ir_binop_sub,
1271 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1272 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1273 ir_binop_div,
1274
1275 /**
1276 * Returns the carry resulting from the addition of the two arguments.
1277 */
1278 /*@{*/
1279 ir_binop_carry,
1280 /*@}*/
1281
1282 /**
1283 * Returns the borrow resulting from the subtraction of the second argument
1284 * from the first argument.
1285 */
1286 /*@{*/
1287 ir_binop_borrow,
1288 /*@}*/
1289
1290 /**
1291 * Takes one of two combinations of arguments:
1292 *
1293 * - mod(vecN, vecN)
1294 * - mod(vecN, float)
1295 *
1296 * Does not take integer types.
1297 */
1298 ir_binop_mod,
1299
1300 /**
1301 * \name Binary comparison operators which return a boolean vector.
1302 * The type of both operands must be equal.
1303 */
1304 /*@{*/
1305 ir_binop_less,
1306 ir_binop_greater,
1307 ir_binop_lequal,
1308 ir_binop_gequal,
1309 ir_binop_equal,
1310 ir_binop_nequal,
1311 /**
1312 * Returns single boolean for whether all components of operands[0]
1313 * equal the components of operands[1].
1314 */
1315 ir_binop_all_equal,
1316 /**
1317 * Returns single boolean for whether any component of operands[0]
1318 * is not equal to the corresponding component of operands[1].
1319 */
1320 ir_binop_any_nequal,
1321 /*@}*/
1322
1323 /**
1324 * \name Bit-wise binary operations.
1325 */
1326 /*@{*/
1327 ir_binop_lshift,
1328 ir_binop_rshift,
1329 ir_binop_bit_and,
1330 ir_binop_bit_xor,
1331 ir_binop_bit_or,
1332 /*@}*/
1333
1334 ir_binop_logic_and,
1335 ir_binop_logic_xor,
1336 ir_binop_logic_or,
1337
1338 ir_binop_dot,
1339 ir_binop_min,
1340 ir_binop_max,
1341
1342 ir_binop_pow,
1343
1344 /**
1345 * \name Lowered floating point packing operations.
1346 *
1347 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1348 */
1349 /*@{*/
1350 ir_binop_pack_half_2x16_split,
1351 /*@}*/
1352
1353 /**
1354 * \name First half of a lowered bitfieldInsert() operation.
1355 *
1356 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1357 */
1358 /*@{*/
1359 ir_binop_bfm,
1360 /*@}*/
1361
1362 /**
1363 * Load a value the size of a given GLSL type from a uniform block.
1364 *
1365 * operand0 is the ir_constant uniform block index in the linked shader.
1366 * operand1 is a byte offset within the uniform block.
1367 */
1368 ir_binop_ubo_load,
1369
1370 /**
1371 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1372 */
1373 /*@{*/
1374 ir_binop_ldexp,
1375 /*@}*/
1376
1377 /**
1378 * Extract a scalar from a vector
1379 *
1380 * operand0 is the vector
1381 * operand1 is the index of the field to read from operand0
1382 */
1383 ir_binop_vector_extract,
1384
1385 /**
1386 * A sentinel marking the last of the binary operations.
1387 */
1388 ir_last_binop = ir_binop_vector_extract,
1389
1390 /**
1391 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1392 */
1393 /*@{*/
1394 ir_triop_fma,
1395 /*@}*/
1396
1397 ir_triop_lrp,
1398
1399 /**
1400 * \name Conditional Select
1401 *
1402 * A vector conditional select instruction (like ?:, but operating per-
1403 * component on vectors).
1404 *
1405 * \see lower_instructions_visitor::ldexp_to_arith
1406 */
1407 /*@{*/
1408 ir_triop_csel,
1409 /*@}*/
1410
1411 /**
1412 * \name Second half of a lowered bitfieldInsert() operation.
1413 *
1414 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1415 */
1416 /*@{*/
1417 ir_triop_bfi,
1418 /*@}*/
1419
1420 ir_triop_bitfield_extract,
1421
1422 /**
1423 * Generate a value with one field of a vector changed
1424 *
1425 * operand0 is the vector
1426 * operand1 is the value to write into the vector result
1427 * operand2 is the index in operand0 to be modified
1428 */
1429 ir_triop_vector_insert,
1430
1431 /**
1432 * A sentinel marking the last of the ternary operations.
1433 */
1434 ir_last_triop = ir_triop_vector_insert,
1435
1436 ir_quadop_bitfield_insert,
1437
1438 ir_quadop_vector,
1439
1440 /**
1441 * A sentinel marking the last of the ternary operations.
1442 */
1443 ir_last_quadop = ir_quadop_vector,
1444
1445 /**
1446 * A sentinel marking the last of all operations.
1447 */
1448 ir_last_opcode = ir_quadop_vector
1449 };
1450
1451 class ir_expression : public ir_rvalue {
1452 public:
1453 ir_expression(int op, const struct glsl_type *type,
1454 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1455 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1456
1457 /**
1458 * Constructor for unary operation expressions
1459 */
1460 ir_expression(int op, ir_rvalue *);
1461
1462 /**
1463 * Constructor for binary operation expressions
1464 */
1465 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1466
1467 /**
1468 * Constructor for ternary operation expressions
1469 */
1470 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1471
1472 virtual ir_expression *as_expression()
1473 {
1474 return this;
1475 }
1476
1477 virtual bool equals(ir_instruction *ir);
1478
1479 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1480
1481 /**
1482 * Attempt to constant-fold the expression
1483 *
1484 * The "variable_context" hash table links ir_variable * to ir_constant *
1485 * that represent the variables' values. \c NULL represents an empty
1486 * context.
1487 *
1488 * If the expression cannot be constant folded, this method will return
1489 * \c NULL.
1490 */
1491 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1492
1493 /**
1494 * Determine the number of operands used by an expression
1495 */
1496 static unsigned int get_num_operands(ir_expression_operation);
1497
1498 /**
1499 * Determine the number of operands used by an expression
1500 */
1501 unsigned int get_num_operands() const
1502 {
1503 return (this->operation == ir_quadop_vector)
1504 ? this->type->vector_elements : get_num_operands(operation);
1505 }
1506
1507 /**
1508 * Return a string representing this expression's operator.
1509 */
1510 const char *operator_string();
1511
1512 /**
1513 * Return a string representing this expression's operator.
1514 */
1515 static const char *operator_string(ir_expression_operation);
1516
1517
1518 /**
1519 * Do a reverse-lookup to translate the given string into an operator.
1520 */
1521 static ir_expression_operation get_operator(const char *);
1522
1523 virtual void accept(ir_visitor *v)
1524 {
1525 v->visit(this);
1526 }
1527
1528 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1529
1530 ir_expression_operation operation;
1531 ir_rvalue *operands[4];
1532 };
1533
1534
1535 /**
1536 * HIR instruction representing a high-level function call, containing a list
1537 * of parameters and returning a value in the supplied temporary.
1538 */
1539 class ir_call : public ir_instruction {
1540 public:
1541 ir_call(ir_function_signature *callee,
1542 ir_dereference_variable *return_deref,
1543 exec_list *actual_parameters)
1544 : return_deref(return_deref), callee(callee)
1545 {
1546 ir_type = ir_type_call;
1547 assert(callee->return_type != NULL);
1548 actual_parameters->move_nodes_to(& this->actual_parameters);
1549 this->use_builtin = callee->is_builtin();
1550 }
1551
1552 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1553
1554 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1555
1556 virtual ir_call *as_call()
1557 {
1558 return this;
1559 }
1560
1561 virtual void accept(ir_visitor *v)
1562 {
1563 v->visit(this);
1564 }
1565
1566 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1567
1568 /**
1569 * Get an iterator for the set of acutal parameters
1570 */
1571 exec_list_iterator iterator()
1572 {
1573 return actual_parameters.iterator();
1574 }
1575
1576 /**
1577 * Get the name of the function being called.
1578 */
1579 const char *callee_name() const
1580 {
1581 return callee->function_name();
1582 }
1583
1584 /**
1585 * Generates an inline version of the function before @ir,
1586 * storing the return value in return_deref.
1587 */
1588 void generate_inline(ir_instruction *ir);
1589
1590 /**
1591 * Storage for the function's return value.
1592 * This must be NULL if the return type is void.
1593 */
1594 ir_dereference_variable *return_deref;
1595
1596 /**
1597 * The specific function signature being called.
1598 */
1599 ir_function_signature *callee;
1600
1601 /* List of ir_rvalue of paramaters passed in this call. */
1602 exec_list actual_parameters;
1603
1604 /** Should this call only bind to a built-in function? */
1605 bool use_builtin;
1606 };
1607
1608
1609 /**
1610 * \name Jump-like IR instructions.
1611 *
1612 * These include \c break, \c continue, \c return, and \c discard.
1613 */
1614 /*@{*/
1615 class ir_jump : public ir_instruction {
1616 protected:
1617 ir_jump()
1618 {
1619 ir_type = ir_type_unset;
1620 }
1621
1622 public:
1623 virtual ir_jump *as_jump()
1624 {
1625 return this;
1626 }
1627 };
1628
1629 class ir_return : public ir_jump {
1630 public:
1631 ir_return()
1632 : value(NULL)
1633 {
1634 this->ir_type = ir_type_return;
1635 }
1636
1637 ir_return(ir_rvalue *value)
1638 : value(value)
1639 {
1640 this->ir_type = ir_type_return;
1641 }
1642
1643 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1644
1645 virtual ir_return *as_return()
1646 {
1647 return this;
1648 }
1649
1650 ir_rvalue *get_value() const
1651 {
1652 return value;
1653 }
1654
1655 virtual void accept(ir_visitor *v)
1656 {
1657 v->visit(this);
1658 }
1659
1660 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1661
1662 ir_rvalue *value;
1663 };
1664
1665
1666 /**
1667 * Jump instructions used inside loops
1668 *
1669 * These include \c break and \c continue. The \c break within a loop is
1670 * different from the \c break within a switch-statement.
1671 *
1672 * \sa ir_switch_jump
1673 */
1674 class ir_loop_jump : public ir_jump {
1675 public:
1676 enum jump_mode {
1677 jump_break,
1678 jump_continue
1679 };
1680
1681 ir_loop_jump(jump_mode mode)
1682 {
1683 this->ir_type = ir_type_loop_jump;
1684 this->mode = mode;
1685 }
1686
1687 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1688
1689 virtual void accept(ir_visitor *v)
1690 {
1691 v->visit(this);
1692 }
1693
1694 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1695
1696 bool is_break() const
1697 {
1698 return mode == jump_break;
1699 }
1700
1701 bool is_continue() const
1702 {
1703 return mode == jump_continue;
1704 }
1705
1706 /** Mode selector for the jump instruction. */
1707 enum jump_mode mode;
1708 };
1709
1710 /**
1711 * IR instruction representing discard statements.
1712 */
1713 class ir_discard : public ir_jump {
1714 public:
1715 ir_discard()
1716 {
1717 this->ir_type = ir_type_discard;
1718 this->condition = NULL;
1719 }
1720
1721 ir_discard(ir_rvalue *cond)
1722 {
1723 this->ir_type = ir_type_discard;
1724 this->condition = cond;
1725 }
1726
1727 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1728
1729 virtual void accept(ir_visitor *v)
1730 {
1731 v->visit(this);
1732 }
1733
1734 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1735
1736 virtual ir_discard *as_discard()
1737 {
1738 return this;
1739 }
1740
1741 ir_rvalue *condition;
1742 };
1743 /*@}*/
1744
1745
1746 /**
1747 * Texture sampling opcodes used in ir_texture
1748 */
1749 enum ir_texture_opcode {
1750 ir_tex, /**< Regular texture look-up */
1751 ir_txb, /**< Texture look-up with LOD bias */
1752 ir_txl, /**< Texture look-up with explicit LOD */
1753 ir_txd, /**< Texture look-up with partial derivatvies */
1754 ir_txf, /**< Texel fetch with explicit LOD */
1755 ir_txf_ms, /**< Multisample texture fetch */
1756 ir_txs, /**< Texture size */
1757 ir_lod, /**< Texture lod query */
1758 ir_tg4, /**< Texture gather */
1759 ir_query_levels /**< Texture levels query */
1760 };
1761
1762
1763 /**
1764 * IR instruction to sample a texture
1765 *
1766 * The specific form of the IR instruction depends on the \c mode value
1767 * selected from \c ir_texture_opcodes. In the printed IR, these will
1768 * appear as:
1769 *
1770 * Texel offset (0 or an expression)
1771 * | Projection divisor
1772 * | | Shadow comparitor
1773 * | | |
1774 * v v v
1775 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1776 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1777 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1778 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1779 * (txf <type> <sampler> <coordinate> 0 <lod>)
1780 * (txf_ms
1781 * <type> <sampler> <coordinate> <sample_index>)
1782 * (txs <type> <sampler> <lod>)
1783 * (lod <type> <sampler> <coordinate>)
1784 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1785 * (query_levels <type> <sampler>)
1786 */
1787 class ir_texture : public ir_rvalue {
1788 public:
1789 ir_texture(enum ir_texture_opcode op)
1790 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1791 shadow_comparitor(NULL), offset(NULL)
1792 {
1793 this->ir_type = ir_type_texture;
1794 memset(&lod_info, 0, sizeof(lod_info));
1795 }
1796
1797 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1798
1799 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1800
1801 virtual void accept(ir_visitor *v)
1802 {
1803 v->visit(this);
1804 }
1805
1806 virtual ir_texture *as_texture()
1807 {
1808 return this;
1809 }
1810
1811 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1812
1813 virtual bool equals(ir_instruction *ir);
1814
1815 /**
1816 * Return a string representing the ir_texture_opcode.
1817 */
1818 const char *opcode_string();
1819
1820 /** Set the sampler and type. */
1821 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1822
1823 /**
1824 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1825 */
1826 static ir_texture_opcode get_opcode(const char *);
1827
1828 enum ir_texture_opcode op;
1829
1830 /** Sampler to use for the texture access. */
1831 ir_dereference *sampler;
1832
1833 /** Texture coordinate to sample */
1834 ir_rvalue *coordinate;
1835
1836 /**
1837 * Value used for projective divide.
1838 *
1839 * If there is no projective divide (the common case), this will be
1840 * \c NULL. Optimization passes should check for this to point to a constant
1841 * of 1.0 and replace that with \c NULL.
1842 */
1843 ir_rvalue *projector;
1844
1845 /**
1846 * Coordinate used for comparison on shadow look-ups.
1847 *
1848 * If there is no shadow comparison, this will be \c NULL. For the
1849 * \c ir_txf opcode, this *must* be \c NULL.
1850 */
1851 ir_rvalue *shadow_comparitor;
1852
1853 /** Texel offset. */
1854 ir_rvalue *offset;
1855
1856 union {
1857 ir_rvalue *lod; /**< Floating point LOD */
1858 ir_rvalue *bias; /**< Floating point LOD bias */
1859 ir_rvalue *sample_index; /**< MSAA sample index */
1860 ir_rvalue *component; /**< Gather component selector */
1861 struct {
1862 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1863 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1864 } grad;
1865 } lod_info;
1866 };
1867
1868
1869 struct ir_swizzle_mask {
1870 unsigned x:2;
1871 unsigned y:2;
1872 unsigned z:2;
1873 unsigned w:2;
1874
1875 /**
1876 * Number of components in the swizzle.
1877 */
1878 unsigned num_components:3;
1879
1880 /**
1881 * Does the swizzle contain duplicate components?
1882 *
1883 * L-value swizzles cannot contain duplicate components.
1884 */
1885 unsigned has_duplicates:1;
1886 };
1887
1888
1889 class ir_swizzle : public ir_rvalue {
1890 public:
1891 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1892 unsigned count);
1893
1894 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1895
1896 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1897
1898 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1899
1900 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1901
1902 virtual ir_swizzle *as_swizzle()
1903 {
1904 return this;
1905 }
1906
1907 /**
1908 * Construct an ir_swizzle from the textual representation. Can fail.
1909 */
1910 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1911
1912 virtual void accept(ir_visitor *v)
1913 {
1914 v->visit(this);
1915 }
1916
1917 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1918
1919 virtual bool equals(ir_instruction *ir);
1920
1921 bool is_lvalue() const
1922 {
1923 return val->is_lvalue() && !mask.has_duplicates;
1924 }
1925
1926 /**
1927 * Get the variable that is ultimately referenced by an r-value
1928 */
1929 virtual ir_variable *variable_referenced() const;
1930
1931 ir_rvalue *val;
1932 ir_swizzle_mask mask;
1933
1934 private:
1935 /**
1936 * Initialize the mask component of a swizzle
1937 *
1938 * This is used by the \c ir_swizzle constructors.
1939 */
1940 void init_mask(const unsigned *components, unsigned count);
1941 };
1942
1943
1944 class ir_dereference : public ir_rvalue {
1945 public:
1946 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1947
1948 virtual ir_dereference *as_dereference()
1949 {
1950 return this;
1951 }
1952
1953 bool is_lvalue() const;
1954
1955 /**
1956 * Get the variable that is ultimately referenced by an r-value
1957 */
1958 virtual ir_variable *variable_referenced() const = 0;
1959
1960 /**
1961 * Get the constant that is ultimately referenced by an r-value,
1962 * in a constant expression evaluation context.
1963 *
1964 * The offset is used when the reference is to a specific column of
1965 * a matrix.
1966 */
1967 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1968 };
1969
1970
1971 class ir_dereference_variable : public ir_dereference {
1972 public:
1973 ir_dereference_variable(ir_variable *var);
1974
1975 virtual ir_dereference_variable *clone(void *mem_ctx,
1976 struct hash_table *) const;
1977
1978 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1979
1980 virtual ir_dereference_variable *as_dereference_variable()
1981 {
1982 return this;
1983 }
1984
1985 virtual bool equals(ir_instruction *ir);
1986
1987 /**
1988 * Get the variable that is ultimately referenced by an r-value
1989 */
1990 virtual ir_variable *variable_referenced() const
1991 {
1992 return this->var;
1993 }
1994
1995 /**
1996 * Get the constant that is ultimately referenced by an r-value,
1997 * in a constant expression evaluation context.
1998 *
1999 * The offset is used when the reference is to a specific column of
2000 * a matrix.
2001 */
2002 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2003
2004 virtual ir_variable *whole_variable_referenced()
2005 {
2006 /* ir_dereference_variable objects always dereference the entire
2007 * variable. However, if this dereference is dereferenced by anything
2008 * else, the complete deferefernce chain is not a whole-variable
2009 * dereference. This method should only be called on the top most
2010 * ir_rvalue in a dereference chain.
2011 */
2012 return this->var;
2013 }
2014
2015 virtual void accept(ir_visitor *v)
2016 {
2017 v->visit(this);
2018 }
2019
2020 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2021
2022 /**
2023 * Object being dereferenced.
2024 */
2025 ir_variable *var;
2026 };
2027
2028
2029 class ir_dereference_array : public ir_dereference {
2030 public:
2031 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2032
2033 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2034
2035 virtual ir_dereference_array *clone(void *mem_ctx,
2036 struct hash_table *) const;
2037
2038 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2039
2040 virtual ir_dereference_array *as_dereference_array()
2041 {
2042 return this;
2043 }
2044
2045 virtual bool equals(ir_instruction *ir);
2046
2047 /**
2048 * Get the variable that is ultimately referenced by an r-value
2049 */
2050 virtual ir_variable *variable_referenced() const
2051 {
2052 return this->array->variable_referenced();
2053 }
2054
2055 /**
2056 * Get the constant that is ultimately referenced by an r-value,
2057 * in a constant expression evaluation context.
2058 *
2059 * The offset is used when the reference is to a specific column of
2060 * a matrix.
2061 */
2062 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2063
2064 virtual void accept(ir_visitor *v)
2065 {
2066 v->visit(this);
2067 }
2068
2069 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2070
2071 ir_rvalue *array;
2072 ir_rvalue *array_index;
2073
2074 private:
2075 void set_array(ir_rvalue *value);
2076 };
2077
2078
2079 class ir_dereference_record : public ir_dereference {
2080 public:
2081 ir_dereference_record(ir_rvalue *value, const char *field);
2082
2083 ir_dereference_record(ir_variable *var, const char *field);
2084
2085 virtual ir_dereference_record *clone(void *mem_ctx,
2086 struct hash_table *) const;
2087
2088 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2089
2090 virtual ir_dereference_record *as_dereference_record()
2091 {
2092 return this;
2093 }
2094
2095 /**
2096 * Get the variable that is ultimately referenced by an r-value
2097 */
2098 virtual ir_variable *variable_referenced() const
2099 {
2100 return this->record->variable_referenced();
2101 }
2102
2103 /**
2104 * Get the constant that is ultimately referenced by an r-value,
2105 * in a constant expression evaluation context.
2106 *
2107 * The offset is used when the reference is to a specific column of
2108 * a matrix.
2109 */
2110 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
2111
2112 virtual void accept(ir_visitor *v)
2113 {
2114 v->visit(this);
2115 }
2116
2117 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2118
2119 ir_rvalue *record;
2120 const char *field;
2121 };
2122
2123
2124 /**
2125 * Data stored in an ir_constant
2126 */
2127 union ir_constant_data {
2128 unsigned u[16];
2129 int i[16];
2130 float f[16];
2131 bool b[16];
2132 };
2133
2134
2135 class ir_constant : public ir_rvalue {
2136 public:
2137 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2138 ir_constant(bool b, unsigned vector_elements=1);
2139 ir_constant(unsigned int u, unsigned vector_elements=1);
2140 ir_constant(int i, unsigned vector_elements=1);
2141 ir_constant(float f, unsigned vector_elements=1);
2142
2143 /**
2144 * Construct an ir_constant from a list of ir_constant values
2145 */
2146 ir_constant(const struct glsl_type *type, exec_list *values);
2147
2148 /**
2149 * Construct an ir_constant from a scalar component of another ir_constant
2150 *
2151 * The new \c ir_constant inherits the type of the component from the
2152 * source constant.
2153 *
2154 * \note
2155 * In the case of a matrix constant, the new constant is a scalar, \b not
2156 * a vector.
2157 */
2158 ir_constant(const ir_constant *c, unsigned i);
2159
2160 /**
2161 * Return a new ir_constant of the specified type containing all zeros.
2162 */
2163 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2164
2165 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2166
2167 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2168
2169 virtual ir_constant *as_constant()
2170 {
2171 return this;
2172 }
2173
2174 virtual void accept(ir_visitor *v)
2175 {
2176 v->visit(this);
2177 }
2178
2179 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2180
2181 virtual bool equals(ir_instruction *ir);
2182
2183 /**
2184 * Get a particular component of a constant as a specific type
2185 *
2186 * This is useful, for example, to get a value from an integer constant
2187 * as a float or bool. This appears frequently when constructors are
2188 * called with all constant parameters.
2189 */
2190 /*@{*/
2191 bool get_bool_component(unsigned i) const;
2192 float get_float_component(unsigned i) const;
2193 int get_int_component(unsigned i) const;
2194 unsigned get_uint_component(unsigned i) const;
2195 /*@}*/
2196
2197 ir_constant *get_array_element(unsigned i) const;
2198
2199 ir_constant *get_record_field(const char *name);
2200
2201 /**
2202 * Copy the values on another constant at a given offset.
2203 *
2204 * The offset is ignored for array or struct copies, it's only for
2205 * scalars or vectors into vectors or matrices.
2206 *
2207 * With identical types on both sides and zero offset it's clone()
2208 * without creating a new object.
2209 */
2210
2211 void copy_offset(ir_constant *src, int offset);
2212
2213 /**
2214 * Copy the values on another constant at a given offset and
2215 * following an assign-like mask.
2216 *
2217 * The mask is ignored for scalars.
2218 *
2219 * Note that this function only handles what assign can handle,
2220 * i.e. at most a vector as source and a column of a matrix as
2221 * destination.
2222 */
2223
2224 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2225
2226 /**
2227 * Determine whether a constant has the same value as another constant
2228 *
2229 * \sa ir_constant::is_zero, ir_constant::is_one,
2230 * ir_constant::is_negative_one, ir_constant::is_basis
2231 */
2232 bool has_value(const ir_constant *) const;
2233
2234 virtual bool is_zero() const;
2235 virtual bool is_one() const;
2236 virtual bool is_negative_one() const;
2237 virtual bool is_basis() const;
2238
2239 /**
2240 * Value of the constant.
2241 *
2242 * The field used to back the values supplied by the constant is determined
2243 * by the type associated with the \c ir_instruction. Constants may be
2244 * scalars, vectors, or matrices.
2245 */
2246 union ir_constant_data value;
2247
2248 /* Array elements */
2249 ir_constant **array_elements;
2250
2251 /* Structure fields */
2252 exec_list components;
2253
2254 private:
2255 /**
2256 * Parameterless constructor only used by the clone method
2257 */
2258 ir_constant(void);
2259 };
2260
2261 /*@}*/
2262
2263 /**
2264 * IR instruction to emit a vertex in a geometry shader.
2265 */
2266 class ir_emit_vertex : public ir_instruction {
2267 public:
2268 ir_emit_vertex()
2269 {
2270 ir_type = ir_type_emit_vertex;
2271 }
2272
2273 virtual void accept(ir_visitor *v)
2274 {
2275 v->visit(this);
2276 }
2277
2278 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *) const
2279 {
2280 return new(mem_ctx) ir_emit_vertex();
2281 }
2282
2283 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2284 };
2285
2286 /**
2287 * IR instruction to complete the current primitive and start a new one in a
2288 * geometry shader.
2289 */
2290 class ir_end_primitive : public ir_instruction {
2291 public:
2292 ir_end_primitive()
2293 {
2294 ir_type = ir_type_end_primitive;
2295 }
2296
2297 virtual void accept(ir_visitor *v)
2298 {
2299 v->visit(this);
2300 }
2301
2302 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *) const
2303 {
2304 return new(mem_ctx) ir_end_primitive();
2305 }
2306
2307 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2308 };
2309
2310 /**
2311 * Apply a visitor to each IR node in a list
2312 */
2313 void
2314 visit_exec_list(exec_list *list, ir_visitor *visitor);
2315
2316 /**
2317 * Validate invariants on each IR node in a list
2318 */
2319 void validate_ir_tree(exec_list *instructions);
2320
2321 struct _mesa_glsl_parse_state;
2322 struct gl_shader_program;
2323
2324 /**
2325 * Detect whether an unlinked shader contains static recursion
2326 *
2327 * If the list of instructions is determined to contain static recursion,
2328 * \c _mesa_glsl_error will be called to emit error messages for each function
2329 * that is in the recursion cycle.
2330 */
2331 void
2332 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2333 exec_list *instructions);
2334
2335 /**
2336 * Detect whether a linked shader contains static recursion
2337 *
2338 * If the list of instructions is determined to contain static recursion,
2339 * \c link_error_printf will be called to emit error messages for each function
2340 * that is in the recursion cycle. In addition,
2341 * \c gl_shader_program::LinkStatus will be set to false.
2342 */
2343 void
2344 detect_recursion_linked(struct gl_shader_program *prog,
2345 exec_list *instructions);
2346
2347 /**
2348 * Make a clone of each IR instruction in a list
2349 *
2350 * \param in List of IR instructions that are to be cloned
2351 * \param out List to hold the cloned instructions
2352 */
2353 void
2354 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2355
2356 extern void
2357 _mesa_glsl_initialize_variables(exec_list *instructions,
2358 struct _mesa_glsl_parse_state *state);
2359
2360 extern void
2361 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2362
2363 extern void
2364 _mesa_glsl_initialize_builtin_functions();
2365
2366 extern ir_function_signature *
2367 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2368 const char *name, exec_list *actual_parameters);
2369
2370 extern gl_shader *
2371 _mesa_glsl_get_builtin_function_shader(void);
2372
2373 extern void
2374 _mesa_glsl_release_functions(void);
2375
2376 extern void
2377 _mesa_glsl_release_builtin_functions(void);
2378
2379 extern void
2380 reparent_ir(exec_list *list, void *mem_ctx);
2381
2382 struct glsl_symbol_table;
2383
2384 extern void
2385 import_prototypes(const exec_list *source, exec_list *dest,
2386 struct glsl_symbol_table *symbols, void *mem_ctx);
2387
2388 extern bool
2389 ir_has_call(ir_instruction *ir);
2390
2391 extern void
2392 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2393 GLenum shader_type);
2394
2395 extern char *
2396 prototype_string(const glsl_type *return_type, const char *name,
2397 exec_list *parameters);
2398
2399 const char *
2400 mode_string(const ir_variable *var);
2401
2402 extern "C" {
2403 #endif /* __cplusplus */
2404
2405 extern void _mesa_print_ir(struct exec_list *instructions,
2406 struct _mesa_glsl_parse_state *state);
2407
2408 #ifdef __cplusplus
2409 } /* extern "C" */
2410 #endif
2411
2412 unsigned
2413 vertices_per_prim(GLenum prim);
2414
2415 #endif /* IR_H */