glsl: Add a helper constructor for expressions that works out result type.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 enum ir_variable_interpolation {
232 ir_var_smooth = 0,
233 ir_var_flat,
234 ir_var_noperspective
235 };
236
237
238 class ir_variable : public ir_instruction {
239 public:
240 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
241
242 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
243
244 virtual ir_variable *as_variable()
245 {
246 return this;
247 }
248
249 virtual void accept(ir_visitor *v)
250 {
251 v->visit(this);
252 }
253
254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
255
256
257 /**
258 * Get the string value for the interpolation qualifier
259 *
260 * \return The string that would be used in a shader to specify \c
261 * mode will be returned.
262 *
263 * This function should only be used on a shader input or output variable.
264 */
265 const char *interpolation_string() const;
266
267 /**
268 * Calculate the number of slots required to hold this variable
269 *
270 * This is used to determine how many uniform or varying locations a variable
271 * occupies. The count is in units of floating point components.
272 */
273 unsigned component_slots() const;
274
275 /**
276 * Delcared name of the variable
277 */
278 const char *name;
279
280 /**
281 * Highest element accessed with a constant expression array index
282 *
283 * Not used for non-array variables.
284 */
285 unsigned max_array_access;
286
287 /**
288 * Is the variable read-only?
289 *
290 * This is set for variables declared as \c const, shader inputs,
291 * and uniforms.
292 */
293 unsigned read_only:1;
294 unsigned centroid:1;
295 unsigned invariant:1;
296
297 /**
298 * Storage class of the variable.
299 *
300 * \sa ir_variable_mode
301 */
302 unsigned mode:3;
303
304 /**
305 * Interpolation mode for shader inputs / outputs
306 *
307 * \sa ir_variable_interpolation
308 */
309 unsigned interpolation:2;
310
311 /**
312 * Flag that the whole array is assignable
313 *
314 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
315 * equality). This flag enables this behavior.
316 */
317 unsigned array_lvalue:1;
318
319 /**
320 * \name ARB_fragment_coord_conventions
321 * @{
322 */
323 unsigned origin_upper_left:1;
324 unsigned pixel_center_integer:1;
325 /*@}*/
326
327 /**
328 * Was the location explicitly set in the shader?
329 *
330 * If the location is explicitly set in the shader, it \b cannot be changed
331 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
332 * no effect).
333 */
334 unsigned explicit_location:1;
335
336 /**
337 * Storage location of the base of this variable
338 *
339 * The precise meaning of this field depends on the nature of the variable.
340 *
341 * - Vertex shader input: one of the values from \c gl_vert_attrib.
342 * - Vertex shader output: one of the values from \c gl_vert_result.
343 * - Fragment shader input: one of the values from \c gl_frag_attrib.
344 * - Fragment shader output: one of the values from \c gl_frag_result.
345 * - Uniforms: Per-stage uniform slot number.
346 * - Other: This field is not currently used.
347 *
348 * If the variable is a uniform, shader input, or shader output, and the
349 * slot has not been assigned, the value will be -1.
350 */
351 int location;
352
353 /**
354 * Emit a warning if this variable is accessed.
355 */
356 const char *warn_extension;
357
358 /**
359 * Value assigned in the initializer of a variable declared "const"
360 */
361 ir_constant *constant_value;
362 };
363
364
365 /*@{*/
366 /**
367 * The representation of a function instance; may be the full definition or
368 * simply a prototype.
369 */
370 class ir_function_signature : public ir_instruction {
371 /* An ir_function_signature will be part of the list of signatures in
372 * an ir_function.
373 */
374 public:
375 ir_function_signature(const glsl_type *return_type);
376
377 virtual ir_function_signature *clone(void *mem_ctx,
378 struct hash_table *ht) const;
379
380 virtual void accept(ir_visitor *v)
381 {
382 v->visit(this);
383 }
384
385 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
386
387 /**
388 * Get the name of the function for which this is a signature
389 */
390 const char *function_name() const;
391
392 /**
393 * Get a handle to the function for which this is a signature
394 *
395 * There is no setter function, this function returns a \c const pointer,
396 * and \c ir_function_signature::_function is private for a reason. The
397 * only way to make a connection between a function and function signature
398 * is via \c ir_function::add_signature. This helps ensure that certain
399 * invariants (i.e., a function signature is in the list of signatures for
400 * its \c _function) are met.
401 *
402 * \sa ir_function::add_signature
403 */
404 inline const class ir_function *function() const
405 {
406 return this->_function;
407 }
408
409 /**
410 * Check whether the qualifiers match between this signature's parameters
411 * and the supplied parameter list. If not, returns the name of the first
412 * parameter with mismatched qualifiers (for use in error messages).
413 */
414 const char *qualifiers_match(exec_list *params);
415
416 /**
417 * Replace the current parameter list with the given one. This is useful
418 * if the current information came from a prototype, and either has invalid
419 * or missing parameter names.
420 */
421 void replace_parameters(exec_list *new_params);
422
423 /**
424 * Function return type.
425 *
426 * \note This discards the optional precision qualifier.
427 */
428 const struct glsl_type *return_type;
429
430 /**
431 * List of ir_variable of function parameters.
432 *
433 * This represents the storage. The paramaters passed in a particular
434 * call will be in ir_call::actual_paramaters.
435 */
436 struct exec_list parameters;
437
438 /** Whether or not this function has a body (which may be empty). */
439 unsigned is_defined:1;
440
441 /** Whether or not this function signature is a built-in. */
442 unsigned is_builtin:1;
443
444 /** Body of instructions in the function. */
445 struct exec_list body;
446
447 private:
448 /** Function of which this signature is one overload. */
449 class ir_function *_function;
450
451 friend class ir_function;
452 };
453
454
455 /**
456 * Header for tracking multiple overloaded functions with the same name.
457 * Contains a list of ir_function_signatures representing each of the
458 * actual functions.
459 */
460 class ir_function : public ir_instruction {
461 public:
462 ir_function(const char *name);
463
464 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
465
466 virtual ir_function *as_function()
467 {
468 return this;
469 }
470
471 virtual void accept(ir_visitor *v)
472 {
473 v->visit(this);
474 }
475
476 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478 void add_signature(ir_function_signature *sig)
479 {
480 sig->_function = this;
481 this->signatures.push_tail(sig);
482 }
483
484 /**
485 * Get an iterator for the set of function signatures
486 */
487 exec_list_iterator iterator()
488 {
489 return signatures.iterator();
490 }
491
492 /**
493 * Find a signature that matches a set of actual parameters, taking implicit
494 * conversions into account.
495 */
496 ir_function_signature *matching_signature(const exec_list *actual_param);
497
498 /**
499 * Find a signature that exactly matches a set of actual parameters without
500 * any implicit type conversions.
501 */
502 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
503
504 /**
505 * Name of the function.
506 */
507 const char *name;
508
509 /** Whether or not this function has a signature that isn't a built-in. */
510 bool has_user_signature();
511
512 /**
513 * List of ir_function_signature for each overloaded function with this name.
514 */
515 struct exec_list signatures;
516 };
517
518 inline const char *ir_function_signature::function_name() const
519 {
520 return this->_function->name;
521 }
522 /*@}*/
523
524
525 /**
526 * IR instruction representing high-level if-statements
527 */
528 class ir_if : public ir_instruction {
529 public:
530 ir_if(ir_rvalue *condition)
531 : condition(condition)
532 {
533 ir_type = ir_type_if;
534 }
535
536 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
537
538 virtual ir_if *as_if()
539 {
540 return this;
541 }
542
543 virtual void accept(ir_visitor *v)
544 {
545 v->visit(this);
546 }
547
548 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
549
550 ir_rvalue *condition;
551 /** List of ir_instruction for the body of the then branch */
552 exec_list then_instructions;
553 /** List of ir_instruction for the body of the else branch */
554 exec_list else_instructions;
555 };
556
557
558 /**
559 * IR instruction representing a high-level loop structure.
560 */
561 class ir_loop : public ir_instruction {
562 public:
563 ir_loop();
564
565 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
566
567 virtual void accept(ir_visitor *v)
568 {
569 v->visit(this);
570 }
571
572 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
573
574 virtual ir_loop *as_loop()
575 {
576 return this;
577 }
578
579 /**
580 * Get an iterator for the instructions of the loop body
581 */
582 exec_list_iterator iterator()
583 {
584 return body_instructions.iterator();
585 }
586
587 /** List of ir_instruction that make up the body of the loop. */
588 exec_list body_instructions;
589
590 /**
591 * \name Loop counter and controls
592 *
593 * Represents a loop like a FORTRAN \c do-loop.
594 *
595 * \note
596 * If \c from and \c to are the same value, the loop will execute once.
597 */
598 /*@{*/
599 ir_rvalue *from; /** Value of the loop counter on the first
600 * iteration of the loop.
601 */
602 ir_rvalue *to; /** Value of the loop counter on the last
603 * iteration of the loop.
604 */
605 ir_rvalue *increment;
606 ir_variable *counter;
607
608 /**
609 * Comparison operation in the loop terminator.
610 *
611 * If any of the loop control fields are non-\c NULL, this field must be
612 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
613 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
614 */
615 int cmp;
616 /*@}*/
617 };
618
619
620 class ir_assignment : public ir_instruction {
621 public:
622 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
623
624 /**
625 * Construct an assignment with an explicit write mask
626 *
627 * \note
628 * Since a write mask is supplied, the LHS must already be a bare
629 * \c ir_dereference. The cannot be any swizzles in the LHS.
630 */
631 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
632 unsigned write_mask);
633
634 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
635
636 virtual ir_constant *constant_expression_value();
637
638 virtual void accept(ir_visitor *v)
639 {
640 v->visit(this);
641 }
642
643 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
644
645 virtual ir_assignment * as_assignment()
646 {
647 return this;
648 }
649
650 /**
651 * Get a whole variable written by an assignment
652 *
653 * If the LHS of the assignment writes a whole variable, the variable is
654 * returned. Otherwise \c NULL is returned. Examples of whole-variable
655 * assignment are:
656 *
657 * - Assigning to a scalar
658 * - Assigning to all components of a vector
659 * - Whole array (or matrix) assignment
660 * - Whole structure assignment
661 */
662 ir_variable *whole_variable_written();
663
664 /**
665 * Set the LHS of an assignment
666 */
667 void set_lhs(ir_rvalue *lhs);
668
669 /**
670 * Left-hand side of the assignment.
671 *
672 * This should be treated as read only. If you need to set the LHS of an
673 * assignment, use \c ir_assignment::set_lhs.
674 */
675 ir_dereference *lhs;
676
677 /**
678 * Value being assigned
679 */
680 ir_rvalue *rhs;
681
682 /**
683 * Optional condition for the assignment.
684 */
685 ir_rvalue *condition;
686
687
688 /**
689 * Component mask written
690 *
691 * For non-vector types in the LHS, this field will be zero. For vector
692 * types, a bit will be set for each component that is written. Note that
693 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
694 *
695 * A partially-set write mask means that each enabled channel gets
696 * the value from a consecutive channel of the rhs. For example,
697 * to write just .xyw of gl_FrontColor with color:
698 *
699 * (assign (constant bool (1)) (xyw)
700 * (var_ref gl_FragColor)
701 * (swiz xyw (var_ref color)))
702 */
703 unsigned write_mask:4;
704 };
705
706 /* Update ir_expression::num_operands() and operator_strs when
707 * updating this list.
708 */
709 enum ir_expression_operation {
710 ir_unop_bit_not,
711 ir_unop_logic_not,
712 ir_unop_neg,
713 ir_unop_abs,
714 ir_unop_sign,
715 ir_unop_rcp,
716 ir_unop_rsq,
717 ir_unop_sqrt,
718 ir_unop_exp, /**< Log base e on gentype */
719 ir_unop_log, /**< Natural log on gentype */
720 ir_unop_exp2,
721 ir_unop_log2,
722 ir_unop_f2i, /**< Float-to-integer conversion. */
723 ir_unop_i2f, /**< Integer-to-float conversion. */
724 ir_unop_f2b, /**< Float-to-boolean conversion */
725 ir_unop_b2f, /**< Boolean-to-float conversion */
726 ir_unop_i2b, /**< int-to-boolean conversion */
727 ir_unop_b2i, /**< Boolean-to-int conversion */
728 ir_unop_u2f, /**< Unsigned-to-float conversion. */
729 ir_unop_any,
730
731 /**
732 * \name Unary floating-point rounding operations.
733 */
734 /*@{*/
735 ir_unop_trunc,
736 ir_unop_ceil,
737 ir_unop_floor,
738 ir_unop_fract,
739 ir_unop_round_even,
740 /*@}*/
741
742 /**
743 * \name Trigonometric operations.
744 */
745 /*@{*/
746 ir_unop_sin,
747 ir_unop_cos,
748 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
749 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
750 /*@}*/
751
752 /**
753 * \name Partial derivatives.
754 */
755 /*@{*/
756 ir_unop_dFdx,
757 ir_unop_dFdy,
758 /*@}*/
759
760 ir_unop_noise,
761
762 /**
763 * A sentinel marking the last of the unary operations.
764 */
765 ir_last_unop = ir_unop_noise,
766
767 ir_binop_add,
768 ir_binop_sub,
769 ir_binop_mul,
770 ir_binop_div,
771
772 /**
773 * Takes one of two combinations of arguments:
774 *
775 * - mod(vecN, vecN)
776 * - mod(vecN, float)
777 *
778 * Does not take integer types.
779 */
780 ir_binop_mod,
781
782 /**
783 * \name Binary comparison operators which return a boolean vector.
784 * The type of both operands must be equal.
785 */
786 /*@{*/
787 ir_binop_less,
788 ir_binop_greater,
789 ir_binop_lequal,
790 ir_binop_gequal,
791 ir_binop_equal,
792 ir_binop_nequal,
793 /**
794 * Returns single boolean for whether all components of operands[0]
795 * equal the components of operands[1].
796 */
797 ir_binop_all_equal,
798 /**
799 * Returns single boolean for whether any component of operands[0]
800 * is not equal to the corresponding component of operands[1].
801 */
802 ir_binop_any_nequal,
803 /*@}*/
804
805 /**
806 * \name Bit-wise binary operations.
807 */
808 /*@{*/
809 ir_binop_lshift,
810 ir_binop_rshift,
811 ir_binop_bit_and,
812 ir_binop_bit_xor,
813 ir_binop_bit_or,
814 /*@}*/
815
816 ir_binop_logic_and,
817 ir_binop_logic_xor,
818 ir_binop_logic_or,
819
820 ir_binop_dot,
821 ir_binop_min,
822 ir_binop_max,
823
824 ir_binop_pow,
825
826 /**
827 * A sentinel marking the last of the binary operations.
828 */
829 ir_last_binop = ir_binop_pow,
830
831 ir_quadop_vector,
832
833 /**
834 * A sentinel marking the last of all operations.
835 */
836 ir_last_opcode = ir_last_binop
837 };
838
839 class ir_expression : public ir_rvalue {
840 public:
841 /**
842 * Constructor for unary operation expressions
843 */
844 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
845 ir_expression(int op, ir_rvalue *);
846
847 /**
848 * Constructor for binary operation expressions
849 */
850 ir_expression(int op, const struct glsl_type *type,
851 ir_rvalue *, ir_rvalue *);
852 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
853
854 /**
855 * Constructor for quad operator expressions
856 */
857 ir_expression(int op, const struct glsl_type *type,
858 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
859
860 virtual ir_expression *as_expression()
861 {
862 return this;
863 }
864
865 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
866
867 /**
868 * Attempt to constant-fold the expression
869 *
870 * If the expression cannot be constant folded, this method will return
871 * \c NULL.
872 */
873 virtual ir_constant *constant_expression_value();
874
875 /**
876 * Determine the number of operands used by an expression
877 */
878 static unsigned int get_num_operands(ir_expression_operation);
879
880 /**
881 * Determine the number of operands used by an expression
882 */
883 unsigned int get_num_operands() const
884 {
885 return (this->operation == ir_quadop_vector)
886 ? this->type->vector_elements : get_num_operands(operation);
887 }
888
889 /**
890 * Return a string representing this expression's operator.
891 */
892 const char *operator_string();
893
894 /**
895 * Return a string representing this expression's operator.
896 */
897 static const char *operator_string(ir_expression_operation);
898
899
900 /**
901 * Do a reverse-lookup to translate the given string into an operator.
902 */
903 static ir_expression_operation get_operator(const char *);
904
905 virtual void accept(ir_visitor *v)
906 {
907 v->visit(this);
908 }
909
910 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
911
912 ir_expression_operation operation;
913 ir_rvalue *operands[4];
914 };
915
916
917 /**
918 * IR instruction representing a function call
919 */
920 class ir_call : public ir_rvalue {
921 public:
922 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
923 : callee(callee)
924 {
925 ir_type = ir_type_call;
926 assert(callee->return_type != NULL);
927 type = callee->return_type;
928 actual_parameters->move_nodes_to(& this->actual_parameters);
929 }
930
931 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
932
933 virtual ir_constant *constant_expression_value();
934
935 virtual ir_call *as_call()
936 {
937 return this;
938 }
939
940 virtual void accept(ir_visitor *v)
941 {
942 v->visit(this);
943 }
944
945 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
946
947 /**
948 * Get a generic ir_call object when an error occurs
949 *
950 * Any allocation will be performed with 'ctx' as talloc owner.
951 */
952 static ir_call *get_error_instruction(void *ctx);
953
954 /**
955 * Get an iterator for the set of acutal parameters
956 */
957 exec_list_iterator iterator()
958 {
959 return actual_parameters.iterator();
960 }
961
962 /**
963 * Get the name of the function being called.
964 */
965 const char *callee_name() const
966 {
967 return callee->function_name();
968 }
969
970 /**
971 * Get the function signature bound to this function call
972 */
973 ir_function_signature *get_callee()
974 {
975 return callee;
976 }
977
978 /**
979 * Set the function call target
980 */
981 void set_callee(ir_function_signature *sig);
982
983 /**
984 * Generates an inline version of the function before @ir,
985 * returning the return value of the function.
986 */
987 ir_rvalue *generate_inline(ir_instruction *ir);
988
989 /* List of ir_rvalue of paramaters passed in this call. */
990 exec_list actual_parameters;
991
992 private:
993 ir_call()
994 : callee(NULL)
995 {
996 this->ir_type = ir_type_call;
997 }
998
999 ir_function_signature *callee;
1000 };
1001
1002
1003 /**
1004 * \name Jump-like IR instructions.
1005 *
1006 * These include \c break, \c continue, \c return, and \c discard.
1007 */
1008 /*@{*/
1009 class ir_jump : public ir_instruction {
1010 protected:
1011 ir_jump()
1012 {
1013 ir_type = ir_type_unset;
1014 }
1015 };
1016
1017 class ir_return : public ir_jump {
1018 public:
1019 ir_return()
1020 : value(NULL)
1021 {
1022 this->ir_type = ir_type_return;
1023 }
1024
1025 ir_return(ir_rvalue *value)
1026 : value(value)
1027 {
1028 this->ir_type = ir_type_return;
1029 }
1030
1031 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1032
1033 virtual ir_return *as_return()
1034 {
1035 return this;
1036 }
1037
1038 ir_rvalue *get_value() const
1039 {
1040 return value;
1041 }
1042
1043 virtual void accept(ir_visitor *v)
1044 {
1045 v->visit(this);
1046 }
1047
1048 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1049
1050 ir_rvalue *value;
1051 };
1052
1053
1054 /**
1055 * Jump instructions used inside loops
1056 *
1057 * These include \c break and \c continue. The \c break within a loop is
1058 * different from the \c break within a switch-statement.
1059 *
1060 * \sa ir_switch_jump
1061 */
1062 class ir_loop_jump : public ir_jump {
1063 public:
1064 enum jump_mode {
1065 jump_break,
1066 jump_continue
1067 };
1068
1069 ir_loop_jump(jump_mode mode)
1070 {
1071 this->ir_type = ir_type_loop_jump;
1072 this->mode = mode;
1073 this->loop = loop;
1074 }
1075
1076 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1077
1078 virtual void accept(ir_visitor *v)
1079 {
1080 v->visit(this);
1081 }
1082
1083 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1084
1085 bool is_break() const
1086 {
1087 return mode == jump_break;
1088 }
1089
1090 bool is_continue() const
1091 {
1092 return mode == jump_continue;
1093 }
1094
1095 /** Mode selector for the jump instruction. */
1096 enum jump_mode mode;
1097 private:
1098 /** Loop containing this break instruction. */
1099 ir_loop *loop;
1100 };
1101
1102 /**
1103 * IR instruction representing discard statements.
1104 */
1105 class ir_discard : public ir_jump {
1106 public:
1107 ir_discard()
1108 {
1109 this->ir_type = ir_type_discard;
1110 this->condition = NULL;
1111 }
1112
1113 ir_discard(ir_rvalue *cond)
1114 {
1115 this->ir_type = ir_type_discard;
1116 this->condition = cond;
1117 }
1118
1119 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1120
1121 virtual void accept(ir_visitor *v)
1122 {
1123 v->visit(this);
1124 }
1125
1126 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1127
1128 virtual ir_discard *as_discard()
1129 {
1130 return this;
1131 }
1132
1133 ir_rvalue *condition;
1134 };
1135 /*@}*/
1136
1137
1138 /**
1139 * Texture sampling opcodes used in ir_texture
1140 */
1141 enum ir_texture_opcode {
1142 ir_tex, /**< Regular texture look-up */
1143 ir_txb, /**< Texture look-up with LOD bias */
1144 ir_txl, /**< Texture look-up with explicit LOD */
1145 ir_txd, /**< Texture look-up with partial derivatvies */
1146 ir_txf /**< Texel fetch with explicit LOD */
1147 };
1148
1149
1150 /**
1151 * IR instruction to sample a texture
1152 *
1153 * The specific form of the IR instruction depends on the \c mode value
1154 * selected from \c ir_texture_opcodes. In the printed IR, these will
1155 * appear as:
1156 *
1157 * Texel offset
1158 * | Projection divisor
1159 * | | Shadow comparitor
1160 * | | |
1161 * v v v
1162 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1163 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1164 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1165 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1166 * (txf (sampler) (coordinate) (0 0 0) (lod))
1167 */
1168 class ir_texture : public ir_rvalue {
1169 public:
1170 ir_texture(enum ir_texture_opcode op)
1171 : op(op), projector(NULL), shadow_comparitor(NULL)
1172 {
1173 this->ir_type = ir_type_texture;
1174 }
1175
1176 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1177
1178 virtual ir_constant *constant_expression_value();
1179
1180 virtual void accept(ir_visitor *v)
1181 {
1182 v->visit(this);
1183 }
1184
1185 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1186
1187 /**
1188 * Return a string representing the ir_texture_opcode.
1189 */
1190 const char *opcode_string();
1191
1192 /** Set the sampler and infer the type. */
1193 void set_sampler(ir_dereference *sampler);
1194
1195 /**
1196 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1197 */
1198 static ir_texture_opcode get_opcode(const char *);
1199
1200 enum ir_texture_opcode op;
1201
1202 /** Sampler to use for the texture access. */
1203 ir_dereference *sampler;
1204
1205 /** Texture coordinate to sample */
1206 ir_rvalue *coordinate;
1207
1208 /**
1209 * Value used for projective divide.
1210 *
1211 * If there is no projective divide (the common case), this will be
1212 * \c NULL. Optimization passes should check for this to point to a constant
1213 * of 1.0 and replace that with \c NULL.
1214 */
1215 ir_rvalue *projector;
1216
1217 /**
1218 * Coordinate used for comparison on shadow look-ups.
1219 *
1220 * If there is no shadow comparison, this will be \c NULL. For the
1221 * \c ir_txf opcode, this *must* be \c NULL.
1222 */
1223 ir_rvalue *shadow_comparitor;
1224
1225 /** Explicit texel offsets. */
1226 signed char offsets[3];
1227
1228 union {
1229 ir_rvalue *lod; /**< Floating point LOD */
1230 ir_rvalue *bias; /**< Floating point LOD bias */
1231 struct {
1232 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1233 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1234 } grad;
1235 } lod_info;
1236 };
1237
1238
1239 struct ir_swizzle_mask {
1240 unsigned x:2;
1241 unsigned y:2;
1242 unsigned z:2;
1243 unsigned w:2;
1244
1245 /**
1246 * Number of components in the swizzle.
1247 */
1248 unsigned num_components:3;
1249
1250 /**
1251 * Does the swizzle contain duplicate components?
1252 *
1253 * L-value swizzles cannot contain duplicate components.
1254 */
1255 unsigned has_duplicates:1;
1256 };
1257
1258
1259 class ir_swizzle : public ir_rvalue {
1260 public:
1261 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1262 unsigned count);
1263
1264 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1265
1266 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1267
1268 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1269
1270 virtual ir_constant *constant_expression_value();
1271
1272 virtual ir_swizzle *as_swizzle()
1273 {
1274 return this;
1275 }
1276
1277 /**
1278 * Construct an ir_swizzle from the textual representation. Can fail.
1279 */
1280 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1281
1282 virtual void accept(ir_visitor *v)
1283 {
1284 v->visit(this);
1285 }
1286
1287 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1288
1289 bool is_lvalue()
1290 {
1291 return val->is_lvalue() && !mask.has_duplicates;
1292 }
1293
1294 /**
1295 * Get the variable that is ultimately referenced by an r-value
1296 */
1297 virtual ir_variable *variable_referenced();
1298
1299 ir_rvalue *val;
1300 ir_swizzle_mask mask;
1301
1302 private:
1303 /**
1304 * Initialize the mask component of a swizzle
1305 *
1306 * This is used by the \c ir_swizzle constructors.
1307 */
1308 void init_mask(const unsigned *components, unsigned count);
1309 };
1310
1311
1312 class ir_dereference : public ir_rvalue {
1313 public:
1314 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1315
1316 virtual ir_dereference *as_dereference()
1317 {
1318 return this;
1319 }
1320
1321 bool is_lvalue();
1322
1323 /**
1324 * Get the variable that is ultimately referenced by an r-value
1325 */
1326 virtual ir_variable *variable_referenced() = 0;
1327 };
1328
1329
1330 class ir_dereference_variable : public ir_dereference {
1331 public:
1332 ir_dereference_variable(ir_variable *var);
1333
1334 virtual ir_dereference_variable *clone(void *mem_ctx,
1335 struct hash_table *) const;
1336
1337 virtual ir_constant *constant_expression_value();
1338
1339 virtual ir_dereference_variable *as_dereference_variable()
1340 {
1341 return this;
1342 }
1343
1344 /**
1345 * Get the variable that is ultimately referenced by an r-value
1346 */
1347 virtual ir_variable *variable_referenced()
1348 {
1349 return this->var;
1350 }
1351
1352 virtual ir_variable *whole_variable_referenced()
1353 {
1354 /* ir_dereference_variable objects always dereference the entire
1355 * variable. However, if this dereference is dereferenced by anything
1356 * else, the complete deferefernce chain is not a whole-variable
1357 * dereference. This method should only be called on the top most
1358 * ir_rvalue in a dereference chain.
1359 */
1360 return this->var;
1361 }
1362
1363 virtual void accept(ir_visitor *v)
1364 {
1365 v->visit(this);
1366 }
1367
1368 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1369
1370 /**
1371 * Object being dereferenced.
1372 */
1373 ir_variable *var;
1374 };
1375
1376
1377 class ir_dereference_array : public ir_dereference {
1378 public:
1379 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1380
1381 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1382
1383 virtual ir_dereference_array *clone(void *mem_ctx,
1384 struct hash_table *) const;
1385
1386 virtual ir_constant *constant_expression_value();
1387
1388 virtual ir_dereference_array *as_dereference_array()
1389 {
1390 return this;
1391 }
1392
1393 /**
1394 * Get the variable that is ultimately referenced by an r-value
1395 */
1396 virtual ir_variable *variable_referenced()
1397 {
1398 return this->array->variable_referenced();
1399 }
1400
1401 virtual void accept(ir_visitor *v)
1402 {
1403 v->visit(this);
1404 }
1405
1406 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1407
1408 ir_rvalue *array;
1409 ir_rvalue *array_index;
1410
1411 private:
1412 void set_array(ir_rvalue *value);
1413 };
1414
1415
1416 class ir_dereference_record : public ir_dereference {
1417 public:
1418 ir_dereference_record(ir_rvalue *value, const char *field);
1419
1420 ir_dereference_record(ir_variable *var, const char *field);
1421
1422 virtual ir_dereference_record *clone(void *mem_ctx,
1423 struct hash_table *) const;
1424
1425 virtual ir_constant *constant_expression_value();
1426
1427 /**
1428 * Get the variable that is ultimately referenced by an r-value
1429 */
1430 virtual ir_variable *variable_referenced()
1431 {
1432 return this->record->variable_referenced();
1433 }
1434
1435 virtual void accept(ir_visitor *v)
1436 {
1437 v->visit(this);
1438 }
1439
1440 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1441
1442 ir_rvalue *record;
1443 const char *field;
1444 };
1445
1446
1447 /**
1448 * Data stored in an ir_constant
1449 */
1450 union ir_constant_data {
1451 unsigned u[16];
1452 int i[16];
1453 float f[16];
1454 bool b[16];
1455 };
1456
1457
1458 class ir_constant : public ir_rvalue {
1459 public:
1460 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1461 ir_constant(bool b);
1462 ir_constant(unsigned int u);
1463 ir_constant(int i);
1464 ir_constant(float f);
1465
1466 /**
1467 * Construct an ir_constant from a list of ir_constant values
1468 */
1469 ir_constant(const struct glsl_type *type, exec_list *values);
1470
1471 /**
1472 * Construct an ir_constant from a scalar component of another ir_constant
1473 *
1474 * The new \c ir_constant inherits the type of the component from the
1475 * source constant.
1476 *
1477 * \note
1478 * In the case of a matrix constant, the new constant is a scalar, \b not
1479 * a vector.
1480 */
1481 ir_constant(const ir_constant *c, unsigned i);
1482
1483 /**
1484 * Return a new ir_constant of the specified type containing all zeros.
1485 */
1486 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1487
1488 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1489
1490 virtual ir_constant *constant_expression_value();
1491
1492 virtual ir_constant *as_constant()
1493 {
1494 return this;
1495 }
1496
1497 virtual void accept(ir_visitor *v)
1498 {
1499 v->visit(this);
1500 }
1501
1502 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1503
1504 /**
1505 * Get a particular component of a constant as a specific type
1506 *
1507 * This is useful, for example, to get a value from an integer constant
1508 * as a float or bool. This appears frequently when constructors are
1509 * called with all constant parameters.
1510 */
1511 /*@{*/
1512 bool get_bool_component(unsigned i) const;
1513 float get_float_component(unsigned i) const;
1514 int get_int_component(unsigned i) const;
1515 unsigned get_uint_component(unsigned i) const;
1516 /*@}*/
1517
1518 ir_constant *get_array_element(unsigned i) const;
1519
1520 ir_constant *get_record_field(const char *name);
1521
1522 /**
1523 * Determine whether a constant has the same value as another constant
1524 *
1525 * \sa ir_constant::is_zero, ir_constant::is_one,
1526 * ir_constant::is_negative_one
1527 */
1528 bool has_value(const ir_constant *) const;
1529
1530 virtual bool is_zero() const;
1531 virtual bool is_one() const;
1532 virtual bool is_negative_one() const;
1533
1534 /**
1535 * Value of the constant.
1536 *
1537 * The field used to back the values supplied by the constant is determined
1538 * by the type associated with the \c ir_instruction. Constants may be
1539 * scalars, vectors, or matrices.
1540 */
1541 union ir_constant_data value;
1542
1543 /* Array elements */
1544 ir_constant **array_elements;
1545
1546 /* Structure fields */
1547 exec_list components;
1548
1549 private:
1550 /**
1551 * Parameterless constructor only used by the clone method
1552 */
1553 ir_constant(void);
1554 };
1555
1556 /*@}*/
1557
1558 /**
1559 * Apply a visitor to each IR node in a list
1560 */
1561 void
1562 visit_exec_list(exec_list *list, ir_visitor *visitor);
1563
1564 /**
1565 * Validate invariants on each IR node in a list
1566 */
1567 void validate_ir_tree(exec_list *instructions);
1568
1569 /**
1570 * Make a clone of each IR instruction in a list
1571 *
1572 * \param in List of IR instructions that are to be cloned
1573 * \param out List to hold the cloned instructions
1574 */
1575 void
1576 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1577
1578 extern void
1579 _mesa_glsl_initialize_variables(exec_list *instructions,
1580 struct _mesa_glsl_parse_state *state);
1581
1582 extern void
1583 _mesa_glsl_initialize_functions(exec_list *instructions,
1584 struct _mesa_glsl_parse_state *state);
1585
1586 extern void
1587 _mesa_glsl_release_functions(void);
1588
1589 extern void
1590 reparent_ir(exec_list *list, void *mem_ctx);
1591
1592 struct glsl_symbol_table;
1593
1594 extern void
1595 import_prototypes(const exec_list *source, exec_list *dest,
1596 struct glsl_symbol_table *symbols, void *mem_ctx);
1597
1598 extern bool
1599 ir_has_call(ir_instruction *ir);
1600
1601 extern void
1602 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1603
1604 #endif /* IR_H */