glsl: Add ir_variable::interface_type field
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_shader_in,
269 ir_var_shader_out,
270 ir_var_function_in,
271 ir_var_function_out,
272 ir_var_function_inout,
273 ir_var_const_in, /**< "in" param that must be a constant expression */
274 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
275 ir_var_temporary /**< Temporary variable generated during compilation. */
276 };
277
278 /**
279 * \brief Layout qualifiers for gl_FragDepth.
280 *
281 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
282 * with a layout qualifier.
283 */
284 enum ir_depth_layout {
285 ir_depth_layout_none, /**< No depth layout is specified. */
286 ir_depth_layout_any,
287 ir_depth_layout_greater,
288 ir_depth_layout_less,
289 ir_depth_layout_unchanged
290 };
291
292 /**
293 * \brief Convert depth layout qualifier to string.
294 */
295 const char*
296 depth_layout_string(ir_depth_layout layout);
297
298 /**
299 * Description of built-in state associated with a uniform
300 *
301 * \sa ir_variable::state_slots
302 */
303 struct ir_state_slot {
304 int tokens[5];
305 int swizzle;
306 };
307
308 class ir_variable : public ir_instruction {
309 public:
310 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
311
312 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
313
314 virtual ir_variable *as_variable()
315 {
316 return this;
317 }
318
319 virtual void accept(ir_visitor *v)
320 {
321 v->visit(this);
322 }
323
324 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
325
326
327 /**
328 * Get the string value for the interpolation qualifier
329 *
330 * \return The string that would be used in a shader to specify \c
331 * mode will be returned.
332 *
333 * This function is used to generate error messages of the form "shader
334 * uses %s interpolation qualifier", so in the case where there is no
335 * interpolation qualifier, it returns "no".
336 *
337 * This function should only be used on a shader input or output variable.
338 */
339 const char *interpolation_string() const;
340
341 /**
342 * Determine how this variable should be interpolated based on its
343 * interpolation qualifier (if present), whether it is gl_Color or
344 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
345 * state.
346 *
347 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
348 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
349 */
350 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
351
352 /**
353 * Determine whether or not a variable is part of a uniform block.
354 */
355 inline bool is_in_uniform_block() const
356 {
357 return this->mode == ir_var_uniform && this->interface_type != NULL;
358 }
359
360 /**
361 * Declared type of the variable
362 */
363 const struct glsl_type *type;
364
365 /**
366 * Declared name of the variable
367 */
368 const char *name;
369
370 /**
371 * Highest element accessed with a constant expression array index
372 *
373 * Not used for non-array variables.
374 */
375 unsigned max_array_access;
376
377 /**
378 * Is the variable read-only?
379 *
380 * This is set for variables declared as \c const, shader inputs,
381 * and uniforms.
382 */
383 unsigned read_only:1;
384 unsigned centroid:1;
385 unsigned invariant:1;
386
387 /**
388 * Has this variable been used for reading or writing?
389 *
390 * Several GLSL semantic checks require knowledge of whether or not a
391 * variable has been used. For example, it is an error to redeclare a
392 * variable as invariant after it has been used.
393 *
394 * This is only maintained in the ast_to_hir.cpp path, not in
395 * Mesa's fixed function or ARB program paths.
396 */
397 unsigned used:1;
398
399 /**
400 * Has this variable been statically assigned?
401 *
402 * This answers whether the variable was assigned in any path of
403 * the shader during ast_to_hir. This doesn't answer whether it is
404 * still written after dead code removal, nor is it maintained in
405 * non-ast_to_hir.cpp (GLSL parsing) paths.
406 */
407 unsigned assigned:1;
408
409 /**
410 * Storage class of the variable.
411 *
412 * \sa ir_variable_mode
413 */
414 unsigned mode:4;
415
416 /**
417 * Interpolation mode for shader inputs / outputs
418 *
419 * \sa ir_variable_interpolation
420 */
421 unsigned interpolation:2;
422
423 /**
424 * \name ARB_fragment_coord_conventions
425 * @{
426 */
427 unsigned origin_upper_left:1;
428 unsigned pixel_center_integer:1;
429 /*@}*/
430
431 /**
432 * Was the location explicitly set in the shader?
433 *
434 * If the location is explicitly set in the shader, it \b cannot be changed
435 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
436 * no effect).
437 */
438 unsigned explicit_location:1;
439 unsigned explicit_index:1;
440
441 /**
442 * Does this variable have an initializer?
443 *
444 * This is used by the linker to cross-validiate initializers of global
445 * variables.
446 */
447 unsigned has_initializer:1;
448
449 /**
450 * Is this variable a generic output or input that has not yet been matched
451 * up to a variable in another stage of the pipeline?
452 *
453 * This is used by the linker as scratch storage while assigning locations
454 * to generic inputs and outputs.
455 */
456 unsigned is_unmatched_generic_inout:1;
457
458 /**
459 * If non-zero, then this variable may be packed along with other variables
460 * into a single varying slot, so this offset should be applied when
461 * accessing components. For example, an offset of 1 means that the x
462 * component of this variable is actually stored in component y of the
463 * location specified by \c location.
464 */
465 unsigned location_frac:2;
466
467 /**
468 * \brief Layout qualifier for gl_FragDepth.
469 *
470 * This is not equal to \c ir_depth_layout_none if and only if this
471 * variable is \c gl_FragDepth and a layout qualifier is specified.
472 */
473 ir_depth_layout depth_layout;
474
475 /**
476 * Storage location of the base of this variable
477 *
478 * The precise meaning of this field depends on the nature of the variable.
479 *
480 * - Vertex shader input: one of the values from \c gl_vert_attrib.
481 * - Vertex shader output: one of the values from \c gl_vert_result.
482 * - Fragment shader input: one of the values from \c gl_frag_attrib.
483 * - Fragment shader output: one of the values from \c gl_frag_result.
484 * - Uniforms: Per-stage uniform slot number for default uniform block.
485 * - Uniforms: Index within the uniform block definition for UBO members.
486 * - Other: This field is not currently used.
487 *
488 * If the variable is a uniform, shader input, or shader output, and the
489 * slot has not been assigned, the value will be -1.
490 */
491 int location;
492
493 /**
494 * Uniform block number for uniforms.
495 *
496 * This index is into the shader's list of uniform blocks, not the
497 * linked program's merged list.
498 *
499 * If the variable is not in a uniform block, the value will be -1.
500 */
501 int uniform_block;
502
503 /**
504 * output index for dual source blending.
505 */
506 int index;
507
508 /**
509 * Built-in state that backs this uniform
510 *
511 * Once set at variable creation, \c state_slots must remain invariant.
512 * This is because, ideally, this array would be shared by all clones of
513 * this variable in the IR tree. In other words, we'd really like for it
514 * to be a fly-weight.
515 *
516 * If the variable is not a uniform, \c num_state_slots will be zero and
517 * \c state_slots will be \c NULL.
518 */
519 /*@{*/
520 unsigned num_state_slots; /**< Number of state slots used */
521 ir_state_slot *state_slots; /**< State descriptors. */
522 /*@}*/
523
524 /**
525 * Emit a warning if this variable is accessed.
526 */
527 const char *warn_extension;
528
529 /**
530 * Value assigned in the initializer of a variable declared "const"
531 */
532 ir_constant *constant_value;
533
534 /**
535 * Constant expression assigned in the initializer of the variable
536 *
537 * \warning
538 * This field and \c ::constant_value are distinct. Even if the two fields
539 * refer to constants with the same value, they must point to separate
540 * objects.
541 */
542 ir_constant *constant_initializer;
543
544 /**
545 * For variables that are in an interface block or are an instance of an
546 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
547 *
548 * \sa ir_variable::location
549 */
550 const glsl_type *interface_type;
551 };
552
553
554 /*@{*/
555 /**
556 * The representation of a function instance; may be the full definition or
557 * simply a prototype.
558 */
559 class ir_function_signature : public ir_instruction {
560 /* An ir_function_signature will be part of the list of signatures in
561 * an ir_function.
562 */
563 public:
564 ir_function_signature(const glsl_type *return_type);
565
566 virtual ir_function_signature *clone(void *mem_ctx,
567 struct hash_table *ht) const;
568 ir_function_signature *clone_prototype(void *mem_ctx,
569 struct hash_table *ht) const;
570
571 virtual void accept(ir_visitor *v)
572 {
573 v->visit(this);
574 }
575
576 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
577
578 /**
579 * Attempt to evaluate this function as a constant expression,
580 * given a list of the actual parameters and the variable context.
581 * Returns NULL for non-built-ins.
582 */
583 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
584
585 /**
586 * Get the name of the function for which this is a signature
587 */
588 const char *function_name() const;
589
590 /**
591 * Get a handle to the function for which this is a signature
592 *
593 * There is no setter function, this function returns a \c const pointer,
594 * and \c ir_function_signature::_function is private for a reason. The
595 * only way to make a connection between a function and function signature
596 * is via \c ir_function::add_signature. This helps ensure that certain
597 * invariants (i.e., a function signature is in the list of signatures for
598 * its \c _function) are met.
599 *
600 * \sa ir_function::add_signature
601 */
602 inline const class ir_function *function() const
603 {
604 return this->_function;
605 }
606
607 /**
608 * Check whether the qualifiers match between this signature's parameters
609 * and the supplied parameter list. If not, returns the name of the first
610 * parameter with mismatched qualifiers (for use in error messages).
611 */
612 const char *qualifiers_match(exec_list *params);
613
614 /**
615 * Replace the current parameter list with the given one. This is useful
616 * if the current information came from a prototype, and either has invalid
617 * or missing parameter names.
618 */
619 void replace_parameters(exec_list *new_params);
620
621 /**
622 * Function return type.
623 *
624 * \note This discards the optional precision qualifier.
625 */
626 const struct glsl_type *return_type;
627
628 /**
629 * List of ir_variable of function parameters.
630 *
631 * This represents the storage. The paramaters passed in a particular
632 * call will be in ir_call::actual_paramaters.
633 */
634 struct exec_list parameters;
635
636 /** Whether or not this function has a body (which may be empty). */
637 unsigned is_defined:1;
638
639 /** Whether or not this function signature is a built-in. */
640 unsigned is_builtin:1;
641
642 /** Body of instructions in the function. */
643 struct exec_list body;
644
645 private:
646 /** Function of which this signature is one overload. */
647 class ir_function *_function;
648
649 /** Function signature of which this one is a prototype clone */
650 const ir_function_signature *origin;
651
652 friend class ir_function;
653
654 /**
655 * Helper function to run a list of instructions for constant
656 * expression evaluation.
657 *
658 * The hash table represents the values of the visible variables.
659 * There are no scoping issues because the table is indexed on
660 * ir_variable pointers, not variable names.
661 *
662 * Returns false if the expression is not constant, true otherwise,
663 * and the value in *result if result is non-NULL.
664 */
665 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
666 struct hash_table *variable_context,
667 ir_constant **result);
668 };
669
670
671 /**
672 * Header for tracking multiple overloaded functions with the same name.
673 * Contains a list of ir_function_signatures representing each of the
674 * actual functions.
675 */
676 class ir_function : public ir_instruction {
677 public:
678 ir_function(const char *name);
679
680 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
681
682 virtual ir_function *as_function()
683 {
684 return this;
685 }
686
687 virtual void accept(ir_visitor *v)
688 {
689 v->visit(this);
690 }
691
692 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
693
694 void add_signature(ir_function_signature *sig)
695 {
696 sig->_function = this;
697 this->signatures.push_tail(sig);
698 }
699
700 /**
701 * Get an iterator for the set of function signatures
702 */
703 exec_list_iterator iterator()
704 {
705 return signatures.iterator();
706 }
707
708 /**
709 * Find a signature that matches a set of actual parameters, taking implicit
710 * conversions into account. Also flags whether the match was exact.
711 */
712 ir_function_signature *matching_signature(const exec_list *actual_param,
713 bool *match_is_exact);
714
715 /**
716 * Find a signature that matches a set of actual parameters, taking implicit
717 * conversions into account.
718 */
719 ir_function_signature *matching_signature(const exec_list *actual_param);
720
721 /**
722 * Find a signature that exactly matches a set of actual parameters without
723 * any implicit type conversions.
724 */
725 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
726
727 /**
728 * Name of the function.
729 */
730 const char *name;
731
732 /** Whether or not this function has a signature that isn't a built-in. */
733 bool has_user_signature();
734
735 /**
736 * List of ir_function_signature for each overloaded function with this name.
737 */
738 struct exec_list signatures;
739 };
740
741 inline const char *ir_function_signature::function_name() const
742 {
743 return this->_function->name;
744 }
745 /*@}*/
746
747
748 /**
749 * IR instruction representing high-level if-statements
750 */
751 class ir_if : public ir_instruction {
752 public:
753 ir_if(ir_rvalue *condition)
754 : condition(condition)
755 {
756 ir_type = ir_type_if;
757 }
758
759 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
760
761 virtual ir_if *as_if()
762 {
763 return this;
764 }
765
766 virtual void accept(ir_visitor *v)
767 {
768 v->visit(this);
769 }
770
771 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
772
773 ir_rvalue *condition;
774 /** List of ir_instruction for the body of the then branch */
775 exec_list then_instructions;
776 /** List of ir_instruction for the body of the else branch */
777 exec_list else_instructions;
778 };
779
780
781 /**
782 * IR instruction representing a high-level loop structure.
783 */
784 class ir_loop : public ir_instruction {
785 public:
786 ir_loop();
787
788 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
789
790 virtual void accept(ir_visitor *v)
791 {
792 v->visit(this);
793 }
794
795 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
796
797 virtual ir_loop *as_loop()
798 {
799 return this;
800 }
801
802 /**
803 * Get an iterator for the instructions of the loop body
804 */
805 exec_list_iterator iterator()
806 {
807 return body_instructions.iterator();
808 }
809
810 /** List of ir_instruction that make up the body of the loop. */
811 exec_list body_instructions;
812
813 /**
814 * \name Loop counter and controls
815 *
816 * Represents a loop like a FORTRAN \c do-loop.
817 *
818 * \note
819 * If \c from and \c to are the same value, the loop will execute once.
820 */
821 /*@{*/
822 ir_rvalue *from; /** Value of the loop counter on the first
823 * iteration of the loop.
824 */
825 ir_rvalue *to; /** Value of the loop counter on the last
826 * iteration of the loop.
827 */
828 ir_rvalue *increment;
829 ir_variable *counter;
830
831 /**
832 * Comparison operation in the loop terminator.
833 *
834 * If any of the loop control fields are non-\c NULL, this field must be
835 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
836 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
837 */
838 int cmp;
839 /*@}*/
840 };
841
842
843 class ir_assignment : public ir_instruction {
844 public:
845 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
846
847 /**
848 * Construct an assignment with an explicit write mask
849 *
850 * \note
851 * Since a write mask is supplied, the LHS must already be a bare
852 * \c ir_dereference. The cannot be any swizzles in the LHS.
853 */
854 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
855 unsigned write_mask);
856
857 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
858
859 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
860
861 virtual void accept(ir_visitor *v)
862 {
863 v->visit(this);
864 }
865
866 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
867
868 virtual ir_assignment * as_assignment()
869 {
870 return this;
871 }
872
873 /**
874 * Get a whole variable written by an assignment
875 *
876 * If the LHS of the assignment writes a whole variable, the variable is
877 * returned. Otherwise \c NULL is returned. Examples of whole-variable
878 * assignment are:
879 *
880 * - Assigning to a scalar
881 * - Assigning to all components of a vector
882 * - Whole array (or matrix) assignment
883 * - Whole structure assignment
884 */
885 ir_variable *whole_variable_written();
886
887 /**
888 * Set the LHS of an assignment
889 */
890 void set_lhs(ir_rvalue *lhs);
891
892 /**
893 * Left-hand side of the assignment.
894 *
895 * This should be treated as read only. If you need to set the LHS of an
896 * assignment, use \c ir_assignment::set_lhs.
897 */
898 ir_dereference *lhs;
899
900 /**
901 * Value being assigned
902 */
903 ir_rvalue *rhs;
904
905 /**
906 * Optional condition for the assignment.
907 */
908 ir_rvalue *condition;
909
910
911 /**
912 * Component mask written
913 *
914 * For non-vector types in the LHS, this field will be zero. For vector
915 * types, a bit will be set for each component that is written. Note that
916 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
917 *
918 * A partially-set write mask means that each enabled channel gets
919 * the value from a consecutive channel of the rhs. For example,
920 * to write just .xyw of gl_FrontColor with color:
921 *
922 * (assign (constant bool (1)) (xyw)
923 * (var_ref gl_FragColor)
924 * (swiz xyw (var_ref color)))
925 */
926 unsigned write_mask:4;
927 };
928
929 /* Update ir_expression::get_num_operands() and operator_strs when
930 * updating this list.
931 */
932 enum ir_expression_operation {
933 ir_unop_bit_not,
934 ir_unop_logic_not,
935 ir_unop_neg,
936 ir_unop_abs,
937 ir_unop_sign,
938 ir_unop_rcp,
939 ir_unop_rsq,
940 ir_unop_sqrt,
941 ir_unop_exp, /**< Log base e on gentype */
942 ir_unop_log, /**< Natural log on gentype */
943 ir_unop_exp2,
944 ir_unop_log2,
945 ir_unop_f2i, /**< Float-to-integer conversion. */
946 ir_unop_f2u, /**< Float-to-unsigned conversion. */
947 ir_unop_i2f, /**< Integer-to-float conversion. */
948 ir_unop_f2b, /**< Float-to-boolean conversion */
949 ir_unop_b2f, /**< Boolean-to-float conversion */
950 ir_unop_i2b, /**< int-to-boolean conversion */
951 ir_unop_b2i, /**< Boolean-to-int conversion */
952 ir_unop_u2f, /**< Unsigned-to-float conversion. */
953 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
954 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
955 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
956 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
957 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
958 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
959 ir_unop_any,
960
961 /**
962 * \name Unary floating-point rounding operations.
963 */
964 /*@{*/
965 ir_unop_trunc,
966 ir_unop_ceil,
967 ir_unop_floor,
968 ir_unop_fract,
969 ir_unop_round_even,
970 /*@}*/
971
972 /**
973 * \name Trigonometric operations.
974 */
975 /*@{*/
976 ir_unop_sin,
977 ir_unop_cos,
978 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
979 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
980 /*@}*/
981
982 /**
983 * \name Partial derivatives.
984 */
985 /*@{*/
986 ir_unop_dFdx,
987 ir_unop_dFdy,
988 /*@}*/
989
990 /**
991 * \name Floating point pack and unpack operations.
992 */
993 /*@{*/
994 ir_unop_pack_snorm_2x16,
995 ir_unop_pack_unorm_2x16,
996 ir_unop_pack_half_2x16,
997 ir_unop_unpack_snorm_2x16,
998 ir_unop_unpack_unorm_2x16,
999 ir_unop_unpack_half_2x16,
1000 /*@}*/
1001
1002 /**
1003 * \name Lowered floating point unpacking operations.
1004 *
1005 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1006 */
1007 /*@{*/
1008 ir_unop_unpack_half_2x16_split_x,
1009 ir_unop_unpack_half_2x16_split_y,
1010 /*@}*/
1011
1012 ir_unop_noise,
1013
1014 /**
1015 * A sentinel marking the last of the unary operations.
1016 */
1017 ir_last_unop = ir_unop_noise,
1018
1019 ir_binop_add,
1020 ir_binop_sub,
1021 ir_binop_mul,
1022 ir_binop_div,
1023
1024 /**
1025 * Takes one of two combinations of arguments:
1026 *
1027 * - mod(vecN, vecN)
1028 * - mod(vecN, float)
1029 *
1030 * Does not take integer types.
1031 */
1032 ir_binop_mod,
1033
1034 /**
1035 * \name Binary comparison operators which return a boolean vector.
1036 * The type of both operands must be equal.
1037 */
1038 /*@{*/
1039 ir_binop_less,
1040 ir_binop_greater,
1041 ir_binop_lequal,
1042 ir_binop_gequal,
1043 ir_binop_equal,
1044 ir_binop_nequal,
1045 /**
1046 * Returns single boolean for whether all components of operands[0]
1047 * equal the components of operands[1].
1048 */
1049 ir_binop_all_equal,
1050 /**
1051 * Returns single boolean for whether any component of operands[0]
1052 * is not equal to the corresponding component of operands[1].
1053 */
1054 ir_binop_any_nequal,
1055 /*@}*/
1056
1057 /**
1058 * \name Bit-wise binary operations.
1059 */
1060 /*@{*/
1061 ir_binop_lshift,
1062 ir_binop_rshift,
1063 ir_binop_bit_and,
1064 ir_binop_bit_xor,
1065 ir_binop_bit_or,
1066 /*@}*/
1067
1068 ir_binop_logic_and,
1069 ir_binop_logic_xor,
1070 ir_binop_logic_or,
1071
1072 ir_binop_dot,
1073 ir_binop_min,
1074 ir_binop_max,
1075
1076 ir_binop_pow,
1077
1078 /**
1079 * \name Lowered floating point packing operations.
1080 *
1081 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1082 */
1083 /*@{*/
1084 ir_binop_pack_half_2x16_split,
1085 /*@}*/
1086
1087 /**
1088 * Load a value the size of a given GLSL type from a uniform block.
1089 *
1090 * operand0 is the ir_constant uniform block index in the linked shader.
1091 * operand1 is a byte offset within the uniform block.
1092 */
1093 ir_binop_ubo_load,
1094
1095 /**
1096 * A sentinel marking the last of the binary operations.
1097 */
1098 ir_last_binop = ir_binop_ubo_load,
1099
1100 ir_quadop_vector,
1101
1102 /**
1103 * A sentinel marking the last of all operations.
1104 */
1105 ir_last_opcode = ir_quadop_vector
1106 };
1107
1108 class ir_expression : public ir_rvalue {
1109 public:
1110 /**
1111 * Constructor for unary operation expressions
1112 */
1113 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1114 ir_expression(int op, ir_rvalue *);
1115
1116 /**
1117 * Constructor for binary operation expressions
1118 */
1119 ir_expression(int op, const struct glsl_type *type,
1120 ir_rvalue *, ir_rvalue *);
1121 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1122
1123 /**
1124 * Constructor for quad operator expressions
1125 */
1126 ir_expression(int op, const struct glsl_type *type,
1127 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1128
1129 virtual ir_expression *as_expression()
1130 {
1131 return this;
1132 }
1133
1134 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1135
1136 /**
1137 * Attempt to constant-fold the expression
1138 *
1139 * The "variable_context" hash table links ir_variable * to ir_constant *
1140 * that represent the variables' values. \c NULL represents an empty
1141 * context.
1142 *
1143 * If the expression cannot be constant folded, this method will return
1144 * \c NULL.
1145 */
1146 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1147
1148 /**
1149 * Determine the number of operands used by an expression
1150 */
1151 static unsigned int get_num_operands(ir_expression_operation);
1152
1153 /**
1154 * Determine the number of operands used by an expression
1155 */
1156 unsigned int get_num_operands() const
1157 {
1158 return (this->operation == ir_quadop_vector)
1159 ? this->type->vector_elements : get_num_operands(operation);
1160 }
1161
1162 /**
1163 * Return a string representing this expression's operator.
1164 */
1165 const char *operator_string();
1166
1167 /**
1168 * Return a string representing this expression's operator.
1169 */
1170 static const char *operator_string(ir_expression_operation);
1171
1172
1173 /**
1174 * Do a reverse-lookup to translate the given string into an operator.
1175 */
1176 static ir_expression_operation get_operator(const char *);
1177
1178 virtual void accept(ir_visitor *v)
1179 {
1180 v->visit(this);
1181 }
1182
1183 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1184
1185 ir_expression_operation operation;
1186 ir_rvalue *operands[4];
1187 };
1188
1189
1190 /**
1191 * HIR instruction representing a high-level function call, containing a list
1192 * of parameters and returning a value in the supplied temporary.
1193 */
1194 class ir_call : public ir_instruction {
1195 public:
1196 ir_call(ir_function_signature *callee,
1197 ir_dereference_variable *return_deref,
1198 exec_list *actual_parameters)
1199 : return_deref(return_deref), callee(callee)
1200 {
1201 ir_type = ir_type_call;
1202 assert(callee->return_type != NULL);
1203 actual_parameters->move_nodes_to(& this->actual_parameters);
1204 this->use_builtin = callee->is_builtin;
1205 }
1206
1207 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1208
1209 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1210
1211 virtual ir_call *as_call()
1212 {
1213 return this;
1214 }
1215
1216 virtual void accept(ir_visitor *v)
1217 {
1218 v->visit(this);
1219 }
1220
1221 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1222
1223 /**
1224 * Get an iterator for the set of acutal parameters
1225 */
1226 exec_list_iterator iterator()
1227 {
1228 return actual_parameters.iterator();
1229 }
1230
1231 /**
1232 * Get the name of the function being called.
1233 */
1234 const char *callee_name() const
1235 {
1236 return callee->function_name();
1237 }
1238
1239 /**
1240 * Generates an inline version of the function before @ir,
1241 * storing the return value in return_deref.
1242 */
1243 void generate_inline(ir_instruction *ir);
1244
1245 /**
1246 * Storage for the function's return value.
1247 * This must be NULL if the return type is void.
1248 */
1249 ir_dereference_variable *return_deref;
1250
1251 /**
1252 * The specific function signature being called.
1253 */
1254 ir_function_signature *callee;
1255
1256 /* List of ir_rvalue of paramaters passed in this call. */
1257 exec_list actual_parameters;
1258
1259 /** Should this call only bind to a built-in function? */
1260 bool use_builtin;
1261 };
1262
1263
1264 /**
1265 * \name Jump-like IR instructions.
1266 *
1267 * These include \c break, \c continue, \c return, and \c discard.
1268 */
1269 /*@{*/
1270 class ir_jump : public ir_instruction {
1271 protected:
1272 ir_jump()
1273 {
1274 ir_type = ir_type_unset;
1275 }
1276 };
1277
1278 class ir_return : public ir_jump {
1279 public:
1280 ir_return()
1281 : value(NULL)
1282 {
1283 this->ir_type = ir_type_return;
1284 }
1285
1286 ir_return(ir_rvalue *value)
1287 : value(value)
1288 {
1289 this->ir_type = ir_type_return;
1290 }
1291
1292 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1293
1294 virtual ir_return *as_return()
1295 {
1296 return this;
1297 }
1298
1299 ir_rvalue *get_value() const
1300 {
1301 return value;
1302 }
1303
1304 virtual void accept(ir_visitor *v)
1305 {
1306 v->visit(this);
1307 }
1308
1309 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1310
1311 ir_rvalue *value;
1312 };
1313
1314
1315 /**
1316 * Jump instructions used inside loops
1317 *
1318 * These include \c break and \c continue. The \c break within a loop is
1319 * different from the \c break within a switch-statement.
1320 *
1321 * \sa ir_switch_jump
1322 */
1323 class ir_loop_jump : public ir_jump {
1324 public:
1325 enum jump_mode {
1326 jump_break,
1327 jump_continue
1328 };
1329
1330 ir_loop_jump(jump_mode mode)
1331 {
1332 this->ir_type = ir_type_loop_jump;
1333 this->mode = mode;
1334 }
1335
1336 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1337
1338 virtual void accept(ir_visitor *v)
1339 {
1340 v->visit(this);
1341 }
1342
1343 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1344
1345 bool is_break() const
1346 {
1347 return mode == jump_break;
1348 }
1349
1350 bool is_continue() const
1351 {
1352 return mode == jump_continue;
1353 }
1354
1355 /** Mode selector for the jump instruction. */
1356 enum jump_mode mode;
1357 };
1358
1359 /**
1360 * IR instruction representing discard statements.
1361 */
1362 class ir_discard : public ir_jump {
1363 public:
1364 ir_discard()
1365 {
1366 this->ir_type = ir_type_discard;
1367 this->condition = NULL;
1368 }
1369
1370 ir_discard(ir_rvalue *cond)
1371 {
1372 this->ir_type = ir_type_discard;
1373 this->condition = cond;
1374 }
1375
1376 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1377
1378 virtual void accept(ir_visitor *v)
1379 {
1380 v->visit(this);
1381 }
1382
1383 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1384
1385 virtual ir_discard *as_discard()
1386 {
1387 return this;
1388 }
1389
1390 ir_rvalue *condition;
1391 };
1392 /*@}*/
1393
1394
1395 /**
1396 * Texture sampling opcodes used in ir_texture
1397 */
1398 enum ir_texture_opcode {
1399 ir_tex, /**< Regular texture look-up */
1400 ir_txb, /**< Texture look-up with LOD bias */
1401 ir_txl, /**< Texture look-up with explicit LOD */
1402 ir_txd, /**< Texture look-up with partial derivatvies */
1403 ir_txf, /**< Texel fetch with explicit LOD */
1404 ir_txs /**< Texture size */
1405 };
1406
1407
1408 /**
1409 * IR instruction to sample a texture
1410 *
1411 * The specific form of the IR instruction depends on the \c mode value
1412 * selected from \c ir_texture_opcodes. In the printed IR, these will
1413 * appear as:
1414 *
1415 * Texel offset (0 or an expression)
1416 * | Projection divisor
1417 * | | Shadow comparitor
1418 * | | |
1419 * v v v
1420 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1421 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1422 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1423 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1424 * (txf <type> <sampler> <coordinate> 0 <lod>)
1425 * (txs <type> <sampler> <lod>)
1426 */
1427 class ir_texture : public ir_rvalue {
1428 public:
1429 ir_texture(enum ir_texture_opcode op)
1430 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1431 offset(NULL)
1432 {
1433 this->ir_type = ir_type_texture;
1434 }
1435
1436 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1437
1438 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1439
1440 virtual void accept(ir_visitor *v)
1441 {
1442 v->visit(this);
1443 }
1444
1445 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1446
1447 /**
1448 * Return a string representing the ir_texture_opcode.
1449 */
1450 const char *opcode_string();
1451
1452 /** Set the sampler and type. */
1453 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1454
1455 /**
1456 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1457 */
1458 static ir_texture_opcode get_opcode(const char *);
1459
1460 enum ir_texture_opcode op;
1461
1462 /** Sampler to use for the texture access. */
1463 ir_dereference *sampler;
1464
1465 /** Texture coordinate to sample */
1466 ir_rvalue *coordinate;
1467
1468 /**
1469 * Value used for projective divide.
1470 *
1471 * If there is no projective divide (the common case), this will be
1472 * \c NULL. Optimization passes should check for this to point to a constant
1473 * of 1.0 and replace that with \c NULL.
1474 */
1475 ir_rvalue *projector;
1476
1477 /**
1478 * Coordinate used for comparison on shadow look-ups.
1479 *
1480 * If there is no shadow comparison, this will be \c NULL. For the
1481 * \c ir_txf opcode, this *must* be \c NULL.
1482 */
1483 ir_rvalue *shadow_comparitor;
1484
1485 /** Texel offset. */
1486 ir_rvalue *offset;
1487
1488 union {
1489 ir_rvalue *lod; /**< Floating point LOD */
1490 ir_rvalue *bias; /**< Floating point LOD bias */
1491 struct {
1492 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1493 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1494 } grad;
1495 } lod_info;
1496 };
1497
1498
1499 struct ir_swizzle_mask {
1500 unsigned x:2;
1501 unsigned y:2;
1502 unsigned z:2;
1503 unsigned w:2;
1504
1505 /**
1506 * Number of components in the swizzle.
1507 */
1508 unsigned num_components:3;
1509
1510 /**
1511 * Does the swizzle contain duplicate components?
1512 *
1513 * L-value swizzles cannot contain duplicate components.
1514 */
1515 unsigned has_duplicates:1;
1516 };
1517
1518
1519 class ir_swizzle : public ir_rvalue {
1520 public:
1521 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1522 unsigned count);
1523
1524 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1525
1526 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1527
1528 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1529
1530 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1531
1532 virtual ir_swizzle *as_swizzle()
1533 {
1534 return this;
1535 }
1536
1537 /**
1538 * Construct an ir_swizzle from the textual representation. Can fail.
1539 */
1540 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1541
1542 virtual void accept(ir_visitor *v)
1543 {
1544 v->visit(this);
1545 }
1546
1547 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1548
1549 bool is_lvalue() const
1550 {
1551 return val->is_lvalue() && !mask.has_duplicates;
1552 }
1553
1554 /**
1555 * Get the variable that is ultimately referenced by an r-value
1556 */
1557 virtual ir_variable *variable_referenced() const;
1558
1559 ir_rvalue *val;
1560 ir_swizzle_mask mask;
1561
1562 private:
1563 /**
1564 * Initialize the mask component of a swizzle
1565 *
1566 * This is used by the \c ir_swizzle constructors.
1567 */
1568 void init_mask(const unsigned *components, unsigned count);
1569 };
1570
1571
1572 class ir_dereference : public ir_rvalue {
1573 public:
1574 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1575
1576 virtual ir_dereference *as_dereference()
1577 {
1578 return this;
1579 }
1580
1581 bool is_lvalue() const;
1582
1583 /**
1584 * Get the variable that is ultimately referenced by an r-value
1585 */
1586 virtual ir_variable *variable_referenced() const = 0;
1587
1588 /**
1589 * Get the constant that is ultimately referenced by an r-value,
1590 * in a constant expression evaluation context.
1591 *
1592 * The offset is used when the reference is to a specific column of
1593 * a matrix.
1594 */
1595 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1596 };
1597
1598
1599 class ir_dereference_variable : public ir_dereference {
1600 public:
1601 ir_dereference_variable(ir_variable *var);
1602
1603 virtual ir_dereference_variable *clone(void *mem_ctx,
1604 struct hash_table *) const;
1605
1606 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1607
1608 virtual ir_dereference_variable *as_dereference_variable()
1609 {
1610 return this;
1611 }
1612
1613 /**
1614 * Get the variable that is ultimately referenced by an r-value
1615 */
1616 virtual ir_variable *variable_referenced() const
1617 {
1618 return this->var;
1619 }
1620
1621 /**
1622 * Get the constant that is ultimately referenced by an r-value,
1623 * in a constant expression evaluation context.
1624 *
1625 * The offset is used when the reference is to a specific column of
1626 * a matrix.
1627 */
1628 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1629
1630 virtual ir_variable *whole_variable_referenced()
1631 {
1632 /* ir_dereference_variable objects always dereference the entire
1633 * variable. However, if this dereference is dereferenced by anything
1634 * else, the complete deferefernce chain is not a whole-variable
1635 * dereference. This method should only be called on the top most
1636 * ir_rvalue in a dereference chain.
1637 */
1638 return this->var;
1639 }
1640
1641 virtual void accept(ir_visitor *v)
1642 {
1643 v->visit(this);
1644 }
1645
1646 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1647
1648 /**
1649 * Object being dereferenced.
1650 */
1651 ir_variable *var;
1652 };
1653
1654
1655 class ir_dereference_array : public ir_dereference {
1656 public:
1657 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1658
1659 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1660
1661 virtual ir_dereference_array *clone(void *mem_ctx,
1662 struct hash_table *) const;
1663
1664 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1665
1666 virtual ir_dereference_array *as_dereference_array()
1667 {
1668 return this;
1669 }
1670
1671 /**
1672 * Get the variable that is ultimately referenced by an r-value
1673 */
1674 virtual ir_variable *variable_referenced() const
1675 {
1676 return this->array->variable_referenced();
1677 }
1678
1679 /**
1680 * Get the constant that is ultimately referenced by an r-value,
1681 * in a constant expression evaluation context.
1682 *
1683 * The offset is used when the reference is to a specific column of
1684 * a matrix.
1685 */
1686 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1687
1688 virtual void accept(ir_visitor *v)
1689 {
1690 v->visit(this);
1691 }
1692
1693 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1694
1695 ir_rvalue *array;
1696 ir_rvalue *array_index;
1697
1698 private:
1699 void set_array(ir_rvalue *value);
1700 };
1701
1702
1703 class ir_dereference_record : public ir_dereference {
1704 public:
1705 ir_dereference_record(ir_rvalue *value, const char *field);
1706
1707 ir_dereference_record(ir_variable *var, const char *field);
1708
1709 virtual ir_dereference_record *clone(void *mem_ctx,
1710 struct hash_table *) const;
1711
1712 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1713
1714 /**
1715 * Get the variable that is ultimately referenced by an r-value
1716 */
1717 virtual ir_variable *variable_referenced() const
1718 {
1719 return this->record->variable_referenced();
1720 }
1721
1722 /**
1723 * Get the constant that is ultimately referenced by an r-value,
1724 * in a constant expression evaluation context.
1725 *
1726 * The offset is used when the reference is to a specific column of
1727 * a matrix.
1728 */
1729 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1730
1731 virtual void accept(ir_visitor *v)
1732 {
1733 v->visit(this);
1734 }
1735
1736 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1737
1738 ir_rvalue *record;
1739 const char *field;
1740 };
1741
1742
1743 /**
1744 * Data stored in an ir_constant
1745 */
1746 union ir_constant_data {
1747 unsigned u[16];
1748 int i[16];
1749 float f[16];
1750 bool b[16];
1751 };
1752
1753
1754 class ir_constant : public ir_rvalue {
1755 public:
1756 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1757 ir_constant(bool b);
1758 ir_constant(unsigned int u);
1759 ir_constant(int i);
1760 ir_constant(float f);
1761
1762 /**
1763 * Construct an ir_constant from a list of ir_constant values
1764 */
1765 ir_constant(const struct glsl_type *type, exec_list *values);
1766
1767 /**
1768 * Construct an ir_constant from a scalar component of another ir_constant
1769 *
1770 * The new \c ir_constant inherits the type of the component from the
1771 * source constant.
1772 *
1773 * \note
1774 * In the case of a matrix constant, the new constant is a scalar, \b not
1775 * a vector.
1776 */
1777 ir_constant(const ir_constant *c, unsigned i);
1778
1779 /**
1780 * Return a new ir_constant of the specified type containing all zeros.
1781 */
1782 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1783
1784 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1785
1786 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1787
1788 virtual ir_constant *as_constant()
1789 {
1790 return this;
1791 }
1792
1793 virtual void accept(ir_visitor *v)
1794 {
1795 v->visit(this);
1796 }
1797
1798 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1799
1800 /**
1801 * Get a particular component of a constant as a specific type
1802 *
1803 * This is useful, for example, to get a value from an integer constant
1804 * as a float or bool. This appears frequently when constructors are
1805 * called with all constant parameters.
1806 */
1807 /*@{*/
1808 bool get_bool_component(unsigned i) const;
1809 float get_float_component(unsigned i) const;
1810 int get_int_component(unsigned i) const;
1811 unsigned get_uint_component(unsigned i) const;
1812 /*@}*/
1813
1814 ir_constant *get_array_element(unsigned i) const;
1815
1816 ir_constant *get_record_field(const char *name);
1817
1818 /**
1819 * Copy the values on another constant at a given offset.
1820 *
1821 * The offset is ignored for array or struct copies, it's only for
1822 * scalars or vectors into vectors or matrices.
1823 *
1824 * With identical types on both sides and zero offset it's clone()
1825 * without creating a new object.
1826 */
1827
1828 void copy_offset(ir_constant *src, int offset);
1829
1830 /**
1831 * Copy the values on another constant at a given offset and
1832 * following an assign-like mask.
1833 *
1834 * The mask is ignored for scalars.
1835 *
1836 * Note that this function only handles what assign can handle,
1837 * i.e. at most a vector as source and a column of a matrix as
1838 * destination.
1839 */
1840
1841 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1842
1843 /**
1844 * Determine whether a constant has the same value as another constant
1845 *
1846 * \sa ir_constant::is_zero, ir_constant::is_one,
1847 * ir_constant::is_negative_one, ir_constant::is_basis
1848 */
1849 bool has_value(const ir_constant *) const;
1850
1851 virtual bool is_zero() const;
1852 virtual bool is_one() const;
1853 virtual bool is_negative_one() const;
1854 virtual bool is_basis() const;
1855
1856 /**
1857 * Value of the constant.
1858 *
1859 * The field used to back the values supplied by the constant is determined
1860 * by the type associated with the \c ir_instruction. Constants may be
1861 * scalars, vectors, or matrices.
1862 */
1863 union ir_constant_data value;
1864
1865 /* Array elements */
1866 ir_constant **array_elements;
1867
1868 /* Structure fields */
1869 exec_list components;
1870
1871 private:
1872 /**
1873 * Parameterless constructor only used by the clone method
1874 */
1875 ir_constant(void);
1876 };
1877
1878 /*@}*/
1879
1880 /**
1881 * Apply a visitor to each IR node in a list
1882 */
1883 void
1884 visit_exec_list(exec_list *list, ir_visitor *visitor);
1885
1886 /**
1887 * Validate invariants on each IR node in a list
1888 */
1889 void validate_ir_tree(exec_list *instructions);
1890
1891 struct _mesa_glsl_parse_state;
1892 struct gl_shader_program;
1893
1894 /**
1895 * Detect whether an unlinked shader contains static recursion
1896 *
1897 * If the list of instructions is determined to contain static recursion,
1898 * \c _mesa_glsl_error will be called to emit error messages for each function
1899 * that is in the recursion cycle.
1900 */
1901 void
1902 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1903 exec_list *instructions);
1904
1905 /**
1906 * Detect whether a linked shader contains static recursion
1907 *
1908 * If the list of instructions is determined to contain static recursion,
1909 * \c link_error_printf will be called to emit error messages for each function
1910 * that is in the recursion cycle. In addition,
1911 * \c gl_shader_program::LinkStatus will be set to false.
1912 */
1913 void
1914 detect_recursion_linked(struct gl_shader_program *prog,
1915 exec_list *instructions);
1916
1917 /**
1918 * Make a clone of each IR instruction in a list
1919 *
1920 * \param in List of IR instructions that are to be cloned
1921 * \param out List to hold the cloned instructions
1922 */
1923 void
1924 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1925
1926 extern void
1927 _mesa_glsl_initialize_variables(exec_list *instructions,
1928 struct _mesa_glsl_parse_state *state);
1929
1930 extern void
1931 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1932
1933 extern void
1934 _mesa_glsl_release_functions(void);
1935
1936 extern void
1937 reparent_ir(exec_list *list, void *mem_ctx);
1938
1939 struct glsl_symbol_table;
1940
1941 extern void
1942 import_prototypes(const exec_list *source, exec_list *dest,
1943 struct glsl_symbol_table *symbols, void *mem_ctx);
1944
1945 extern bool
1946 ir_has_call(ir_instruction *ir);
1947
1948 extern void
1949 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1950 bool is_fragment_shader);
1951
1952 extern char *
1953 prototype_string(const glsl_type *return_type, const char *name,
1954 exec_list *parameters);
1955
1956 #endif /* IR_H */