glsl: Remove unused "instructions" parameter.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 enum ir_variable_interpolation {
232 ir_var_smooth = 0,
233 ir_var_flat,
234 ir_var_noperspective
235 };
236
237
238 class ir_variable : public ir_instruction {
239 public:
240 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
241
242 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
243
244 virtual ir_variable *as_variable()
245 {
246 return this;
247 }
248
249 virtual void accept(ir_visitor *v)
250 {
251 v->visit(this);
252 }
253
254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
255
256
257 /**
258 * Get the string value for the interpolation qualifier
259 *
260 * \return The string that would be used in a shader to specify \c
261 * mode will be returned.
262 *
263 * This function should only be used on a shader input or output variable.
264 */
265 const char *interpolation_string() const;
266
267 /**
268 * Calculate the number of slots required to hold this variable
269 *
270 * This is used to determine how many uniform or varying locations a variable
271 * occupies. The count is in units of floating point components.
272 */
273 unsigned component_slots() const;
274
275 /**
276 * Delcared name of the variable
277 */
278 const char *name;
279
280 /**
281 * Highest element accessed with a constant expression array index
282 *
283 * Not used for non-array variables.
284 */
285 unsigned max_array_access;
286
287 /**
288 * Is the variable read-only?
289 *
290 * This is set for variables declared as \c const, shader inputs,
291 * and uniforms.
292 */
293 unsigned read_only:1;
294 unsigned centroid:1;
295 unsigned invariant:1;
296
297 /**
298 * Storage class of the variable.
299 *
300 * \sa ir_variable_mode
301 */
302 unsigned mode:3;
303
304 /**
305 * Interpolation mode for shader inputs / outputs
306 *
307 * \sa ir_variable_interpolation
308 */
309 unsigned interpolation:2;
310
311 /**
312 * Flag that the whole array is assignable
313 *
314 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
315 * equality). This flag enables this behavior.
316 */
317 unsigned array_lvalue:1;
318
319 /**
320 * \name ARB_fragment_coord_conventions
321 * @{
322 */
323 unsigned origin_upper_left:1;
324 unsigned pixel_center_integer:1;
325 /*@}*/
326
327 /**
328 * Was the location explicitly set in the shader?
329 *
330 * If the location is explicitly set in the shader, it \b cannot be changed
331 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
332 * no effect).
333 */
334 unsigned explicit_location:1;
335
336 /**
337 * Storage location of the base of this variable
338 *
339 * The precise meaning of this field depends on the nature of the variable.
340 *
341 * - Vertex shader input: one of the values from \c gl_vert_attrib.
342 * - Vertex shader output: one of the values from \c gl_vert_result.
343 * - Fragment shader input: one of the values from \c gl_frag_attrib.
344 * - Fragment shader output: one of the values from \c gl_frag_result.
345 * - Uniforms: Per-stage uniform slot number.
346 * - Other: This field is not currently used.
347 *
348 * If the variable is a uniform, shader input, or shader output, and the
349 * slot has not been assigned, the value will be -1.
350 */
351 int location;
352
353 /**
354 * Emit a warning if this variable is accessed.
355 */
356 const char *warn_extension;
357
358 /**
359 * Value assigned in the initializer of a variable declared "const"
360 */
361 ir_constant *constant_value;
362 };
363
364
365 /*@{*/
366 /**
367 * The representation of a function instance; may be the full definition or
368 * simply a prototype.
369 */
370 class ir_function_signature : public ir_instruction {
371 /* An ir_function_signature will be part of the list of signatures in
372 * an ir_function.
373 */
374 public:
375 ir_function_signature(const glsl_type *return_type);
376
377 virtual ir_function_signature *clone(void *mem_ctx,
378 struct hash_table *ht) const;
379 ir_function_signature *clone_prototype(void *mem_ctx,
380 struct hash_table *ht) const;
381
382 virtual void accept(ir_visitor *v)
383 {
384 v->visit(this);
385 }
386
387 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
388
389 /**
390 * Get the name of the function for which this is a signature
391 */
392 const char *function_name() const;
393
394 /**
395 * Get a handle to the function for which this is a signature
396 *
397 * There is no setter function, this function returns a \c const pointer,
398 * and \c ir_function_signature::_function is private for a reason. The
399 * only way to make a connection between a function and function signature
400 * is via \c ir_function::add_signature. This helps ensure that certain
401 * invariants (i.e., a function signature is in the list of signatures for
402 * its \c _function) are met.
403 *
404 * \sa ir_function::add_signature
405 */
406 inline const class ir_function *function() const
407 {
408 return this->_function;
409 }
410
411 /**
412 * Check whether the qualifiers match between this signature's parameters
413 * and the supplied parameter list. If not, returns the name of the first
414 * parameter with mismatched qualifiers (for use in error messages).
415 */
416 const char *qualifiers_match(exec_list *params);
417
418 /**
419 * Replace the current parameter list with the given one. This is useful
420 * if the current information came from a prototype, and either has invalid
421 * or missing parameter names.
422 */
423 void replace_parameters(exec_list *new_params);
424
425 /**
426 * Function return type.
427 *
428 * \note This discards the optional precision qualifier.
429 */
430 const struct glsl_type *return_type;
431
432 /**
433 * List of ir_variable of function parameters.
434 *
435 * This represents the storage. The paramaters passed in a particular
436 * call will be in ir_call::actual_paramaters.
437 */
438 struct exec_list parameters;
439
440 /** Whether or not this function has a body (which may be empty). */
441 unsigned is_defined:1;
442
443 /** Whether or not this function signature is a built-in. */
444 unsigned is_builtin:1;
445
446 /** Body of instructions in the function. */
447 struct exec_list body;
448
449 private:
450 /** Function of which this signature is one overload. */
451 class ir_function *_function;
452
453 friend class ir_function;
454 };
455
456
457 /**
458 * Header for tracking multiple overloaded functions with the same name.
459 * Contains a list of ir_function_signatures representing each of the
460 * actual functions.
461 */
462 class ir_function : public ir_instruction {
463 public:
464 ir_function(const char *name);
465
466 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
467
468 virtual ir_function *as_function()
469 {
470 return this;
471 }
472
473 virtual void accept(ir_visitor *v)
474 {
475 v->visit(this);
476 }
477
478 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
479
480 void add_signature(ir_function_signature *sig)
481 {
482 sig->_function = this;
483 this->signatures.push_tail(sig);
484 }
485
486 /**
487 * Get an iterator for the set of function signatures
488 */
489 exec_list_iterator iterator()
490 {
491 return signatures.iterator();
492 }
493
494 /**
495 * Find a signature that matches a set of actual parameters, taking implicit
496 * conversions into account.
497 */
498 ir_function_signature *matching_signature(const exec_list *actual_param);
499
500 /**
501 * Find a signature that exactly matches a set of actual parameters without
502 * any implicit type conversions.
503 */
504 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
505
506 /**
507 * Name of the function.
508 */
509 const char *name;
510
511 /** Whether or not this function has a signature that isn't a built-in. */
512 bool has_user_signature();
513
514 /**
515 * List of ir_function_signature for each overloaded function with this name.
516 */
517 struct exec_list signatures;
518 };
519
520 inline const char *ir_function_signature::function_name() const
521 {
522 return this->_function->name;
523 }
524 /*@}*/
525
526
527 /**
528 * IR instruction representing high-level if-statements
529 */
530 class ir_if : public ir_instruction {
531 public:
532 ir_if(ir_rvalue *condition)
533 : condition(condition)
534 {
535 ir_type = ir_type_if;
536 }
537
538 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
539
540 virtual ir_if *as_if()
541 {
542 return this;
543 }
544
545 virtual void accept(ir_visitor *v)
546 {
547 v->visit(this);
548 }
549
550 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
551
552 ir_rvalue *condition;
553 /** List of ir_instruction for the body of the then branch */
554 exec_list then_instructions;
555 /** List of ir_instruction for the body of the else branch */
556 exec_list else_instructions;
557 };
558
559
560 /**
561 * IR instruction representing a high-level loop structure.
562 */
563 class ir_loop : public ir_instruction {
564 public:
565 ir_loop();
566
567 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
568
569 virtual void accept(ir_visitor *v)
570 {
571 v->visit(this);
572 }
573
574 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
575
576 virtual ir_loop *as_loop()
577 {
578 return this;
579 }
580
581 /**
582 * Get an iterator for the instructions of the loop body
583 */
584 exec_list_iterator iterator()
585 {
586 return body_instructions.iterator();
587 }
588
589 /** List of ir_instruction that make up the body of the loop. */
590 exec_list body_instructions;
591
592 /**
593 * \name Loop counter and controls
594 *
595 * Represents a loop like a FORTRAN \c do-loop.
596 *
597 * \note
598 * If \c from and \c to are the same value, the loop will execute once.
599 */
600 /*@{*/
601 ir_rvalue *from; /** Value of the loop counter on the first
602 * iteration of the loop.
603 */
604 ir_rvalue *to; /** Value of the loop counter on the last
605 * iteration of the loop.
606 */
607 ir_rvalue *increment;
608 ir_variable *counter;
609
610 /**
611 * Comparison operation in the loop terminator.
612 *
613 * If any of the loop control fields are non-\c NULL, this field must be
614 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
615 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
616 */
617 int cmp;
618 /*@}*/
619 };
620
621
622 class ir_assignment : public ir_instruction {
623 public:
624 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
625
626 /**
627 * Construct an assignment with an explicit write mask
628 *
629 * \note
630 * Since a write mask is supplied, the LHS must already be a bare
631 * \c ir_dereference. The cannot be any swizzles in the LHS.
632 */
633 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
634 unsigned write_mask);
635
636 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
637
638 virtual ir_constant *constant_expression_value();
639
640 virtual void accept(ir_visitor *v)
641 {
642 v->visit(this);
643 }
644
645 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
646
647 virtual ir_assignment * as_assignment()
648 {
649 return this;
650 }
651
652 /**
653 * Get a whole variable written by an assignment
654 *
655 * If the LHS of the assignment writes a whole variable, the variable is
656 * returned. Otherwise \c NULL is returned. Examples of whole-variable
657 * assignment are:
658 *
659 * - Assigning to a scalar
660 * - Assigning to all components of a vector
661 * - Whole array (or matrix) assignment
662 * - Whole structure assignment
663 */
664 ir_variable *whole_variable_written();
665
666 /**
667 * Set the LHS of an assignment
668 */
669 void set_lhs(ir_rvalue *lhs);
670
671 /**
672 * Left-hand side of the assignment.
673 *
674 * This should be treated as read only. If you need to set the LHS of an
675 * assignment, use \c ir_assignment::set_lhs.
676 */
677 ir_dereference *lhs;
678
679 /**
680 * Value being assigned
681 */
682 ir_rvalue *rhs;
683
684 /**
685 * Optional condition for the assignment.
686 */
687 ir_rvalue *condition;
688
689
690 /**
691 * Component mask written
692 *
693 * For non-vector types in the LHS, this field will be zero. For vector
694 * types, a bit will be set for each component that is written. Note that
695 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
696 *
697 * A partially-set write mask means that each enabled channel gets
698 * the value from a consecutive channel of the rhs. For example,
699 * to write just .xyw of gl_FrontColor with color:
700 *
701 * (assign (constant bool (1)) (xyw)
702 * (var_ref gl_FragColor)
703 * (swiz xyw (var_ref color)))
704 */
705 unsigned write_mask:4;
706 };
707
708 /* Update ir_expression::num_operands() and operator_strs when
709 * updating this list.
710 */
711 enum ir_expression_operation {
712 ir_unop_bit_not,
713 ir_unop_logic_not,
714 ir_unop_neg,
715 ir_unop_abs,
716 ir_unop_sign,
717 ir_unop_rcp,
718 ir_unop_rsq,
719 ir_unop_sqrt,
720 ir_unop_exp, /**< Log base e on gentype */
721 ir_unop_log, /**< Natural log on gentype */
722 ir_unop_exp2,
723 ir_unop_log2,
724 ir_unop_f2i, /**< Float-to-integer conversion. */
725 ir_unop_i2f, /**< Integer-to-float conversion. */
726 ir_unop_f2b, /**< Float-to-boolean conversion */
727 ir_unop_b2f, /**< Boolean-to-float conversion */
728 ir_unop_i2b, /**< int-to-boolean conversion */
729 ir_unop_b2i, /**< Boolean-to-int conversion */
730 ir_unop_u2f, /**< Unsigned-to-float conversion. */
731 ir_unop_any,
732
733 /**
734 * \name Unary floating-point rounding operations.
735 */
736 /*@{*/
737 ir_unop_trunc,
738 ir_unop_ceil,
739 ir_unop_floor,
740 ir_unop_fract,
741 ir_unop_round_even,
742 /*@}*/
743
744 /**
745 * \name Trigonometric operations.
746 */
747 /*@{*/
748 ir_unop_sin,
749 ir_unop_cos,
750 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
751 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
752 /*@}*/
753
754 /**
755 * \name Partial derivatives.
756 */
757 /*@{*/
758 ir_unop_dFdx,
759 ir_unop_dFdy,
760 /*@}*/
761
762 ir_unop_noise,
763
764 /**
765 * A sentinel marking the last of the unary operations.
766 */
767 ir_last_unop = ir_unop_noise,
768
769 ir_binop_add,
770 ir_binop_sub,
771 ir_binop_mul,
772 ir_binop_div,
773
774 /**
775 * Takes one of two combinations of arguments:
776 *
777 * - mod(vecN, vecN)
778 * - mod(vecN, float)
779 *
780 * Does not take integer types.
781 */
782 ir_binop_mod,
783
784 /**
785 * \name Binary comparison operators which return a boolean vector.
786 * The type of both operands must be equal.
787 */
788 /*@{*/
789 ir_binop_less,
790 ir_binop_greater,
791 ir_binop_lequal,
792 ir_binop_gequal,
793 ir_binop_equal,
794 ir_binop_nequal,
795 /**
796 * Returns single boolean for whether all components of operands[0]
797 * equal the components of operands[1].
798 */
799 ir_binop_all_equal,
800 /**
801 * Returns single boolean for whether any component of operands[0]
802 * is not equal to the corresponding component of operands[1].
803 */
804 ir_binop_any_nequal,
805 /*@}*/
806
807 /**
808 * \name Bit-wise binary operations.
809 */
810 /*@{*/
811 ir_binop_lshift,
812 ir_binop_rshift,
813 ir_binop_bit_and,
814 ir_binop_bit_xor,
815 ir_binop_bit_or,
816 /*@}*/
817
818 ir_binop_logic_and,
819 ir_binop_logic_xor,
820 ir_binop_logic_or,
821
822 ir_binop_dot,
823 ir_binop_min,
824 ir_binop_max,
825
826 ir_binop_pow,
827
828 /**
829 * A sentinel marking the last of the binary operations.
830 */
831 ir_last_binop = ir_binop_pow,
832
833 ir_quadop_vector,
834
835 /**
836 * A sentinel marking the last of all operations.
837 */
838 ir_last_opcode = ir_last_binop
839 };
840
841 class ir_expression : public ir_rvalue {
842 public:
843 /**
844 * Constructor for unary operation expressions
845 */
846 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
847 ir_expression(int op, ir_rvalue *);
848
849 /**
850 * Constructor for binary operation expressions
851 */
852 ir_expression(int op, const struct glsl_type *type,
853 ir_rvalue *, ir_rvalue *);
854 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
855
856 /**
857 * Constructor for quad operator expressions
858 */
859 ir_expression(int op, const struct glsl_type *type,
860 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
861
862 virtual ir_expression *as_expression()
863 {
864 return this;
865 }
866
867 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
868
869 /**
870 * Attempt to constant-fold the expression
871 *
872 * If the expression cannot be constant folded, this method will return
873 * \c NULL.
874 */
875 virtual ir_constant *constant_expression_value();
876
877 /**
878 * Determine the number of operands used by an expression
879 */
880 static unsigned int get_num_operands(ir_expression_operation);
881
882 /**
883 * Determine the number of operands used by an expression
884 */
885 unsigned int get_num_operands() const
886 {
887 return (this->operation == ir_quadop_vector)
888 ? this->type->vector_elements : get_num_operands(operation);
889 }
890
891 /**
892 * Return a string representing this expression's operator.
893 */
894 const char *operator_string();
895
896 /**
897 * Return a string representing this expression's operator.
898 */
899 static const char *operator_string(ir_expression_operation);
900
901
902 /**
903 * Do a reverse-lookup to translate the given string into an operator.
904 */
905 static ir_expression_operation get_operator(const char *);
906
907 virtual void accept(ir_visitor *v)
908 {
909 v->visit(this);
910 }
911
912 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
913
914 ir_expression_operation operation;
915 ir_rvalue *operands[4];
916 };
917
918
919 /**
920 * IR instruction representing a function call
921 */
922 class ir_call : public ir_rvalue {
923 public:
924 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
925 : callee(callee)
926 {
927 ir_type = ir_type_call;
928 assert(callee->return_type != NULL);
929 type = callee->return_type;
930 actual_parameters->move_nodes_to(& this->actual_parameters);
931 }
932
933 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
934
935 virtual ir_constant *constant_expression_value();
936
937 virtual ir_call *as_call()
938 {
939 return this;
940 }
941
942 virtual void accept(ir_visitor *v)
943 {
944 v->visit(this);
945 }
946
947 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
948
949 /**
950 * Get a generic ir_call object when an error occurs
951 *
952 * Any allocation will be performed with 'ctx' as talloc owner.
953 */
954 static ir_call *get_error_instruction(void *ctx);
955
956 /**
957 * Get an iterator for the set of acutal parameters
958 */
959 exec_list_iterator iterator()
960 {
961 return actual_parameters.iterator();
962 }
963
964 /**
965 * Get the name of the function being called.
966 */
967 const char *callee_name() const
968 {
969 return callee->function_name();
970 }
971
972 /**
973 * Get the function signature bound to this function call
974 */
975 ir_function_signature *get_callee()
976 {
977 return callee;
978 }
979
980 /**
981 * Set the function call target
982 */
983 void set_callee(ir_function_signature *sig);
984
985 /**
986 * Generates an inline version of the function before @ir,
987 * returning the return value of the function.
988 */
989 ir_rvalue *generate_inline(ir_instruction *ir);
990
991 /* List of ir_rvalue of paramaters passed in this call. */
992 exec_list actual_parameters;
993
994 private:
995 ir_call()
996 : callee(NULL)
997 {
998 this->ir_type = ir_type_call;
999 }
1000
1001 ir_function_signature *callee;
1002 };
1003
1004
1005 /**
1006 * \name Jump-like IR instructions.
1007 *
1008 * These include \c break, \c continue, \c return, and \c discard.
1009 */
1010 /*@{*/
1011 class ir_jump : public ir_instruction {
1012 protected:
1013 ir_jump()
1014 {
1015 ir_type = ir_type_unset;
1016 }
1017 };
1018
1019 class ir_return : public ir_jump {
1020 public:
1021 ir_return()
1022 : value(NULL)
1023 {
1024 this->ir_type = ir_type_return;
1025 }
1026
1027 ir_return(ir_rvalue *value)
1028 : value(value)
1029 {
1030 this->ir_type = ir_type_return;
1031 }
1032
1033 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1034
1035 virtual ir_return *as_return()
1036 {
1037 return this;
1038 }
1039
1040 ir_rvalue *get_value() const
1041 {
1042 return value;
1043 }
1044
1045 virtual void accept(ir_visitor *v)
1046 {
1047 v->visit(this);
1048 }
1049
1050 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1051
1052 ir_rvalue *value;
1053 };
1054
1055
1056 /**
1057 * Jump instructions used inside loops
1058 *
1059 * These include \c break and \c continue. The \c break within a loop is
1060 * different from the \c break within a switch-statement.
1061 *
1062 * \sa ir_switch_jump
1063 */
1064 class ir_loop_jump : public ir_jump {
1065 public:
1066 enum jump_mode {
1067 jump_break,
1068 jump_continue
1069 };
1070
1071 ir_loop_jump(jump_mode mode)
1072 {
1073 this->ir_type = ir_type_loop_jump;
1074 this->mode = mode;
1075 this->loop = loop;
1076 }
1077
1078 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1079
1080 virtual void accept(ir_visitor *v)
1081 {
1082 v->visit(this);
1083 }
1084
1085 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1086
1087 bool is_break() const
1088 {
1089 return mode == jump_break;
1090 }
1091
1092 bool is_continue() const
1093 {
1094 return mode == jump_continue;
1095 }
1096
1097 /** Mode selector for the jump instruction. */
1098 enum jump_mode mode;
1099 private:
1100 /** Loop containing this break instruction. */
1101 ir_loop *loop;
1102 };
1103
1104 /**
1105 * IR instruction representing discard statements.
1106 */
1107 class ir_discard : public ir_jump {
1108 public:
1109 ir_discard()
1110 {
1111 this->ir_type = ir_type_discard;
1112 this->condition = NULL;
1113 }
1114
1115 ir_discard(ir_rvalue *cond)
1116 {
1117 this->ir_type = ir_type_discard;
1118 this->condition = cond;
1119 }
1120
1121 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1122
1123 virtual void accept(ir_visitor *v)
1124 {
1125 v->visit(this);
1126 }
1127
1128 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1129
1130 virtual ir_discard *as_discard()
1131 {
1132 return this;
1133 }
1134
1135 ir_rvalue *condition;
1136 };
1137 /*@}*/
1138
1139
1140 /**
1141 * Texture sampling opcodes used in ir_texture
1142 */
1143 enum ir_texture_opcode {
1144 ir_tex, /**< Regular texture look-up */
1145 ir_txb, /**< Texture look-up with LOD bias */
1146 ir_txl, /**< Texture look-up with explicit LOD */
1147 ir_txd, /**< Texture look-up with partial derivatvies */
1148 ir_txf /**< Texel fetch with explicit LOD */
1149 };
1150
1151
1152 /**
1153 * IR instruction to sample a texture
1154 *
1155 * The specific form of the IR instruction depends on the \c mode value
1156 * selected from \c ir_texture_opcodes. In the printed IR, these will
1157 * appear as:
1158 *
1159 * Texel offset
1160 * | Projection divisor
1161 * | | Shadow comparitor
1162 * | | |
1163 * v v v
1164 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1165 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1166 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1167 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1168 * (txf (sampler) (coordinate) (0 0 0) (lod))
1169 */
1170 class ir_texture : public ir_rvalue {
1171 public:
1172 ir_texture(enum ir_texture_opcode op)
1173 : op(op), projector(NULL), shadow_comparitor(NULL)
1174 {
1175 this->ir_type = ir_type_texture;
1176 }
1177
1178 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1179
1180 virtual ir_constant *constant_expression_value();
1181
1182 virtual void accept(ir_visitor *v)
1183 {
1184 v->visit(this);
1185 }
1186
1187 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1188
1189 /**
1190 * Return a string representing the ir_texture_opcode.
1191 */
1192 const char *opcode_string();
1193
1194 /** Set the sampler and infer the type. */
1195 void set_sampler(ir_dereference *sampler);
1196
1197 /**
1198 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1199 */
1200 static ir_texture_opcode get_opcode(const char *);
1201
1202 enum ir_texture_opcode op;
1203
1204 /** Sampler to use for the texture access. */
1205 ir_dereference *sampler;
1206
1207 /** Texture coordinate to sample */
1208 ir_rvalue *coordinate;
1209
1210 /**
1211 * Value used for projective divide.
1212 *
1213 * If there is no projective divide (the common case), this will be
1214 * \c NULL. Optimization passes should check for this to point to a constant
1215 * of 1.0 and replace that with \c NULL.
1216 */
1217 ir_rvalue *projector;
1218
1219 /**
1220 * Coordinate used for comparison on shadow look-ups.
1221 *
1222 * If there is no shadow comparison, this will be \c NULL. For the
1223 * \c ir_txf opcode, this *must* be \c NULL.
1224 */
1225 ir_rvalue *shadow_comparitor;
1226
1227 /** Explicit texel offsets. */
1228 signed char offsets[3];
1229
1230 union {
1231 ir_rvalue *lod; /**< Floating point LOD */
1232 ir_rvalue *bias; /**< Floating point LOD bias */
1233 struct {
1234 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1235 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1236 } grad;
1237 } lod_info;
1238 };
1239
1240
1241 struct ir_swizzle_mask {
1242 unsigned x:2;
1243 unsigned y:2;
1244 unsigned z:2;
1245 unsigned w:2;
1246
1247 /**
1248 * Number of components in the swizzle.
1249 */
1250 unsigned num_components:3;
1251
1252 /**
1253 * Does the swizzle contain duplicate components?
1254 *
1255 * L-value swizzles cannot contain duplicate components.
1256 */
1257 unsigned has_duplicates:1;
1258 };
1259
1260
1261 class ir_swizzle : public ir_rvalue {
1262 public:
1263 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1264 unsigned count);
1265
1266 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1267
1268 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1269
1270 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1271
1272 virtual ir_constant *constant_expression_value();
1273
1274 virtual ir_swizzle *as_swizzle()
1275 {
1276 return this;
1277 }
1278
1279 /**
1280 * Construct an ir_swizzle from the textual representation. Can fail.
1281 */
1282 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1283
1284 virtual void accept(ir_visitor *v)
1285 {
1286 v->visit(this);
1287 }
1288
1289 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1290
1291 bool is_lvalue()
1292 {
1293 return val->is_lvalue() && !mask.has_duplicates;
1294 }
1295
1296 /**
1297 * Get the variable that is ultimately referenced by an r-value
1298 */
1299 virtual ir_variable *variable_referenced();
1300
1301 ir_rvalue *val;
1302 ir_swizzle_mask mask;
1303
1304 private:
1305 /**
1306 * Initialize the mask component of a swizzle
1307 *
1308 * This is used by the \c ir_swizzle constructors.
1309 */
1310 void init_mask(const unsigned *components, unsigned count);
1311 };
1312
1313
1314 class ir_dereference : public ir_rvalue {
1315 public:
1316 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1317
1318 virtual ir_dereference *as_dereference()
1319 {
1320 return this;
1321 }
1322
1323 bool is_lvalue();
1324
1325 /**
1326 * Get the variable that is ultimately referenced by an r-value
1327 */
1328 virtual ir_variable *variable_referenced() = 0;
1329 };
1330
1331
1332 class ir_dereference_variable : public ir_dereference {
1333 public:
1334 ir_dereference_variable(ir_variable *var);
1335
1336 virtual ir_dereference_variable *clone(void *mem_ctx,
1337 struct hash_table *) const;
1338
1339 virtual ir_constant *constant_expression_value();
1340
1341 virtual ir_dereference_variable *as_dereference_variable()
1342 {
1343 return this;
1344 }
1345
1346 /**
1347 * Get the variable that is ultimately referenced by an r-value
1348 */
1349 virtual ir_variable *variable_referenced()
1350 {
1351 return this->var;
1352 }
1353
1354 virtual ir_variable *whole_variable_referenced()
1355 {
1356 /* ir_dereference_variable objects always dereference the entire
1357 * variable. However, if this dereference is dereferenced by anything
1358 * else, the complete deferefernce chain is not a whole-variable
1359 * dereference. This method should only be called on the top most
1360 * ir_rvalue in a dereference chain.
1361 */
1362 return this->var;
1363 }
1364
1365 virtual void accept(ir_visitor *v)
1366 {
1367 v->visit(this);
1368 }
1369
1370 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1371
1372 /**
1373 * Object being dereferenced.
1374 */
1375 ir_variable *var;
1376 };
1377
1378
1379 class ir_dereference_array : public ir_dereference {
1380 public:
1381 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1382
1383 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1384
1385 virtual ir_dereference_array *clone(void *mem_ctx,
1386 struct hash_table *) const;
1387
1388 virtual ir_constant *constant_expression_value();
1389
1390 virtual ir_dereference_array *as_dereference_array()
1391 {
1392 return this;
1393 }
1394
1395 /**
1396 * Get the variable that is ultimately referenced by an r-value
1397 */
1398 virtual ir_variable *variable_referenced()
1399 {
1400 return this->array->variable_referenced();
1401 }
1402
1403 virtual void accept(ir_visitor *v)
1404 {
1405 v->visit(this);
1406 }
1407
1408 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1409
1410 ir_rvalue *array;
1411 ir_rvalue *array_index;
1412
1413 private:
1414 void set_array(ir_rvalue *value);
1415 };
1416
1417
1418 class ir_dereference_record : public ir_dereference {
1419 public:
1420 ir_dereference_record(ir_rvalue *value, const char *field);
1421
1422 ir_dereference_record(ir_variable *var, const char *field);
1423
1424 virtual ir_dereference_record *clone(void *mem_ctx,
1425 struct hash_table *) const;
1426
1427 virtual ir_constant *constant_expression_value();
1428
1429 /**
1430 * Get the variable that is ultimately referenced by an r-value
1431 */
1432 virtual ir_variable *variable_referenced()
1433 {
1434 return this->record->variable_referenced();
1435 }
1436
1437 virtual void accept(ir_visitor *v)
1438 {
1439 v->visit(this);
1440 }
1441
1442 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1443
1444 ir_rvalue *record;
1445 const char *field;
1446 };
1447
1448
1449 /**
1450 * Data stored in an ir_constant
1451 */
1452 union ir_constant_data {
1453 unsigned u[16];
1454 int i[16];
1455 float f[16];
1456 bool b[16];
1457 };
1458
1459
1460 class ir_constant : public ir_rvalue {
1461 public:
1462 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1463 ir_constant(bool b);
1464 ir_constant(unsigned int u);
1465 ir_constant(int i);
1466 ir_constant(float f);
1467
1468 /**
1469 * Construct an ir_constant from a list of ir_constant values
1470 */
1471 ir_constant(const struct glsl_type *type, exec_list *values);
1472
1473 /**
1474 * Construct an ir_constant from a scalar component of another ir_constant
1475 *
1476 * The new \c ir_constant inherits the type of the component from the
1477 * source constant.
1478 *
1479 * \note
1480 * In the case of a matrix constant, the new constant is a scalar, \b not
1481 * a vector.
1482 */
1483 ir_constant(const ir_constant *c, unsigned i);
1484
1485 /**
1486 * Return a new ir_constant of the specified type containing all zeros.
1487 */
1488 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1489
1490 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1491
1492 virtual ir_constant *constant_expression_value();
1493
1494 virtual ir_constant *as_constant()
1495 {
1496 return this;
1497 }
1498
1499 virtual void accept(ir_visitor *v)
1500 {
1501 v->visit(this);
1502 }
1503
1504 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1505
1506 /**
1507 * Get a particular component of a constant as a specific type
1508 *
1509 * This is useful, for example, to get a value from an integer constant
1510 * as a float or bool. This appears frequently when constructors are
1511 * called with all constant parameters.
1512 */
1513 /*@{*/
1514 bool get_bool_component(unsigned i) const;
1515 float get_float_component(unsigned i) const;
1516 int get_int_component(unsigned i) const;
1517 unsigned get_uint_component(unsigned i) const;
1518 /*@}*/
1519
1520 ir_constant *get_array_element(unsigned i) const;
1521
1522 ir_constant *get_record_field(const char *name);
1523
1524 /**
1525 * Determine whether a constant has the same value as another constant
1526 *
1527 * \sa ir_constant::is_zero, ir_constant::is_one,
1528 * ir_constant::is_negative_one
1529 */
1530 bool has_value(const ir_constant *) const;
1531
1532 virtual bool is_zero() const;
1533 virtual bool is_one() const;
1534 virtual bool is_negative_one() const;
1535
1536 /**
1537 * Value of the constant.
1538 *
1539 * The field used to back the values supplied by the constant is determined
1540 * by the type associated with the \c ir_instruction. Constants may be
1541 * scalars, vectors, or matrices.
1542 */
1543 union ir_constant_data value;
1544
1545 /* Array elements */
1546 ir_constant **array_elements;
1547
1548 /* Structure fields */
1549 exec_list components;
1550
1551 private:
1552 /**
1553 * Parameterless constructor only used by the clone method
1554 */
1555 ir_constant(void);
1556 };
1557
1558 /*@}*/
1559
1560 /**
1561 * Apply a visitor to each IR node in a list
1562 */
1563 void
1564 visit_exec_list(exec_list *list, ir_visitor *visitor);
1565
1566 /**
1567 * Validate invariants on each IR node in a list
1568 */
1569 void validate_ir_tree(exec_list *instructions);
1570
1571 /**
1572 * Make a clone of each IR instruction in a list
1573 *
1574 * \param in List of IR instructions that are to be cloned
1575 * \param out List to hold the cloned instructions
1576 */
1577 void
1578 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1579
1580 extern void
1581 _mesa_glsl_initialize_variables(exec_list *instructions,
1582 struct _mesa_glsl_parse_state *state);
1583
1584 extern void
1585 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1586
1587 extern void
1588 _mesa_glsl_release_functions(void);
1589
1590 extern void
1591 reparent_ir(exec_list *list, void *mem_ctx);
1592
1593 struct glsl_symbol_table;
1594
1595 extern void
1596 import_prototypes(const exec_list *source, exec_list *dest,
1597 struct glsl_symbol_table *symbols, void *mem_ctx);
1598
1599 extern bool
1600 ir_has_call(ir_instruction *ir);
1601
1602 extern void
1603 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1604
1605 #endif /* IR_H */