glsl: Add is_basis function
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_in,
269 ir_var_out,
270 ir_var_inout,
271 ir_var_const_in, /**< "in" param that must be a constant expression */
272 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
273 ir_var_temporary /**< Temporary variable generated during compilation. */
274 };
275
276 /**
277 * \brief Layout qualifiers for gl_FragDepth.
278 *
279 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
280 * with a layout qualifier.
281 */
282 enum ir_depth_layout {
283 ir_depth_layout_none, /**< No depth layout is specified. */
284 ir_depth_layout_any,
285 ir_depth_layout_greater,
286 ir_depth_layout_less,
287 ir_depth_layout_unchanged
288 };
289
290 /**
291 * \brief Convert depth layout qualifier to string.
292 */
293 const char*
294 depth_layout_string(ir_depth_layout layout);
295
296 /**
297 * Description of built-in state associated with a uniform
298 *
299 * \sa ir_variable::state_slots
300 */
301 struct ir_state_slot {
302 int tokens[5];
303 int swizzle;
304 };
305
306 class ir_variable : public ir_instruction {
307 public:
308 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
309
310 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
311
312 virtual ir_variable *as_variable()
313 {
314 return this;
315 }
316
317 virtual void accept(ir_visitor *v)
318 {
319 v->visit(this);
320 }
321
322 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
323
324
325 /**
326 * Get the string value for the interpolation qualifier
327 *
328 * \return The string that would be used in a shader to specify \c
329 * mode will be returned.
330 *
331 * This function is used to generate error messages of the form "shader
332 * uses %s interpolation qualifier", so in the case where there is no
333 * interpolation qualifier, it returns "no".
334 *
335 * This function should only be used on a shader input or output variable.
336 */
337 const char *interpolation_string() const;
338
339 /**
340 * Determine how this variable should be interpolated based on its
341 * interpolation qualifier (if present), whether it is gl_Color or
342 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
343 * state.
344 *
345 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
346 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
347 */
348 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
349
350 /**
351 * Declared type of the variable
352 */
353 const struct glsl_type *type;
354
355 /**
356 * Delcared name of the variable
357 */
358 const char *name;
359
360 /**
361 * Highest element accessed with a constant expression array index
362 *
363 * Not used for non-array variables.
364 */
365 unsigned max_array_access;
366
367 /**
368 * Is the variable read-only?
369 *
370 * This is set for variables declared as \c const, shader inputs,
371 * and uniforms.
372 */
373 unsigned read_only:1;
374 unsigned centroid:1;
375 unsigned invariant:1;
376
377 /**
378 * Has this variable been used for reading or writing?
379 *
380 * Several GLSL semantic checks require knowledge of whether or not a
381 * variable has been used. For example, it is an error to redeclare a
382 * variable as invariant after it has been used.
383 *
384 * This is only maintained in the ast_to_hir.cpp path, not in
385 * Mesa's fixed function or ARB program paths.
386 */
387 unsigned used:1;
388
389 /**
390 * Has this variable been statically assigned?
391 *
392 * This answers whether the variable was assigned in any path of
393 * the shader during ast_to_hir. This doesn't answer whether it is
394 * still written after dead code removal, nor is it maintained in
395 * non-ast_to_hir.cpp (GLSL parsing) paths.
396 */
397 unsigned assigned:1;
398
399 /**
400 * Storage class of the variable.
401 *
402 * \sa ir_variable_mode
403 */
404 unsigned mode:3;
405
406 /**
407 * Interpolation mode for shader inputs / outputs
408 *
409 * \sa ir_variable_interpolation
410 */
411 unsigned interpolation:2;
412
413 /**
414 * \name ARB_fragment_coord_conventions
415 * @{
416 */
417 unsigned origin_upper_left:1;
418 unsigned pixel_center_integer:1;
419 /*@}*/
420
421 /**
422 * Was the location explicitly set in the shader?
423 *
424 * If the location is explicitly set in the shader, it \b cannot be changed
425 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
426 * no effect).
427 */
428 unsigned explicit_location:1;
429 unsigned explicit_index:1;
430
431 /**
432 * Does this variable have an initializer?
433 *
434 * This is used by the linker to cross-validiate initializers of global
435 * variables.
436 */
437 unsigned has_initializer:1;
438
439 /**
440 * \brief Layout qualifier for gl_FragDepth.
441 *
442 * This is not equal to \c ir_depth_layout_none if and only if this
443 * variable is \c gl_FragDepth and a layout qualifier is specified.
444 */
445 ir_depth_layout depth_layout;
446
447 /**
448 * Storage location of the base of this variable
449 *
450 * The precise meaning of this field depends on the nature of the variable.
451 *
452 * - Vertex shader input: one of the values from \c gl_vert_attrib.
453 * - Vertex shader output: one of the values from \c gl_vert_result.
454 * - Fragment shader input: one of the values from \c gl_frag_attrib.
455 * - Fragment shader output: one of the values from \c gl_frag_result.
456 * - Uniforms: Per-stage uniform slot number.
457 * - Other: This field is not currently used.
458 *
459 * If the variable is a uniform, shader input, or shader output, and the
460 * slot has not been assigned, the value will be -1.
461 */
462 int location;
463
464 /**
465 * output index for dual source blending.
466 */
467 int index;
468
469 /**
470 * Built-in state that backs this uniform
471 *
472 * Once set at variable creation, \c state_slots must remain invariant.
473 * This is because, ideally, this array would be shared by all clones of
474 * this variable in the IR tree. In other words, we'd really like for it
475 * to be a fly-weight.
476 *
477 * If the variable is not a uniform, \c num_state_slots will be zero and
478 * \c state_slots will be \c NULL.
479 */
480 /*@{*/
481 unsigned num_state_slots; /**< Number of state slots used */
482 ir_state_slot *state_slots; /**< State descriptors. */
483 /*@}*/
484
485 /**
486 * Emit a warning if this variable is accessed.
487 */
488 const char *warn_extension;
489
490 /**
491 * Value assigned in the initializer of a variable declared "const"
492 */
493 ir_constant *constant_value;
494
495 /**
496 * Constant expression assigned in the initializer of the variable
497 *
498 * \warning
499 * This field and \c ::constant_value are distinct. Even if the two fields
500 * refer to constants with the same value, they must point to separate
501 * objects.
502 */
503 ir_constant *constant_initializer;
504 };
505
506
507 /*@{*/
508 /**
509 * The representation of a function instance; may be the full definition or
510 * simply a prototype.
511 */
512 class ir_function_signature : public ir_instruction {
513 /* An ir_function_signature will be part of the list of signatures in
514 * an ir_function.
515 */
516 public:
517 ir_function_signature(const glsl_type *return_type);
518
519 virtual ir_function_signature *clone(void *mem_ctx,
520 struct hash_table *ht) const;
521 ir_function_signature *clone_prototype(void *mem_ctx,
522 struct hash_table *ht) const;
523
524 virtual void accept(ir_visitor *v)
525 {
526 v->visit(this);
527 }
528
529 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
530
531 /**
532 * Attempt to evaluate this function as a constant expression,
533 * given a list of the actual parameters and the variable context.
534 * Returns NULL for non-built-ins.
535 */
536 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
537
538 /**
539 * Get the name of the function for which this is a signature
540 */
541 const char *function_name() const;
542
543 /**
544 * Get a handle to the function for which this is a signature
545 *
546 * There is no setter function, this function returns a \c const pointer,
547 * and \c ir_function_signature::_function is private for a reason. The
548 * only way to make a connection between a function and function signature
549 * is via \c ir_function::add_signature. This helps ensure that certain
550 * invariants (i.e., a function signature is in the list of signatures for
551 * its \c _function) are met.
552 *
553 * \sa ir_function::add_signature
554 */
555 inline const class ir_function *function() const
556 {
557 return this->_function;
558 }
559
560 /**
561 * Check whether the qualifiers match between this signature's parameters
562 * and the supplied parameter list. If not, returns the name of the first
563 * parameter with mismatched qualifiers (for use in error messages).
564 */
565 const char *qualifiers_match(exec_list *params);
566
567 /**
568 * Replace the current parameter list with the given one. This is useful
569 * if the current information came from a prototype, and either has invalid
570 * or missing parameter names.
571 */
572 void replace_parameters(exec_list *new_params);
573
574 /**
575 * Function return type.
576 *
577 * \note This discards the optional precision qualifier.
578 */
579 const struct glsl_type *return_type;
580
581 /**
582 * List of ir_variable of function parameters.
583 *
584 * This represents the storage. The paramaters passed in a particular
585 * call will be in ir_call::actual_paramaters.
586 */
587 struct exec_list parameters;
588
589 /** Whether or not this function has a body (which may be empty). */
590 unsigned is_defined:1;
591
592 /** Whether or not this function signature is a built-in. */
593 unsigned is_builtin:1;
594
595 /** Body of instructions in the function. */
596 struct exec_list body;
597
598 private:
599 /** Function of which this signature is one overload. */
600 class ir_function *_function;
601
602 /** Function signature of which this one is a prototype clone */
603 const ir_function_signature *origin;
604
605 friend class ir_function;
606
607 /**
608 * Helper function to run a list of instructions for constant
609 * expression evaluation.
610 *
611 * The hash table represents the values of the visible variables.
612 * There are no scoping issues because the table is indexed on
613 * ir_variable pointers, not variable names.
614 *
615 * Returns false if the expression is not constant, true otherwise,
616 * and the value in *result if result is non-NULL.
617 */
618 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
619 struct hash_table *variable_context,
620 ir_constant **result);
621 };
622
623
624 /**
625 * Header for tracking multiple overloaded functions with the same name.
626 * Contains a list of ir_function_signatures representing each of the
627 * actual functions.
628 */
629 class ir_function : public ir_instruction {
630 public:
631 ir_function(const char *name);
632
633 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
634
635 virtual ir_function *as_function()
636 {
637 return this;
638 }
639
640 virtual void accept(ir_visitor *v)
641 {
642 v->visit(this);
643 }
644
645 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
646
647 void add_signature(ir_function_signature *sig)
648 {
649 sig->_function = this;
650 this->signatures.push_tail(sig);
651 }
652
653 /**
654 * Get an iterator for the set of function signatures
655 */
656 exec_list_iterator iterator()
657 {
658 return signatures.iterator();
659 }
660
661 /**
662 * Find a signature that matches a set of actual parameters, taking implicit
663 * conversions into account. Also flags whether the match was exact.
664 */
665 ir_function_signature *matching_signature(const exec_list *actual_param,
666 bool *match_is_exact);
667
668 /**
669 * Find a signature that matches a set of actual parameters, taking implicit
670 * conversions into account.
671 */
672 ir_function_signature *matching_signature(const exec_list *actual_param);
673
674 /**
675 * Find a signature that exactly matches a set of actual parameters without
676 * any implicit type conversions.
677 */
678 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
679
680 /**
681 * Name of the function.
682 */
683 const char *name;
684
685 /** Whether or not this function has a signature that isn't a built-in. */
686 bool has_user_signature();
687
688 /**
689 * List of ir_function_signature for each overloaded function with this name.
690 */
691 struct exec_list signatures;
692 };
693
694 inline const char *ir_function_signature::function_name() const
695 {
696 return this->_function->name;
697 }
698 /*@}*/
699
700
701 /**
702 * IR instruction representing high-level if-statements
703 */
704 class ir_if : public ir_instruction {
705 public:
706 ir_if(ir_rvalue *condition)
707 : condition(condition)
708 {
709 ir_type = ir_type_if;
710 }
711
712 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
713
714 virtual ir_if *as_if()
715 {
716 return this;
717 }
718
719 virtual void accept(ir_visitor *v)
720 {
721 v->visit(this);
722 }
723
724 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
725
726 ir_rvalue *condition;
727 /** List of ir_instruction for the body of the then branch */
728 exec_list then_instructions;
729 /** List of ir_instruction for the body of the else branch */
730 exec_list else_instructions;
731 };
732
733
734 /**
735 * IR instruction representing a high-level loop structure.
736 */
737 class ir_loop : public ir_instruction {
738 public:
739 ir_loop();
740
741 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
742
743 virtual void accept(ir_visitor *v)
744 {
745 v->visit(this);
746 }
747
748 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
749
750 virtual ir_loop *as_loop()
751 {
752 return this;
753 }
754
755 /**
756 * Get an iterator for the instructions of the loop body
757 */
758 exec_list_iterator iterator()
759 {
760 return body_instructions.iterator();
761 }
762
763 /** List of ir_instruction that make up the body of the loop. */
764 exec_list body_instructions;
765
766 /**
767 * \name Loop counter and controls
768 *
769 * Represents a loop like a FORTRAN \c do-loop.
770 *
771 * \note
772 * If \c from and \c to are the same value, the loop will execute once.
773 */
774 /*@{*/
775 ir_rvalue *from; /** Value of the loop counter on the first
776 * iteration of the loop.
777 */
778 ir_rvalue *to; /** Value of the loop counter on the last
779 * iteration of the loop.
780 */
781 ir_rvalue *increment;
782 ir_variable *counter;
783
784 /**
785 * Comparison operation in the loop terminator.
786 *
787 * If any of the loop control fields are non-\c NULL, this field must be
788 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
789 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
790 */
791 int cmp;
792 /*@}*/
793 };
794
795
796 class ir_assignment : public ir_instruction {
797 public:
798 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
799
800 /**
801 * Construct an assignment with an explicit write mask
802 *
803 * \note
804 * Since a write mask is supplied, the LHS must already be a bare
805 * \c ir_dereference. The cannot be any swizzles in the LHS.
806 */
807 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
808 unsigned write_mask);
809
810 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
811
812 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
813
814 virtual void accept(ir_visitor *v)
815 {
816 v->visit(this);
817 }
818
819 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
820
821 virtual ir_assignment * as_assignment()
822 {
823 return this;
824 }
825
826 /**
827 * Get a whole variable written by an assignment
828 *
829 * If the LHS of the assignment writes a whole variable, the variable is
830 * returned. Otherwise \c NULL is returned. Examples of whole-variable
831 * assignment are:
832 *
833 * - Assigning to a scalar
834 * - Assigning to all components of a vector
835 * - Whole array (or matrix) assignment
836 * - Whole structure assignment
837 */
838 ir_variable *whole_variable_written();
839
840 /**
841 * Set the LHS of an assignment
842 */
843 void set_lhs(ir_rvalue *lhs);
844
845 /**
846 * Left-hand side of the assignment.
847 *
848 * This should be treated as read only. If you need to set the LHS of an
849 * assignment, use \c ir_assignment::set_lhs.
850 */
851 ir_dereference *lhs;
852
853 /**
854 * Value being assigned
855 */
856 ir_rvalue *rhs;
857
858 /**
859 * Optional condition for the assignment.
860 */
861 ir_rvalue *condition;
862
863
864 /**
865 * Component mask written
866 *
867 * For non-vector types in the LHS, this field will be zero. For vector
868 * types, a bit will be set for each component that is written. Note that
869 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
870 *
871 * A partially-set write mask means that each enabled channel gets
872 * the value from a consecutive channel of the rhs. For example,
873 * to write just .xyw of gl_FrontColor with color:
874 *
875 * (assign (constant bool (1)) (xyw)
876 * (var_ref gl_FragColor)
877 * (swiz xyw (var_ref color)))
878 */
879 unsigned write_mask:4;
880 };
881
882 /* Update ir_expression::num_operands() and operator_strs when
883 * updating this list.
884 */
885 enum ir_expression_operation {
886 ir_unop_bit_not,
887 ir_unop_logic_not,
888 ir_unop_neg,
889 ir_unop_abs,
890 ir_unop_sign,
891 ir_unop_rcp,
892 ir_unop_rsq,
893 ir_unop_sqrt,
894 ir_unop_exp, /**< Log base e on gentype */
895 ir_unop_log, /**< Natural log on gentype */
896 ir_unop_exp2,
897 ir_unop_log2,
898 ir_unop_f2i, /**< Float-to-integer conversion. */
899 ir_unop_i2f, /**< Integer-to-float conversion. */
900 ir_unop_f2b, /**< Float-to-boolean conversion */
901 ir_unop_b2f, /**< Boolean-to-float conversion */
902 ir_unop_i2b, /**< int-to-boolean conversion */
903 ir_unop_b2i, /**< Boolean-to-int conversion */
904 ir_unop_u2f, /**< Unsigned-to-float conversion. */
905 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
906 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
907 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
908 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
909 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
910 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
911 ir_unop_any,
912
913 /**
914 * \name Unary floating-point rounding operations.
915 */
916 /*@{*/
917 ir_unop_trunc,
918 ir_unop_ceil,
919 ir_unop_floor,
920 ir_unop_fract,
921 ir_unop_round_even,
922 /*@}*/
923
924 /**
925 * \name Trigonometric operations.
926 */
927 /*@{*/
928 ir_unop_sin,
929 ir_unop_cos,
930 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
931 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
932 /*@}*/
933
934 /**
935 * \name Partial derivatives.
936 */
937 /*@{*/
938 ir_unop_dFdx,
939 ir_unop_dFdy,
940 /*@}*/
941
942 ir_unop_noise,
943
944 /**
945 * A sentinel marking the last of the unary operations.
946 */
947 ir_last_unop = ir_unop_noise,
948
949 ir_binop_add,
950 ir_binop_sub,
951 ir_binop_mul,
952 ir_binop_div,
953
954 /**
955 * Takes one of two combinations of arguments:
956 *
957 * - mod(vecN, vecN)
958 * - mod(vecN, float)
959 *
960 * Does not take integer types.
961 */
962 ir_binop_mod,
963
964 /**
965 * \name Binary comparison operators which return a boolean vector.
966 * The type of both operands must be equal.
967 */
968 /*@{*/
969 ir_binop_less,
970 ir_binop_greater,
971 ir_binop_lequal,
972 ir_binop_gequal,
973 ir_binop_equal,
974 ir_binop_nequal,
975 /**
976 * Returns single boolean for whether all components of operands[0]
977 * equal the components of operands[1].
978 */
979 ir_binop_all_equal,
980 /**
981 * Returns single boolean for whether any component of operands[0]
982 * is not equal to the corresponding component of operands[1].
983 */
984 ir_binop_any_nequal,
985 /*@}*/
986
987 /**
988 * \name Bit-wise binary operations.
989 */
990 /*@{*/
991 ir_binop_lshift,
992 ir_binop_rshift,
993 ir_binop_bit_and,
994 ir_binop_bit_xor,
995 ir_binop_bit_or,
996 /*@}*/
997
998 ir_binop_logic_and,
999 ir_binop_logic_xor,
1000 ir_binop_logic_or,
1001
1002 ir_binop_dot,
1003 ir_binop_min,
1004 ir_binop_max,
1005
1006 ir_binop_pow,
1007
1008 /**
1009 * A sentinel marking the last of the binary operations.
1010 */
1011 ir_last_binop = ir_binop_pow,
1012
1013 ir_quadop_vector,
1014
1015 /**
1016 * A sentinel marking the last of all operations.
1017 */
1018 ir_last_opcode = ir_last_binop
1019 };
1020
1021 class ir_expression : public ir_rvalue {
1022 public:
1023 /**
1024 * Constructor for unary operation expressions
1025 */
1026 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1027 ir_expression(int op, ir_rvalue *);
1028
1029 /**
1030 * Constructor for binary operation expressions
1031 */
1032 ir_expression(int op, const struct glsl_type *type,
1033 ir_rvalue *, ir_rvalue *);
1034 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1035
1036 /**
1037 * Constructor for quad operator expressions
1038 */
1039 ir_expression(int op, const struct glsl_type *type,
1040 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1041
1042 virtual ir_expression *as_expression()
1043 {
1044 return this;
1045 }
1046
1047 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1048
1049 /**
1050 * Attempt to constant-fold the expression
1051 *
1052 * The "variable_context" hash table links ir_variable * to ir_constant *
1053 * that represent the variables' values. \c NULL represents an empty
1054 * context.
1055 *
1056 * If the expression cannot be constant folded, this method will return
1057 * \c NULL.
1058 */
1059 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1060
1061 /**
1062 * Determine the number of operands used by an expression
1063 */
1064 static unsigned int get_num_operands(ir_expression_operation);
1065
1066 /**
1067 * Determine the number of operands used by an expression
1068 */
1069 unsigned int get_num_operands() const
1070 {
1071 return (this->operation == ir_quadop_vector)
1072 ? this->type->vector_elements : get_num_operands(operation);
1073 }
1074
1075 /**
1076 * Return a string representing this expression's operator.
1077 */
1078 const char *operator_string();
1079
1080 /**
1081 * Return a string representing this expression's operator.
1082 */
1083 static const char *operator_string(ir_expression_operation);
1084
1085
1086 /**
1087 * Do a reverse-lookup to translate the given string into an operator.
1088 */
1089 static ir_expression_operation get_operator(const char *);
1090
1091 virtual void accept(ir_visitor *v)
1092 {
1093 v->visit(this);
1094 }
1095
1096 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1097
1098 ir_expression_operation operation;
1099 ir_rvalue *operands[4];
1100 };
1101
1102
1103 /**
1104 * HIR instruction representing a high-level function call, containing a list
1105 * of parameters and returning a value in the supplied temporary.
1106 */
1107 class ir_call : public ir_instruction {
1108 public:
1109 ir_call(ir_function_signature *callee,
1110 ir_dereference_variable *return_deref,
1111 exec_list *actual_parameters)
1112 : return_deref(return_deref), callee(callee)
1113 {
1114 ir_type = ir_type_call;
1115 assert(callee->return_type != NULL);
1116 actual_parameters->move_nodes_to(& this->actual_parameters);
1117 this->use_builtin = callee->is_builtin;
1118 }
1119
1120 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1121
1122 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1123
1124 virtual ir_call *as_call()
1125 {
1126 return this;
1127 }
1128
1129 virtual void accept(ir_visitor *v)
1130 {
1131 v->visit(this);
1132 }
1133
1134 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1135
1136 /**
1137 * Get an iterator for the set of acutal parameters
1138 */
1139 exec_list_iterator iterator()
1140 {
1141 return actual_parameters.iterator();
1142 }
1143
1144 /**
1145 * Get the name of the function being called.
1146 */
1147 const char *callee_name() const
1148 {
1149 return callee->function_name();
1150 }
1151
1152 /**
1153 * Generates an inline version of the function before @ir,
1154 * storing the return value in return_deref.
1155 */
1156 void generate_inline(ir_instruction *ir);
1157
1158 /**
1159 * Storage for the function's return value.
1160 * This must be NULL if the return type is void.
1161 */
1162 ir_dereference_variable *return_deref;
1163
1164 /**
1165 * The specific function signature being called.
1166 */
1167 ir_function_signature *callee;
1168
1169 /* List of ir_rvalue of paramaters passed in this call. */
1170 exec_list actual_parameters;
1171
1172 /** Should this call only bind to a built-in function? */
1173 bool use_builtin;
1174 };
1175
1176
1177 /**
1178 * \name Jump-like IR instructions.
1179 *
1180 * These include \c break, \c continue, \c return, and \c discard.
1181 */
1182 /*@{*/
1183 class ir_jump : public ir_instruction {
1184 protected:
1185 ir_jump()
1186 {
1187 ir_type = ir_type_unset;
1188 }
1189 };
1190
1191 class ir_return : public ir_jump {
1192 public:
1193 ir_return()
1194 : value(NULL)
1195 {
1196 this->ir_type = ir_type_return;
1197 }
1198
1199 ir_return(ir_rvalue *value)
1200 : value(value)
1201 {
1202 this->ir_type = ir_type_return;
1203 }
1204
1205 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1206
1207 virtual ir_return *as_return()
1208 {
1209 return this;
1210 }
1211
1212 ir_rvalue *get_value() const
1213 {
1214 return value;
1215 }
1216
1217 virtual void accept(ir_visitor *v)
1218 {
1219 v->visit(this);
1220 }
1221
1222 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1223
1224 ir_rvalue *value;
1225 };
1226
1227
1228 /**
1229 * Jump instructions used inside loops
1230 *
1231 * These include \c break and \c continue. The \c break within a loop is
1232 * different from the \c break within a switch-statement.
1233 *
1234 * \sa ir_switch_jump
1235 */
1236 class ir_loop_jump : public ir_jump {
1237 public:
1238 enum jump_mode {
1239 jump_break,
1240 jump_continue
1241 };
1242
1243 ir_loop_jump(jump_mode mode)
1244 {
1245 this->ir_type = ir_type_loop_jump;
1246 this->mode = mode;
1247 this->loop = loop;
1248 }
1249
1250 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1251
1252 virtual void accept(ir_visitor *v)
1253 {
1254 v->visit(this);
1255 }
1256
1257 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1258
1259 bool is_break() const
1260 {
1261 return mode == jump_break;
1262 }
1263
1264 bool is_continue() const
1265 {
1266 return mode == jump_continue;
1267 }
1268
1269 /** Mode selector for the jump instruction. */
1270 enum jump_mode mode;
1271 private:
1272 /** Loop containing this break instruction. */
1273 ir_loop *loop;
1274 };
1275
1276 /**
1277 * IR instruction representing discard statements.
1278 */
1279 class ir_discard : public ir_jump {
1280 public:
1281 ir_discard()
1282 {
1283 this->ir_type = ir_type_discard;
1284 this->condition = NULL;
1285 }
1286
1287 ir_discard(ir_rvalue *cond)
1288 {
1289 this->ir_type = ir_type_discard;
1290 this->condition = cond;
1291 }
1292
1293 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1294
1295 virtual void accept(ir_visitor *v)
1296 {
1297 v->visit(this);
1298 }
1299
1300 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1301
1302 virtual ir_discard *as_discard()
1303 {
1304 return this;
1305 }
1306
1307 ir_rvalue *condition;
1308 };
1309 /*@}*/
1310
1311
1312 /**
1313 * Texture sampling opcodes used in ir_texture
1314 */
1315 enum ir_texture_opcode {
1316 ir_tex, /**< Regular texture look-up */
1317 ir_txb, /**< Texture look-up with LOD bias */
1318 ir_txl, /**< Texture look-up with explicit LOD */
1319 ir_txd, /**< Texture look-up with partial derivatvies */
1320 ir_txf, /**< Texel fetch with explicit LOD */
1321 ir_txs /**< Texture size */
1322 };
1323
1324
1325 /**
1326 * IR instruction to sample a texture
1327 *
1328 * The specific form of the IR instruction depends on the \c mode value
1329 * selected from \c ir_texture_opcodes. In the printed IR, these will
1330 * appear as:
1331 *
1332 * Texel offset (0 or an expression)
1333 * | Projection divisor
1334 * | | Shadow comparitor
1335 * | | |
1336 * v v v
1337 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1338 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1339 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1340 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1341 * (txf <type> <sampler> <coordinate> 0 <lod>)
1342 * (txs <type> <sampler> <lod>)
1343 */
1344 class ir_texture : public ir_rvalue {
1345 public:
1346 ir_texture(enum ir_texture_opcode op)
1347 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1348 {
1349 this->ir_type = ir_type_texture;
1350 }
1351
1352 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1353
1354 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1355
1356 virtual void accept(ir_visitor *v)
1357 {
1358 v->visit(this);
1359 }
1360
1361 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1362
1363 /**
1364 * Return a string representing the ir_texture_opcode.
1365 */
1366 const char *opcode_string();
1367
1368 /** Set the sampler and type. */
1369 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1370
1371 /**
1372 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1373 */
1374 static ir_texture_opcode get_opcode(const char *);
1375
1376 enum ir_texture_opcode op;
1377
1378 /** Sampler to use for the texture access. */
1379 ir_dereference *sampler;
1380
1381 /** Texture coordinate to sample */
1382 ir_rvalue *coordinate;
1383
1384 /**
1385 * Value used for projective divide.
1386 *
1387 * If there is no projective divide (the common case), this will be
1388 * \c NULL. Optimization passes should check for this to point to a constant
1389 * of 1.0 and replace that with \c NULL.
1390 */
1391 ir_rvalue *projector;
1392
1393 /**
1394 * Coordinate used for comparison on shadow look-ups.
1395 *
1396 * If there is no shadow comparison, this will be \c NULL. For the
1397 * \c ir_txf opcode, this *must* be \c NULL.
1398 */
1399 ir_rvalue *shadow_comparitor;
1400
1401 /** Texel offset. */
1402 ir_rvalue *offset;
1403
1404 union {
1405 ir_rvalue *lod; /**< Floating point LOD */
1406 ir_rvalue *bias; /**< Floating point LOD bias */
1407 struct {
1408 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1409 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1410 } grad;
1411 } lod_info;
1412 };
1413
1414
1415 struct ir_swizzle_mask {
1416 unsigned x:2;
1417 unsigned y:2;
1418 unsigned z:2;
1419 unsigned w:2;
1420
1421 /**
1422 * Number of components in the swizzle.
1423 */
1424 unsigned num_components:3;
1425
1426 /**
1427 * Does the swizzle contain duplicate components?
1428 *
1429 * L-value swizzles cannot contain duplicate components.
1430 */
1431 unsigned has_duplicates:1;
1432 };
1433
1434
1435 class ir_swizzle : public ir_rvalue {
1436 public:
1437 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1438 unsigned count);
1439
1440 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1441
1442 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1443
1444 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1445
1446 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1447
1448 virtual ir_swizzle *as_swizzle()
1449 {
1450 return this;
1451 }
1452
1453 /**
1454 * Construct an ir_swizzle from the textual representation. Can fail.
1455 */
1456 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1457
1458 virtual void accept(ir_visitor *v)
1459 {
1460 v->visit(this);
1461 }
1462
1463 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1464
1465 bool is_lvalue() const
1466 {
1467 return val->is_lvalue() && !mask.has_duplicates;
1468 }
1469
1470 /**
1471 * Get the variable that is ultimately referenced by an r-value
1472 */
1473 virtual ir_variable *variable_referenced() const;
1474
1475 ir_rvalue *val;
1476 ir_swizzle_mask mask;
1477
1478 private:
1479 /**
1480 * Initialize the mask component of a swizzle
1481 *
1482 * This is used by the \c ir_swizzle constructors.
1483 */
1484 void init_mask(const unsigned *components, unsigned count);
1485 };
1486
1487
1488 class ir_dereference : public ir_rvalue {
1489 public:
1490 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1491
1492 virtual ir_dereference *as_dereference()
1493 {
1494 return this;
1495 }
1496
1497 bool is_lvalue() const;
1498
1499 /**
1500 * Get the variable that is ultimately referenced by an r-value
1501 */
1502 virtual ir_variable *variable_referenced() const = 0;
1503
1504 /**
1505 * Get the constant that is ultimately referenced by an r-value,
1506 * in a constant expression evaluation context.
1507 *
1508 * The offset is used when the reference is to a specific column of
1509 * a matrix.
1510 */
1511 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1512 };
1513
1514
1515 class ir_dereference_variable : public ir_dereference {
1516 public:
1517 ir_dereference_variable(ir_variable *var);
1518
1519 virtual ir_dereference_variable *clone(void *mem_ctx,
1520 struct hash_table *) const;
1521
1522 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1523
1524 virtual ir_dereference_variable *as_dereference_variable()
1525 {
1526 return this;
1527 }
1528
1529 /**
1530 * Get the variable that is ultimately referenced by an r-value
1531 */
1532 virtual ir_variable *variable_referenced() const
1533 {
1534 return this->var;
1535 }
1536
1537 /**
1538 * Get the constant that is ultimately referenced by an r-value,
1539 * in a constant expression evaluation context.
1540 *
1541 * The offset is used when the reference is to a specific column of
1542 * a matrix.
1543 */
1544 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1545
1546 virtual ir_variable *whole_variable_referenced()
1547 {
1548 /* ir_dereference_variable objects always dereference the entire
1549 * variable. However, if this dereference is dereferenced by anything
1550 * else, the complete deferefernce chain is not a whole-variable
1551 * dereference. This method should only be called on the top most
1552 * ir_rvalue in a dereference chain.
1553 */
1554 return this->var;
1555 }
1556
1557 virtual void accept(ir_visitor *v)
1558 {
1559 v->visit(this);
1560 }
1561
1562 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1563
1564 /**
1565 * Object being dereferenced.
1566 */
1567 ir_variable *var;
1568 };
1569
1570
1571 class ir_dereference_array : public ir_dereference {
1572 public:
1573 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1574
1575 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1576
1577 virtual ir_dereference_array *clone(void *mem_ctx,
1578 struct hash_table *) const;
1579
1580 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1581
1582 virtual ir_dereference_array *as_dereference_array()
1583 {
1584 return this;
1585 }
1586
1587 /**
1588 * Get the variable that is ultimately referenced by an r-value
1589 */
1590 virtual ir_variable *variable_referenced() const
1591 {
1592 return this->array->variable_referenced();
1593 }
1594
1595 /**
1596 * Get the constant that is ultimately referenced by an r-value,
1597 * in a constant expression evaluation context.
1598 *
1599 * The offset is used when the reference is to a specific column of
1600 * a matrix.
1601 */
1602 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1603
1604 virtual void accept(ir_visitor *v)
1605 {
1606 v->visit(this);
1607 }
1608
1609 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1610
1611 ir_rvalue *array;
1612 ir_rvalue *array_index;
1613
1614 private:
1615 void set_array(ir_rvalue *value);
1616 };
1617
1618
1619 class ir_dereference_record : public ir_dereference {
1620 public:
1621 ir_dereference_record(ir_rvalue *value, const char *field);
1622
1623 ir_dereference_record(ir_variable *var, const char *field);
1624
1625 virtual ir_dereference_record *clone(void *mem_ctx,
1626 struct hash_table *) const;
1627
1628 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1629
1630 /**
1631 * Get the variable that is ultimately referenced by an r-value
1632 */
1633 virtual ir_variable *variable_referenced() const
1634 {
1635 return this->record->variable_referenced();
1636 }
1637
1638 /**
1639 * Get the constant that is ultimately referenced by an r-value,
1640 * in a constant expression evaluation context.
1641 *
1642 * The offset is used when the reference is to a specific column of
1643 * a matrix.
1644 */
1645 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1646
1647 virtual void accept(ir_visitor *v)
1648 {
1649 v->visit(this);
1650 }
1651
1652 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1653
1654 ir_rvalue *record;
1655 const char *field;
1656 };
1657
1658
1659 /**
1660 * Data stored in an ir_constant
1661 */
1662 union ir_constant_data {
1663 unsigned u[16];
1664 int i[16];
1665 float f[16];
1666 bool b[16];
1667 };
1668
1669
1670 class ir_constant : public ir_rvalue {
1671 public:
1672 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1673 ir_constant(bool b);
1674 ir_constant(unsigned int u);
1675 ir_constant(int i);
1676 ir_constant(float f);
1677
1678 /**
1679 * Construct an ir_constant from a list of ir_constant values
1680 */
1681 ir_constant(const struct glsl_type *type, exec_list *values);
1682
1683 /**
1684 * Construct an ir_constant from a scalar component of another ir_constant
1685 *
1686 * The new \c ir_constant inherits the type of the component from the
1687 * source constant.
1688 *
1689 * \note
1690 * In the case of a matrix constant, the new constant is a scalar, \b not
1691 * a vector.
1692 */
1693 ir_constant(const ir_constant *c, unsigned i);
1694
1695 /**
1696 * Return a new ir_constant of the specified type containing all zeros.
1697 */
1698 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1699
1700 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1701
1702 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1703
1704 virtual ir_constant *as_constant()
1705 {
1706 return this;
1707 }
1708
1709 virtual void accept(ir_visitor *v)
1710 {
1711 v->visit(this);
1712 }
1713
1714 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1715
1716 /**
1717 * Get a particular component of a constant as a specific type
1718 *
1719 * This is useful, for example, to get a value from an integer constant
1720 * as a float or bool. This appears frequently when constructors are
1721 * called with all constant parameters.
1722 */
1723 /*@{*/
1724 bool get_bool_component(unsigned i) const;
1725 float get_float_component(unsigned i) const;
1726 int get_int_component(unsigned i) const;
1727 unsigned get_uint_component(unsigned i) const;
1728 /*@}*/
1729
1730 ir_constant *get_array_element(unsigned i) const;
1731
1732 ir_constant *get_record_field(const char *name);
1733
1734 /**
1735 * Copy the values on another constant at a given offset.
1736 *
1737 * The offset is ignored for array or struct copies, it's only for
1738 * scalars or vectors into vectors or matrices.
1739 *
1740 * With identical types on both sides and zero offset it's clone()
1741 * without creating a new object.
1742 */
1743
1744 void copy_offset(ir_constant *src, int offset);
1745
1746 /**
1747 * Copy the values on another constant at a given offset and
1748 * following an assign-like mask.
1749 *
1750 * The mask is ignored for scalars.
1751 *
1752 * Note that this function only handles what assign can handle,
1753 * i.e. at most a vector as source and a column of a matrix as
1754 * destination.
1755 */
1756
1757 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1758
1759 /**
1760 * Determine whether a constant has the same value as another constant
1761 *
1762 * \sa ir_constant::is_zero, ir_constant::is_one,
1763 * ir_constant::is_negative_one, ir_constant::is_basis
1764 */
1765 bool has_value(const ir_constant *) const;
1766
1767 virtual bool is_zero() const;
1768 virtual bool is_one() const;
1769 virtual bool is_negative_one() const;
1770 virtual bool is_basis() const;
1771
1772 /**
1773 * Value of the constant.
1774 *
1775 * The field used to back the values supplied by the constant is determined
1776 * by the type associated with the \c ir_instruction. Constants may be
1777 * scalars, vectors, or matrices.
1778 */
1779 union ir_constant_data value;
1780
1781 /* Array elements */
1782 ir_constant **array_elements;
1783
1784 /* Structure fields */
1785 exec_list components;
1786
1787 private:
1788 /**
1789 * Parameterless constructor only used by the clone method
1790 */
1791 ir_constant(void);
1792 };
1793
1794 /*@}*/
1795
1796 /**
1797 * Apply a visitor to each IR node in a list
1798 */
1799 void
1800 visit_exec_list(exec_list *list, ir_visitor *visitor);
1801
1802 /**
1803 * Validate invariants on each IR node in a list
1804 */
1805 void validate_ir_tree(exec_list *instructions);
1806
1807 struct _mesa_glsl_parse_state;
1808 struct gl_shader_program;
1809
1810 /**
1811 * Detect whether an unlinked shader contains static recursion
1812 *
1813 * If the list of instructions is determined to contain static recursion,
1814 * \c _mesa_glsl_error will be called to emit error messages for each function
1815 * that is in the recursion cycle.
1816 */
1817 void
1818 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1819 exec_list *instructions);
1820
1821 /**
1822 * Detect whether a linked shader contains static recursion
1823 *
1824 * If the list of instructions is determined to contain static recursion,
1825 * \c link_error_printf will be called to emit error messages for each function
1826 * that is in the recursion cycle. In addition,
1827 * \c gl_shader_program::LinkStatus will be set to false.
1828 */
1829 void
1830 detect_recursion_linked(struct gl_shader_program *prog,
1831 exec_list *instructions);
1832
1833 /**
1834 * Make a clone of each IR instruction in a list
1835 *
1836 * \param in List of IR instructions that are to be cloned
1837 * \param out List to hold the cloned instructions
1838 */
1839 void
1840 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1841
1842 extern void
1843 _mesa_glsl_initialize_variables(exec_list *instructions,
1844 struct _mesa_glsl_parse_state *state);
1845
1846 extern void
1847 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1848
1849 extern void
1850 _mesa_glsl_release_functions(void);
1851
1852 extern void
1853 reparent_ir(exec_list *list, void *mem_ctx);
1854
1855 struct glsl_symbol_table;
1856
1857 extern void
1858 import_prototypes(const exec_list *source, exec_list *dest,
1859 struct glsl_symbol_table *symbols, void *mem_ctx);
1860
1861 extern bool
1862 ir_has_call(ir_instruction *ir);
1863
1864 extern void
1865 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1866 bool is_fragment_shader);
1867
1868 extern char *
1869 prototype_string(const glsl_type *return_type, const char *name,
1870 exec_list *parameters);
1871
1872 #endif /* IR_H */