glsl: Fix variable_referenced() for vector_{extract,insert} expressions
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_barrier,
82 ir_type_max, /**< maximum ir_type enum number, for validation */
83 ir_type_unset = ir_type_max
84 };
85
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93
94 /**
95 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
96 * there's a virtual destructor present. Because we almost
97 * universally use ralloc for our memory management of
98 * ir_instructions, the destructor doesn't need to do any work.
99 */
100 virtual ~ir_instruction()
101 {
102 }
103
104 /** ir_print_visitor helper for debugging. */
105 void print(void) const;
106 void fprint(FILE *f) const;
107
108 virtual void accept(ir_visitor *) = 0;
109 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
110 virtual ir_instruction *clone(void *mem_ctx,
111 struct hash_table *ht) const = 0;
112
113 bool is_rvalue() const
114 {
115 return ir_type == ir_type_dereference_array ||
116 ir_type == ir_type_dereference_record ||
117 ir_type == ir_type_dereference_variable ||
118 ir_type == ir_type_constant ||
119 ir_type == ir_type_expression ||
120 ir_type == ir_type_swizzle ||
121 ir_type == ir_type_texture;
122 }
123
124 bool is_dereference() const
125 {
126 return ir_type == ir_type_dereference_array ||
127 ir_type == ir_type_dereference_record ||
128 ir_type == ir_type_dereference_variable;
129 }
130
131 bool is_jump() const
132 {
133 return ir_type == ir_type_loop_jump ||
134 ir_type == ir_type_return ||
135 ir_type == ir_type_discard;
136 }
137
138 /**
139 * \name IR instruction downcast functions
140 *
141 * These functions either cast the object to a derived class or return
142 * \c NULL if the object's type does not match the specified derived class.
143 * Additional downcast functions will be added as needed.
144 */
145 /*@{*/
146 #define AS_BASE(TYPE) \
147 class ir_##TYPE *as_##TYPE() \
148 { \
149 assume(this != NULL); \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 assume(this != NULL); \
155 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
156 }
157
158 AS_BASE(rvalue)
159 AS_BASE(dereference)
160 AS_BASE(jump)
161 #undef AS_BASE
162
163 #define AS_CHILD(TYPE) \
164 class ir_##TYPE * as_##TYPE() \
165 { \
166 assume(this != NULL); \
167 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
168 } \
169 const class ir_##TYPE * as_##TYPE() const \
170 { \
171 assume(this != NULL); \
172 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
173 }
174 AS_CHILD(variable)
175 AS_CHILD(function)
176 AS_CHILD(dereference_array)
177 AS_CHILD(dereference_variable)
178 AS_CHILD(dereference_record)
179 AS_CHILD(expression)
180 AS_CHILD(loop)
181 AS_CHILD(assignment)
182 AS_CHILD(call)
183 AS_CHILD(return)
184 AS_CHILD(if)
185 AS_CHILD(swizzle)
186 AS_CHILD(texture)
187 AS_CHILD(constant)
188 AS_CHILD(discard)
189 #undef AS_CHILD
190 /*@}*/
191
192 /**
193 * IR equality method: Return true if the referenced instruction would
194 * return the same value as this one.
195 *
196 * This intended to be used for CSE and algebraic optimizations, on rvalues
197 * in particular. No support for other instruction types (assignments,
198 * jumps, calls, etc.) is planned.
199 */
200 virtual bool equals(const ir_instruction *ir,
201 enum ir_node_type ignore = ir_type_unset) const;
202
203 protected:
204 ir_instruction(enum ir_node_type t)
205 : ir_type(t)
206 {
207 }
208
209 private:
210 ir_instruction()
211 {
212 assert(!"Should not get here.");
213 }
214 };
215
216
217 /**
218 * The base class for all "values"/expression trees.
219 */
220 class ir_rvalue : public ir_instruction {
221 public:
222 const struct glsl_type *type;
223
224 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
225
226 virtual void accept(ir_visitor *v)
227 {
228 v->visit(this);
229 }
230
231 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
232
233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue() const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_in,
329 ir_var_shader_out,
330 ir_var_function_in,
331 ir_var_function_out,
332 ir_var_function_inout,
333 ir_var_const_in, /**< "in" param that must be a constant expression */
334 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
335 ir_var_temporary, /**< Temporary variable generated during compilation. */
336 ir_var_mode_count /**< Number of variable modes */
337 };
338
339 /**
340 * Enum keeping track of how a variable was declared. For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343 enum ir_var_declaration_type {
344 /**
345 * Normal declaration (for most variables, this means an explicit
346 * declaration. Exception: temporaries are always implicitly declared, but
347 * they still use ir_var_declared_normally).
348 *
349 * Note: an ir_variable that represents a named interface block uses
350 * ir_var_declared_normally.
351 */
352 ir_var_declared_normally = 0,
353
354 /**
355 * Variable was explicitly declared (or re-declared) in an unnamed
356 * interface block.
357 */
358 ir_var_declared_in_block,
359
360 /**
361 * Variable is an implicitly declared built-in that has not been explicitly
362 * re-declared by the shader.
363 */
364 ir_var_declared_implicitly,
365
366 /**
367 * Variable is implicitly generated by the compiler and should not be
368 * visible via the API.
369 */
370 ir_var_hidden,
371 };
372
373 /**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379 enum ir_depth_layout {
380 ir_depth_layout_none, /**< No depth layout is specified. */
381 ir_depth_layout_any,
382 ir_depth_layout_greater,
383 ir_depth_layout_less,
384 ir_depth_layout_unchanged
385 };
386
387 /**
388 * \brief Convert depth layout qualifier to string.
389 */
390 const char*
391 depth_layout_string(ir_depth_layout layout);
392
393 /**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398 struct ir_state_slot {
399 int tokens[5];
400 int swizzle;
401 };
402
403
404 /**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416 const char *interpolation_string(unsigned interpolation);
417
418
419 class ir_variable : public ir_instruction {
420 public:
421 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425 virtual void accept(ir_visitor *v)
426 {
427 v->visit(this);
428 }
429
430 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433 /**
434 * Determine how this variable should be interpolated based on its
435 * interpolation qualifier (if present), whether it is gl_Color or
436 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
437 * state.
438 *
439 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
440 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
441 */
442 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
443
444 /**
445 * Determine whether or not a variable is part of a uniform or
446 * shader storage block.
447 */
448 inline bool is_in_buffer_block() const
449 {
450 return (this->data.mode == ir_var_uniform ||
451 this->data.mode == ir_var_shader_storage) &&
452 this->interface_type != NULL;
453 }
454
455 /**
456 * Determine whether or not a variable is part of a shader storage block.
457 */
458 inline bool is_in_shader_storage_block() const
459 {
460 return this->data.mode == ir_var_shader_storage &&
461 this->interface_type != NULL;
462 }
463
464 /**
465 * Determine whether or not a variable is the declaration of an interface
466 * block
467 *
468 * For the first declaration below, there will be an \c ir_variable named
469 * "instance" whose type and whose instance_type will be the same
470 * \cglsl_type. For the second declaration, there will be an \c ir_variable
471 * named "f" whose type is float and whose instance_type is B2.
472 *
473 * "instance" is an interface instance variable, but "f" is not.
474 *
475 * uniform B1 {
476 * float f;
477 * } instance;
478 *
479 * uniform B2 {
480 * float f;
481 * };
482 */
483 inline bool is_interface_instance() const
484 {
485 return this->type->without_array() == this->interface_type;
486 }
487
488 /**
489 * Set this->interface_type on a newly created variable.
490 */
491 void init_interface_type(const struct glsl_type *type)
492 {
493 assert(this->interface_type == NULL);
494 this->interface_type = type;
495 if (this->is_interface_instance()) {
496 this->u.max_ifc_array_access =
497 rzalloc_array(this, unsigned, type->length);
498 }
499 }
500
501 /**
502 * Change this->interface_type on a variable that previously had a
503 * different, but compatible, interface_type. This is used during linking
504 * to set the size of arrays in interface blocks.
505 */
506 void change_interface_type(const struct glsl_type *type)
507 {
508 if (this->u.max_ifc_array_access != NULL) {
509 /* max_ifc_array_access has already been allocated, so make sure the
510 * new interface has the same number of fields as the old one.
511 */
512 assert(this->interface_type->length == type->length);
513 }
514 this->interface_type = type;
515 }
516
517 /**
518 * Change this->interface_type on a variable that previously had a
519 * different, and incompatible, interface_type. This is used during
520 * compilation to handle redeclaration of the built-in gl_PerVertex
521 * interface block.
522 */
523 void reinit_interface_type(const struct glsl_type *type)
524 {
525 if (this->u.max_ifc_array_access != NULL) {
526 #ifndef NDEBUG
527 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
528 * it defines have been accessed yet; so it's safe to throw away the
529 * old max_ifc_array_access pointer, since all of its values are
530 * zero.
531 */
532 for (unsigned i = 0; i < this->interface_type->length; i++)
533 assert(this->u.max_ifc_array_access[i] == 0);
534 #endif
535 ralloc_free(this->u.max_ifc_array_access);
536 this->u.max_ifc_array_access = NULL;
537 }
538 this->interface_type = NULL;
539 init_interface_type(type);
540 }
541
542 const glsl_type *get_interface_type() const
543 {
544 return this->interface_type;
545 }
546
547 /**
548 * Get the max_ifc_array_access pointer
549 *
550 * A "set" function is not needed because the array is dynmically allocated
551 * as necessary.
552 */
553 inline unsigned *get_max_ifc_array_access()
554 {
555 assert(this->data._num_state_slots == 0);
556 return this->u.max_ifc_array_access;
557 }
558
559 inline unsigned get_num_state_slots() const
560 {
561 assert(!this->is_interface_instance()
562 || this->data._num_state_slots == 0);
563 return this->data._num_state_slots;
564 }
565
566 inline void set_num_state_slots(unsigned n)
567 {
568 assert(!this->is_interface_instance()
569 || n == 0);
570 this->data._num_state_slots = n;
571 }
572
573 inline ir_state_slot *get_state_slots()
574 {
575 return this->is_interface_instance() ? NULL : this->u.state_slots;
576 }
577
578 inline const ir_state_slot *get_state_slots() const
579 {
580 return this->is_interface_instance() ? NULL : this->u.state_slots;
581 }
582
583 inline ir_state_slot *allocate_state_slots(unsigned n)
584 {
585 assert(!this->is_interface_instance());
586
587 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
588 this->data._num_state_slots = 0;
589
590 if (this->u.state_slots != NULL)
591 this->data._num_state_slots = n;
592
593 return this->u.state_slots;
594 }
595
596 inline bool is_name_ralloced() const
597 {
598 return this->name != ir_variable::tmp_name;
599 }
600
601 /**
602 * Enable emitting extension warnings for this variable
603 */
604 void enable_extension_warning(const char *extension);
605
606 /**
607 * Get the extension warning string for this variable
608 *
609 * If warnings are not enabled, \c NULL is returned.
610 */
611 const char *get_extension_warning() const;
612
613 /**
614 * Declared type of the variable
615 */
616 const struct glsl_type *type;
617
618 /**
619 * Declared name of the variable
620 */
621 const char *name;
622
623 struct ir_variable_data {
624
625 /**
626 * Is the variable read-only?
627 *
628 * This is set for variables declared as \c const, shader inputs,
629 * and uniforms.
630 */
631 unsigned read_only:1;
632 unsigned centroid:1;
633 unsigned sample:1;
634 unsigned patch:1;
635 unsigned invariant:1;
636 unsigned precise:1;
637
638 /**
639 * Has this variable been used for reading or writing?
640 *
641 * Several GLSL semantic checks require knowledge of whether or not a
642 * variable has been used. For example, it is an error to redeclare a
643 * variable as invariant after it has been used.
644 *
645 * This is only maintained in the ast_to_hir.cpp path, not in
646 * Mesa's fixed function or ARB program paths.
647 */
648 unsigned used:1;
649
650 /**
651 * Has this variable been statically assigned?
652 *
653 * This answers whether the variable was assigned in any path of
654 * the shader during ast_to_hir. This doesn't answer whether it is
655 * still written after dead code removal, nor is it maintained in
656 * non-ast_to_hir.cpp (GLSL parsing) paths.
657 */
658 unsigned assigned:1;
659
660 /**
661 * Enum indicating how the variable was declared. See
662 * ir_var_declaration_type.
663 *
664 * This is used to detect certain kinds of illegal variable redeclarations.
665 */
666 unsigned how_declared:2;
667
668 /**
669 * Storage class of the variable.
670 *
671 * \sa ir_variable_mode
672 */
673 unsigned mode:4;
674
675 /**
676 * Interpolation mode for shader inputs / outputs
677 *
678 * \sa ir_variable_interpolation
679 */
680 unsigned interpolation:2;
681
682 /**
683 * \name ARB_fragment_coord_conventions
684 * @{
685 */
686 unsigned origin_upper_left:1;
687 unsigned pixel_center_integer:1;
688 /*@}*/
689
690 /**
691 * Was the location explicitly set in the shader?
692 *
693 * If the location is explicitly set in the shader, it \b cannot be changed
694 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
695 * no effect).
696 */
697 unsigned explicit_location:1;
698 unsigned explicit_index:1;
699
700 /**
701 * Was an initial binding explicitly set in the shader?
702 *
703 * If so, constant_value contains an integer ir_constant representing the
704 * initial binding point.
705 */
706 unsigned explicit_binding:1;
707
708 /**
709 * Does this variable have an initializer?
710 *
711 * This is used by the linker to cross-validiate initializers of global
712 * variables.
713 */
714 unsigned has_initializer:1;
715
716 /**
717 * Is this variable a generic output or input that has not yet been matched
718 * up to a variable in another stage of the pipeline?
719 *
720 * This is used by the linker as scratch storage while assigning locations
721 * to generic inputs and outputs.
722 */
723 unsigned is_unmatched_generic_inout:1;
724
725 /**
726 * If non-zero, then this variable may be packed along with other variables
727 * into a single varying slot, so this offset should be applied when
728 * accessing components. For example, an offset of 1 means that the x
729 * component of this variable is actually stored in component y of the
730 * location specified by \c location.
731 */
732 unsigned location_frac:2;
733
734 /**
735 * Layout of the matrix. Uses glsl_matrix_layout values.
736 */
737 unsigned matrix_layout:2;
738
739 /**
740 * Non-zero if this variable was created by lowering a named interface
741 * block which was not an array.
742 *
743 * Note that this variable and \c from_named_ifc_block_array will never
744 * both be non-zero.
745 */
746 unsigned from_named_ifc_block_nonarray:1;
747
748 /**
749 * Non-zero if this variable was created by lowering a named interface
750 * block which was an array.
751 *
752 * Note that this variable and \c from_named_ifc_block_nonarray will never
753 * both be non-zero.
754 */
755 unsigned from_named_ifc_block_array:1;
756
757 /**
758 * Non-zero if the variable must be a shader input. This is useful for
759 * constraints on function parameters.
760 */
761 unsigned must_be_shader_input:1;
762
763 /**
764 * Output index for dual source blending.
765 *
766 * \note
767 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
768 * source blending.
769 */
770 unsigned index:1;
771
772 /**
773 * \brief Layout qualifier for gl_FragDepth.
774 *
775 * This is not equal to \c ir_depth_layout_none if and only if this
776 * variable is \c gl_FragDepth and a layout qualifier is specified.
777 */
778 ir_depth_layout depth_layout:3;
779
780 /**
781 * ARB_shader_image_load_store qualifiers.
782 */
783 unsigned image_read_only:1; /**< "readonly" qualifier. */
784 unsigned image_write_only:1; /**< "writeonly" qualifier. */
785 unsigned image_coherent:1;
786 unsigned image_volatile:1;
787 unsigned image_restrict:1;
788
789 /**
790 * ARB_shader_storage_buffer_object
791 */
792 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
793
794 /**
795 * Emit a warning if this variable is accessed.
796 */
797 private:
798 uint8_t warn_extension_index;
799
800 public:
801 /** Image internal format if specified explicitly, otherwise GL_NONE. */
802 uint16_t image_format;
803
804 private:
805 /**
806 * Number of state slots used
807 *
808 * \note
809 * This could be stored in as few as 7-bits, if necessary. If it is made
810 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
811 * be safe.
812 */
813 uint16_t _num_state_slots;
814
815 public:
816 /**
817 * Initial binding point for a sampler, atomic, or UBO.
818 *
819 * For array types, this represents the binding point for the first element.
820 */
821 int16_t binding;
822
823 /**
824 * Storage location of the base of this variable
825 *
826 * The precise meaning of this field depends on the nature of the variable.
827 *
828 * - Vertex shader input: one of the values from \c gl_vert_attrib.
829 * - Vertex shader output: one of the values from \c gl_varying_slot.
830 * - Geometry shader input: one of the values from \c gl_varying_slot.
831 * - Geometry shader output: one of the values from \c gl_varying_slot.
832 * - Fragment shader input: one of the values from \c gl_varying_slot.
833 * - Fragment shader output: one of the values from \c gl_frag_result.
834 * - Uniforms: Per-stage uniform slot number for default uniform block.
835 * - Uniforms: Index within the uniform block definition for UBO members.
836 * - Non-UBO Uniforms: explicit location until linking then reused to
837 * store uniform slot number.
838 * - Other: This field is not currently used.
839 *
840 * If the variable is a uniform, shader input, or shader output, and the
841 * slot has not been assigned, the value will be -1.
842 */
843 int location;
844
845 /**
846 * Vertex stream output identifier.
847 */
848 unsigned stream;
849
850 /**
851 * Location an atomic counter is stored at.
852 */
853 struct {
854 unsigned offset;
855 } atomic;
856
857 /**
858 * Highest element accessed with a constant expression array index
859 *
860 * Not used for non-array variables.
861 */
862 unsigned max_array_access;
863
864 /**
865 * Allow (only) ir_variable direct access private members.
866 */
867 friend class ir_variable;
868 } data;
869
870 /**
871 * Value assigned in the initializer of a variable declared "const"
872 */
873 ir_constant *constant_value;
874
875 /**
876 * Constant expression assigned in the initializer of the variable
877 *
878 * \warning
879 * This field and \c ::constant_value are distinct. Even if the two fields
880 * refer to constants with the same value, they must point to separate
881 * objects.
882 */
883 ir_constant *constant_initializer;
884
885 private:
886 static const char *const warn_extension_table[];
887
888 union {
889 /**
890 * For variables which satisfy the is_interface_instance() predicate,
891 * this points to an array of integers such that if the ith member of
892 * the interface block is an array, max_ifc_array_access[i] is the
893 * maximum array element of that member that has been accessed. If the
894 * ith member of the interface block is not an array,
895 * max_ifc_array_access[i] is unused.
896 *
897 * For variables whose type is not an interface block, this pointer is
898 * NULL.
899 */
900 unsigned *max_ifc_array_access;
901
902 /**
903 * Built-in state that backs this uniform
904 *
905 * Once set at variable creation, \c state_slots must remain invariant.
906 *
907 * If the variable is not a uniform, \c _num_state_slots will be zero
908 * and \c state_slots will be \c NULL.
909 */
910 ir_state_slot *state_slots;
911 } u;
912
913 /**
914 * For variables that are in an interface block or are an instance of an
915 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
916 *
917 * \sa ir_variable::location
918 */
919 const glsl_type *interface_type;
920
921 /**
922 * Name used for anonymous compiler temporaries
923 */
924 static const char tmp_name[];
925
926 public:
927 /**
928 * Should the construct keep names for ir_var_temporary variables?
929 *
930 * When this global is false, names passed to the constructor for
931 * \c ir_var_temporary variables will be dropped. Instead, the variable will
932 * be named "compiler_temp". This name will be in static storage.
933 *
934 * \warning
935 * \b NEVER change the mode of an \c ir_var_temporary.
936 *
937 * \warning
938 * This variable is \b not thread-safe. It is global, \b not
939 * per-context. It begins life false. A context can, at some point, make
940 * it true. From that point on, it will be true forever. This should be
941 * okay since it will only be set true while debugging.
942 */
943 static bool temporaries_allocate_names;
944 };
945
946 /**
947 * A function that returns whether a built-in function is available in the
948 * current shading language (based on version, ES or desktop, and extensions).
949 */
950 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
951
952 /*@{*/
953 /**
954 * The representation of a function instance; may be the full definition or
955 * simply a prototype.
956 */
957 class ir_function_signature : public ir_instruction {
958 /* An ir_function_signature will be part of the list of signatures in
959 * an ir_function.
960 */
961 public:
962 ir_function_signature(const glsl_type *return_type,
963 builtin_available_predicate builtin_avail = NULL);
964
965 virtual ir_function_signature *clone(void *mem_ctx,
966 struct hash_table *ht) const;
967 ir_function_signature *clone_prototype(void *mem_ctx,
968 struct hash_table *ht) const;
969
970 virtual void accept(ir_visitor *v)
971 {
972 v->visit(this);
973 }
974
975 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
976
977 /**
978 * Attempt to evaluate this function as a constant expression,
979 * given a list of the actual parameters and the variable context.
980 * Returns NULL for non-built-ins.
981 */
982 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
983
984 /**
985 * Get the name of the function for which this is a signature
986 */
987 const char *function_name() const;
988
989 /**
990 * Get a handle to the function for which this is a signature
991 *
992 * There is no setter function, this function returns a \c const pointer,
993 * and \c ir_function_signature::_function is private for a reason. The
994 * only way to make a connection between a function and function signature
995 * is via \c ir_function::add_signature. This helps ensure that certain
996 * invariants (i.e., a function signature is in the list of signatures for
997 * its \c _function) are met.
998 *
999 * \sa ir_function::add_signature
1000 */
1001 inline const class ir_function *function() const
1002 {
1003 return this->_function;
1004 }
1005
1006 /**
1007 * Check whether the qualifiers match between this signature's parameters
1008 * and the supplied parameter list. If not, returns the name of the first
1009 * parameter with mismatched qualifiers (for use in error messages).
1010 */
1011 const char *qualifiers_match(exec_list *params);
1012
1013 /**
1014 * Replace the current parameter list with the given one. This is useful
1015 * if the current information came from a prototype, and either has invalid
1016 * or missing parameter names.
1017 */
1018 void replace_parameters(exec_list *new_params);
1019
1020 /**
1021 * Function return type.
1022 *
1023 * \note This discards the optional precision qualifier.
1024 */
1025 const struct glsl_type *return_type;
1026
1027 /**
1028 * List of ir_variable of function parameters.
1029 *
1030 * This represents the storage. The paramaters passed in a particular
1031 * call will be in ir_call::actual_paramaters.
1032 */
1033 struct exec_list parameters;
1034
1035 /** Whether or not this function has a body (which may be empty). */
1036 unsigned is_defined:1;
1037
1038 /** Whether or not this function signature is a built-in. */
1039 bool is_builtin() const;
1040
1041 /**
1042 * Whether or not this function is an intrinsic to be implemented
1043 * by the driver.
1044 */
1045 bool is_intrinsic;
1046
1047 /** Whether or not a built-in is available for this shader. */
1048 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1049
1050 /** Body of instructions in the function. */
1051 struct exec_list body;
1052
1053 private:
1054 /**
1055 * A function pointer to a predicate that answers whether a built-in
1056 * function is available in the current shader. NULL if not a built-in.
1057 */
1058 builtin_available_predicate builtin_avail;
1059
1060 /** Function of which this signature is one overload. */
1061 class ir_function *_function;
1062
1063 /** Function signature of which this one is a prototype clone */
1064 const ir_function_signature *origin;
1065
1066 friend class ir_function;
1067
1068 /**
1069 * Helper function to run a list of instructions for constant
1070 * expression evaluation.
1071 *
1072 * The hash table represents the values of the visible variables.
1073 * There are no scoping issues because the table is indexed on
1074 * ir_variable pointers, not variable names.
1075 *
1076 * Returns false if the expression is not constant, true otherwise,
1077 * and the value in *result if result is non-NULL.
1078 */
1079 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1080 struct hash_table *variable_context,
1081 ir_constant **result);
1082 };
1083
1084
1085 /**
1086 * Header for tracking multiple overloaded functions with the same name.
1087 * Contains a list of ir_function_signatures representing each of the
1088 * actual functions.
1089 */
1090 class ir_function : public ir_instruction {
1091 public:
1092 ir_function(const char *name);
1093
1094 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1095
1096 virtual void accept(ir_visitor *v)
1097 {
1098 v->visit(this);
1099 }
1100
1101 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1102
1103 void add_signature(ir_function_signature *sig)
1104 {
1105 sig->_function = this;
1106 this->signatures.push_tail(sig);
1107 }
1108
1109 /**
1110 * Find a signature that matches a set of actual parameters, taking implicit
1111 * conversions into account. Also flags whether the match was exact.
1112 */
1113 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1114 const exec_list *actual_param,
1115 bool allow_builtins,
1116 bool *match_is_exact);
1117
1118 /**
1119 * Find a signature that matches a set of actual parameters, taking implicit
1120 * conversions into account.
1121 */
1122 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1123 const exec_list *actual_param,
1124 bool allow_builtins);
1125
1126 /**
1127 * Find a signature that exactly matches a set of actual parameters without
1128 * any implicit type conversions.
1129 */
1130 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1131 const exec_list *actual_ps);
1132
1133 /**
1134 * Name of the function.
1135 */
1136 const char *name;
1137
1138 /** Whether or not this function has a signature that isn't a built-in. */
1139 bool has_user_signature();
1140
1141 /**
1142 * List of ir_function_signature for each overloaded function with this name.
1143 */
1144 struct exec_list signatures;
1145
1146 /**
1147 * is this function a subroutine type declaration
1148 * e.g. subroutine void type1(float arg1);
1149 */
1150 bool is_subroutine;
1151
1152 /**
1153 * is this function associated to a subroutine type
1154 * e.g. subroutine (type1, type2) function_name { function_body };
1155 * would have num_subroutine_types 2,
1156 * and pointers to the type1 and type2 types.
1157 */
1158 int num_subroutine_types;
1159 const struct glsl_type **subroutine_types;
1160 };
1161
1162 inline const char *ir_function_signature::function_name() const
1163 {
1164 return this->_function->name;
1165 }
1166 /*@}*/
1167
1168
1169 /**
1170 * IR instruction representing high-level if-statements
1171 */
1172 class ir_if : public ir_instruction {
1173 public:
1174 ir_if(ir_rvalue *condition)
1175 : ir_instruction(ir_type_if), condition(condition)
1176 {
1177 }
1178
1179 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1180
1181 virtual void accept(ir_visitor *v)
1182 {
1183 v->visit(this);
1184 }
1185
1186 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1187
1188 ir_rvalue *condition;
1189 /** List of ir_instruction for the body of the then branch */
1190 exec_list then_instructions;
1191 /** List of ir_instruction for the body of the else branch */
1192 exec_list else_instructions;
1193 };
1194
1195
1196 /**
1197 * IR instruction representing a high-level loop structure.
1198 */
1199 class ir_loop : public ir_instruction {
1200 public:
1201 ir_loop();
1202
1203 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1204
1205 virtual void accept(ir_visitor *v)
1206 {
1207 v->visit(this);
1208 }
1209
1210 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1211
1212 /** List of ir_instruction that make up the body of the loop. */
1213 exec_list body_instructions;
1214 };
1215
1216
1217 class ir_assignment : public ir_instruction {
1218 public:
1219 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1220
1221 /**
1222 * Construct an assignment with an explicit write mask
1223 *
1224 * \note
1225 * Since a write mask is supplied, the LHS must already be a bare
1226 * \c ir_dereference. The cannot be any swizzles in the LHS.
1227 */
1228 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1229 unsigned write_mask);
1230
1231 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1232
1233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1234
1235 virtual void accept(ir_visitor *v)
1236 {
1237 v->visit(this);
1238 }
1239
1240 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1241
1242 /**
1243 * Get a whole variable written by an assignment
1244 *
1245 * If the LHS of the assignment writes a whole variable, the variable is
1246 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1247 * assignment are:
1248 *
1249 * - Assigning to a scalar
1250 * - Assigning to all components of a vector
1251 * - Whole array (or matrix) assignment
1252 * - Whole structure assignment
1253 */
1254 ir_variable *whole_variable_written();
1255
1256 /**
1257 * Set the LHS of an assignment
1258 */
1259 void set_lhs(ir_rvalue *lhs);
1260
1261 /**
1262 * Left-hand side of the assignment.
1263 *
1264 * This should be treated as read only. If you need to set the LHS of an
1265 * assignment, use \c ir_assignment::set_lhs.
1266 */
1267 ir_dereference *lhs;
1268
1269 /**
1270 * Value being assigned
1271 */
1272 ir_rvalue *rhs;
1273
1274 /**
1275 * Optional condition for the assignment.
1276 */
1277 ir_rvalue *condition;
1278
1279
1280 /**
1281 * Component mask written
1282 *
1283 * For non-vector types in the LHS, this field will be zero. For vector
1284 * types, a bit will be set for each component that is written. Note that
1285 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1286 *
1287 * A partially-set write mask means that each enabled channel gets
1288 * the value from a consecutive channel of the rhs. For example,
1289 * to write just .xyw of gl_FrontColor with color:
1290 *
1291 * (assign (constant bool (1)) (xyw)
1292 * (var_ref gl_FragColor)
1293 * (swiz xyw (var_ref color)))
1294 */
1295 unsigned write_mask:4;
1296 };
1297
1298 /* Update ir_expression::get_num_operands() and operator_strs when
1299 * updating this list.
1300 */
1301 enum ir_expression_operation {
1302 ir_unop_bit_not,
1303 ir_unop_logic_not,
1304 ir_unop_neg,
1305 ir_unop_abs,
1306 ir_unop_sign,
1307 ir_unop_rcp,
1308 ir_unop_rsq,
1309 ir_unop_sqrt,
1310 ir_unop_exp, /**< Log base e on gentype */
1311 ir_unop_log, /**< Natural log on gentype */
1312 ir_unop_exp2,
1313 ir_unop_log2,
1314 ir_unop_f2i, /**< Float-to-integer conversion. */
1315 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1316 ir_unop_i2f, /**< Integer-to-float conversion. */
1317 ir_unop_f2b, /**< Float-to-boolean conversion */
1318 ir_unop_b2f, /**< Boolean-to-float conversion */
1319 ir_unop_i2b, /**< int-to-boolean conversion */
1320 ir_unop_b2i, /**< Boolean-to-int conversion */
1321 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1322 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1323 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1324 ir_unop_d2f, /**< Double-to-float conversion. */
1325 ir_unop_f2d, /**< Float-to-double conversion. */
1326 ir_unop_d2i, /**< Double-to-integer conversion. */
1327 ir_unop_i2d, /**< Integer-to-double conversion. */
1328 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1329 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1330 ir_unop_d2b, /**< Double-to-boolean conversion. */
1331 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1332 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1333 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1334 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1335 ir_unop_any,
1336
1337 /**
1338 * \name Unary floating-point rounding operations.
1339 */
1340 /*@{*/
1341 ir_unop_trunc,
1342 ir_unop_ceil,
1343 ir_unop_floor,
1344 ir_unop_fract,
1345 ir_unop_round_even,
1346 /*@}*/
1347
1348 /**
1349 * \name Trigonometric operations.
1350 */
1351 /*@{*/
1352 ir_unop_sin,
1353 ir_unop_cos,
1354 /*@}*/
1355
1356 /**
1357 * \name Partial derivatives.
1358 */
1359 /*@{*/
1360 ir_unop_dFdx,
1361 ir_unop_dFdx_coarse,
1362 ir_unop_dFdx_fine,
1363 ir_unop_dFdy,
1364 ir_unop_dFdy_coarse,
1365 ir_unop_dFdy_fine,
1366 /*@}*/
1367
1368 /**
1369 * \name Floating point pack and unpack operations.
1370 */
1371 /*@{*/
1372 ir_unop_pack_snorm_2x16,
1373 ir_unop_pack_snorm_4x8,
1374 ir_unop_pack_unorm_2x16,
1375 ir_unop_pack_unorm_4x8,
1376 ir_unop_pack_half_2x16,
1377 ir_unop_unpack_snorm_2x16,
1378 ir_unop_unpack_snorm_4x8,
1379 ir_unop_unpack_unorm_2x16,
1380 ir_unop_unpack_unorm_4x8,
1381 ir_unop_unpack_half_2x16,
1382 /*@}*/
1383
1384 /**
1385 * \name Lowered floating point unpacking operations.
1386 *
1387 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1388 */
1389 /*@{*/
1390 ir_unop_unpack_half_2x16_split_x,
1391 ir_unop_unpack_half_2x16_split_y,
1392 /*@}*/
1393
1394 /**
1395 * \name Bit operations, part of ARB_gpu_shader5.
1396 */
1397 /*@{*/
1398 ir_unop_bitfield_reverse,
1399 ir_unop_bit_count,
1400 ir_unop_find_msb,
1401 ir_unop_find_lsb,
1402 /*@}*/
1403
1404 ir_unop_saturate,
1405
1406 /**
1407 * \name Double packing, part of ARB_gpu_shader_fp64.
1408 */
1409 /*@{*/
1410 ir_unop_pack_double_2x32,
1411 ir_unop_unpack_double_2x32,
1412 /*@}*/
1413
1414 ir_unop_frexp_sig,
1415 ir_unop_frexp_exp,
1416
1417 ir_unop_noise,
1418
1419 ir_unop_subroutine_to_int,
1420 /**
1421 * Interpolate fs input at centroid
1422 *
1423 * operand0 is the fs input.
1424 */
1425 ir_unop_interpolate_at_centroid,
1426
1427 /**
1428 * Ask the driver for the total size of a buffer block.
1429 *
1430 * operand0 is the ir_constant buffer block index in the linked shader.
1431 */
1432 ir_unop_get_buffer_size,
1433
1434 /**
1435 * Calculate length of an unsized array inside a buffer block.
1436 * This opcode is going to be replaced in a lowering pass inside
1437 * the linker.
1438 *
1439 * operand0 is the unsized array's ir_value for the calculation
1440 * of its length.
1441 */
1442 ir_unop_ssbo_unsized_array_length,
1443
1444 /**
1445 * A sentinel marking the last of the unary operations.
1446 */
1447 ir_last_unop = ir_unop_ssbo_unsized_array_length,
1448
1449 ir_binop_add,
1450 ir_binop_sub,
1451 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1452 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1453 ir_binop_div,
1454
1455 /**
1456 * Returns the carry resulting from the addition of the two arguments.
1457 */
1458 /*@{*/
1459 ir_binop_carry,
1460 /*@}*/
1461
1462 /**
1463 * Returns the borrow resulting from the subtraction of the second argument
1464 * from the first argument.
1465 */
1466 /*@{*/
1467 ir_binop_borrow,
1468 /*@}*/
1469
1470 /**
1471 * Takes one of two combinations of arguments:
1472 *
1473 * - mod(vecN, vecN)
1474 * - mod(vecN, float)
1475 *
1476 * Does not take integer types.
1477 */
1478 ir_binop_mod,
1479
1480 /**
1481 * \name Binary comparison operators which return a boolean vector.
1482 * The type of both operands must be equal.
1483 */
1484 /*@{*/
1485 ir_binop_less,
1486 ir_binop_greater,
1487 ir_binop_lequal,
1488 ir_binop_gequal,
1489 ir_binop_equal,
1490 ir_binop_nequal,
1491 /**
1492 * Returns single boolean for whether all components of operands[0]
1493 * equal the components of operands[1].
1494 */
1495 ir_binop_all_equal,
1496 /**
1497 * Returns single boolean for whether any component of operands[0]
1498 * is not equal to the corresponding component of operands[1].
1499 */
1500 ir_binop_any_nequal,
1501 /*@}*/
1502
1503 /**
1504 * \name Bit-wise binary operations.
1505 */
1506 /*@{*/
1507 ir_binop_lshift,
1508 ir_binop_rshift,
1509 ir_binop_bit_and,
1510 ir_binop_bit_xor,
1511 ir_binop_bit_or,
1512 /*@}*/
1513
1514 ir_binop_logic_and,
1515 ir_binop_logic_xor,
1516 ir_binop_logic_or,
1517
1518 ir_binop_dot,
1519 ir_binop_min,
1520 ir_binop_max,
1521
1522 ir_binop_pow,
1523
1524 /**
1525 * \name Lowered floating point packing operations.
1526 *
1527 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1528 */
1529 /*@{*/
1530 ir_binop_pack_half_2x16_split,
1531 /*@}*/
1532
1533 /**
1534 * \name First half of a lowered bitfieldInsert() operation.
1535 *
1536 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1537 */
1538 /*@{*/
1539 ir_binop_bfm,
1540 /*@}*/
1541
1542 /**
1543 * Load a value the size of a given GLSL type from a uniform block.
1544 *
1545 * operand0 is the ir_constant uniform block index in the linked shader.
1546 * operand1 is a byte offset within the uniform block.
1547 */
1548 ir_binop_ubo_load,
1549
1550 /**
1551 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1552 */
1553 /*@{*/
1554 ir_binop_ldexp,
1555 /*@}*/
1556
1557 /**
1558 * Extract a scalar from a vector
1559 *
1560 * operand0 is the vector
1561 * operand1 is the index of the field to read from operand0
1562 */
1563 ir_binop_vector_extract,
1564
1565 /**
1566 * Interpolate fs input at offset
1567 *
1568 * operand0 is the fs input
1569 * operand1 is the offset from the pixel center
1570 */
1571 ir_binop_interpolate_at_offset,
1572
1573 /**
1574 * Interpolate fs input at sample position
1575 *
1576 * operand0 is the fs input
1577 * operand1 is the sample ID
1578 */
1579 ir_binop_interpolate_at_sample,
1580
1581 /**
1582 * A sentinel marking the last of the binary operations.
1583 */
1584 ir_last_binop = ir_binop_interpolate_at_sample,
1585
1586 /**
1587 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1588 */
1589 /*@{*/
1590 ir_triop_fma,
1591 /*@}*/
1592
1593 ir_triop_lrp,
1594
1595 /**
1596 * \name Conditional Select
1597 *
1598 * A vector conditional select instruction (like ?:, but operating per-
1599 * component on vectors).
1600 *
1601 * \see lower_instructions_visitor::ldexp_to_arith
1602 */
1603 /*@{*/
1604 ir_triop_csel,
1605 /*@}*/
1606
1607 /**
1608 * \name Second half of a lowered bitfieldInsert() operation.
1609 *
1610 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1611 */
1612 /*@{*/
1613 ir_triop_bfi,
1614 /*@}*/
1615
1616 ir_triop_bitfield_extract,
1617
1618 /**
1619 * Generate a value with one field of a vector changed
1620 *
1621 * operand0 is the vector
1622 * operand1 is the value to write into the vector result
1623 * operand2 is the index in operand0 to be modified
1624 */
1625 ir_triop_vector_insert,
1626
1627 /**
1628 * A sentinel marking the last of the ternary operations.
1629 */
1630 ir_last_triop = ir_triop_vector_insert,
1631
1632 ir_quadop_bitfield_insert,
1633
1634 ir_quadop_vector,
1635
1636 /**
1637 * A sentinel marking the last of the ternary operations.
1638 */
1639 ir_last_quadop = ir_quadop_vector,
1640
1641 /**
1642 * A sentinel marking the last of all operations.
1643 */
1644 ir_last_opcode = ir_quadop_vector
1645 };
1646
1647 class ir_expression : public ir_rvalue {
1648 public:
1649 ir_expression(int op, const struct glsl_type *type,
1650 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1651 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1652
1653 /**
1654 * Constructor for unary operation expressions
1655 */
1656 ir_expression(int op, ir_rvalue *);
1657
1658 /**
1659 * Constructor for binary operation expressions
1660 */
1661 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1662
1663 /**
1664 * Constructor for ternary operation expressions
1665 */
1666 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1667
1668 virtual bool equals(const ir_instruction *ir,
1669 enum ir_node_type ignore = ir_type_unset) const;
1670
1671 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1672
1673 /**
1674 * Attempt to constant-fold the expression
1675 *
1676 * The "variable_context" hash table links ir_variable * to ir_constant *
1677 * that represent the variables' values. \c NULL represents an empty
1678 * context.
1679 *
1680 * If the expression cannot be constant folded, this method will return
1681 * \c NULL.
1682 */
1683 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1684
1685 /**
1686 * Determine the number of operands used by an expression
1687 */
1688 static unsigned int get_num_operands(ir_expression_operation);
1689
1690 /**
1691 * Determine the number of operands used by an expression
1692 */
1693 unsigned int get_num_operands() const
1694 {
1695 return (this->operation == ir_quadop_vector)
1696 ? this->type->vector_elements : get_num_operands(operation);
1697 }
1698
1699 /**
1700 * Return whether the expression operates on vectors horizontally.
1701 */
1702 bool is_horizontal() const
1703 {
1704 return operation == ir_binop_all_equal ||
1705 operation == ir_binop_any_nequal ||
1706 operation == ir_unop_any ||
1707 operation == ir_binop_dot ||
1708 operation == ir_quadop_vector;
1709 }
1710
1711 /**
1712 * Return a string representing this expression's operator.
1713 */
1714 const char *operator_string();
1715
1716 /**
1717 * Return a string representing this expression's operator.
1718 */
1719 static const char *operator_string(ir_expression_operation);
1720
1721
1722 /**
1723 * Do a reverse-lookup to translate the given string into an operator.
1724 */
1725 static ir_expression_operation get_operator(const char *);
1726
1727 virtual void accept(ir_visitor *v)
1728 {
1729 v->visit(this);
1730 }
1731
1732 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1733
1734 virtual ir_variable *variable_referenced() const;
1735
1736 ir_expression_operation operation;
1737 ir_rvalue *operands[4];
1738 };
1739
1740
1741 /**
1742 * HIR instruction representing a high-level function call, containing a list
1743 * of parameters and returning a value in the supplied temporary.
1744 */
1745 class ir_call : public ir_instruction {
1746 public:
1747 ir_call(ir_function_signature *callee,
1748 ir_dereference_variable *return_deref,
1749 exec_list *actual_parameters)
1750 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1751 {
1752 assert(callee->return_type != NULL);
1753 actual_parameters->move_nodes_to(& this->actual_parameters);
1754 this->use_builtin = callee->is_builtin();
1755 }
1756
1757 ir_call(ir_function_signature *callee,
1758 ir_dereference_variable *return_deref,
1759 exec_list *actual_parameters,
1760 ir_variable *var, ir_rvalue *array_idx)
1761 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1762 {
1763 assert(callee->return_type != NULL);
1764 actual_parameters->move_nodes_to(& this->actual_parameters);
1765 this->use_builtin = callee->is_builtin();
1766 }
1767
1768 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1769
1770 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1771
1772 virtual void accept(ir_visitor *v)
1773 {
1774 v->visit(this);
1775 }
1776
1777 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1778
1779 /**
1780 * Get the name of the function being called.
1781 */
1782 const char *callee_name() const
1783 {
1784 return callee->function_name();
1785 }
1786
1787 /**
1788 * Generates an inline version of the function before @ir,
1789 * storing the return value in return_deref.
1790 */
1791 void generate_inline(ir_instruction *ir);
1792
1793 /**
1794 * Storage for the function's return value.
1795 * This must be NULL if the return type is void.
1796 */
1797 ir_dereference_variable *return_deref;
1798
1799 /**
1800 * The specific function signature being called.
1801 */
1802 ir_function_signature *callee;
1803
1804 /* List of ir_rvalue of paramaters passed in this call. */
1805 exec_list actual_parameters;
1806
1807 /** Should this call only bind to a built-in function? */
1808 bool use_builtin;
1809
1810 /*
1811 * ARB_shader_subroutine support -
1812 * the subroutine uniform variable and array index
1813 * rvalue to be used in the lowering pass later.
1814 */
1815 ir_variable *sub_var;
1816 ir_rvalue *array_idx;
1817 };
1818
1819
1820 /**
1821 * \name Jump-like IR instructions.
1822 *
1823 * These include \c break, \c continue, \c return, and \c discard.
1824 */
1825 /*@{*/
1826 class ir_jump : public ir_instruction {
1827 protected:
1828 ir_jump(enum ir_node_type t)
1829 : ir_instruction(t)
1830 {
1831 }
1832 };
1833
1834 class ir_return : public ir_jump {
1835 public:
1836 ir_return()
1837 : ir_jump(ir_type_return), value(NULL)
1838 {
1839 }
1840
1841 ir_return(ir_rvalue *value)
1842 : ir_jump(ir_type_return), value(value)
1843 {
1844 }
1845
1846 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1847
1848 ir_rvalue *get_value() const
1849 {
1850 return value;
1851 }
1852
1853 virtual void accept(ir_visitor *v)
1854 {
1855 v->visit(this);
1856 }
1857
1858 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1859
1860 ir_rvalue *value;
1861 };
1862
1863
1864 /**
1865 * Jump instructions used inside loops
1866 *
1867 * These include \c break and \c continue. The \c break within a loop is
1868 * different from the \c break within a switch-statement.
1869 *
1870 * \sa ir_switch_jump
1871 */
1872 class ir_loop_jump : public ir_jump {
1873 public:
1874 enum jump_mode {
1875 jump_break,
1876 jump_continue
1877 };
1878
1879 ir_loop_jump(jump_mode mode)
1880 : ir_jump(ir_type_loop_jump)
1881 {
1882 this->mode = mode;
1883 }
1884
1885 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1886
1887 virtual void accept(ir_visitor *v)
1888 {
1889 v->visit(this);
1890 }
1891
1892 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1893
1894 bool is_break() const
1895 {
1896 return mode == jump_break;
1897 }
1898
1899 bool is_continue() const
1900 {
1901 return mode == jump_continue;
1902 }
1903
1904 /** Mode selector for the jump instruction. */
1905 enum jump_mode mode;
1906 };
1907
1908 /**
1909 * IR instruction representing discard statements.
1910 */
1911 class ir_discard : public ir_jump {
1912 public:
1913 ir_discard()
1914 : ir_jump(ir_type_discard)
1915 {
1916 this->condition = NULL;
1917 }
1918
1919 ir_discard(ir_rvalue *cond)
1920 : ir_jump(ir_type_discard)
1921 {
1922 this->condition = cond;
1923 }
1924
1925 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1926
1927 virtual void accept(ir_visitor *v)
1928 {
1929 v->visit(this);
1930 }
1931
1932 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1933
1934 ir_rvalue *condition;
1935 };
1936 /*@}*/
1937
1938
1939 /**
1940 * Texture sampling opcodes used in ir_texture
1941 */
1942 enum ir_texture_opcode {
1943 ir_tex, /**< Regular texture look-up */
1944 ir_txb, /**< Texture look-up with LOD bias */
1945 ir_txl, /**< Texture look-up with explicit LOD */
1946 ir_txd, /**< Texture look-up with partial derivatvies */
1947 ir_txf, /**< Texel fetch with explicit LOD */
1948 ir_txf_ms, /**< Multisample texture fetch */
1949 ir_txs, /**< Texture size */
1950 ir_lod, /**< Texture lod query */
1951 ir_tg4, /**< Texture gather */
1952 ir_query_levels, /**< Texture levels query */
1953 ir_texture_samples, /**< Texture samples query */
1954 };
1955
1956
1957 /**
1958 * IR instruction to sample a texture
1959 *
1960 * The specific form of the IR instruction depends on the \c mode value
1961 * selected from \c ir_texture_opcodes. In the printed IR, these will
1962 * appear as:
1963 *
1964 * Texel offset (0 or an expression)
1965 * | Projection divisor
1966 * | | Shadow comparitor
1967 * | | |
1968 * v v v
1969 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1970 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1971 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1972 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1973 * (txf <type> <sampler> <coordinate> 0 <lod>)
1974 * (txf_ms
1975 * <type> <sampler> <coordinate> <sample_index>)
1976 * (txs <type> <sampler> <lod>)
1977 * (lod <type> <sampler> <coordinate>)
1978 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1979 * (query_levels <type> <sampler>)
1980 */
1981 class ir_texture : public ir_rvalue {
1982 public:
1983 ir_texture(enum ir_texture_opcode op)
1984 : ir_rvalue(ir_type_texture),
1985 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1986 shadow_comparitor(NULL), offset(NULL)
1987 {
1988 memset(&lod_info, 0, sizeof(lod_info));
1989 }
1990
1991 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1992
1993 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1994
1995 virtual void accept(ir_visitor *v)
1996 {
1997 v->visit(this);
1998 }
1999
2000 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2001
2002 virtual bool equals(const ir_instruction *ir,
2003 enum ir_node_type ignore = ir_type_unset) const;
2004
2005 /**
2006 * Return a string representing the ir_texture_opcode.
2007 */
2008 const char *opcode_string();
2009
2010 /** Set the sampler and type. */
2011 void set_sampler(ir_dereference *sampler, const glsl_type *type);
2012
2013 /**
2014 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
2015 */
2016 static ir_texture_opcode get_opcode(const char *);
2017
2018 enum ir_texture_opcode op;
2019
2020 /** Sampler to use for the texture access. */
2021 ir_dereference *sampler;
2022
2023 /** Texture coordinate to sample */
2024 ir_rvalue *coordinate;
2025
2026 /**
2027 * Value used for projective divide.
2028 *
2029 * If there is no projective divide (the common case), this will be
2030 * \c NULL. Optimization passes should check for this to point to a constant
2031 * of 1.0 and replace that with \c NULL.
2032 */
2033 ir_rvalue *projector;
2034
2035 /**
2036 * Coordinate used for comparison on shadow look-ups.
2037 *
2038 * If there is no shadow comparison, this will be \c NULL. For the
2039 * \c ir_txf opcode, this *must* be \c NULL.
2040 */
2041 ir_rvalue *shadow_comparitor;
2042
2043 /** Texel offset. */
2044 ir_rvalue *offset;
2045
2046 union {
2047 ir_rvalue *lod; /**< Floating point LOD */
2048 ir_rvalue *bias; /**< Floating point LOD bias */
2049 ir_rvalue *sample_index; /**< MSAA sample index */
2050 ir_rvalue *component; /**< Gather component selector */
2051 struct {
2052 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
2053 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
2054 } grad;
2055 } lod_info;
2056 };
2057
2058
2059 struct ir_swizzle_mask {
2060 unsigned x:2;
2061 unsigned y:2;
2062 unsigned z:2;
2063 unsigned w:2;
2064
2065 /**
2066 * Number of components in the swizzle.
2067 */
2068 unsigned num_components:3;
2069
2070 /**
2071 * Does the swizzle contain duplicate components?
2072 *
2073 * L-value swizzles cannot contain duplicate components.
2074 */
2075 unsigned has_duplicates:1;
2076 };
2077
2078
2079 class ir_swizzle : public ir_rvalue {
2080 public:
2081 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2082 unsigned count);
2083
2084 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2085
2086 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2087
2088 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2089
2090 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2091
2092 /**
2093 * Construct an ir_swizzle from the textual representation. Can fail.
2094 */
2095 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2096
2097 virtual void accept(ir_visitor *v)
2098 {
2099 v->visit(this);
2100 }
2101
2102 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2103
2104 virtual bool equals(const ir_instruction *ir,
2105 enum ir_node_type ignore = ir_type_unset) const;
2106
2107 bool is_lvalue() const
2108 {
2109 return val->is_lvalue() && !mask.has_duplicates;
2110 }
2111
2112 /**
2113 * Get the variable that is ultimately referenced by an r-value
2114 */
2115 virtual ir_variable *variable_referenced() const;
2116
2117 ir_rvalue *val;
2118 ir_swizzle_mask mask;
2119
2120 private:
2121 /**
2122 * Initialize the mask component of a swizzle
2123 *
2124 * This is used by the \c ir_swizzle constructors.
2125 */
2126 void init_mask(const unsigned *components, unsigned count);
2127 };
2128
2129
2130 class ir_dereference : public ir_rvalue {
2131 public:
2132 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2133
2134 bool is_lvalue() const;
2135
2136 /**
2137 * Get the variable that is ultimately referenced by an r-value
2138 */
2139 virtual ir_variable *variable_referenced() const = 0;
2140
2141 protected:
2142 ir_dereference(enum ir_node_type t)
2143 : ir_rvalue(t)
2144 {
2145 }
2146 };
2147
2148
2149 class ir_dereference_variable : public ir_dereference {
2150 public:
2151 ir_dereference_variable(ir_variable *var);
2152
2153 virtual ir_dereference_variable *clone(void *mem_ctx,
2154 struct hash_table *) const;
2155
2156 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2157
2158 virtual bool equals(const ir_instruction *ir,
2159 enum ir_node_type ignore = ir_type_unset) const;
2160
2161 /**
2162 * Get the variable that is ultimately referenced by an r-value
2163 */
2164 virtual ir_variable *variable_referenced() const
2165 {
2166 return this->var;
2167 }
2168
2169 virtual ir_variable *whole_variable_referenced()
2170 {
2171 /* ir_dereference_variable objects always dereference the entire
2172 * variable. However, if this dereference is dereferenced by anything
2173 * else, the complete deferefernce chain is not a whole-variable
2174 * dereference. This method should only be called on the top most
2175 * ir_rvalue in a dereference chain.
2176 */
2177 return this->var;
2178 }
2179
2180 virtual void accept(ir_visitor *v)
2181 {
2182 v->visit(this);
2183 }
2184
2185 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2186
2187 /**
2188 * Object being dereferenced.
2189 */
2190 ir_variable *var;
2191 };
2192
2193
2194 class ir_dereference_array : public ir_dereference {
2195 public:
2196 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2197
2198 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2199
2200 virtual ir_dereference_array *clone(void *mem_ctx,
2201 struct hash_table *) const;
2202
2203 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2204
2205 virtual bool equals(const ir_instruction *ir,
2206 enum ir_node_type ignore = ir_type_unset) const;
2207
2208 /**
2209 * Get the variable that is ultimately referenced by an r-value
2210 */
2211 virtual ir_variable *variable_referenced() const
2212 {
2213 return this->array->variable_referenced();
2214 }
2215
2216 virtual void accept(ir_visitor *v)
2217 {
2218 v->visit(this);
2219 }
2220
2221 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2222
2223 ir_rvalue *array;
2224 ir_rvalue *array_index;
2225
2226 private:
2227 void set_array(ir_rvalue *value);
2228 };
2229
2230
2231 class ir_dereference_record : public ir_dereference {
2232 public:
2233 ir_dereference_record(ir_rvalue *value, const char *field);
2234
2235 ir_dereference_record(ir_variable *var, const char *field);
2236
2237 virtual ir_dereference_record *clone(void *mem_ctx,
2238 struct hash_table *) const;
2239
2240 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2241
2242 /**
2243 * Get the variable that is ultimately referenced by an r-value
2244 */
2245 virtual ir_variable *variable_referenced() const
2246 {
2247 return this->record->variable_referenced();
2248 }
2249
2250 virtual void accept(ir_visitor *v)
2251 {
2252 v->visit(this);
2253 }
2254
2255 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2256
2257 ir_rvalue *record;
2258 const char *field;
2259 };
2260
2261
2262 /**
2263 * Data stored in an ir_constant
2264 */
2265 union ir_constant_data {
2266 unsigned u[16];
2267 int i[16];
2268 float f[16];
2269 bool b[16];
2270 double d[16];
2271 };
2272
2273
2274 class ir_constant : public ir_rvalue {
2275 public:
2276 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2277 ir_constant(bool b, unsigned vector_elements=1);
2278 ir_constant(unsigned int u, unsigned vector_elements=1);
2279 ir_constant(int i, unsigned vector_elements=1);
2280 ir_constant(float f, unsigned vector_elements=1);
2281 ir_constant(double d, unsigned vector_elements=1);
2282
2283 /**
2284 * Construct an ir_constant from a list of ir_constant values
2285 */
2286 ir_constant(const struct glsl_type *type, exec_list *values);
2287
2288 /**
2289 * Construct an ir_constant from a scalar component of another ir_constant
2290 *
2291 * The new \c ir_constant inherits the type of the component from the
2292 * source constant.
2293 *
2294 * \note
2295 * In the case of a matrix constant, the new constant is a scalar, \b not
2296 * a vector.
2297 */
2298 ir_constant(const ir_constant *c, unsigned i);
2299
2300 /**
2301 * Return a new ir_constant of the specified type containing all zeros.
2302 */
2303 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2304
2305 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2306
2307 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2308
2309 virtual void accept(ir_visitor *v)
2310 {
2311 v->visit(this);
2312 }
2313
2314 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2315
2316 virtual bool equals(const ir_instruction *ir,
2317 enum ir_node_type ignore = ir_type_unset) const;
2318
2319 /**
2320 * Get a particular component of a constant as a specific type
2321 *
2322 * This is useful, for example, to get a value from an integer constant
2323 * as a float or bool. This appears frequently when constructors are
2324 * called with all constant parameters.
2325 */
2326 /*@{*/
2327 bool get_bool_component(unsigned i) const;
2328 float get_float_component(unsigned i) const;
2329 double get_double_component(unsigned i) const;
2330 int get_int_component(unsigned i) const;
2331 unsigned get_uint_component(unsigned i) const;
2332 /*@}*/
2333
2334 ir_constant *get_array_element(unsigned i) const;
2335
2336 ir_constant *get_record_field(const char *name);
2337
2338 /**
2339 * Copy the values on another constant at a given offset.
2340 *
2341 * The offset is ignored for array or struct copies, it's only for
2342 * scalars or vectors into vectors or matrices.
2343 *
2344 * With identical types on both sides and zero offset it's clone()
2345 * without creating a new object.
2346 */
2347
2348 void copy_offset(ir_constant *src, int offset);
2349
2350 /**
2351 * Copy the values on another constant at a given offset and
2352 * following an assign-like mask.
2353 *
2354 * The mask is ignored for scalars.
2355 *
2356 * Note that this function only handles what assign can handle,
2357 * i.e. at most a vector as source and a column of a matrix as
2358 * destination.
2359 */
2360
2361 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2362
2363 /**
2364 * Determine whether a constant has the same value as another constant
2365 *
2366 * \sa ir_constant::is_zero, ir_constant::is_one,
2367 * ir_constant::is_negative_one
2368 */
2369 bool has_value(const ir_constant *) const;
2370
2371 /**
2372 * Return true if this ir_constant represents the given value.
2373 *
2374 * For vectors, this checks that each component is the given value.
2375 */
2376 virtual bool is_value(float f, int i) const;
2377 virtual bool is_zero() const;
2378 virtual bool is_one() const;
2379 virtual bool is_negative_one() const;
2380
2381 /**
2382 * Return true for constants that could be stored as 16-bit unsigned values.
2383 *
2384 * Note that this will return true even for signed integer ir_constants, as
2385 * long as the value is non-negative and fits in 16-bits.
2386 */
2387 virtual bool is_uint16_constant() const;
2388
2389 /**
2390 * Value of the constant.
2391 *
2392 * The field used to back the values supplied by the constant is determined
2393 * by the type associated with the \c ir_instruction. Constants may be
2394 * scalars, vectors, or matrices.
2395 */
2396 union ir_constant_data value;
2397
2398 /* Array elements */
2399 ir_constant **array_elements;
2400
2401 /* Structure fields */
2402 exec_list components;
2403
2404 private:
2405 /**
2406 * Parameterless constructor only used by the clone method
2407 */
2408 ir_constant(void);
2409 };
2410
2411 /**
2412 * IR instruction to emit a vertex in a geometry shader.
2413 */
2414 class ir_emit_vertex : public ir_instruction {
2415 public:
2416 ir_emit_vertex(ir_rvalue *stream)
2417 : ir_instruction(ir_type_emit_vertex),
2418 stream(stream)
2419 {
2420 assert(stream);
2421 }
2422
2423 virtual void accept(ir_visitor *v)
2424 {
2425 v->visit(this);
2426 }
2427
2428 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2429 {
2430 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2431 }
2432
2433 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2434
2435 int stream_id() const
2436 {
2437 return stream->as_constant()->value.i[0];
2438 }
2439
2440 ir_rvalue *stream;
2441 };
2442
2443 /**
2444 * IR instruction to complete the current primitive and start a new one in a
2445 * geometry shader.
2446 */
2447 class ir_end_primitive : public ir_instruction {
2448 public:
2449 ir_end_primitive(ir_rvalue *stream)
2450 : ir_instruction(ir_type_end_primitive),
2451 stream(stream)
2452 {
2453 assert(stream);
2454 }
2455
2456 virtual void accept(ir_visitor *v)
2457 {
2458 v->visit(this);
2459 }
2460
2461 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2462 {
2463 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2464 }
2465
2466 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2467
2468 int stream_id() const
2469 {
2470 return stream->as_constant()->value.i[0];
2471 }
2472
2473 ir_rvalue *stream;
2474 };
2475
2476 /**
2477 * IR instruction for tessellation control and compute shader barrier.
2478 */
2479 class ir_barrier : public ir_instruction {
2480 public:
2481 ir_barrier()
2482 : ir_instruction(ir_type_barrier)
2483 {
2484 }
2485
2486 virtual void accept(ir_visitor *v)
2487 {
2488 v->visit(this);
2489 }
2490
2491 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2492 {
2493 return new(mem_ctx) ir_barrier();
2494 }
2495
2496 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2497 };
2498
2499 /*@}*/
2500
2501 /**
2502 * Apply a visitor to each IR node in a list
2503 */
2504 void
2505 visit_exec_list(exec_list *list, ir_visitor *visitor);
2506
2507 /**
2508 * Validate invariants on each IR node in a list
2509 */
2510 void validate_ir_tree(exec_list *instructions);
2511
2512 struct _mesa_glsl_parse_state;
2513 struct gl_shader_program;
2514
2515 /**
2516 * Detect whether an unlinked shader contains static recursion
2517 *
2518 * If the list of instructions is determined to contain static recursion,
2519 * \c _mesa_glsl_error will be called to emit error messages for each function
2520 * that is in the recursion cycle.
2521 */
2522 void
2523 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2524 exec_list *instructions);
2525
2526 /**
2527 * Detect whether a linked shader contains static recursion
2528 *
2529 * If the list of instructions is determined to contain static recursion,
2530 * \c link_error_printf will be called to emit error messages for each function
2531 * that is in the recursion cycle. In addition,
2532 * \c gl_shader_program::LinkStatus will be set to false.
2533 */
2534 void
2535 detect_recursion_linked(struct gl_shader_program *prog,
2536 exec_list *instructions);
2537
2538 /**
2539 * Make a clone of each IR instruction in a list
2540 *
2541 * \param in List of IR instructions that are to be cloned
2542 * \param out List to hold the cloned instructions
2543 */
2544 void
2545 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2546
2547 extern void
2548 _mesa_glsl_initialize_variables(exec_list *instructions,
2549 struct _mesa_glsl_parse_state *state);
2550
2551 extern void
2552 _mesa_glsl_initialize_derived_variables(gl_shader *shader);
2553
2554 extern void
2555 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2556
2557 extern void
2558 _mesa_glsl_initialize_builtin_functions();
2559
2560 extern ir_function_signature *
2561 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2562 const char *name, exec_list *actual_parameters);
2563
2564 extern ir_function *
2565 _mesa_glsl_find_builtin_function_by_name(const char *name);
2566
2567 extern gl_shader *
2568 _mesa_glsl_get_builtin_function_shader(void);
2569
2570 extern ir_function_signature *
2571 _mesa_get_main_function_signature(gl_shader *sh);
2572
2573 extern void
2574 _mesa_glsl_release_functions(void);
2575
2576 extern void
2577 _mesa_glsl_release_builtin_functions(void);
2578
2579 extern void
2580 reparent_ir(exec_list *list, void *mem_ctx);
2581
2582 struct glsl_symbol_table;
2583
2584 extern void
2585 import_prototypes(const exec_list *source, exec_list *dest,
2586 struct glsl_symbol_table *symbols, void *mem_ctx);
2587
2588 extern bool
2589 ir_has_call(ir_instruction *ir);
2590
2591 extern void
2592 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2593 gl_shader_stage shader_stage);
2594
2595 extern char *
2596 prototype_string(const glsl_type *return_type, const char *name,
2597 exec_list *parameters);
2598
2599 const char *
2600 mode_string(const ir_variable *var);
2601
2602 /**
2603 * Built-in / reserved GL variables names start with "gl_"
2604 */
2605 static inline bool
2606 is_gl_identifier(const char *s)
2607 {
2608 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2609 }
2610
2611 extern "C" {
2612 #endif /* __cplusplus */
2613
2614 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2615 struct _mesa_glsl_parse_state *state);
2616
2617 extern void
2618 fprint_ir(FILE *f, const void *instruction);
2619
2620 #ifdef __cplusplus
2621 } /* extern "C" */
2622 #endif
2623
2624 unsigned
2625 vertices_per_prim(GLenum prim);
2626
2627 #endif /* IR_H */