glsl: Add a constant_referenced method to ir_dereference*
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /** ir_print_visitor helper for debugging. */
93 void print(void) const;
94
95 virtual void accept(ir_visitor *) = 0;
96 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
97 virtual ir_instruction *clone(void *mem_ctx,
98 struct hash_table *ht) const = 0;
99
100 /**
101 * \name IR instruction downcast functions
102 *
103 * These functions either cast the object to a derived class or return
104 * \c NULL if the object's type does not match the specified derived class.
105 * Additional downcast functions will be added as needed.
106 */
107 /*@{*/
108 virtual class ir_variable * as_variable() { return NULL; }
109 virtual class ir_function * as_function() { return NULL; }
110 virtual class ir_dereference * as_dereference() { return NULL; }
111 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
112 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
113 virtual class ir_expression * as_expression() { return NULL; }
114 virtual class ir_rvalue * as_rvalue() { return NULL; }
115 virtual class ir_loop * as_loop() { return NULL; }
116 virtual class ir_assignment * as_assignment() { return NULL; }
117 virtual class ir_call * as_call() { return NULL; }
118 virtual class ir_return * as_return() { return NULL; }
119 virtual class ir_if * as_if() { return NULL; }
120 virtual class ir_swizzle * as_swizzle() { return NULL; }
121 virtual class ir_constant * as_constant() { return NULL; }
122 virtual class ir_discard * as_discard() { return NULL; }
123 /*@}*/
124
125 protected:
126 ir_instruction()
127 {
128 ir_type = ir_type_unset;
129 }
130 };
131
132
133 /**
134 * The base class for all "values"/expression trees.
135 */
136 class ir_rvalue : public ir_instruction {
137 public:
138 const struct glsl_type *type;
139
140 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
141
142 virtual void accept(ir_visitor *v)
143 {
144 v->visit(this);
145 }
146
147 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
148
149 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
150
151 virtual ir_rvalue * as_rvalue()
152 {
153 return this;
154 }
155
156 ir_rvalue *as_rvalue_to_saturate();
157
158 virtual bool is_lvalue() const
159 {
160 return false;
161 }
162
163 /**
164 * Get the variable that is ultimately referenced by an r-value
165 */
166 virtual ir_variable *variable_referenced() const
167 {
168 return NULL;
169 }
170
171
172 /**
173 * If an r-value is a reference to a whole variable, get that variable
174 *
175 * \return
176 * Pointer to a variable that is completely dereferenced by the r-value. If
177 * the r-value is not a dereference or the dereference does not access the
178 * entire variable (i.e., it's just one array element, struct field), \c NULL
179 * is returned.
180 */
181 virtual ir_variable *whole_variable_referenced()
182 {
183 return NULL;
184 }
185
186 /**
187 * Determine if an r-value has the value zero
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * zero (or \c false for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
195 */
196 virtual bool is_zero() const;
197
198 /**
199 * Determine if an r-value has the value one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * one (or \c true for booleans).
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
207 */
208 virtual bool is_one() const;
209
210 /**
211 * Determine if an r-value has the value negative one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * negative one. For boolean times, the result is always \c false.
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
219 */
220 virtual bool is_negative_one() const;
221
222
223 /**
224 * Return a generic value of error_type.
225 *
226 * Allocation will be performed with 'mem_ctx' as ralloc owner.
227 */
228 static ir_rvalue *error_value(void *mem_ctx);
229
230 protected:
231 ir_rvalue();
232 };
233
234
235 /**
236 * Variable storage classes
237 */
238 enum ir_variable_mode {
239 ir_var_auto = 0, /**< Function local variables and globals. */
240 ir_var_uniform, /**< Variable declared as a uniform. */
241 ir_var_in,
242 ir_var_out,
243 ir_var_inout,
244 ir_var_const_in, /**< "in" param that must be a constant expression */
245 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
246 ir_var_temporary /**< Temporary variable generated during compilation. */
247 };
248
249 /**
250 * \brief Layout qualifiers for gl_FragDepth.
251 *
252 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
253 * with a layout qualifier.
254 */
255 enum ir_depth_layout {
256 ir_depth_layout_none, /**< No depth layout is specified. */
257 ir_depth_layout_any,
258 ir_depth_layout_greater,
259 ir_depth_layout_less,
260 ir_depth_layout_unchanged
261 };
262
263 /**
264 * \brief Convert depth layout qualifier to string.
265 */
266 const char*
267 depth_layout_string(ir_depth_layout layout);
268
269 /**
270 * Description of built-in state associated with a uniform
271 *
272 * \sa ir_variable::state_slots
273 */
274 struct ir_state_slot {
275 int tokens[5];
276 int swizzle;
277 };
278
279 class ir_variable : public ir_instruction {
280 public:
281 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
282
283 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
284
285 virtual ir_variable *as_variable()
286 {
287 return this;
288 }
289
290 virtual void accept(ir_visitor *v)
291 {
292 v->visit(this);
293 }
294
295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
296
297
298 /**
299 * Get the string value for the interpolation qualifier
300 *
301 * \return The string that would be used in a shader to specify \c
302 * mode will be returned.
303 *
304 * This function is used to generate error messages of the form "shader
305 * uses %s interpolation qualifier", so in the case where there is no
306 * interpolation qualifier, it returns "no".
307 *
308 * This function should only be used on a shader input or output variable.
309 */
310 const char *interpolation_string() const;
311
312 /**
313 * Determine how this variable should be interpolated based on its
314 * interpolation qualifier (if present), whether it is gl_Color or
315 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
316 * state.
317 *
318 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
319 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
320 */
321 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
322
323 /**
324 * Declared type of the variable
325 */
326 const struct glsl_type *type;
327
328 /**
329 * Delcared name of the variable
330 */
331 const char *name;
332
333 /**
334 * Highest element accessed with a constant expression array index
335 *
336 * Not used for non-array variables.
337 */
338 unsigned max_array_access;
339
340 /**
341 * Is the variable read-only?
342 *
343 * This is set for variables declared as \c const, shader inputs,
344 * and uniforms.
345 */
346 unsigned read_only:1;
347 unsigned centroid:1;
348 unsigned invariant:1;
349
350 /**
351 * Has this variable been used for reading or writing?
352 *
353 * Several GLSL semantic checks require knowledge of whether or not a
354 * variable has been used. For example, it is an error to redeclare a
355 * variable as invariant after it has been used.
356 *
357 * This is only maintained in the ast_to_hir.cpp path, not in
358 * Mesa's fixed function or ARB program paths.
359 */
360 unsigned used:1;
361
362 /**
363 * Has this variable been statically assigned?
364 *
365 * This answers whether the variable was assigned in any path of
366 * the shader during ast_to_hir. This doesn't answer whether it is
367 * still written after dead code removal, nor is it maintained in
368 * non-ast_to_hir.cpp (GLSL parsing) paths.
369 */
370 unsigned assigned:1;
371
372 /**
373 * Storage class of the variable.
374 *
375 * \sa ir_variable_mode
376 */
377 unsigned mode:3;
378
379 /**
380 * Interpolation mode for shader inputs / outputs
381 *
382 * \sa ir_variable_interpolation
383 */
384 unsigned interpolation:2;
385
386 /**
387 * \name ARB_fragment_coord_conventions
388 * @{
389 */
390 unsigned origin_upper_left:1;
391 unsigned pixel_center_integer:1;
392 /*@}*/
393
394 /**
395 * Was the location explicitly set in the shader?
396 *
397 * If the location is explicitly set in the shader, it \b cannot be changed
398 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
399 * no effect).
400 */
401 unsigned explicit_location:1;
402 unsigned explicit_index:1;
403
404 /**
405 * Does this variable have an initializer?
406 *
407 * This is used by the linker to cross-validiate initializers of global
408 * variables.
409 */
410 unsigned has_initializer:1;
411
412 /**
413 * \brief Layout qualifier for gl_FragDepth.
414 *
415 * This is not equal to \c ir_depth_layout_none if and only if this
416 * variable is \c gl_FragDepth and a layout qualifier is specified.
417 */
418 ir_depth_layout depth_layout;
419
420 /**
421 * Storage location of the base of this variable
422 *
423 * The precise meaning of this field depends on the nature of the variable.
424 *
425 * - Vertex shader input: one of the values from \c gl_vert_attrib.
426 * - Vertex shader output: one of the values from \c gl_vert_result.
427 * - Fragment shader input: one of the values from \c gl_frag_attrib.
428 * - Fragment shader output: one of the values from \c gl_frag_result.
429 * - Uniforms: Per-stage uniform slot number.
430 * - Other: This field is not currently used.
431 *
432 * If the variable is a uniform, shader input, or shader output, and the
433 * slot has not been assigned, the value will be -1.
434 */
435 int location;
436
437 /**
438 * output index for dual source blending.
439 */
440 int index;
441
442 /**
443 * Built-in state that backs this uniform
444 *
445 * Once set at variable creation, \c state_slots must remain invariant.
446 * This is because, ideally, this array would be shared by all clones of
447 * this variable in the IR tree. In other words, we'd really like for it
448 * to be a fly-weight.
449 *
450 * If the variable is not a uniform, \c num_state_slots will be zero and
451 * \c state_slots will be \c NULL.
452 */
453 /*@{*/
454 unsigned num_state_slots; /**< Number of state slots used */
455 ir_state_slot *state_slots; /**< State descriptors. */
456 /*@}*/
457
458 /**
459 * Emit a warning if this variable is accessed.
460 */
461 const char *warn_extension;
462
463 /**
464 * Value assigned in the initializer of a variable declared "const"
465 */
466 ir_constant *constant_value;
467
468 /**
469 * Constant expression assigned in the initializer of the variable
470 *
471 * \warning
472 * This field and \c ::constant_value are distinct. Even if the two fields
473 * refer to constants with the same value, they must point to separate
474 * objects.
475 */
476 ir_constant *constant_initializer;
477 };
478
479
480 /*@{*/
481 /**
482 * The representation of a function instance; may be the full definition or
483 * simply a prototype.
484 */
485 class ir_function_signature : public ir_instruction {
486 /* An ir_function_signature will be part of the list of signatures in
487 * an ir_function.
488 */
489 public:
490 ir_function_signature(const glsl_type *return_type);
491
492 virtual ir_function_signature *clone(void *mem_ctx,
493 struct hash_table *ht) const;
494 ir_function_signature *clone_prototype(void *mem_ctx,
495 struct hash_table *ht) const;
496
497 virtual void accept(ir_visitor *v)
498 {
499 v->visit(this);
500 }
501
502 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
503
504 /**
505 * Attempt to evaluate this function as a constant expression,
506 * given a list of the actual parameters and the variable context.
507 * Returns NULL for non-built-ins.
508 */
509 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
510
511 /**
512 * Get the name of the function for which this is a signature
513 */
514 const char *function_name() const;
515
516 /**
517 * Get a handle to the function for which this is a signature
518 *
519 * There is no setter function, this function returns a \c const pointer,
520 * and \c ir_function_signature::_function is private for a reason. The
521 * only way to make a connection between a function and function signature
522 * is via \c ir_function::add_signature. This helps ensure that certain
523 * invariants (i.e., a function signature is in the list of signatures for
524 * its \c _function) are met.
525 *
526 * \sa ir_function::add_signature
527 */
528 inline const class ir_function *function() const
529 {
530 return this->_function;
531 }
532
533 /**
534 * Check whether the qualifiers match between this signature's parameters
535 * and the supplied parameter list. If not, returns the name of the first
536 * parameter with mismatched qualifiers (for use in error messages).
537 */
538 const char *qualifiers_match(exec_list *params);
539
540 /**
541 * Replace the current parameter list with the given one. This is useful
542 * if the current information came from a prototype, and either has invalid
543 * or missing parameter names.
544 */
545 void replace_parameters(exec_list *new_params);
546
547 /**
548 * Function return type.
549 *
550 * \note This discards the optional precision qualifier.
551 */
552 const struct glsl_type *return_type;
553
554 /**
555 * List of ir_variable of function parameters.
556 *
557 * This represents the storage. The paramaters passed in a particular
558 * call will be in ir_call::actual_paramaters.
559 */
560 struct exec_list parameters;
561
562 /** Whether or not this function has a body (which may be empty). */
563 unsigned is_defined:1;
564
565 /** Whether or not this function signature is a built-in. */
566 unsigned is_builtin:1;
567
568 /** Body of instructions in the function. */
569 struct exec_list body;
570
571 private:
572 /** Function of which this signature is one overload. */
573 class ir_function *_function;
574
575 friend class ir_function;
576 };
577
578
579 /**
580 * Header for tracking multiple overloaded functions with the same name.
581 * Contains a list of ir_function_signatures representing each of the
582 * actual functions.
583 */
584 class ir_function : public ir_instruction {
585 public:
586 ir_function(const char *name);
587
588 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
589
590 virtual ir_function *as_function()
591 {
592 return this;
593 }
594
595 virtual void accept(ir_visitor *v)
596 {
597 v->visit(this);
598 }
599
600 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
601
602 void add_signature(ir_function_signature *sig)
603 {
604 sig->_function = this;
605 this->signatures.push_tail(sig);
606 }
607
608 /**
609 * Get an iterator for the set of function signatures
610 */
611 exec_list_iterator iterator()
612 {
613 return signatures.iterator();
614 }
615
616 /**
617 * Find a signature that matches a set of actual parameters, taking implicit
618 * conversions into account. Also flags whether the match was exact.
619 */
620 ir_function_signature *matching_signature(const exec_list *actual_param,
621 bool *match_is_exact);
622
623 /**
624 * Find a signature that matches a set of actual parameters, taking implicit
625 * conversions into account.
626 */
627 ir_function_signature *matching_signature(const exec_list *actual_param);
628
629 /**
630 * Find a signature that exactly matches a set of actual parameters without
631 * any implicit type conversions.
632 */
633 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
634
635 /**
636 * Name of the function.
637 */
638 const char *name;
639
640 /** Whether or not this function has a signature that isn't a built-in. */
641 bool has_user_signature();
642
643 /**
644 * List of ir_function_signature for each overloaded function with this name.
645 */
646 struct exec_list signatures;
647 };
648
649 inline const char *ir_function_signature::function_name() const
650 {
651 return this->_function->name;
652 }
653 /*@}*/
654
655
656 /**
657 * IR instruction representing high-level if-statements
658 */
659 class ir_if : public ir_instruction {
660 public:
661 ir_if(ir_rvalue *condition)
662 : condition(condition)
663 {
664 ir_type = ir_type_if;
665 }
666
667 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
668
669 virtual ir_if *as_if()
670 {
671 return this;
672 }
673
674 virtual void accept(ir_visitor *v)
675 {
676 v->visit(this);
677 }
678
679 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
680
681 ir_rvalue *condition;
682 /** List of ir_instruction for the body of the then branch */
683 exec_list then_instructions;
684 /** List of ir_instruction for the body of the else branch */
685 exec_list else_instructions;
686 };
687
688
689 /**
690 * IR instruction representing a high-level loop structure.
691 */
692 class ir_loop : public ir_instruction {
693 public:
694 ir_loop();
695
696 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
697
698 virtual void accept(ir_visitor *v)
699 {
700 v->visit(this);
701 }
702
703 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
704
705 virtual ir_loop *as_loop()
706 {
707 return this;
708 }
709
710 /**
711 * Get an iterator for the instructions of the loop body
712 */
713 exec_list_iterator iterator()
714 {
715 return body_instructions.iterator();
716 }
717
718 /** List of ir_instruction that make up the body of the loop. */
719 exec_list body_instructions;
720
721 /**
722 * \name Loop counter and controls
723 *
724 * Represents a loop like a FORTRAN \c do-loop.
725 *
726 * \note
727 * If \c from and \c to are the same value, the loop will execute once.
728 */
729 /*@{*/
730 ir_rvalue *from; /** Value of the loop counter on the first
731 * iteration of the loop.
732 */
733 ir_rvalue *to; /** Value of the loop counter on the last
734 * iteration of the loop.
735 */
736 ir_rvalue *increment;
737 ir_variable *counter;
738
739 /**
740 * Comparison operation in the loop terminator.
741 *
742 * If any of the loop control fields are non-\c NULL, this field must be
743 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
744 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
745 */
746 int cmp;
747 /*@}*/
748 };
749
750
751 class ir_assignment : public ir_instruction {
752 public:
753 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
754
755 /**
756 * Construct an assignment with an explicit write mask
757 *
758 * \note
759 * Since a write mask is supplied, the LHS must already be a bare
760 * \c ir_dereference. The cannot be any swizzles in the LHS.
761 */
762 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
763 unsigned write_mask);
764
765 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
766
767 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
768
769 virtual void accept(ir_visitor *v)
770 {
771 v->visit(this);
772 }
773
774 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
775
776 virtual ir_assignment * as_assignment()
777 {
778 return this;
779 }
780
781 /**
782 * Get a whole variable written by an assignment
783 *
784 * If the LHS of the assignment writes a whole variable, the variable is
785 * returned. Otherwise \c NULL is returned. Examples of whole-variable
786 * assignment are:
787 *
788 * - Assigning to a scalar
789 * - Assigning to all components of a vector
790 * - Whole array (or matrix) assignment
791 * - Whole structure assignment
792 */
793 ir_variable *whole_variable_written();
794
795 /**
796 * Set the LHS of an assignment
797 */
798 void set_lhs(ir_rvalue *lhs);
799
800 /**
801 * Left-hand side of the assignment.
802 *
803 * This should be treated as read only. If you need to set the LHS of an
804 * assignment, use \c ir_assignment::set_lhs.
805 */
806 ir_dereference *lhs;
807
808 /**
809 * Value being assigned
810 */
811 ir_rvalue *rhs;
812
813 /**
814 * Optional condition for the assignment.
815 */
816 ir_rvalue *condition;
817
818
819 /**
820 * Component mask written
821 *
822 * For non-vector types in the LHS, this field will be zero. For vector
823 * types, a bit will be set for each component that is written. Note that
824 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
825 *
826 * A partially-set write mask means that each enabled channel gets
827 * the value from a consecutive channel of the rhs. For example,
828 * to write just .xyw of gl_FrontColor with color:
829 *
830 * (assign (constant bool (1)) (xyw)
831 * (var_ref gl_FragColor)
832 * (swiz xyw (var_ref color)))
833 */
834 unsigned write_mask:4;
835 };
836
837 /* Update ir_expression::num_operands() and operator_strs when
838 * updating this list.
839 */
840 enum ir_expression_operation {
841 ir_unop_bit_not,
842 ir_unop_logic_not,
843 ir_unop_neg,
844 ir_unop_abs,
845 ir_unop_sign,
846 ir_unop_rcp,
847 ir_unop_rsq,
848 ir_unop_sqrt,
849 ir_unop_exp, /**< Log base e on gentype */
850 ir_unop_log, /**< Natural log on gentype */
851 ir_unop_exp2,
852 ir_unop_log2,
853 ir_unop_f2i, /**< Float-to-integer conversion. */
854 ir_unop_i2f, /**< Integer-to-float conversion. */
855 ir_unop_f2b, /**< Float-to-boolean conversion */
856 ir_unop_b2f, /**< Boolean-to-float conversion */
857 ir_unop_i2b, /**< int-to-boolean conversion */
858 ir_unop_b2i, /**< Boolean-to-int conversion */
859 ir_unop_u2f, /**< Unsigned-to-float conversion. */
860 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
861 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
862 ir_unop_any,
863
864 /**
865 * \name Unary floating-point rounding operations.
866 */
867 /*@{*/
868 ir_unop_trunc,
869 ir_unop_ceil,
870 ir_unop_floor,
871 ir_unop_fract,
872 ir_unop_round_even,
873 /*@}*/
874
875 /**
876 * \name Trigonometric operations.
877 */
878 /*@{*/
879 ir_unop_sin,
880 ir_unop_cos,
881 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
882 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
883 /*@}*/
884
885 /**
886 * \name Partial derivatives.
887 */
888 /*@{*/
889 ir_unop_dFdx,
890 ir_unop_dFdy,
891 /*@}*/
892
893 ir_unop_noise,
894
895 /**
896 * A sentinel marking the last of the unary operations.
897 */
898 ir_last_unop = ir_unop_noise,
899
900 ir_binop_add,
901 ir_binop_sub,
902 ir_binop_mul,
903 ir_binop_div,
904
905 /**
906 * Takes one of two combinations of arguments:
907 *
908 * - mod(vecN, vecN)
909 * - mod(vecN, float)
910 *
911 * Does not take integer types.
912 */
913 ir_binop_mod,
914
915 /**
916 * \name Binary comparison operators which return a boolean vector.
917 * The type of both operands must be equal.
918 */
919 /*@{*/
920 ir_binop_less,
921 ir_binop_greater,
922 ir_binop_lequal,
923 ir_binop_gequal,
924 ir_binop_equal,
925 ir_binop_nequal,
926 /**
927 * Returns single boolean for whether all components of operands[0]
928 * equal the components of operands[1].
929 */
930 ir_binop_all_equal,
931 /**
932 * Returns single boolean for whether any component of operands[0]
933 * is not equal to the corresponding component of operands[1].
934 */
935 ir_binop_any_nequal,
936 /*@}*/
937
938 /**
939 * \name Bit-wise binary operations.
940 */
941 /*@{*/
942 ir_binop_lshift,
943 ir_binop_rshift,
944 ir_binop_bit_and,
945 ir_binop_bit_xor,
946 ir_binop_bit_or,
947 /*@}*/
948
949 ir_binop_logic_and,
950 ir_binop_logic_xor,
951 ir_binop_logic_or,
952
953 ir_binop_dot,
954 ir_binop_min,
955 ir_binop_max,
956
957 ir_binop_pow,
958
959 /**
960 * A sentinel marking the last of the binary operations.
961 */
962 ir_last_binop = ir_binop_pow,
963
964 ir_quadop_vector,
965
966 /**
967 * A sentinel marking the last of all operations.
968 */
969 ir_last_opcode = ir_last_binop
970 };
971
972 class ir_expression : public ir_rvalue {
973 public:
974 /**
975 * Constructor for unary operation expressions
976 */
977 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
978 ir_expression(int op, ir_rvalue *);
979
980 /**
981 * Constructor for binary operation expressions
982 */
983 ir_expression(int op, const struct glsl_type *type,
984 ir_rvalue *, ir_rvalue *);
985 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
986
987 /**
988 * Constructor for quad operator expressions
989 */
990 ir_expression(int op, const struct glsl_type *type,
991 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
992
993 virtual ir_expression *as_expression()
994 {
995 return this;
996 }
997
998 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
999
1000 /**
1001 * Attempt to constant-fold the expression
1002 *
1003 * The "variable_context" hash table links ir_variable * to ir_constant *
1004 * that represent the variables' values. \c NULL represents an empty
1005 * context.
1006 *
1007 * If the expression cannot be constant folded, this method will return
1008 * \c NULL.
1009 */
1010 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1011
1012 /**
1013 * Determine the number of operands used by an expression
1014 */
1015 static unsigned int get_num_operands(ir_expression_operation);
1016
1017 /**
1018 * Determine the number of operands used by an expression
1019 */
1020 unsigned int get_num_operands() const
1021 {
1022 return (this->operation == ir_quadop_vector)
1023 ? this->type->vector_elements : get_num_operands(operation);
1024 }
1025
1026 /**
1027 * Return a string representing this expression's operator.
1028 */
1029 const char *operator_string();
1030
1031 /**
1032 * Return a string representing this expression's operator.
1033 */
1034 static const char *operator_string(ir_expression_operation);
1035
1036
1037 /**
1038 * Do a reverse-lookup to translate the given string into an operator.
1039 */
1040 static ir_expression_operation get_operator(const char *);
1041
1042 virtual void accept(ir_visitor *v)
1043 {
1044 v->visit(this);
1045 }
1046
1047 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1048
1049 ir_expression_operation operation;
1050 ir_rvalue *operands[4];
1051 };
1052
1053
1054 /**
1055 * HIR instruction representing a high-level function call, containing a list
1056 * of parameters and returning a value in the supplied temporary.
1057 */
1058 class ir_call : public ir_instruction {
1059 public:
1060 ir_call(ir_function_signature *callee,
1061 ir_dereference_variable *return_deref,
1062 exec_list *actual_parameters)
1063 : return_deref(return_deref), callee(callee)
1064 {
1065 ir_type = ir_type_call;
1066 assert(callee->return_type != NULL);
1067 actual_parameters->move_nodes_to(& this->actual_parameters);
1068 this->use_builtin = callee->is_builtin;
1069 }
1070
1071 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1072
1073 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1074
1075 virtual ir_call *as_call()
1076 {
1077 return this;
1078 }
1079
1080 virtual void accept(ir_visitor *v)
1081 {
1082 v->visit(this);
1083 }
1084
1085 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1086
1087 /**
1088 * Get an iterator for the set of acutal parameters
1089 */
1090 exec_list_iterator iterator()
1091 {
1092 return actual_parameters.iterator();
1093 }
1094
1095 /**
1096 * Get the name of the function being called.
1097 */
1098 const char *callee_name() const
1099 {
1100 return callee->function_name();
1101 }
1102
1103 /**
1104 * Generates an inline version of the function before @ir,
1105 * storing the return value in return_deref.
1106 */
1107 void generate_inline(ir_instruction *ir);
1108
1109 /**
1110 * Storage for the function's return value.
1111 * This must be NULL if the return type is void.
1112 */
1113 ir_dereference_variable *return_deref;
1114
1115 /**
1116 * The specific function signature being called.
1117 */
1118 ir_function_signature *callee;
1119
1120 /* List of ir_rvalue of paramaters passed in this call. */
1121 exec_list actual_parameters;
1122
1123 /** Should this call only bind to a built-in function? */
1124 bool use_builtin;
1125 };
1126
1127
1128 /**
1129 * \name Jump-like IR instructions.
1130 *
1131 * These include \c break, \c continue, \c return, and \c discard.
1132 */
1133 /*@{*/
1134 class ir_jump : public ir_instruction {
1135 protected:
1136 ir_jump()
1137 {
1138 ir_type = ir_type_unset;
1139 }
1140 };
1141
1142 class ir_return : public ir_jump {
1143 public:
1144 ir_return()
1145 : value(NULL)
1146 {
1147 this->ir_type = ir_type_return;
1148 }
1149
1150 ir_return(ir_rvalue *value)
1151 : value(value)
1152 {
1153 this->ir_type = ir_type_return;
1154 }
1155
1156 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1157
1158 virtual ir_return *as_return()
1159 {
1160 return this;
1161 }
1162
1163 ir_rvalue *get_value() const
1164 {
1165 return value;
1166 }
1167
1168 virtual void accept(ir_visitor *v)
1169 {
1170 v->visit(this);
1171 }
1172
1173 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1174
1175 ir_rvalue *value;
1176 };
1177
1178
1179 /**
1180 * Jump instructions used inside loops
1181 *
1182 * These include \c break and \c continue. The \c break within a loop is
1183 * different from the \c break within a switch-statement.
1184 *
1185 * \sa ir_switch_jump
1186 */
1187 class ir_loop_jump : public ir_jump {
1188 public:
1189 enum jump_mode {
1190 jump_break,
1191 jump_continue
1192 };
1193
1194 ir_loop_jump(jump_mode mode)
1195 {
1196 this->ir_type = ir_type_loop_jump;
1197 this->mode = mode;
1198 this->loop = loop;
1199 }
1200
1201 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1202
1203 virtual void accept(ir_visitor *v)
1204 {
1205 v->visit(this);
1206 }
1207
1208 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1209
1210 bool is_break() const
1211 {
1212 return mode == jump_break;
1213 }
1214
1215 bool is_continue() const
1216 {
1217 return mode == jump_continue;
1218 }
1219
1220 /** Mode selector for the jump instruction. */
1221 enum jump_mode mode;
1222 private:
1223 /** Loop containing this break instruction. */
1224 ir_loop *loop;
1225 };
1226
1227 /**
1228 * IR instruction representing discard statements.
1229 */
1230 class ir_discard : public ir_jump {
1231 public:
1232 ir_discard()
1233 {
1234 this->ir_type = ir_type_discard;
1235 this->condition = NULL;
1236 }
1237
1238 ir_discard(ir_rvalue *cond)
1239 {
1240 this->ir_type = ir_type_discard;
1241 this->condition = cond;
1242 }
1243
1244 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1245
1246 virtual void accept(ir_visitor *v)
1247 {
1248 v->visit(this);
1249 }
1250
1251 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1252
1253 virtual ir_discard *as_discard()
1254 {
1255 return this;
1256 }
1257
1258 ir_rvalue *condition;
1259 };
1260 /*@}*/
1261
1262
1263 /**
1264 * Texture sampling opcodes used in ir_texture
1265 */
1266 enum ir_texture_opcode {
1267 ir_tex, /**< Regular texture look-up */
1268 ir_txb, /**< Texture look-up with LOD bias */
1269 ir_txl, /**< Texture look-up with explicit LOD */
1270 ir_txd, /**< Texture look-up with partial derivatvies */
1271 ir_txf, /**< Texel fetch with explicit LOD */
1272 ir_txs /**< Texture size */
1273 };
1274
1275
1276 /**
1277 * IR instruction to sample a texture
1278 *
1279 * The specific form of the IR instruction depends on the \c mode value
1280 * selected from \c ir_texture_opcodes. In the printed IR, these will
1281 * appear as:
1282 *
1283 * Texel offset (0 or an expression)
1284 * | Projection divisor
1285 * | | Shadow comparitor
1286 * | | |
1287 * v v v
1288 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1289 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1290 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1291 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1292 * (txf <type> <sampler> <coordinate> 0 <lod>)
1293 * (txs <type> <sampler> <lod>)
1294 */
1295 class ir_texture : public ir_rvalue {
1296 public:
1297 ir_texture(enum ir_texture_opcode op)
1298 : op(op), projector(NULL), shadow_comparitor(NULL), offset(NULL)
1299 {
1300 this->ir_type = ir_type_texture;
1301 }
1302
1303 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1304
1305 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1306
1307 virtual void accept(ir_visitor *v)
1308 {
1309 v->visit(this);
1310 }
1311
1312 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1313
1314 /**
1315 * Return a string representing the ir_texture_opcode.
1316 */
1317 const char *opcode_string();
1318
1319 /** Set the sampler and type. */
1320 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1321
1322 /**
1323 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1324 */
1325 static ir_texture_opcode get_opcode(const char *);
1326
1327 enum ir_texture_opcode op;
1328
1329 /** Sampler to use for the texture access. */
1330 ir_dereference *sampler;
1331
1332 /** Texture coordinate to sample */
1333 ir_rvalue *coordinate;
1334
1335 /**
1336 * Value used for projective divide.
1337 *
1338 * If there is no projective divide (the common case), this will be
1339 * \c NULL. Optimization passes should check for this to point to a constant
1340 * of 1.0 and replace that with \c NULL.
1341 */
1342 ir_rvalue *projector;
1343
1344 /**
1345 * Coordinate used for comparison on shadow look-ups.
1346 *
1347 * If there is no shadow comparison, this will be \c NULL. For the
1348 * \c ir_txf opcode, this *must* be \c NULL.
1349 */
1350 ir_rvalue *shadow_comparitor;
1351
1352 /** Texel offset. */
1353 ir_rvalue *offset;
1354
1355 union {
1356 ir_rvalue *lod; /**< Floating point LOD */
1357 ir_rvalue *bias; /**< Floating point LOD bias */
1358 struct {
1359 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1360 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1361 } grad;
1362 } lod_info;
1363 };
1364
1365
1366 struct ir_swizzle_mask {
1367 unsigned x:2;
1368 unsigned y:2;
1369 unsigned z:2;
1370 unsigned w:2;
1371
1372 /**
1373 * Number of components in the swizzle.
1374 */
1375 unsigned num_components:3;
1376
1377 /**
1378 * Does the swizzle contain duplicate components?
1379 *
1380 * L-value swizzles cannot contain duplicate components.
1381 */
1382 unsigned has_duplicates:1;
1383 };
1384
1385
1386 class ir_swizzle : public ir_rvalue {
1387 public:
1388 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1389 unsigned count);
1390
1391 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1392
1393 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1394
1395 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1396
1397 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1398
1399 virtual ir_swizzle *as_swizzle()
1400 {
1401 return this;
1402 }
1403
1404 /**
1405 * Construct an ir_swizzle from the textual representation. Can fail.
1406 */
1407 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1408
1409 virtual void accept(ir_visitor *v)
1410 {
1411 v->visit(this);
1412 }
1413
1414 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1415
1416 bool is_lvalue() const
1417 {
1418 return val->is_lvalue() && !mask.has_duplicates;
1419 }
1420
1421 /**
1422 * Get the variable that is ultimately referenced by an r-value
1423 */
1424 virtual ir_variable *variable_referenced() const;
1425
1426 ir_rvalue *val;
1427 ir_swizzle_mask mask;
1428
1429 private:
1430 /**
1431 * Initialize the mask component of a swizzle
1432 *
1433 * This is used by the \c ir_swizzle constructors.
1434 */
1435 void init_mask(const unsigned *components, unsigned count);
1436 };
1437
1438
1439 class ir_dereference : public ir_rvalue {
1440 public:
1441 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1442
1443 virtual ir_dereference *as_dereference()
1444 {
1445 return this;
1446 }
1447
1448 bool is_lvalue() const;
1449
1450 /**
1451 * Get the variable that is ultimately referenced by an r-value
1452 */
1453 virtual ir_variable *variable_referenced() const = 0;
1454
1455 /**
1456 * Get the constant that is ultimately referenced by an r-value,
1457 * in a constant expression evaluation context.
1458 *
1459 * The offset is used when the reference is to a specific column of
1460 * a matrix.
1461 */
1462 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1463 };
1464
1465
1466 class ir_dereference_variable : public ir_dereference {
1467 public:
1468 ir_dereference_variable(ir_variable *var);
1469
1470 virtual ir_dereference_variable *clone(void *mem_ctx,
1471 struct hash_table *) const;
1472
1473 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1474
1475 virtual ir_dereference_variable *as_dereference_variable()
1476 {
1477 return this;
1478 }
1479
1480 /**
1481 * Get the variable that is ultimately referenced by an r-value
1482 */
1483 virtual ir_variable *variable_referenced() const
1484 {
1485 return this->var;
1486 }
1487
1488 /**
1489 * Get the constant that is ultimately referenced by an r-value,
1490 * in a constant expression evaluation context.
1491 *
1492 * The offset is used when the reference is to a specific column of
1493 * a matrix.
1494 */
1495 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1496
1497 virtual ir_variable *whole_variable_referenced()
1498 {
1499 /* ir_dereference_variable objects always dereference the entire
1500 * variable. However, if this dereference is dereferenced by anything
1501 * else, the complete deferefernce chain is not a whole-variable
1502 * dereference. This method should only be called on the top most
1503 * ir_rvalue in a dereference chain.
1504 */
1505 return this->var;
1506 }
1507
1508 virtual void accept(ir_visitor *v)
1509 {
1510 v->visit(this);
1511 }
1512
1513 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1514
1515 /**
1516 * Object being dereferenced.
1517 */
1518 ir_variable *var;
1519 };
1520
1521
1522 class ir_dereference_array : public ir_dereference {
1523 public:
1524 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1525
1526 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1527
1528 virtual ir_dereference_array *clone(void *mem_ctx,
1529 struct hash_table *) const;
1530
1531 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1532
1533 virtual ir_dereference_array *as_dereference_array()
1534 {
1535 return this;
1536 }
1537
1538 /**
1539 * Get the variable that is ultimately referenced by an r-value
1540 */
1541 virtual ir_variable *variable_referenced() const
1542 {
1543 return this->array->variable_referenced();
1544 }
1545
1546 /**
1547 * Get the constant that is ultimately referenced by an r-value,
1548 * in a constant expression evaluation context.
1549 *
1550 * The offset is used when the reference is to a specific column of
1551 * a matrix.
1552 */
1553 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1554
1555 virtual void accept(ir_visitor *v)
1556 {
1557 v->visit(this);
1558 }
1559
1560 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1561
1562 ir_rvalue *array;
1563 ir_rvalue *array_index;
1564
1565 private:
1566 void set_array(ir_rvalue *value);
1567 };
1568
1569
1570 class ir_dereference_record : public ir_dereference {
1571 public:
1572 ir_dereference_record(ir_rvalue *value, const char *field);
1573
1574 ir_dereference_record(ir_variable *var, const char *field);
1575
1576 virtual ir_dereference_record *clone(void *mem_ctx,
1577 struct hash_table *) const;
1578
1579 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1580
1581 /**
1582 * Get the variable that is ultimately referenced by an r-value
1583 */
1584 virtual ir_variable *variable_referenced() const
1585 {
1586 return this->record->variable_referenced();
1587 }
1588
1589 /**
1590 * Get the constant that is ultimately referenced by an r-value,
1591 * in a constant expression evaluation context.
1592 *
1593 * The offset is used when the reference is to a specific column of
1594 * a matrix.
1595 */
1596 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1597
1598 virtual void accept(ir_visitor *v)
1599 {
1600 v->visit(this);
1601 }
1602
1603 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1604
1605 ir_rvalue *record;
1606 const char *field;
1607 };
1608
1609
1610 /**
1611 * Data stored in an ir_constant
1612 */
1613 union ir_constant_data {
1614 unsigned u[16];
1615 int i[16];
1616 float f[16];
1617 bool b[16];
1618 };
1619
1620
1621 class ir_constant : public ir_rvalue {
1622 public:
1623 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1624 ir_constant(bool b);
1625 ir_constant(unsigned int u);
1626 ir_constant(int i);
1627 ir_constant(float f);
1628
1629 /**
1630 * Construct an ir_constant from a list of ir_constant values
1631 */
1632 ir_constant(const struct glsl_type *type, exec_list *values);
1633
1634 /**
1635 * Construct an ir_constant from a scalar component of another ir_constant
1636 *
1637 * The new \c ir_constant inherits the type of the component from the
1638 * source constant.
1639 *
1640 * \note
1641 * In the case of a matrix constant, the new constant is a scalar, \b not
1642 * a vector.
1643 */
1644 ir_constant(const ir_constant *c, unsigned i);
1645
1646 /**
1647 * Return a new ir_constant of the specified type containing all zeros.
1648 */
1649 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1650
1651 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1652
1653 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1654
1655 virtual ir_constant *as_constant()
1656 {
1657 return this;
1658 }
1659
1660 virtual void accept(ir_visitor *v)
1661 {
1662 v->visit(this);
1663 }
1664
1665 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1666
1667 /**
1668 * Get a particular component of a constant as a specific type
1669 *
1670 * This is useful, for example, to get a value from an integer constant
1671 * as a float or bool. This appears frequently when constructors are
1672 * called with all constant parameters.
1673 */
1674 /*@{*/
1675 bool get_bool_component(unsigned i) const;
1676 float get_float_component(unsigned i) const;
1677 int get_int_component(unsigned i) const;
1678 unsigned get_uint_component(unsigned i) const;
1679 /*@}*/
1680
1681 ir_constant *get_array_element(unsigned i) const;
1682
1683 ir_constant *get_record_field(const char *name);
1684
1685 /**
1686 * Determine whether a constant has the same value as another constant
1687 *
1688 * \sa ir_constant::is_zero, ir_constant::is_one,
1689 * ir_constant::is_negative_one
1690 */
1691 bool has_value(const ir_constant *) const;
1692
1693 virtual bool is_zero() const;
1694 virtual bool is_one() const;
1695 virtual bool is_negative_one() const;
1696
1697 /**
1698 * Value of the constant.
1699 *
1700 * The field used to back the values supplied by the constant is determined
1701 * by the type associated with the \c ir_instruction. Constants may be
1702 * scalars, vectors, or matrices.
1703 */
1704 union ir_constant_data value;
1705
1706 /* Array elements */
1707 ir_constant **array_elements;
1708
1709 /* Structure fields */
1710 exec_list components;
1711
1712 private:
1713 /**
1714 * Parameterless constructor only used by the clone method
1715 */
1716 ir_constant(void);
1717 };
1718
1719 /*@}*/
1720
1721 /**
1722 * Apply a visitor to each IR node in a list
1723 */
1724 void
1725 visit_exec_list(exec_list *list, ir_visitor *visitor);
1726
1727 /**
1728 * Validate invariants on each IR node in a list
1729 */
1730 void validate_ir_tree(exec_list *instructions);
1731
1732 struct _mesa_glsl_parse_state;
1733 struct gl_shader_program;
1734
1735 /**
1736 * Detect whether an unlinked shader contains static recursion
1737 *
1738 * If the list of instructions is determined to contain static recursion,
1739 * \c _mesa_glsl_error will be called to emit error messages for each function
1740 * that is in the recursion cycle.
1741 */
1742 void
1743 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1744 exec_list *instructions);
1745
1746 /**
1747 * Detect whether a linked shader contains static recursion
1748 *
1749 * If the list of instructions is determined to contain static recursion,
1750 * \c link_error_printf will be called to emit error messages for each function
1751 * that is in the recursion cycle. In addition,
1752 * \c gl_shader_program::LinkStatus will be set to false.
1753 */
1754 void
1755 detect_recursion_linked(struct gl_shader_program *prog,
1756 exec_list *instructions);
1757
1758 /**
1759 * Make a clone of each IR instruction in a list
1760 *
1761 * \param in List of IR instructions that are to be cloned
1762 * \param out List to hold the cloned instructions
1763 */
1764 void
1765 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1766
1767 extern void
1768 _mesa_glsl_initialize_variables(exec_list *instructions,
1769 struct _mesa_glsl_parse_state *state);
1770
1771 extern void
1772 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1773
1774 extern void
1775 _mesa_glsl_release_functions(void);
1776
1777 extern void
1778 reparent_ir(exec_list *list, void *mem_ctx);
1779
1780 struct glsl_symbol_table;
1781
1782 extern void
1783 import_prototypes(const exec_list *source, exec_list *dest,
1784 struct glsl_symbol_table *symbols, void *mem_ctx);
1785
1786 extern bool
1787 ir_has_call(ir_instruction *ir);
1788
1789 extern void
1790 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1791 bool is_fragment_shader);
1792
1793 extern char *
1794 prototype_string(const glsl_type *return_type, const char *name,
1795 exec_list *parameters);
1796
1797 #endif /* IR_H */