glsl: Propagate depth layout qualifier from AST to IR
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
229 ir_var_temporary /**< Temporary variable generated during compilation. */
230 };
231
232 enum ir_variable_interpolation {
233 ir_var_smooth = 0,
234 ir_var_flat,
235 ir_var_noperspective
236 };
237
238 /**
239 * \brief Layout qualifiers for gl_FragDepth.
240 *
241 * The AMD_conservative_depth extension allows gl_FragDepth to be redeclared
242 * with a layout qualifier.
243 */
244 enum ir_depth_layout {
245 ir_depth_layout_none, /**< No depth layout is specified. */
246 ir_depth_layout_any,
247 ir_depth_layout_greater,
248 ir_depth_layout_less,
249 ir_depth_layout_unchanged
250 };
251
252 /**
253 * \brief Convert depth layout qualifier to string.
254 */
255 const char*
256 depth_layout_string(ir_depth_layout layout);
257
258 class ir_variable : public ir_instruction {
259 public:
260 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
261
262 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
263
264 virtual ir_variable *as_variable()
265 {
266 return this;
267 }
268
269 virtual void accept(ir_visitor *v)
270 {
271 v->visit(this);
272 }
273
274 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
275
276
277 /**
278 * Get the string value for the interpolation qualifier
279 *
280 * \return The string that would be used in a shader to specify \c
281 * mode will be returned.
282 *
283 * This function should only be used on a shader input or output variable.
284 */
285 const char *interpolation_string() const;
286
287 /**
288 * Calculate the number of slots required to hold this variable
289 *
290 * This is used to determine how many uniform or varying locations a variable
291 * occupies. The count is in units of floating point components.
292 */
293 unsigned component_slots() const;
294
295 /**
296 * Delcared name of the variable
297 */
298 const char *name;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 /**
308 * Is the variable read-only?
309 *
310 * This is set for variables declared as \c const, shader inputs,
311 * and uniforms.
312 */
313 unsigned read_only:1;
314 unsigned centroid:1;
315 unsigned invariant:1;
316
317 /**
318 * Has this variable been used for reading or writing?
319 *
320 * Several GLSL semantic checks require knowledge of whether or not a
321 * variable has been used. For example, it is an error to redeclare a
322 * variable as invariant after it has been used.
323 */
324 unsigned used:1;
325
326 /**
327 * Storage class of the variable.
328 *
329 * \sa ir_variable_mode
330 */
331 unsigned mode:3;
332
333 /**
334 * Interpolation mode for shader inputs / outputs
335 *
336 * \sa ir_variable_interpolation
337 */
338 unsigned interpolation:2;
339
340 /**
341 * Flag that the whole array is assignable
342 *
343 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
344 * equality). This flag enables this behavior.
345 */
346 unsigned array_lvalue:1;
347
348 /**
349 * \name ARB_fragment_coord_conventions
350 * @{
351 */
352 unsigned origin_upper_left:1;
353 unsigned pixel_center_integer:1;
354 /*@}*/
355
356 /**
357 * \brief Layout qualifier for gl_FragDepth.
358 *
359 * This is not equal to \c ir_depth_layout_none if and only if this
360 * variable is \c gl_FragDepth and a layout qualifier is specified.
361 */
362 ir_depth_layout depth_layout;
363
364 /**
365 * Was the location explicitly set in the shader?
366 *
367 * If the location is explicitly set in the shader, it \b cannot be changed
368 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
369 * no effect).
370 */
371 unsigned explicit_location:1;
372
373 /**
374 * Storage location of the base of this variable
375 *
376 * The precise meaning of this field depends on the nature of the variable.
377 *
378 * - Vertex shader input: one of the values from \c gl_vert_attrib.
379 * - Vertex shader output: one of the values from \c gl_vert_result.
380 * - Fragment shader input: one of the values from \c gl_frag_attrib.
381 * - Fragment shader output: one of the values from \c gl_frag_result.
382 * - Uniforms: Per-stage uniform slot number.
383 * - Other: This field is not currently used.
384 *
385 * If the variable is a uniform, shader input, or shader output, and the
386 * slot has not been assigned, the value will be -1.
387 */
388 int location;
389
390 /**
391 * Emit a warning if this variable is accessed.
392 */
393 const char *warn_extension;
394
395 /**
396 * Value assigned in the initializer of a variable declared "const"
397 */
398 ir_constant *constant_value;
399 };
400
401
402 /*@{*/
403 /**
404 * The representation of a function instance; may be the full definition or
405 * simply a prototype.
406 */
407 class ir_function_signature : public ir_instruction {
408 /* An ir_function_signature will be part of the list of signatures in
409 * an ir_function.
410 */
411 public:
412 ir_function_signature(const glsl_type *return_type);
413
414 virtual ir_function_signature *clone(void *mem_ctx,
415 struct hash_table *ht) const;
416 ir_function_signature *clone_prototype(void *mem_ctx,
417 struct hash_table *ht) const;
418
419 virtual void accept(ir_visitor *v)
420 {
421 v->visit(this);
422 }
423
424 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
425
426 /**
427 * Get the name of the function for which this is a signature
428 */
429 const char *function_name() const;
430
431 /**
432 * Get a handle to the function for which this is a signature
433 *
434 * There is no setter function, this function returns a \c const pointer,
435 * and \c ir_function_signature::_function is private for a reason. The
436 * only way to make a connection between a function and function signature
437 * is via \c ir_function::add_signature. This helps ensure that certain
438 * invariants (i.e., a function signature is in the list of signatures for
439 * its \c _function) are met.
440 *
441 * \sa ir_function::add_signature
442 */
443 inline const class ir_function *function() const
444 {
445 return this->_function;
446 }
447
448 /**
449 * Check whether the qualifiers match between this signature's parameters
450 * and the supplied parameter list. If not, returns the name of the first
451 * parameter with mismatched qualifiers (for use in error messages).
452 */
453 const char *qualifiers_match(exec_list *params);
454
455 /**
456 * Replace the current parameter list with the given one. This is useful
457 * if the current information came from a prototype, and either has invalid
458 * or missing parameter names.
459 */
460 void replace_parameters(exec_list *new_params);
461
462 /**
463 * Function return type.
464 *
465 * \note This discards the optional precision qualifier.
466 */
467 const struct glsl_type *return_type;
468
469 /**
470 * List of ir_variable of function parameters.
471 *
472 * This represents the storage. The paramaters passed in a particular
473 * call will be in ir_call::actual_paramaters.
474 */
475 struct exec_list parameters;
476
477 /** Whether or not this function has a body (which may be empty). */
478 unsigned is_defined:1;
479
480 /** Whether or not this function signature is a built-in. */
481 unsigned is_builtin:1;
482
483 /** Body of instructions in the function. */
484 struct exec_list body;
485
486 private:
487 /** Function of which this signature is one overload. */
488 class ir_function *_function;
489
490 friend class ir_function;
491 };
492
493
494 /**
495 * Header for tracking multiple overloaded functions with the same name.
496 * Contains a list of ir_function_signatures representing each of the
497 * actual functions.
498 */
499 class ir_function : public ir_instruction {
500 public:
501 ir_function(const char *name);
502
503 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
504
505 virtual ir_function *as_function()
506 {
507 return this;
508 }
509
510 virtual void accept(ir_visitor *v)
511 {
512 v->visit(this);
513 }
514
515 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
516
517 void add_signature(ir_function_signature *sig)
518 {
519 sig->_function = this;
520 this->signatures.push_tail(sig);
521 }
522
523 /**
524 * Get an iterator for the set of function signatures
525 */
526 exec_list_iterator iterator()
527 {
528 return signatures.iterator();
529 }
530
531 /**
532 * Find a signature that matches a set of actual parameters, taking implicit
533 * conversions into account.
534 */
535 ir_function_signature *matching_signature(const exec_list *actual_param);
536
537 /**
538 * Find a signature that exactly matches a set of actual parameters without
539 * any implicit type conversions.
540 */
541 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
542
543 /**
544 * Name of the function.
545 */
546 const char *name;
547
548 /** Whether or not this function has a signature that isn't a built-in. */
549 bool has_user_signature();
550
551 /**
552 * List of ir_function_signature for each overloaded function with this name.
553 */
554 struct exec_list signatures;
555 };
556
557 inline const char *ir_function_signature::function_name() const
558 {
559 return this->_function->name;
560 }
561 /*@}*/
562
563
564 /**
565 * IR instruction representing high-level if-statements
566 */
567 class ir_if : public ir_instruction {
568 public:
569 ir_if(ir_rvalue *condition)
570 : condition(condition)
571 {
572 ir_type = ir_type_if;
573 }
574
575 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
576
577 virtual ir_if *as_if()
578 {
579 return this;
580 }
581
582 virtual void accept(ir_visitor *v)
583 {
584 v->visit(this);
585 }
586
587 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
588
589 ir_rvalue *condition;
590 /** List of ir_instruction for the body of the then branch */
591 exec_list then_instructions;
592 /** List of ir_instruction for the body of the else branch */
593 exec_list else_instructions;
594 };
595
596
597 /**
598 * IR instruction representing a high-level loop structure.
599 */
600 class ir_loop : public ir_instruction {
601 public:
602 ir_loop();
603
604 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
605
606 virtual void accept(ir_visitor *v)
607 {
608 v->visit(this);
609 }
610
611 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
612
613 virtual ir_loop *as_loop()
614 {
615 return this;
616 }
617
618 /**
619 * Get an iterator for the instructions of the loop body
620 */
621 exec_list_iterator iterator()
622 {
623 return body_instructions.iterator();
624 }
625
626 /** List of ir_instruction that make up the body of the loop. */
627 exec_list body_instructions;
628
629 /**
630 * \name Loop counter and controls
631 *
632 * Represents a loop like a FORTRAN \c do-loop.
633 *
634 * \note
635 * If \c from and \c to are the same value, the loop will execute once.
636 */
637 /*@{*/
638 ir_rvalue *from; /** Value of the loop counter on the first
639 * iteration of the loop.
640 */
641 ir_rvalue *to; /** Value of the loop counter on the last
642 * iteration of the loop.
643 */
644 ir_rvalue *increment;
645 ir_variable *counter;
646
647 /**
648 * Comparison operation in the loop terminator.
649 *
650 * If any of the loop control fields are non-\c NULL, this field must be
651 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
652 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
653 */
654 int cmp;
655 /*@}*/
656 };
657
658
659 class ir_assignment : public ir_instruction {
660 public:
661 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
662
663 /**
664 * Construct an assignment with an explicit write mask
665 *
666 * \note
667 * Since a write mask is supplied, the LHS must already be a bare
668 * \c ir_dereference. The cannot be any swizzles in the LHS.
669 */
670 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
671 unsigned write_mask);
672
673 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
674
675 virtual ir_constant *constant_expression_value();
676
677 virtual void accept(ir_visitor *v)
678 {
679 v->visit(this);
680 }
681
682 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
683
684 virtual ir_assignment * as_assignment()
685 {
686 return this;
687 }
688
689 /**
690 * Get a whole variable written by an assignment
691 *
692 * If the LHS of the assignment writes a whole variable, the variable is
693 * returned. Otherwise \c NULL is returned. Examples of whole-variable
694 * assignment are:
695 *
696 * - Assigning to a scalar
697 * - Assigning to all components of a vector
698 * - Whole array (or matrix) assignment
699 * - Whole structure assignment
700 */
701 ir_variable *whole_variable_written();
702
703 /**
704 * Set the LHS of an assignment
705 */
706 void set_lhs(ir_rvalue *lhs);
707
708 /**
709 * Left-hand side of the assignment.
710 *
711 * This should be treated as read only. If you need to set the LHS of an
712 * assignment, use \c ir_assignment::set_lhs.
713 */
714 ir_dereference *lhs;
715
716 /**
717 * Value being assigned
718 */
719 ir_rvalue *rhs;
720
721 /**
722 * Optional condition for the assignment.
723 */
724 ir_rvalue *condition;
725
726
727 /**
728 * Component mask written
729 *
730 * For non-vector types in the LHS, this field will be zero. For vector
731 * types, a bit will be set for each component that is written. Note that
732 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
733 *
734 * A partially-set write mask means that each enabled channel gets
735 * the value from a consecutive channel of the rhs. For example,
736 * to write just .xyw of gl_FrontColor with color:
737 *
738 * (assign (constant bool (1)) (xyw)
739 * (var_ref gl_FragColor)
740 * (swiz xyw (var_ref color)))
741 */
742 unsigned write_mask:4;
743 };
744
745 /* Update ir_expression::num_operands() and operator_strs when
746 * updating this list.
747 */
748 enum ir_expression_operation {
749 ir_unop_bit_not,
750 ir_unop_logic_not,
751 ir_unop_neg,
752 ir_unop_abs,
753 ir_unop_sign,
754 ir_unop_rcp,
755 ir_unop_rsq,
756 ir_unop_sqrt,
757 ir_unop_exp, /**< Log base e on gentype */
758 ir_unop_log, /**< Natural log on gentype */
759 ir_unop_exp2,
760 ir_unop_log2,
761 ir_unop_f2i, /**< Float-to-integer conversion. */
762 ir_unop_i2f, /**< Integer-to-float conversion. */
763 ir_unop_f2b, /**< Float-to-boolean conversion */
764 ir_unop_b2f, /**< Boolean-to-float conversion */
765 ir_unop_i2b, /**< int-to-boolean conversion */
766 ir_unop_b2i, /**< Boolean-to-int conversion */
767 ir_unop_u2f, /**< Unsigned-to-float conversion. */
768 ir_unop_any,
769
770 /**
771 * \name Unary floating-point rounding operations.
772 */
773 /*@{*/
774 ir_unop_trunc,
775 ir_unop_ceil,
776 ir_unop_floor,
777 ir_unop_fract,
778 ir_unop_round_even,
779 /*@}*/
780
781 /**
782 * \name Trigonometric operations.
783 */
784 /*@{*/
785 ir_unop_sin,
786 ir_unop_cos,
787 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
788 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
789 /*@}*/
790
791 /**
792 * \name Partial derivatives.
793 */
794 /*@{*/
795 ir_unop_dFdx,
796 ir_unop_dFdy,
797 /*@}*/
798
799 ir_unop_noise,
800
801 /**
802 * A sentinel marking the last of the unary operations.
803 */
804 ir_last_unop = ir_unop_noise,
805
806 ir_binop_add,
807 ir_binop_sub,
808 ir_binop_mul,
809 ir_binop_div,
810
811 /**
812 * Takes one of two combinations of arguments:
813 *
814 * - mod(vecN, vecN)
815 * - mod(vecN, float)
816 *
817 * Does not take integer types.
818 */
819 ir_binop_mod,
820
821 /**
822 * \name Binary comparison operators which return a boolean vector.
823 * The type of both operands must be equal.
824 */
825 /*@{*/
826 ir_binop_less,
827 ir_binop_greater,
828 ir_binop_lequal,
829 ir_binop_gequal,
830 ir_binop_equal,
831 ir_binop_nequal,
832 /**
833 * Returns single boolean for whether all components of operands[0]
834 * equal the components of operands[1].
835 */
836 ir_binop_all_equal,
837 /**
838 * Returns single boolean for whether any component of operands[0]
839 * is not equal to the corresponding component of operands[1].
840 */
841 ir_binop_any_nequal,
842 /*@}*/
843
844 /**
845 * \name Bit-wise binary operations.
846 */
847 /*@{*/
848 ir_binop_lshift,
849 ir_binop_rshift,
850 ir_binop_bit_and,
851 ir_binop_bit_xor,
852 ir_binop_bit_or,
853 /*@}*/
854
855 ir_binop_logic_and,
856 ir_binop_logic_xor,
857 ir_binop_logic_or,
858
859 ir_binop_dot,
860 ir_binop_min,
861 ir_binop_max,
862
863 ir_binop_pow,
864
865 /**
866 * A sentinel marking the last of the binary operations.
867 */
868 ir_last_binop = ir_binop_pow,
869
870 ir_quadop_vector,
871
872 /**
873 * A sentinel marking the last of all operations.
874 */
875 ir_last_opcode = ir_last_binop
876 };
877
878 class ir_expression : public ir_rvalue {
879 public:
880 /**
881 * Constructor for unary operation expressions
882 */
883 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
884 ir_expression(int op, ir_rvalue *);
885
886 /**
887 * Constructor for binary operation expressions
888 */
889 ir_expression(int op, const struct glsl_type *type,
890 ir_rvalue *, ir_rvalue *);
891 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
892
893 /**
894 * Constructor for quad operator expressions
895 */
896 ir_expression(int op, const struct glsl_type *type,
897 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
898
899 virtual ir_expression *as_expression()
900 {
901 return this;
902 }
903
904 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
905
906 /**
907 * Attempt to constant-fold the expression
908 *
909 * If the expression cannot be constant folded, this method will return
910 * \c NULL.
911 */
912 virtual ir_constant *constant_expression_value();
913
914 /**
915 * Determine the number of operands used by an expression
916 */
917 static unsigned int get_num_operands(ir_expression_operation);
918
919 /**
920 * Determine the number of operands used by an expression
921 */
922 unsigned int get_num_operands() const
923 {
924 return (this->operation == ir_quadop_vector)
925 ? this->type->vector_elements : get_num_operands(operation);
926 }
927
928 /**
929 * Return a string representing this expression's operator.
930 */
931 const char *operator_string();
932
933 /**
934 * Return a string representing this expression's operator.
935 */
936 static const char *operator_string(ir_expression_operation);
937
938
939 /**
940 * Do a reverse-lookup to translate the given string into an operator.
941 */
942 static ir_expression_operation get_operator(const char *);
943
944 virtual void accept(ir_visitor *v)
945 {
946 v->visit(this);
947 }
948
949 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
950
951 ir_expression_operation operation;
952 ir_rvalue *operands[4];
953 };
954
955
956 /**
957 * IR instruction representing a function call
958 */
959 class ir_call : public ir_rvalue {
960 public:
961 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
962 : callee(callee)
963 {
964 ir_type = ir_type_call;
965 assert(callee->return_type != NULL);
966 type = callee->return_type;
967 actual_parameters->move_nodes_to(& this->actual_parameters);
968 }
969
970 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
971
972 virtual ir_constant *constant_expression_value();
973
974 virtual ir_call *as_call()
975 {
976 return this;
977 }
978
979 virtual void accept(ir_visitor *v)
980 {
981 v->visit(this);
982 }
983
984 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
985
986 /**
987 * Get a generic ir_call object when an error occurs
988 *
989 * Any allocation will be performed with 'ctx' as talloc owner.
990 */
991 static ir_call *get_error_instruction(void *ctx);
992
993 /**
994 * Get an iterator for the set of acutal parameters
995 */
996 exec_list_iterator iterator()
997 {
998 return actual_parameters.iterator();
999 }
1000
1001 /**
1002 * Get the name of the function being called.
1003 */
1004 const char *callee_name() const
1005 {
1006 return callee->function_name();
1007 }
1008
1009 /**
1010 * Get the function signature bound to this function call
1011 */
1012 ir_function_signature *get_callee()
1013 {
1014 return callee;
1015 }
1016
1017 /**
1018 * Set the function call target
1019 */
1020 void set_callee(ir_function_signature *sig);
1021
1022 /**
1023 * Generates an inline version of the function before @ir,
1024 * returning the return value of the function.
1025 */
1026 ir_rvalue *generate_inline(ir_instruction *ir);
1027
1028 /* List of ir_rvalue of paramaters passed in this call. */
1029 exec_list actual_parameters;
1030
1031 private:
1032 ir_call()
1033 : callee(NULL)
1034 {
1035 this->ir_type = ir_type_call;
1036 }
1037
1038 ir_function_signature *callee;
1039 };
1040
1041
1042 /**
1043 * \name Jump-like IR instructions.
1044 *
1045 * These include \c break, \c continue, \c return, and \c discard.
1046 */
1047 /*@{*/
1048 class ir_jump : public ir_instruction {
1049 protected:
1050 ir_jump()
1051 {
1052 ir_type = ir_type_unset;
1053 }
1054 };
1055
1056 class ir_return : public ir_jump {
1057 public:
1058 ir_return()
1059 : value(NULL)
1060 {
1061 this->ir_type = ir_type_return;
1062 }
1063
1064 ir_return(ir_rvalue *value)
1065 : value(value)
1066 {
1067 this->ir_type = ir_type_return;
1068 }
1069
1070 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1071
1072 virtual ir_return *as_return()
1073 {
1074 return this;
1075 }
1076
1077 ir_rvalue *get_value() const
1078 {
1079 return value;
1080 }
1081
1082 virtual void accept(ir_visitor *v)
1083 {
1084 v->visit(this);
1085 }
1086
1087 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1088
1089 ir_rvalue *value;
1090 };
1091
1092
1093 /**
1094 * Jump instructions used inside loops
1095 *
1096 * These include \c break and \c continue. The \c break within a loop is
1097 * different from the \c break within a switch-statement.
1098 *
1099 * \sa ir_switch_jump
1100 */
1101 class ir_loop_jump : public ir_jump {
1102 public:
1103 enum jump_mode {
1104 jump_break,
1105 jump_continue
1106 };
1107
1108 ir_loop_jump(jump_mode mode)
1109 {
1110 this->ir_type = ir_type_loop_jump;
1111 this->mode = mode;
1112 this->loop = loop;
1113 }
1114
1115 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1116
1117 virtual void accept(ir_visitor *v)
1118 {
1119 v->visit(this);
1120 }
1121
1122 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1123
1124 bool is_break() const
1125 {
1126 return mode == jump_break;
1127 }
1128
1129 bool is_continue() const
1130 {
1131 return mode == jump_continue;
1132 }
1133
1134 /** Mode selector for the jump instruction. */
1135 enum jump_mode mode;
1136 private:
1137 /** Loop containing this break instruction. */
1138 ir_loop *loop;
1139 };
1140
1141 /**
1142 * IR instruction representing discard statements.
1143 */
1144 class ir_discard : public ir_jump {
1145 public:
1146 ir_discard()
1147 {
1148 this->ir_type = ir_type_discard;
1149 this->condition = NULL;
1150 }
1151
1152 ir_discard(ir_rvalue *cond)
1153 {
1154 this->ir_type = ir_type_discard;
1155 this->condition = cond;
1156 }
1157
1158 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1159
1160 virtual void accept(ir_visitor *v)
1161 {
1162 v->visit(this);
1163 }
1164
1165 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1166
1167 virtual ir_discard *as_discard()
1168 {
1169 return this;
1170 }
1171
1172 ir_rvalue *condition;
1173 };
1174 /*@}*/
1175
1176
1177 /**
1178 * Texture sampling opcodes used in ir_texture
1179 */
1180 enum ir_texture_opcode {
1181 ir_tex, /**< Regular texture look-up */
1182 ir_txb, /**< Texture look-up with LOD bias */
1183 ir_txl, /**< Texture look-up with explicit LOD */
1184 ir_txd, /**< Texture look-up with partial derivatvies */
1185 ir_txf /**< Texel fetch with explicit LOD */
1186 };
1187
1188
1189 /**
1190 * IR instruction to sample a texture
1191 *
1192 * The specific form of the IR instruction depends on the \c mode value
1193 * selected from \c ir_texture_opcodes. In the printed IR, these will
1194 * appear as:
1195 *
1196 * Texel offset
1197 * | Projection divisor
1198 * | | Shadow comparitor
1199 * | | |
1200 * v v v
1201 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1202 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1203 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1204 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1205 * (txf (sampler) (coordinate) (0 0 0) (lod))
1206 */
1207 class ir_texture : public ir_rvalue {
1208 public:
1209 ir_texture(enum ir_texture_opcode op)
1210 : op(op), projector(NULL), shadow_comparitor(NULL)
1211 {
1212 this->ir_type = ir_type_texture;
1213 }
1214
1215 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1216
1217 virtual ir_constant *constant_expression_value();
1218
1219 virtual void accept(ir_visitor *v)
1220 {
1221 v->visit(this);
1222 }
1223
1224 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1225
1226 /**
1227 * Return a string representing the ir_texture_opcode.
1228 */
1229 const char *opcode_string();
1230
1231 /** Set the sampler and infer the type. */
1232 void set_sampler(ir_dereference *sampler);
1233
1234 /**
1235 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1236 */
1237 static ir_texture_opcode get_opcode(const char *);
1238
1239 enum ir_texture_opcode op;
1240
1241 /** Sampler to use for the texture access. */
1242 ir_dereference *sampler;
1243
1244 /** Texture coordinate to sample */
1245 ir_rvalue *coordinate;
1246
1247 /**
1248 * Value used for projective divide.
1249 *
1250 * If there is no projective divide (the common case), this will be
1251 * \c NULL. Optimization passes should check for this to point to a constant
1252 * of 1.0 and replace that with \c NULL.
1253 */
1254 ir_rvalue *projector;
1255
1256 /**
1257 * Coordinate used for comparison on shadow look-ups.
1258 *
1259 * If there is no shadow comparison, this will be \c NULL. For the
1260 * \c ir_txf opcode, this *must* be \c NULL.
1261 */
1262 ir_rvalue *shadow_comparitor;
1263
1264 /** Explicit texel offsets. */
1265 signed char offsets[3];
1266
1267 union {
1268 ir_rvalue *lod; /**< Floating point LOD */
1269 ir_rvalue *bias; /**< Floating point LOD bias */
1270 struct {
1271 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1272 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1273 } grad;
1274 } lod_info;
1275 };
1276
1277
1278 struct ir_swizzle_mask {
1279 unsigned x:2;
1280 unsigned y:2;
1281 unsigned z:2;
1282 unsigned w:2;
1283
1284 /**
1285 * Number of components in the swizzle.
1286 */
1287 unsigned num_components:3;
1288
1289 /**
1290 * Does the swizzle contain duplicate components?
1291 *
1292 * L-value swizzles cannot contain duplicate components.
1293 */
1294 unsigned has_duplicates:1;
1295 };
1296
1297
1298 class ir_swizzle : public ir_rvalue {
1299 public:
1300 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1301 unsigned count);
1302
1303 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1304
1305 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1306
1307 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1308
1309 virtual ir_constant *constant_expression_value();
1310
1311 virtual ir_swizzle *as_swizzle()
1312 {
1313 return this;
1314 }
1315
1316 /**
1317 * Construct an ir_swizzle from the textual representation. Can fail.
1318 */
1319 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1320
1321 virtual void accept(ir_visitor *v)
1322 {
1323 v->visit(this);
1324 }
1325
1326 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1327
1328 bool is_lvalue()
1329 {
1330 return val->is_lvalue() && !mask.has_duplicates;
1331 }
1332
1333 /**
1334 * Get the variable that is ultimately referenced by an r-value
1335 */
1336 virtual ir_variable *variable_referenced();
1337
1338 ir_rvalue *val;
1339 ir_swizzle_mask mask;
1340
1341 private:
1342 /**
1343 * Initialize the mask component of a swizzle
1344 *
1345 * This is used by the \c ir_swizzle constructors.
1346 */
1347 void init_mask(const unsigned *components, unsigned count);
1348 };
1349
1350
1351 class ir_dereference : public ir_rvalue {
1352 public:
1353 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1354
1355 virtual ir_dereference *as_dereference()
1356 {
1357 return this;
1358 }
1359
1360 bool is_lvalue();
1361
1362 /**
1363 * Get the variable that is ultimately referenced by an r-value
1364 */
1365 virtual ir_variable *variable_referenced() = 0;
1366 };
1367
1368
1369 class ir_dereference_variable : public ir_dereference {
1370 public:
1371 ir_dereference_variable(ir_variable *var);
1372
1373 virtual ir_dereference_variable *clone(void *mem_ctx,
1374 struct hash_table *) const;
1375
1376 virtual ir_constant *constant_expression_value();
1377
1378 virtual ir_dereference_variable *as_dereference_variable()
1379 {
1380 return this;
1381 }
1382
1383 /**
1384 * Get the variable that is ultimately referenced by an r-value
1385 */
1386 virtual ir_variable *variable_referenced()
1387 {
1388 return this->var;
1389 }
1390
1391 virtual ir_variable *whole_variable_referenced()
1392 {
1393 /* ir_dereference_variable objects always dereference the entire
1394 * variable. However, if this dereference is dereferenced by anything
1395 * else, the complete deferefernce chain is not a whole-variable
1396 * dereference. This method should only be called on the top most
1397 * ir_rvalue in a dereference chain.
1398 */
1399 return this->var;
1400 }
1401
1402 virtual void accept(ir_visitor *v)
1403 {
1404 v->visit(this);
1405 }
1406
1407 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1408
1409 /**
1410 * Object being dereferenced.
1411 */
1412 ir_variable *var;
1413 };
1414
1415
1416 class ir_dereference_array : public ir_dereference {
1417 public:
1418 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1419
1420 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1421
1422 virtual ir_dereference_array *clone(void *mem_ctx,
1423 struct hash_table *) const;
1424
1425 virtual ir_constant *constant_expression_value();
1426
1427 virtual ir_dereference_array *as_dereference_array()
1428 {
1429 return this;
1430 }
1431
1432 /**
1433 * Get the variable that is ultimately referenced by an r-value
1434 */
1435 virtual ir_variable *variable_referenced()
1436 {
1437 return this->array->variable_referenced();
1438 }
1439
1440 virtual void accept(ir_visitor *v)
1441 {
1442 v->visit(this);
1443 }
1444
1445 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1446
1447 ir_rvalue *array;
1448 ir_rvalue *array_index;
1449
1450 private:
1451 void set_array(ir_rvalue *value);
1452 };
1453
1454
1455 class ir_dereference_record : public ir_dereference {
1456 public:
1457 ir_dereference_record(ir_rvalue *value, const char *field);
1458
1459 ir_dereference_record(ir_variable *var, const char *field);
1460
1461 virtual ir_dereference_record *clone(void *mem_ctx,
1462 struct hash_table *) const;
1463
1464 virtual ir_constant *constant_expression_value();
1465
1466 /**
1467 * Get the variable that is ultimately referenced by an r-value
1468 */
1469 virtual ir_variable *variable_referenced()
1470 {
1471 return this->record->variable_referenced();
1472 }
1473
1474 virtual void accept(ir_visitor *v)
1475 {
1476 v->visit(this);
1477 }
1478
1479 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1480
1481 ir_rvalue *record;
1482 const char *field;
1483 };
1484
1485
1486 /**
1487 * Data stored in an ir_constant
1488 */
1489 union ir_constant_data {
1490 unsigned u[16];
1491 int i[16];
1492 float f[16];
1493 bool b[16];
1494 };
1495
1496
1497 class ir_constant : public ir_rvalue {
1498 public:
1499 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1500 ir_constant(bool b);
1501 ir_constant(unsigned int u);
1502 ir_constant(int i);
1503 ir_constant(float f);
1504
1505 /**
1506 * Construct an ir_constant from a list of ir_constant values
1507 */
1508 ir_constant(const struct glsl_type *type, exec_list *values);
1509
1510 /**
1511 * Construct an ir_constant from a scalar component of another ir_constant
1512 *
1513 * The new \c ir_constant inherits the type of the component from the
1514 * source constant.
1515 *
1516 * \note
1517 * In the case of a matrix constant, the new constant is a scalar, \b not
1518 * a vector.
1519 */
1520 ir_constant(const ir_constant *c, unsigned i);
1521
1522 /**
1523 * Return a new ir_constant of the specified type containing all zeros.
1524 */
1525 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1526
1527 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1528
1529 virtual ir_constant *constant_expression_value();
1530
1531 virtual ir_constant *as_constant()
1532 {
1533 return this;
1534 }
1535
1536 virtual void accept(ir_visitor *v)
1537 {
1538 v->visit(this);
1539 }
1540
1541 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1542
1543 /**
1544 * Get a particular component of a constant as a specific type
1545 *
1546 * This is useful, for example, to get a value from an integer constant
1547 * as a float or bool. This appears frequently when constructors are
1548 * called with all constant parameters.
1549 */
1550 /*@{*/
1551 bool get_bool_component(unsigned i) const;
1552 float get_float_component(unsigned i) const;
1553 int get_int_component(unsigned i) const;
1554 unsigned get_uint_component(unsigned i) const;
1555 /*@}*/
1556
1557 ir_constant *get_array_element(unsigned i) const;
1558
1559 ir_constant *get_record_field(const char *name);
1560
1561 /**
1562 * Determine whether a constant has the same value as another constant
1563 *
1564 * \sa ir_constant::is_zero, ir_constant::is_one,
1565 * ir_constant::is_negative_one
1566 */
1567 bool has_value(const ir_constant *) const;
1568
1569 virtual bool is_zero() const;
1570 virtual bool is_one() const;
1571 virtual bool is_negative_one() const;
1572
1573 /**
1574 * Value of the constant.
1575 *
1576 * The field used to back the values supplied by the constant is determined
1577 * by the type associated with the \c ir_instruction. Constants may be
1578 * scalars, vectors, or matrices.
1579 */
1580 union ir_constant_data value;
1581
1582 /* Array elements */
1583 ir_constant **array_elements;
1584
1585 /* Structure fields */
1586 exec_list components;
1587
1588 private:
1589 /**
1590 * Parameterless constructor only used by the clone method
1591 */
1592 ir_constant(void);
1593 };
1594
1595 /*@}*/
1596
1597 /**
1598 * Apply a visitor to each IR node in a list
1599 */
1600 void
1601 visit_exec_list(exec_list *list, ir_visitor *visitor);
1602
1603 /**
1604 * Validate invariants on each IR node in a list
1605 */
1606 void validate_ir_tree(exec_list *instructions);
1607
1608 /**
1609 * Make a clone of each IR instruction in a list
1610 *
1611 * \param in List of IR instructions that are to be cloned
1612 * \param out List to hold the cloned instructions
1613 */
1614 void
1615 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1616
1617 extern void
1618 _mesa_glsl_initialize_variables(exec_list *instructions,
1619 struct _mesa_glsl_parse_state *state);
1620
1621 extern void
1622 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1623
1624 extern void
1625 _mesa_glsl_release_functions(void);
1626
1627 extern void
1628 reparent_ir(exec_list *list, void *mem_ctx);
1629
1630 struct glsl_symbol_table;
1631
1632 extern void
1633 import_prototypes(const exec_list *source, exec_list *dest,
1634 struct glsl_symbol_table *symbols, void *mem_ctx);
1635
1636 extern bool
1637 ir_has_call(ir_instruction *ir);
1638
1639 extern void
1640 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1641
1642 #endif /* IR_H */