glsl: Track variable usage, use that to enforce semantics
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 virtual class ir_discard * as_discard() { return NULL; }
126 /*@}*/
127
128 protected:
129 ir_instruction()
130 {
131 ir_type = ir_type_unset;
132 type = NULL;
133 }
134 };
135
136
137 class ir_rvalue : public ir_instruction {
138 public:
139 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
140
141 virtual ir_constant *constant_expression_value() = 0;
142
143 virtual ir_rvalue * as_rvalue()
144 {
145 return this;
146 }
147
148 ir_rvalue *as_rvalue_to_saturate();
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 /**
179 * Determine if an r-value has the value zero
180 *
181 * The base implementation of this function always returns \c false. The
182 * \c ir_constant class over-rides this function to return \c true \b only
183 * for vector and scalar types that have all elements set to the value
184 * zero (or \c false for booleans).
185 *
186 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
187 */
188 virtual bool is_zero() const;
189
190 /**
191 * Determine if an r-value has the value one
192 *
193 * The base implementation of this function always returns \c false. The
194 * \c ir_constant class over-rides this function to return \c true \b only
195 * for vector and scalar types that have all elements set to the value
196 * one (or \c true for booleans).
197 *
198 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
199 */
200 virtual bool is_one() const;
201
202 /**
203 * Determine if an r-value has the value negative one
204 *
205 * The base implementation of this function always returns \c false. The
206 * \c ir_constant class over-rides this function to return \c true \b only
207 * for vector and scalar types that have all elements set to the value
208 * negative one. For boolean times, the result is always \c false.
209 *
210 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
211 */
212 virtual bool is_negative_one() const;
213
214 protected:
215 ir_rvalue();
216 };
217
218
219 /**
220 * Variable storage classes
221 */
222 enum ir_variable_mode {
223 ir_var_auto = 0, /**< Function local variables and globals. */
224 ir_var_uniform, /**< Variable declared as a uniform. */
225 ir_var_in,
226 ir_var_out,
227 ir_var_inout,
228 ir_var_temporary /**< Temporary variable generated during compilation. */
229 };
230
231 enum ir_variable_interpolation {
232 ir_var_smooth = 0,
233 ir_var_flat,
234 ir_var_noperspective
235 };
236
237
238 class ir_variable : public ir_instruction {
239 public:
240 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
241
242 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
243
244 virtual ir_variable *as_variable()
245 {
246 return this;
247 }
248
249 virtual void accept(ir_visitor *v)
250 {
251 v->visit(this);
252 }
253
254 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
255
256
257 /**
258 * Get the string value for the interpolation qualifier
259 *
260 * \return The string that would be used in a shader to specify \c
261 * mode will be returned.
262 *
263 * This function should only be used on a shader input or output variable.
264 */
265 const char *interpolation_string() const;
266
267 /**
268 * Calculate the number of slots required to hold this variable
269 *
270 * This is used to determine how many uniform or varying locations a variable
271 * occupies. The count is in units of floating point components.
272 */
273 unsigned component_slots() const;
274
275 /**
276 * Delcared name of the variable
277 */
278 const char *name;
279
280 /**
281 * Highest element accessed with a constant expression array index
282 *
283 * Not used for non-array variables.
284 */
285 unsigned max_array_access;
286
287 /**
288 * Is the variable read-only?
289 *
290 * This is set for variables declared as \c const, shader inputs,
291 * and uniforms.
292 */
293 unsigned read_only:1;
294 unsigned centroid:1;
295 unsigned invariant:1;
296
297 /**
298 * Has this variable been used for reading or writing?
299 *
300 * Several GLSL semantic checks require knowledge of whether or not a
301 * variable has been used. For example, it is an error to redeclare a
302 * variable as invariant after it has been used.
303 */
304 unsigned used:1;
305
306 /**
307 * Storage class of the variable.
308 *
309 * \sa ir_variable_mode
310 */
311 unsigned mode:3;
312
313 /**
314 * Interpolation mode for shader inputs / outputs
315 *
316 * \sa ir_variable_interpolation
317 */
318 unsigned interpolation:2;
319
320 /**
321 * Flag that the whole array is assignable
322 *
323 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
324 * equality). This flag enables this behavior.
325 */
326 unsigned array_lvalue:1;
327
328 /**
329 * \name ARB_fragment_coord_conventions
330 * @{
331 */
332 unsigned origin_upper_left:1;
333 unsigned pixel_center_integer:1;
334 /*@}*/
335
336 /**
337 * Was the location explicitly set in the shader?
338 *
339 * If the location is explicitly set in the shader, it \b cannot be changed
340 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
341 * no effect).
342 */
343 unsigned explicit_location:1;
344
345 /**
346 * Storage location of the base of this variable
347 *
348 * The precise meaning of this field depends on the nature of the variable.
349 *
350 * - Vertex shader input: one of the values from \c gl_vert_attrib.
351 * - Vertex shader output: one of the values from \c gl_vert_result.
352 * - Fragment shader input: one of the values from \c gl_frag_attrib.
353 * - Fragment shader output: one of the values from \c gl_frag_result.
354 * - Uniforms: Per-stage uniform slot number.
355 * - Other: This field is not currently used.
356 *
357 * If the variable is a uniform, shader input, or shader output, and the
358 * slot has not been assigned, the value will be -1.
359 */
360 int location;
361
362 /**
363 * Emit a warning if this variable is accessed.
364 */
365 const char *warn_extension;
366
367 /**
368 * Value assigned in the initializer of a variable declared "const"
369 */
370 ir_constant *constant_value;
371 };
372
373
374 /*@{*/
375 /**
376 * The representation of a function instance; may be the full definition or
377 * simply a prototype.
378 */
379 class ir_function_signature : public ir_instruction {
380 /* An ir_function_signature will be part of the list of signatures in
381 * an ir_function.
382 */
383 public:
384 ir_function_signature(const glsl_type *return_type);
385
386 virtual ir_function_signature *clone(void *mem_ctx,
387 struct hash_table *ht) const;
388 ir_function_signature *clone_prototype(void *mem_ctx,
389 struct hash_table *ht) const;
390
391 virtual void accept(ir_visitor *v)
392 {
393 v->visit(this);
394 }
395
396 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
397
398 /**
399 * Get the name of the function for which this is a signature
400 */
401 const char *function_name() const;
402
403 /**
404 * Get a handle to the function for which this is a signature
405 *
406 * There is no setter function, this function returns a \c const pointer,
407 * and \c ir_function_signature::_function is private for a reason. The
408 * only way to make a connection between a function and function signature
409 * is via \c ir_function::add_signature. This helps ensure that certain
410 * invariants (i.e., a function signature is in the list of signatures for
411 * its \c _function) are met.
412 *
413 * \sa ir_function::add_signature
414 */
415 inline const class ir_function *function() const
416 {
417 return this->_function;
418 }
419
420 /**
421 * Check whether the qualifiers match between this signature's parameters
422 * and the supplied parameter list. If not, returns the name of the first
423 * parameter with mismatched qualifiers (for use in error messages).
424 */
425 const char *qualifiers_match(exec_list *params);
426
427 /**
428 * Replace the current parameter list with the given one. This is useful
429 * if the current information came from a prototype, and either has invalid
430 * or missing parameter names.
431 */
432 void replace_parameters(exec_list *new_params);
433
434 /**
435 * Function return type.
436 *
437 * \note This discards the optional precision qualifier.
438 */
439 const struct glsl_type *return_type;
440
441 /**
442 * List of ir_variable of function parameters.
443 *
444 * This represents the storage. The paramaters passed in a particular
445 * call will be in ir_call::actual_paramaters.
446 */
447 struct exec_list parameters;
448
449 /** Whether or not this function has a body (which may be empty). */
450 unsigned is_defined:1;
451
452 /** Whether or not this function signature is a built-in. */
453 unsigned is_builtin:1;
454
455 /** Body of instructions in the function. */
456 struct exec_list body;
457
458 private:
459 /** Function of which this signature is one overload. */
460 class ir_function *_function;
461
462 friend class ir_function;
463 };
464
465
466 /**
467 * Header for tracking multiple overloaded functions with the same name.
468 * Contains a list of ir_function_signatures representing each of the
469 * actual functions.
470 */
471 class ir_function : public ir_instruction {
472 public:
473 ir_function(const char *name);
474
475 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
476
477 virtual ir_function *as_function()
478 {
479 return this;
480 }
481
482 virtual void accept(ir_visitor *v)
483 {
484 v->visit(this);
485 }
486
487 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
488
489 void add_signature(ir_function_signature *sig)
490 {
491 sig->_function = this;
492 this->signatures.push_tail(sig);
493 }
494
495 /**
496 * Get an iterator for the set of function signatures
497 */
498 exec_list_iterator iterator()
499 {
500 return signatures.iterator();
501 }
502
503 /**
504 * Find a signature that matches a set of actual parameters, taking implicit
505 * conversions into account.
506 */
507 ir_function_signature *matching_signature(const exec_list *actual_param);
508
509 /**
510 * Find a signature that exactly matches a set of actual parameters without
511 * any implicit type conversions.
512 */
513 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
514
515 /**
516 * Name of the function.
517 */
518 const char *name;
519
520 /** Whether or not this function has a signature that isn't a built-in. */
521 bool has_user_signature();
522
523 /**
524 * List of ir_function_signature for each overloaded function with this name.
525 */
526 struct exec_list signatures;
527 };
528
529 inline const char *ir_function_signature::function_name() const
530 {
531 return this->_function->name;
532 }
533 /*@}*/
534
535
536 /**
537 * IR instruction representing high-level if-statements
538 */
539 class ir_if : public ir_instruction {
540 public:
541 ir_if(ir_rvalue *condition)
542 : condition(condition)
543 {
544 ir_type = ir_type_if;
545 }
546
547 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
548
549 virtual ir_if *as_if()
550 {
551 return this;
552 }
553
554 virtual void accept(ir_visitor *v)
555 {
556 v->visit(this);
557 }
558
559 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
560
561 ir_rvalue *condition;
562 /** List of ir_instruction for the body of the then branch */
563 exec_list then_instructions;
564 /** List of ir_instruction for the body of the else branch */
565 exec_list else_instructions;
566 };
567
568
569 /**
570 * IR instruction representing a high-level loop structure.
571 */
572 class ir_loop : public ir_instruction {
573 public:
574 ir_loop();
575
576 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
577
578 virtual void accept(ir_visitor *v)
579 {
580 v->visit(this);
581 }
582
583 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
584
585 virtual ir_loop *as_loop()
586 {
587 return this;
588 }
589
590 /**
591 * Get an iterator for the instructions of the loop body
592 */
593 exec_list_iterator iterator()
594 {
595 return body_instructions.iterator();
596 }
597
598 /** List of ir_instruction that make up the body of the loop. */
599 exec_list body_instructions;
600
601 /**
602 * \name Loop counter and controls
603 *
604 * Represents a loop like a FORTRAN \c do-loop.
605 *
606 * \note
607 * If \c from and \c to are the same value, the loop will execute once.
608 */
609 /*@{*/
610 ir_rvalue *from; /** Value of the loop counter on the first
611 * iteration of the loop.
612 */
613 ir_rvalue *to; /** Value of the loop counter on the last
614 * iteration of the loop.
615 */
616 ir_rvalue *increment;
617 ir_variable *counter;
618
619 /**
620 * Comparison operation in the loop terminator.
621 *
622 * If any of the loop control fields are non-\c NULL, this field must be
623 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
624 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
625 */
626 int cmp;
627 /*@}*/
628 };
629
630
631 class ir_assignment : public ir_instruction {
632 public:
633 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
634
635 /**
636 * Construct an assignment with an explicit write mask
637 *
638 * \note
639 * Since a write mask is supplied, the LHS must already be a bare
640 * \c ir_dereference. The cannot be any swizzles in the LHS.
641 */
642 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
643 unsigned write_mask);
644
645 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
646
647 virtual ir_constant *constant_expression_value();
648
649 virtual void accept(ir_visitor *v)
650 {
651 v->visit(this);
652 }
653
654 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
655
656 virtual ir_assignment * as_assignment()
657 {
658 return this;
659 }
660
661 /**
662 * Get a whole variable written by an assignment
663 *
664 * If the LHS of the assignment writes a whole variable, the variable is
665 * returned. Otherwise \c NULL is returned. Examples of whole-variable
666 * assignment are:
667 *
668 * - Assigning to a scalar
669 * - Assigning to all components of a vector
670 * - Whole array (or matrix) assignment
671 * - Whole structure assignment
672 */
673 ir_variable *whole_variable_written();
674
675 /**
676 * Set the LHS of an assignment
677 */
678 void set_lhs(ir_rvalue *lhs);
679
680 /**
681 * Left-hand side of the assignment.
682 *
683 * This should be treated as read only. If you need to set the LHS of an
684 * assignment, use \c ir_assignment::set_lhs.
685 */
686 ir_dereference *lhs;
687
688 /**
689 * Value being assigned
690 */
691 ir_rvalue *rhs;
692
693 /**
694 * Optional condition for the assignment.
695 */
696 ir_rvalue *condition;
697
698
699 /**
700 * Component mask written
701 *
702 * For non-vector types in the LHS, this field will be zero. For vector
703 * types, a bit will be set for each component that is written. Note that
704 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
705 *
706 * A partially-set write mask means that each enabled channel gets
707 * the value from a consecutive channel of the rhs. For example,
708 * to write just .xyw of gl_FrontColor with color:
709 *
710 * (assign (constant bool (1)) (xyw)
711 * (var_ref gl_FragColor)
712 * (swiz xyw (var_ref color)))
713 */
714 unsigned write_mask:4;
715 };
716
717 /* Update ir_expression::num_operands() and operator_strs when
718 * updating this list.
719 */
720 enum ir_expression_operation {
721 ir_unop_bit_not,
722 ir_unop_logic_not,
723 ir_unop_neg,
724 ir_unop_abs,
725 ir_unop_sign,
726 ir_unop_rcp,
727 ir_unop_rsq,
728 ir_unop_sqrt,
729 ir_unop_exp, /**< Log base e on gentype */
730 ir_unop_log, /**< Natural log on gentype */
731 ir_unop_exp2,
732 ir_unop_log2,
733 ir_unop_f2i, /**< Float-to-integer conversion. */
734 ir_unop_i2f, /**< Integer-to-float conversion. */
735 ir_unop_f2b, /**< Float-to-boolean conversion */
736 ir_unop_b2f, /**< Boolean-to-float conversion */
737 ir_unop_i2b, /**< int-to-boolean conversion */
738 ir_unop_b2i, /**< Boolean-to-int conversion */
739 ir_unop_u2f, /**< Unsigned-to-float conversion. */
740 ir_unop_any,
741
742 /**
743 * \name Unary floating-point rounding operations.
744 */
745 /*@{*/
746 ir_unop_trunc,
747 ir_unop_ceil,
748 ir_unop_floor,
749 ir_unop_fract,
750 ir_unop_round_even,
751 /*@}*/
752
753 /**
754 * \name Trigonometric operations.
755 */
756 /*@{*/
757 ir_unop_sin,
758 ir_unop_cos,
759 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
760 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
761 /*@}*/
762
763 /**
764 * \name Partial derivatives.
765 */
766 /*@{*/
767 ir_unop_dFdx,
768 ir_unop_dFdy,
769 /*@}*/
770
771 ir_unop_noise,
772
773 /**
774 * A sentinel marking the last of the unary operations.
775 */
776 ir_last_unop = ir_unop_noise,
777
778 ir_binop_add,
779 ir_binop_sub,
780 ir_binop_mul,
781 ir_binop_div,
782
783 /**
784 * Takes one of two combinations of arguments:
785 *
786 * - mod(vecN, vecN)
787 * - mod(vecN, float)
788 *
789 * Does not take integer types.
790 */
791 ir_binop_mod,
792
793 /**
794 * \name Binary comparison operators which return a boolean vector.
795 * The type of both operands must be equal.
796 */
797 /*@{*/
798 ir_binop_less,
799 ir_binop_greater,
800 ir_binop_lequal,
801 ir_binop_gequal,
802 ir_binop_equal,
803 ir_binop_nequal,
804 /**
805 * Returns single boolean for whether all components of operands[0]
806 * equal the components of operands[1].
807 */
808 ir_binop_all_equal,
809 /**
810 * Returns single boolean for whether any component of operands[0]
811 * is not equal to the corresponding component of operands[1].
812 */
813 ir_binop_any_nequal,
814 /*@}*/
815
816 /**
817 * \name Bit-wise binary operations.
818 */
819 /*@{*/
820 ir_binop_lshift,
821 ir_binop_rshift,
822 ir_binop_bit_and,
823 ir_binop_bit_xor,
824 ir_binop_bit_or,
825 /*@}*/
826
827 ir_binop_logic_and,
828 ir_binop_logic_xor,
829 ir_binop_logic_or,
830
831 ir_binop_dot,
832 ir_binop_min,
833 ir_binop_max,
834
835 ir_binop_pow,
836
837 /**
838 * A sentinel marking the last of the binary operations.
839 */
840 ir_last_binop = ir_binop_pow,
841
842 ir_quadop_vector,
843
844 /**
845 * A sentinel marking the last of all operations.
846 */
847 ir_last_opcode = ir_last_binop
848 };
849
850 class ir_expression : public ir_rvalue {
851 public:
852 /**
853 * Constructor for unary operation expressions
854 */
855 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
856 ir_expression(int op, ir_rvalue *);
857
858 /**
859 * Constructor for binary operation expressions
860 */
861 ir_expression(int op, const struct glsl_type *type,
862 ir_rvalue *, ir_rvalue *);
863 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
864
865 /**
866 * Constructor for quad operator expressions
867 */
868 ir_expression(int op, const struct glsl_type *type,
869 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
870
871 virtual ir_expression *as_expression()
872 {
873 return this;
874 }
875
876 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
877
878 /**
879 * Attempt to constant-fold the expression
880 *
881 * If the expression cannot be constant folded, this method will return
882 * \c NULL.
883 */
884 virtual ir_constant *constant_expression_value();
885
886 /**
887 * Determine the number of operands used by an expression
888 */
889 static unsigned int get_num_operands(ir_expression_operation);
890
891 /**
892 * Determine the number of operands used by an expression
893 */
894 unsigned int get_num_operands() const
895 {
896 return (this->operation == ir_quadop_vector)
897 ? this->type->vector_elements : get_num_operands(operation);
898 }
899
900 /**
901 * Return a string representing this expression's operator.
902 */
903 const char *operator_string();
904
905 /**
906 * Return a string representing this expression's operator.
907 */
908 static const char *operator_string(ir_expression_operation);
909
910
911 /**
912 * Do a reverse-lookup to translate the given string into an operator.
913 */
914 static ir_expression_operation get_operator(const char *);
915
916 virtual void accept(ir_visitor *v)
917 {
918 v->visit(this);
919 }
920
921 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
922
923 ir_expression_operation operation;
924 ir_rvalue *operands[4];
925 };
926
927
928 /**
929 * IR instruction representing a function call
930 */
931 class ir_call : public ir_rvalue {
932 public:
933 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
934 : callee(callee)
935 {
936 ir_type = ir_type_call;
937 assert(callee->return_type != NULL);
938 type = callee->return_type;
939 actual_parameters->move_nodes_to(& this->actual_parameters);
940 }
941
942 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
943
944 virtual ir_constant *constant_expression_value();
945
946 virtual ir_call *as_call()
947 {
948 return this;
949 }
950
951 virtual void accept(ir_visitor *v)
952 {
953 v->visit(this);
954 }
955
956 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
957
958 /**
959 * Get a generic ir_call object when an error occurs
960 *
961 * Any allocation will be performed with 'ctx' as talloc owner.
962 */
963 static ir_call *get_error_instruction(void *ctx);
964
965 /**
966 * Get an iterator for the set of acutal parameters
967 */
968 exec_list_iterator iterator()
969 {
970 return actual_parameters.iterator();
971 }
972
973 /**
974 * Get the name of the function being called.
975 */
976 const char *callee_name() const
977 {
978 return callee->function_name();
979 }
980
981 /**
982 * Get the function signature bound to this function call
983 */
984 ir_function_signature *get_callee()
985 {
986 return callee;
987 }
988
989 /**
990 * Set the function call target
991 */
992 void set_callee(ir_function_signature *sig);
993
994 /**
995 * Generates an inline version of the function before @ir,
996 * returning the return value of the function.
997 */
998 ir_rvalue *generate_inline(ir_instruction *ir);
999
1000 /* List of ir_rvalue of paramaters passed in this call. */
1001 exec_list actual_parameters;
1002
1003 private:
1004 ir_call()
1005 : callee(NULL)
1006 {
1007 this->ir_type = ir_type_call;
1008 }
1009
1010 ir_function_signature *callee;
1011 };
1012
1013
1014 /**
1015 * \name Jump-like IR instructions.
1016 *
1017 * These include \c break, \c continue, \c return, and \c discard.
1018 */
1019 /*@{*/
1020 class ir_jump : public ir_instruction {
1021 protected:
1022 ir_jump()
1023 {
1024 ir_type = ir_type_unset;
1025 }
1026 };
1027
1028 class ir_return : public ir_jump {
1029 public:
1030 ir_return()
1031 : value(NULL)
1032 {
1033 this->ir_type = ir_type_return;
1034 }
1035
1036 ir_return(ir_rvalue *value)
1037 : value(value)
1038 {
1039 this->ir_type = ir_type_return;
1040 }
1041
1042 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1043
1044 virtual ir_return *as_return()
1045 {
1046 return this;
1047 }
1048
1049 ir_rvalue *get_value() const
1050 {
1051 return value;
1052 }
1053
1054 virtual void accept(ir_visitor *v)
1055 {
1056 v->visit(this);
1057 }
1058
1059 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1060
1061 ir_rvalue *value;
1062 };
1063
1064
1065 /**
1066 * Jump instructions used inside loops
1067 *
1068 * These include \c break and \c continue. The \c break within a loop is
1069 * different from the \c break within a switch-statement.
1070 *
1071 * \sa ir_switch_jump
1072 */
1073 class ir_loop_jump : public ir_jump {
1074 public:
1075 enum jump_mode {
1076 jump_break,
1077 jump_continue
1078 };
1079
1080 ir_loop_jump(jump_mode mode)
1081 {
1082 this->ir_type = ir_type_loop_jump;
1083 this->mode = mode;
1084 this->loop = loop;
1085 }
1086
1087 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1088
1089 virtual void accept(ir_visitor *v)
1090 {
1091 v->visit(this);
1092 }
1093
1094 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1095
1096 bool is_break() const
1097 {
1098 return mode == jump_break;
1099 }
1100
1101 bool is_continue() const
1102 {
1103 return mode == jump_continue;
1104 }
1105
1106 /** Mode selector for the jump instruction. */
1107 enum jump_mode mode;
1108 private:
1109 /** Loop containing this break instruction. */
1110 ir_loop *loop;
1111 };
1112
1113 /**
1114 * IR instruction representing discard statements.
1115 */
1116 class ir_discard : public ir_jump {
1117 public:
1118 ir_discard()
1119 {
1120 this->ir_type = ir_type_discard;
1121 this->condition = NULL;
1122 }
1123
1124 ir_discard(ir_rvalue *cond)
1125 {
1126 this->ir_type = ir_type_discard;
1127 this->condition = cond;
1128 }
1129
1130 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1131
1132 virtual void accept(ir_visitor *v)
1133 {
1134 v->visit(this);
1135 }
1136
1137 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1138
1139 virtual ir_discard *as_discard()
1140 {
1141 return this;
1142 }
1143
1144 ir_rvalue *condition;
1145 };
1146 /*@}*/
1147
1148
1149 /**
1150 * Texture sampling opcodes used in ir_texture
1151 */
1152 enum ir_texture_opcode {
1153 ir_tex, /**< Regular texture look-up */
1154 ir_txb, /**< Texture look-up with LOD bias */
1155 ir_txl, /**< Texture look-up with explicit LOD */
1156 ir_txd, /**< Texture look-up with partial derivatvies */
1157 ir_txf /**< Texel fetch with explicit LOD */
1158 };
1159
1160
1161 /**
1162 * IR instruction to sample a texture
1163 *
1164 * The specific form of the IR instruction depends on the \c mode value
1165 * selected from \c ir_texture_opcodes. In the printed IR, these will
1166 * appear as:
1167 *
1168 * Texel offset
1169 * | Projection divisor
1170 * | | Shadow comparitor
1171 * | | |
1172 * v v v
1173 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1174 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1175 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1176 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1177 * (txf (sampler) (coordinate) (0 0 0) (lod))
1178 */
1179 class ir_texture : public ir_rvalue {
1180 public:
1181 ir_texture(enum ir_texture_opcode op)
1182 : op(op), projector(NULL), shadow_comparitor(NULL)
1183 {
1184 this->ir_type = ir_type_texture;
1185 }
1186
1187 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1188
1189 virtual ir_constant *constant_expression_value();
1190
1191 virtual void accept(ir_visitor *v)
1192 {
1193 v->visit(this);
1194 }
1195
1196 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1197
1198 /**
1199 * Return a string representing the ir_texture_opcode.
1200 */
1201 const char *opcode_string();
1202
1203 /** Set the sampler and infer the type. */
1204 void set_sampler(ir_dereference *sampler);
1205
1206 /**
1207 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1208 */
1209 static ir_texture_opcode get_opcode(const char *);
1210
1211 enum ir_texture_opcode op;
1212
1213 /** Sampler to use for the texture access. */
1214 ir_dereference *sampler;
1215
1216 /** Texture coordinate to sample */
1217 ir_rvalue *coordinate;
1218
1219 /**
1220 * Value used for projective divide.
1221 *
1222 * If there is no projective divide (the common case), this will be
1223 * \c NULL. Optimization passes should check for this to point to a constant
1224 * of 1.0 and replace that with \c NULL.
1225 */
1226 ir_rvalue *projector;
1227
1228 /**
1229 * Coordinate used for comparison on shadow look-ups.
1230 *
1231 * If there is no shadow comparison, this will be \c NULL. For the
1232 * \c ir_txf opcode, this *must* be \c NULL.
1233 */
1234 ir_rvalue *shadow_comparitor;
1235
1236 /** Explicit texel offsets. */
1237 signed char offsets[3];
1238
1239 union {
1240 ir_rvalue *lod; /**< Floating point LOD */
1241 ir_rvalue *bias; /**< Floating point LOD bias */
1242 struct {
1243 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1244 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1245 } grad;
1246 } lod_info;
1247 };
1248
1249
1250 struct ir_swizzle_mask {
1251 unsigned x:2;
1252 unsigned y:2;
1253 unsigned z:2;
1254 unsigned w:2;
1255
1256 /**
1257 * Number of components in the swizzle.
1258 */
1259 unsigned num_components:3;
1260
1261 /**
1262 * Does the swizzle contain duplicate components?
1263 *
1264 * L-value swizzles cannot contain duplicate components.
1265 */
1266 unsigned has_duplicates:1;
1267 };
1268
1269
1270 class ir_swizzle : public ir_rvalue {
1271 public:
1272 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1273 unsigned count);
1274
1275 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1276
1277 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1278
1279 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1280
1281 virtual ir_constant *constant_expression_value();
1282
1283 virtual ir_swizzle *as_swizzle()
1284 {
1285 return this;
1286 }
1287
1288 /**
1289 * Construct an ir_swizzle from the textual representation. Can fail.
1290 */
1291 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1292
1293 virtual void accept(ir_visitor *v)
1294 {
1295 v->visit(this);
1296 }
1297
1298 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1299
1300 bool is_lvalue()
1301 {
1302 return val->is_lvalue() && !mask.has_duplicates;
1303 }
1304
1305 /**
1306 * Get the variable that is ultimately referenced by an r-value
1307 */
1308 virtual ir_variable *variable_referenced();
1309
1310 ir_rvalue *val;
1311 ir_swizzle_mask mask;
1312
1313 private:
1314 /**
1315 * Initialize the mask component of a swizzle
1316 *
1317 * This is used by the \c ir_swizzle constructors.
1318 */
1319 void init_mask(const unsigned *components, unsigned count);
1320 };
1321
1322
1323 class ir_dereference : public ir_rvalue {
1324 public:
1325 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1326
1327 virtual ir_dereference *as_dereference()
1328 {
1329 return this;
1330 }
1331
1332 bool is_lvalue();
1333
1334 /**
1335 * Get the variable that is ultimately referenced by an r-value
1336 */
1337 virtual ir_variable *variable_referenced() = 0;
1338 };
1339
1340
1341 class ir_dereference_variable : public ir_dereference {
1342 public:
1343 ir_dereference_variable(ir_variable *var);
1344
1345 virtual ir_dereference_variable *clone(void *mem_ctx,
1346 struct hash_table *) const;
1347
1348 virtual ir_constant *constant_expression_value();
1349
1350 virtual ir_dereference_variable *as_dereference_variable()
1351 {
1352 return this;
1353 }
1354
1355 /**
1356 * Get the variable that is ultimately referenced by an r-value
1357 */
1358 virtual ir_variable *variable_referenced()
1359 {
1360 return this->var;
1361 }
1362
1363 virtual ir_variable *whole_variable_referenced()
1364 {
1365 /* ir_dereference_variable objects always dereference the entire
1366 * variable. However, if this dereference is dereferenced by anything
1367 * else, the complete deferefernce chain is not a whole-variable
1368 * dereference. This method should only be called on the top most
1369 * ir_rvalue in a dereference chain.
1370 */
1371 return this->var;
1372 }
1373
1374 virtual void accept(ir_visitor *v)
1375 {
1376 v->visit(this);
1377 }
1378
1379 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1380
1381 /**
1382 * Object being dereferenced.
1383 */
1384 ir_variable *var;
1385 };
1386
1387
1388 class ir_dereference_array : public ir_dereference {
1389 public:
1390 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1391
1392 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1393
1394 virtual ir_dereference_array *clone(void *mem_ctx,
1395 struct hash_table *) const;
1396
1397 virtual ir_constant *constant_expression_value();
1398
1399 virtual ir_dereference_array *as_dereference_array()
1400 {
1401 return this;
1402 }
1403
1404 /**
1405 * Get the variable that is ultimately referenced by an r-value
1406 */
1407 virtual ir_variable *variable_referenced()
1408 {
1409 return this->array->variable_referenced();
1410 }
1411
1412 virtual void accept(ir_visitor *v)
1413 {
1414 v->visit(this);
1415 }
1416
1417 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1418
1419 ir_rvalue *array;
1420 ir_rvalue *array_index;
1421
1422 private:
1423 void set_array(ir_rvalue *value);
1424 };
1425
1426
1427 class ir_dereference_record : public ir_dereference {
1428 public:
1429 ir_dereference_record(ir_rvalue *value, const char *field);
1430
1431 ir_dereference_record(ir_variable *var, const char *field);
1432
1433 virtual ir_dereference_record *clone(void *mem_ctx,
1434 struct hash_table *) const;
1435
1436 virtual ir_constant *constant_expression_value();
1437
1438 /**
1439 * Get the variable that is ultimately referenced by an r-value
1440 */
1441 virtual ir_variable *variable_referenced()
1442 {
1443 return this->record->variable_referenced();
1444 }
1445
1446 virtual void accept(ir_visitor *v)
1447 {
1448 v->visit(this);
1449 }
1450
1451 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1452
1453 ir_rvalue *record;
1454 const char *field;
1455 };
1456
1457
1458 /**
1459 * Data stored in an ir_constant
1460 */
1461 union ir_constant_data {
1462 unsigned u[16];
1463 int i[16];
1464 float f[16];
1465 bool b[16];
1466 };
1467
1468
1469 class ir_constant : public ir_rvalue {
1470 public:
1471 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1472 ir_constant(bool b);
1473 ir_constant(unsigned int u);
1474 ir_constant(int i);
1475 ir_constant(float f);
1476
1477 /**
1478 * Construct an ir_constant from a list of ir_constant values
1479 */
1480 ir_constant(const struct glsl_type *type, exec_list *values);
1481
1482 /**
1483 * Construct an ir_constant from a scalar component of another ir_constant
1484 *
1485 * The new \c ir_constant inherits the type of the component from the
1486 * source constant.
1487 *
1488 * \note
1489 * In the case of a matrix constant, the new constant is a scalar, \b not
1490 * a vector.
1491 */
1492 ir_constant(const ir_constant *c, unsigned i);
1493
1494 /**
1495 * Return a new ir_constant of the specified type containing all zeros.
1496 */
1497 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1498
1499 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1500
1501 virtual ir_constant *constant_expression_value();
1502
1503 virtual ir_constant *as_constant()
1504 {
1505 return this;
1506 }
1507
1508 virtual void accept(ir_visitor *v)
1509 {
1510 v->visit(this);
1511 }
1512
1513 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1514
1515 /**
1516 * Get a particular component of a constant as a specific type
1517 *
1518 * This is useful, for example, to get a value from an integer constant
1519 * as a float or bool. This appears frequently when constructors are
1520 * called with all constant parameters.
1521 */
1522 /*@{*/
1523 bool get_bool_component(unsigned i) const;
1524 float get_float_component(unsigned i) const;
1525 int get_int_component(unsigned i) const;
1526 unsigned get_uint_component(unsigned i) const;
1527 /*@}*/
1528
1529 ir_constant *get_array_element(unsigned i) const;
1530
1531 ir_constant *get_record_field(const char *name);
1532
1533 /**
1534 * Determine whether a constant has the same value as another constant
1535 *
1536 * \sa ir_constant::is_zero, ir_constant::is_one,
1537 * ir_constant::is_negative_one
1538 */
1539 bool has_value(const ir_constant *) const;
1540
1541 virtual bool is_zero() const;
1542 virtual bool is_one() const;
1543 virtual bool is_negative_one() const;
1544
1545 /**
1546 * Value of the constant.
1547 *
1548 * The field used to back the values supplied by the constant is determined
1549 * by the type associated with the \c ir_instruction. Constants may be
1550 * scalars, vectors, or matrices.
1551 */
1552 union ir_constant_data value;
1553
1554 /* Array elements */
1555 ir_constant **array_elements;
1556
1557 /* Structure fields */
1558 exec_list components;
1559
1560 private:
1561 /**
1562 * Parameterless constructor only used by the clone method
1563 */
1564 ir_constant(void);
1565 };
1566
1567 /*@}*/
1568
1569 /**
1570 * Apply a visitor to each IR node in a list
1571 */
1572 void
1573 visit_exec_list(exec_list *list, ir_visitor *visitor);
1574
1575 /**
1576 * Validate invariants on each IR node in a list
1577 */
1578 void validate_ir_tree(exec_list *instructions);
1579
1580 /**
1581 * Make a clone of each IR instruction in a list
1582 *
1583 * \param in List of IR instructions that are to be cloned
1584 * \param out List to hold the cloned instructions
1585 */
1586 void
1587 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1588
1589 extern void
1590 _mesa_glsl_initialize_variables(exec_list *instructions,
1591 struct _mesa_glsl_parse_state *state);
1592
1593 extern void
1594 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1595
1596 extern void
1597 _mesa_glsl_release_functions(void);
1598
1599 extern void
1600 reparent_ir(exec_list *list, void *mem_ctx);
1601
1602 struct glsl_symbol_table;
1603
1604 extern void
1605 import_prototypes(const exec_list *source, exec_list *dest,
1606 struct glsl_symbol_table *symbols, void *mem_ctx);
1607
1608 extern bool
1609 ir_has_call(ir_instruction *ir);
1610
1611 extern void
1612 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1613
1614 #endif /* IR_H */