Merge branch 'llvm-cliptest-viewport'
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 /**
45 * \defgroup IR Intermediate representation nodes
46 *
47 * @{
48 */
49
50 /**
51 * Class tags
52 *
53 * Each concrete class derived from \c ir_instruction has a value in this
54 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
55 * by the constructor. While using type tags is not very C++, it is extremely
56 * convenient. For example, during debugging you can simply inspect
57 * \c ir_instruction::ir_type to find out the actual type of the object.
58 *
59 * In addition, it is possible to use a switch-statement based on \c
60 * \c ir_instruction::ir_type to select different behavior for different object
61 * types. For functions that have only slight differences for several object
62 * types, this allows writing very straightforward, readable code.
63 */
64 enum ir_node_type {
65 /**
66 * Zero is unused so that the IR validator can detect cases where
67 * \c ir_instruction::ir_type has not been initialized.
68 */
69 ir_type_unset,
70 ir_type_variable,
71 ir_type_assignment,
72 ir_type_call,
73 ir_type_constant,
74 ir_type_dereference_array,
75 ir_type_dereference_record,
76 ir_type_dereference_variable,
77 ir_type_discard,
78 ir_type_expression,
79 ir_type_function,
80 ir_type_function_signature,
81 ir_type_if,
82 ir_type_loop,
83 ir_type_loop_jump,
84 ir_type_return,
85 ir_type_swizzle,
86 ir_type_texture,
87 ir_type_max /**< maximum ir_type enum number, for validation */
88 };
89
90 /**
91 * Base class of all IR instructions
92 */
93 class ir_instruction : public exec_node {
94 public:
95 enum ir_node_type ir_type;
96 const struct glsl_type *type;
97
98 /** ir_print_visitor helper for debugging. */
99 void print(void) const;
100
101 virtual void accept(ir_visitor *) = 0;
102 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
103 virtual ir_instruction *clone(void *mem_ctx,
104 struct hash_table *ht) const = 0;
105
106 /**
107 * \name IR instruction downcast functions
108 *
109 * These functions either cast the object to a derived class or return
110 * \c NULL if the object's type does not match the specified derived class.
111 * Additional downcast functions will be added as needed.
112 */
113 /*@{*/
114 virtual class ir_variable * as_variable() { return NULL; }
115 virtual class ir_function * as_function() { return NULL; }
116 virtual class ir_dereference * as_dereference() { return NULL; }
117 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
118 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
119 virtual class ir_expression * as_expression() { return NULL; }
120 virtual class ir_rvalue * as_rvalue() { return NULL; }
121 virtual class ir_loop * as_loop() { return NULL; }
122 virtual class ir_assignment * as_assignment() { return NULL; }
123 virtual class ir_call * as_call() { return NULL; }
124 virtual class ir_return * as_return() { return NULL; }
125 virtual class ir_if * as_if() { return NULL; }
126 virtual class ir_swizzle * as_swizzle() { return NULL; }
127 virtual class ir_constant * as_constant() { return NULL; }
128 /*@}*/
129
130 protected:
131 ir_instruction()
132 {
133 ir_type = ir_type_unset;
134 type = NULL;
135 }
136 };
137
138
139 class ir_rvalue : public ir_instruction {
140 public:
141 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
142
143 virtual ir_constant *constant_expression_value() = 0;
144
145 virtual ir_rvalue * as_rvalue()
146 {
147 return this;
148 }
149
150 virtual bool is_lvalue()
151 {
152 return false;
153 }
154
155 /**
156 * Get the variable that is ultimately referenced by an r-value
157 */
158 virtual ir_variable *variable_referenced()
159 {
160 return NULL;
161 }
162
163
164 /**
165 * If an r-value is a reference to a whole variable, get that variable
166 *
167 * \return
168 * Pointer to a variable that is completely dereferenced by the r-value. If
169 * the r-value is not a dereference or the dereference does not access the
170 * entire variable (i.e., it's just one array element, struct field), \c NULL
171 * is returned.
172 */
173 virtual ir_variable *whole_variable_referenced()
174 {
175 return NULL;
176 }
177
178 protected:
179 ir_rvalue();
180 };
181
182
183 /**
184 * Variable storage classes
185 */
186 enum ir_variable_mode {
187 ir_var_auto = 0, /**< Function local variables and globals. */
188 ir_var_uniform, /**< Variable declared as a uniform. */
189 ir_var_in,
190 ir_var_out,
191 ir_var_inout,
192 ir_var_temporary /**< Temporary variable generated during compilation. */
193 };
194
195 enum ir_variable_interpolation {
196 ir_var_smooth = 0,
197 ir_var_flat,
198 ir_var_noperspective
199 };
200
201
202 class ir_variable : public ir_instruction {
203 public:
204 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
205
206 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
207
208 virtual ir_variable *as_variable()
209 {
210 return this;
211 }
212
213 virtual void accept(ir_visitor *v)
214 {
215 v->visit(this);
216 }
217
218 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
219
220
221 /**
222 * Get the string value for the interpolation qualifier
223 *
224 * \return The string that would be used in a shader to specify \c
225 * mode will be returned.
226 *
227 * This function should only be used on a shader input or output variable.
228 */
229 const char *interpolation_string() const;
230
231 /**
232 * Calculate the number of slots required to hold this variable
233 *
234 * This is used to determine how many uniform or varying locations a variable
235 * occupies. The count is in units of floating point components.
236 */
237 unsigned component_slots() const;
238
239 /**
240 * Delcared name of the variable
241 */
242 const char *name;
243
244 /**
245 * Highest element accessed with a constant expression array index
246 *
247 * Not used for non-array variables.
248 */
249 unsigned max_array_access;
250
251 /**
252 * Is the variable read-only?
253 *
254 * This is set for variables declared as \c const, shader inputs,
255 * and uniforms.
256 */
257 unsigned read_only:1;
258 unsigned centroid:1;
259 unsigned invariant:1;
260
261 /**
262 * Storage class of the variable.
263 *
264 * \sa ir_variable_mode
265 */
266 unsigned mode:3;
267
268 /**
269 * Interpolation mode for shader inputs / outputs
270 *
271 * \sa ir_variable_interpolation
272 */
273 unsigned interpolation:2;
274
275 /**
276 * Flag that the whole array is assignable
277 *
278 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
279 * equality). This flag enables this behavior.
280 */
281 unsigned array_lvalue:1;
282
283 /**
284 * \name ARB_fragment_coord_conventions
285 * @{
286 */
287 unsigned origin_upper_left:1;
288 unsigned pixel_center_integer:1;
289 /*@}*/
290
291 /**
292 * Was the location explicitly set in the shader?
293 *
294 * If the location is explicitly set in the shader, it \b cannot be changed
295 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
296 * no effect).
297 */
298 unsigned explicit_location:1;
299
300 /**
301 * Storage location of the base of this variable
302 *
303 * The precise meaning of this field depends on the nature of the variable.
304 *
305 * - Vertex shader input: one of the values from \c gl_vert_attrib.
306 * - Vertex shader output: one of the values from \c gl_vert_result.
307 * - Fragment shader input: one of the values from \c gl_frag_attrib.
308 * - Fragment shader output: one of the values from \c gl_frag_result.
309 * - Uniforms: Per-stage uniform slot number.
310 * - Other: This field is not currently used.
311 *
312 * If the variable is a uniform, shader input, or shader output, and the
313 * slot has not been assigned, the value will be -1.
314 */
315 int location;
316
317 /**
318 * Emit a warning if this variable is accessed.
319 */
320 const char *warn_extension;
321
322 /**
323 * Value assigned in the initializer of a variable declared "const"
324 */
325 ir_constant *constant_value;
326 };
327
328
329 /*@{*/
330 /**
331 * The representation of a function instance; may be the full definition or
332 * simply a prototype.
333 */
334 class ir_function_signature : public ir_instruction {
335 /* An ir_function_signature will be part of the list of signatures in
336 * an ir_function.
337 */
338 public:
339 ir_function_signature(const glsl_type *return_type);
340
341 virtual ir_function_signature *clone(void *mem_ctx,
342 struct hash_table *ht) const;
343
344 virtual void accept(ir_visitor *v)
345 {
346 v->visit(this);
347 }
348
349 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
350
351 /**
352 * Get the name of the function for which this is a signature
353 */
354 const char *function_name() const;
355
356 /**
357 * Get a handle to the function for which this is a signature
358 *
359 * There is no setter function, this function returns a \c const pointer,
360 * and \c ir_function_signature::_function is private for a reason. The
361 * only way to make a connection between a function and function signature
362 * is via \c ir_function::add_signature. This helps ensure that certain
363 * invariants (i.e., a function signature is in the list of signatures for
364 * its \c _function) are met.
365 *
366 * \sa ir_function::add_signature
367 */
368 inline const class ir_function *function() const
369 {
370 return this->_function;
371 }
372
373 /**
374 * Check whether the qualifiers match between this signature's parameters
375 * and the supplied parameter list. If not, returns the name of the first
376 * parameter with mismatched qualifiers (for use in error messages).
377 */
378 const char *qualifiers_match(exec_list *params);
379
380 /**
381 * Replace the current parameter list with the given one. This is useful
382 * if the current information came from a prototype, and either has invalid
383 * or missing parameter names.
384 */
385 void replace_parameters(exec_list *new_params);
386
387 /**
388 * Function return type.
389 *
390 * \note This discards the optional precision qualifier.
391 */
392 const struct glsl_type *return_type;
393
394 /**
395 * List of ir_variable of function parameters.
396 *
397 * This represents the storage. The paramaters passed in a particular
398 * call will be in ir_call::actual_paramaters.
399 */
400 struct exec_list parameters;
401
402 /** Whether or not this function has a body (which may be empty). */
403 unsigned is_defined:1;
404
405 /** Whether or not this function signature is a built-in. */
406 unsigned is_builtin:1;
407
408 /** Body of instructions in the function. */
409 struct exec_list body;
410
411 private:
412 /** Function of which this signature is one overload. */
413 class ir_function *_function;
414
415 friend class ir_function;
416 };
417
418
419 /**
420 * Header for tracking multiple overloaded functions with the same name.
421 * Contains a list of ir_function_signatures representing each of the
422 * actual functions.
423 */
424 class ir_function : public ir_instruction {
425 public:
426 ir_function(const char *name);
427
428 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
429
430 virtual ir_function *as_function()
431 {
432 return this;
433 }
434
435 virtual void accept(ir_visitor *v)
436 {
437 v->visit(this);
438 }
439
440 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
441
442 void add_signature(ir_function_signature *sig)
443 {
444 sig->_function = this;
445 this->signatures.push_tail(sig);
446 }
447
448 /**
449 * Get an iterator for the set of function signatures
450 */
451 exec_list_iterator iterator()
452 {
453 return signatures.iterator();
454 }
455
456 /**
457 * Find a signature that matches a set of actual parameters, taking implicit
458 * conversions into account.
459 */
460 ir_function_signature *matching_signature(const exec_list *actual_param);
461
462 /**
463 * Find a signature that exactly matches a set of actual parameters without
464 * any implicit type conversions.
465 */
466 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
467
468 /**
469 * Name of the function.
470 */
471 const char *name;
472
473 /** Whether or not this function has a signature that isn't a built-in. */
474 bool has_user_signature();
475
476 /**
477 * List of ir_function_signature for each overloaded function with this name.
478 */
479 struct exec_list signatures;
480 };
481
482 inline const char *ir_function_signature::function_name() const
483 {
484 return this->_function->name;
485 }
486 /*@}*/
487
488
489 /**
490 * IR instruction representing high-level if-statements
491 */
492 class ir_if : public ir_instruction {
493 public:
494 ir_if(ir_rvalue *condition)
495 : condition(condition)
496 {
497 ir_type = ir_type_if;
498 }
499
500 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
501
502 virtual ir_if *as_if()
503 {
504 return this;
505 }
506
507 virtual void accept(ir_visitor *v)
508 {
509 v->visit(this);
510 }
511
512 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
513
514 ir_rvalue *condition;
515 /** List of ir_instruction for the body of the then branch */
516 exec_list then_instructions;
517 /** List of ir_instruction for the body of the else branch */
518 exec_list else_instructions;
519 };
520
521
522 /**
523 * IR instruction representing a high-level loop structure.
524 */
525 class ir_loop : public ir_instruction {
526 public:
527 ir_loop();
528
529 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
530
531 virtual void accept(ir_visitor *v)
532 {
533 v->visit(this);
534 }
535
536 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
537
538 virtual ir_loop *as_loop()
539 {
540 return this;
541 }
542
543 /**
544 * Get an iterator for the instructions of the loop body
545 */
546 exec_list_iterator iterator()
547 {
548 return body_instructions.iterator();
549 }
550
551 /** List of ir_instruction that make up the body of the loop. */
552 exec_list body_instructions;
553
554 /**
555 * \name Loop counter and controls
556 *
557 * Represents a loop like a FORTRAN \c do-loop.
558 *
559 * \note
560 * If \c from and \c to are the same value, the loop will execute once.
561 */
562 /*@{*/
563 ir_rvalue *from; /** Value of the loop counter on the first
564 * iteration of the loop.
565 */
566 ir_rvalue *to; /** Value of the loop counter on the last
567 * iteration of the loop.
568 */
569 ir_rvalue *increment;
570 ir_variable *counter;
571
572 /**
573 * Comparison operation in the loop terminator.
574 *
575 * If any of the loop control fields are non-\c NULL, this field must be
576 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
577 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
578 */
579 int cmp;
580 /*@}*/
581 };
582
583
584 class ir_assignment : public ir_instruction {
585 public:
586 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
587
588 /**
589 * Construct an assignment with an explicit write mask
590 *
591 * \note
592 * Since a write mask is supplied, the LHS must already be a bare
593 * \c ir_dereference. The cannot be any swizzles in the LHS.
594 */
595 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
596 unsigned write_mask);
597
598 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
599
600 virtual ir_constant *constant_expression_value();
601
602 virtual void accept(ir_visitor *v)
603 {
604 v->visit(this);
605 }
606
607 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
608
609 virtual ir_assignment * as_assignment()
610 {
611 return this;
612 }
613
614 /**
615 * Get a whole variable written by an assignment
616 *
617 * If the LHS of the assignment writes a whole variable, the variable is
618 * returned. Otherwise \c NULL is returned. Examples of whole-variable
619 * assignment are:
620 *
621 * - Assigning to a scalar
622 * - Assigning to all components of a vector
623 * - Whole array (or matrix) assignment
624 * - Whole structure assignment
625 */
626 ir_variable *whole_variable_written();
627
628 /**
629 * Set the LHS of an assignment
630 */
631 void set_lhs(ir_rvalue *lhs);
632
633 /**
634 * Left-hand side of the assignment.
635 *
636 * This should be treated as read only. If you need to set the LHS of an
637 * assignment, use \c ir_assignment::set_lhs.
638 */
639 ir_dereference *lhs;
640
641 /**
642 * Value being assigned
643 */
644 ir_rvalue *rhs;
645
646 /**
647 * Optional condition for the assignment.
648 */
649 ir_rvalue *condition;
650
651
652 /**
653 * Component mask written
654 *
655 * For non-vector types in the LHS, this field will be zero. For vector
656 * types, a bit will be set for each component that is written. Note that
657 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
658 *
659 * A partially-set write mask means that each enabled channel gets
660 * the value from a consecutive channel of the rhs. For example,
661 * to write just .xyw of gl_FrontColor with color:
662 *
663 * (assign (constant bool (1)) (xyw)
664 * (var_ref gl_FragColor)
665 * (swiz xyw (var_ref color)))
666 */
667 unsigned write_mask:4;
668 };
669
670 /* Update ir_expression::num_operands() and operator_strs when
671 * updating this list.
672 */
673 enum ir_expression_operation {
674 ir_unop_bit_not,
675 ir_unop_logic_not,
676 ir_unop_neg,
677 ir_unop_abs,
678 ir_unop_sign,
679 ir_unop_rcp,
680 ir_unop_rsq,
681 ir_unop_sqrt,
682 ir_unop_exp, /**< Log base e on gentype */
683 ir_unop_log, /**< Natural log on gentype */
684 ir_unop_exp2,
685 ir_unop_log2,
686 ir_unop_f2i, /**< Float-to-integer conversion. */
687 ir_unop_i2f, /**< Integer-to-float conversion. */
688 ir_unop_f2b, /**< Float-to-boolean conversion */
689 ir_unop_b2f, /**< Boolean-to-float conversion */
690 ir_unop_i2b, /**< int-to-boolean conversion */
691 ir_unop_b2i, /**< Boolean-to-int conversion */
692 ir_unop_u2f, /**< Unsigned-to-float conversion. */
693 ir_unop_any,
694
695 /**
696 * \name Unary floating-point rounding operations.
697 */
698 /*@{*/
699 ir_unop_trunc,
700 ir_unop_ceil,
701 ir_unop_floor,
702 ir_unop_fract,
703 ir_unop_round_even,
704 /*@}*/
705
706 /**
707 * \name Trigonometric operations.
708 */
709 /*@{*/
710 ir_unop_sin,
711 ir_unop_cos,
712 /*@}*/
713
714 /**
715 * \name Partial derivatives.
716 */
717 /*@{*/
718 ir_unop_dFdx,
719 ir_unop_dFdy,
720 /*@}*/
721
722 ir_unop_noise,
723
724 ir_binop_add,
725 ir_binop_sub,
726 ir_binop_mul,
727 ir_binop_div,
728
729 /**
730 * Takes one of two combinations of arguments:
731 *
732 * - mod(vecN, vecN)
733 * - mod(vecN, float)
734 *
735 * Does not take integer types.
736 */
737 ir_binop_mod,
738
739 /**
740 * \name Binary comparison operators which return a boolean vector.
741 * The type of both operands must be equal.
742 */
743 /*@{*/
744 ir_binop_less,
745 ir_binop_greater,
746 ir_binop_lequal,
747 ir_binop_gequal,
748 ir_binop_equal,
749 ir_binop_nequal,
750 /**
751 * Returns single boolean for whether all components of operands[0]
752 * equal the components of operands[1].
753 */
754 ir_binop_all_equal,
755 /**
756 * Returns single boolean for whether any component of operands[0]
757 * is not equal to the corresponding component of operands[1].
758 */
759 ir_binop_any_nequal,
760 /*@}*/
761
762 /**
763 * \name Bit-wise binary operations.
764 */
765 /*@{*/
766 ir_binop_lshift,
767 ir_binop_rshift,
768 ir_binop_bit_and,
769 ir_binop_bit_xor,
770 ir_binop_bit_or,
771 /*@}*/
772
773 ir_binop_logic_and,
774 ir_binop_logic_xor,
775 ir_binop_logic_or,
776
777 ir_binop_dot,
778 ir_binop_cross,
779 ir_binop_min,
780 ir_binop_max,
781
782 ir_binop_pow
783 };
784
785 class ir_expression : public ir_rvalue {
786 public:
787 ir_expression(int op, const struct glsl_type *type,
788 ir_rvalue *, ir_rvalue *);
789
790 virtual ir_expression *as_expression()
791 {
792 return this;
793 }
794
795 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
796
797 /**
798 * Attempt to constant-fold the expression
799 *
800 * If the expression cannot be constant folded, this method will return
801 * \c NULL.
802 */
803 virtual ir_constant *constant_expression_value();
804
805 /**
806 * Determine the number of operands used by an expression
807 */
808 static unsigned int get_num_operands(ir_expression_operation);
809
810 /**
811 * Determine the number of operands used by an expression
812 */
813 unsigned int get_num_operands() const
814 {
815 return get_num_operands(operation);
816 }
817
818 /**
819 * Return a string representing this expression's operator.
820 */
821 const char *operator_string();
822
823 /**
824 * Return a string representing this expression's operator.
825 */
826 static const char *operator_string(ir_expression_operation);
827
828
829 /**
830 * Do a reverse-lookup to translate the given string into an operator.
831 */
832 static ir_expression_operation get_operator(const char *);
833
834 virtual void accept(ir_visitor *v)
835 {
836 v->visit(this);
837 }
838
839 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
840
841 ir_expression_operation operation;
842 ir_rvalue *operands[2];
843 };
844
845
846 /**
847 * IR instruction representing a function call
848 */
849 class ir_call : public ir_rvalue {
850 public:
851 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
852 : callee(callee)
853 {
854 ir_type = ir_type_call;
855 assert(callee->return_type != NULL);
856 type = callee->return_type;
857 actual_parameters->move_nodes_to(& this->actual_parameters);
858 }
859
860 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
861
862 virtual ir_constant *constant_expression_value();
863
864 virtual ir_call *as_call()
865 {
866 return this;
867 }
868
869 virtual void accept(ir_visitor *v)
870 {
871 v->visit(this);
872 }
873
874 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
875
876 /**
877 * Get a generic ir_call object when an error occurs
878 *
879 * Any allocation will be performed with 'ctx' as talloc owner.
880 */
881 static ir_call *get_error_instruction(void *ctx);
882
883 /**
884 * Get an iterator for the set of acutal parameters
885 */
886 exec_list_iterator iterator()
887 {
888 return actual_parameters.iterator();
889 }
890
891 /**
892 * Get the name of the function being called.
893 */
894 const char *callee_name() const
895 {
896 return callee->function_name();
897 }
898
899 /**
900 * Get the function signature bound to this function call
901 */
902 ir_function_signature *get_callee()
903 {
904 return callee;
905 }
906
907 /**
908 * Set the function call target
909 */
910 void set_callee(ir_function_signature *sig);
911
912 /**
913 * Generates an inline version of the function before @ir,
914 * returning the return value of the function.
915 */
916 ir_rvalue *generate_inline(ir_instruction *ir);
917
918 /* List of ir_rvalue of paramaters passed in this call. */
919 exec_list actual_parameters;
920
921 private:
922 ir_call()
923 : callee(NULL)
924 {
925 this->ir_type = ir_type_call;
926 }
927
928 ir_function_signature *callee;
929 };
930
931
932 /**
933 * \name Jump-like IR instructions.
934 *
935 * These include \c break, \c continue, \c return, and \c discard.
936 */
937 /*@{*/
938 class ir_jump : public ir_instruction {
939 protected:
940 ir_jump()
941 {
942 ir_type = ir_type_unset;
943 }
944 };
945
946 class ir_return : public ir_jump {
947 public:
948 ir_return()
949 : value(NULL)
950 {
951 this->ir_type = ir_type_return;
952 }
953
954 ir_return(ir_rvalue *value)
955 : value(value)
956 {
957 this->ir_type = ir_type_return;
958 }
959
960 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
961
962 virtual ir_return *as_return()
963 {
964 return this;
965 }
966
967 ir_rvalue *get_value() const
968 {
969 return value;
970 }
971
972 virtual void accept(ir_visitor *v)
973 {
974 v->visit(this);
975 }
976
977 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
978
979 ir_rvalue *value;
980 };
981
982
983 /**
984 * Jump instructions used inside loops
985 *
986 * These include \c break and \c continue. The \c break within a loop is
987 * different from the \c break within a switch-statement.
988 *
989 * \sa ir_switch_jump
990 */
991 class ir_loop_jump : public ir_jump {
992 public:
993 enum jump_mode {
994 jump_break,
995 jump_continue
996 };
997
998 ir_loop_jump(jump_mode mode)
999 {
1000 this->ir_type = ir_type_loop_jump;
1001 this->mode = mode;
1002 this->loop = loop;
1003 }
1004
1005 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1006
1007 virtual void accept(ir_visitor *v)
1008 {
1009 v->visit(this);
1010 }
1011
1012 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1013
1014 bool is_break() const
1015 {
1016 return mode == jump_break;
1017 }
1018
1019 bool is_continue() const
1020 {
1021 return mode == jump_continue;
1022 }
1023
1024 /** Mode selector for the jump instruction. */
1025 enum jump_mode mode;
1026 private:
1027 /** Loop containing this break instruction. */
1028 ir_loop *loop;
1029 };
1030
1031 /**
1032 * IR instruction representing discard statements.
1033 */
1034 class ir_discard : public ir_jump {
1035 public:
1036 ir_discard()
1037 {
1038 this->ir_type = ir_type_discard;
1039 this->condition = NULL;
1040 }
1041
1042 ir_discard(ir_rvalue *cond)
1043 {
1044 this->ir_type = ir_type_discard;
1045 this->condition = cond;
1046 }
1047
1048 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1049
1050 virtual void accept(ir_visitor *v)
1051 {
1052 v->visit(this);
1053 }
1054
1055 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1056
1057 ir_rvalue *condition;
1058 };
1059 /*@}*/
1060
1061
1062 /**
1063 * Texture sampling opcodes used in ir_texture
1064 */
1065 enum ir_texture_opcode {
1066 ir_tex, /**< Regular texture look-up */
1067 ir_txb, /**< Texture look-up with LOD bias */
1068 ir_txl, /**< Texture look-up with explicit LOD */
1069 ir_txd, /**< Texture look-up with partial derivatvies */
1070 ir_txf /**< Texel fetch with explicit LOD */
1071 };
1072
1073
1074 /**
1075 * IR instruction to sample a texture
1076 *
1077 * The specific form of the IR instruction depends on the \c mode value
1078 * selected from \c ir_texture_opcodes. In the printed IR, these will
1079 * appear as:
1080 *
1081 * Texel offset
1082 * | Projection divisor
1083 * | | Shadow comparitor
1084 * | | |
1085 * v v v
1086 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1087 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1088 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1089 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1090 * (txf (sampler) (coordinate) (0 0 0) (lod))
1091 */
1092 class ir_texture : public ir_rvalue {
1093 public:
1094 ir_texture(enum ir_texture_opcode op)
1095 : op(op), projector(NULL), shadow_comparitor(NULL)
1096 {
1097 this->ir_type = ir_type_texture;
1098 }
1099
1100 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1101
1102 virtual ir_constant *constant_expression_value();
1103
1104 virtual void accept(ir_visitor *v)
1105 {
1106 v->visit(this);
1107 }
1108
1109 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1110
1111 /**
1112 * Return a string representing the ir_texture_opcode.
1113 */
1114 const char *opcode_string();
1115
1116 /** Set the sampler and infer the type. */
1117 void set_sampler(ir_dereference *sampler);
1118
1119 /**
1120 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1121 */
1122 static ir_texture_opcode get_opcode(const char *);
1123
1124 enum ir_texture_opcode op;
1125
1126 /** Sampler to use for the texture access. */
1127 ir_dereference *sampler;
1128
1129 /** Texture coordinate to sample */
1130 ir_rvalue *coordinate;
1131
1132 /**
1133 * Value used for projective divide.
1134 *
1135 * If there is no projective divide (the common case), this will be
1136 * \c NULL. Optimization passes should check for this to point to a constant
1137 * of 1.0 and replace that with \c NULL.
1138 */
1139 ir_rvalue *projector;
1140
1141 /**
1142 * Coordinate used for comparison on shadow look-ups.
1143 *
1144 * If there is no shadow comparison, this will be \c NULL. For the
1145 * \c ir_txf opcode, this *must* be \c NULL.
1146 */
1147 ir_rvalue *shadow_comparitor;
1148
1149 /** Explicit texel offsets. */
1150 signed char offsets[3];
1151
1152 union {
1153 ir_rvalue *lod; /**< Floating point LOD */
1154 ir_rvalue *bias; /**< Floating point LOD bias */
1155 struct {
1156 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1157 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1158 } grad;
1159 } lod_info;
1160 };
1161
1162
1163 struct ir_swizzle_mask {
1164 unsigned x:2;
1165 unsigned y:2;
1166 unsigned z:2;
1167 unsigned w:2;
1168
1169 /**
1170 * Number of components in the swizzle.
1171 */
1172 unsigned num_components:3;
1173
1174 /**
1175 * Does the swizzle contain duplicate components?
1176 *
1177 * L-value swizzles cannot contain duplicate components.
1178 */
1179 unsigned has_duplicates:1;
1180 };
1181
1182
1183 class ir_swizzle : public ir_rvalue {
1184 public:
1185 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1186 unsigned count);
1187
1188 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1189
1190 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1191
1192 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1193
1194 virtual ir_constant *constant_expression_value();
1195
1196 virtual ir_swizzle *as_swizzle()
1197 {
1198 return this;
1199 }
1200
1201 /**
1202 * Construct an ir_swizzle from the textual representation. Can fail.
1203 */
1204 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1205
1206 virtual void accept(ir_visitor *v)
1207 {
1208 v->visit(this);
1209 }
1210
1211 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1212
1213 bool is_lvalue()
1214 {
1215 return val->is_lvalue() && !mask.has_duplicates;
1216 }
1217
1218 /**
1219 * Get the variable that is ultimately referenced by an r-value
1220 */
1221 virtual ir_variable *variable_referenced();
1222
1223 ir_rvalue *val;
1224 ir_swizzle_mask mask;
1225
1226 private:
1227 /**
1228 * Initialize the mask component of a swizzle
1229 *
1230 * This is used by the \c ir_swizzle constructors.
1231 */
1232 void init_mask(const unsigned *components, unsigned count);
1233 };
1234
1235
1236 class ir_dereference : public ir_rvalue {
1237 public:
1238 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1239
1240 virtual ir_dereference *as_dereference()
1241 {
1242 return this;
1243 }
1244
1245 bool is_lvalue();
1246
1247 /**
1248 * Get the variable that is ultimately referenced by an r-value
1249 */
1250 virtual ir_variable *variable_referenced() = 0;
1251 };
1252
1253
1254 class ir_dereference_variable : public ir_dereference {
1255 public:
1256 ir_dereference_variable(ir_variable *var);
1257
1258 virtual ir_dereference_variable *clone(void *mem_ctx,
1259 struct hash_table *) const;
1260
1261 virtual ir_constant *constant_expression_value();
1262
1263 virtual ir_dereference_variable *as_dereference_variable()
1264 {
1265 return this;
1266 }
1267
1268 /**
1269 * Get the variable that is ultimately referenced by an r-value
1270 */
1271 virtual ir_variable *variable_referenced()
1272 {
1273 return this->var;
1274 }
1275
1276 virtual ir_variable *whole_variable_referenced()
1277 {
1278 /* ir_dereference_variable objects always dereference the entire
1279 * variable. However, if this dereference is dereferenced by anything
1280 * else, the complete deferefernce chain is not a whole-variable
1281 * dereference. This method should only be called on the top most
1282 * ir_rvalue in a dereference chain.
1283 */
1284 return this->var;
1285 }
1286
1287 virtual void accept(ir_visitor *v)
1288 {
1289 v->visit(this);
1290 }
1291
1292 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1293
1294 /**
1295 * Object being dereferenced.
1296 */
1297 ir_variable *var;
1298 };
1299
1300
1301 class ir_dereference_array : public ir_dereference {
1302 public:
1303 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1304
1305 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1306
1307 virtual ir_dereference_array *clone(void *mem_ctx,
1308 struct hash_table *) const;
1309
1310 virtual ir_constant *constant_expression_value();
1311
1312 virtual ir_dereference_array *as_dereference_array()
1313 {
1314 return this;
1315 }
1316
1317 /**
1318 * Get the variable that is ultimately referenced by an r-value
1319 */
1320 virtual ir_variable *variable_referenced()
1321 {
1322 return this->array->variable_referenced();
1323 }
1324
1325 virtual void accept(ir_visitor *v)
1326 {
1327 v->visit(this);
1328 }
1329
1330 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1331
1332 ir_rvalue *array;
1333 ir_rvalue *array_index;
1334
1335 private:
1336 void set_array(ir_rvalue *value);
1337 };
1338
1339
1340 class ir_dereference_record : public ir_dereference {
1341 public:
1342 ir_dereference_record(ir_rvalue *value, const char *field);
1343
1344 ir_dereference_record(ir_variable *var, const char *field);
1345
1346 virtual ir_dereference_record *clone(void *mem_ctx,
1347 struct hash_table *) const;
1348
1349 virtual ir_constant *constant_expression_value();
1350
1351 /**
1352 * Get the variable that is ultimately referenced by an r-value
1353 */
1354 virtual ir_variable *variable_referenced()
1355 {
1356 return this->record->variable_referenced();
1357 }
1358
1359 virtual void accept(ir_visitor *v)
1360 {
1361 v->visit(this);
1362 }
1363
1364 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1365
1366 ir_rvalue *record;
1367 const char *field;
1368 };
1369
1370
1371 /**
1372 * Data stored in an ir_constant
1373 */
1374 union ir_constant_data {
1375 unsigned u[16];
1376 int i[16];
1377 float f[16];
1378 bool b[16];
1379 };
1380
1381
1382 class ir_constant : public ir_rvalue {
1383 public:
1384 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1385 ir_constant(bool b);
1386 ir_constant(unsigned int u);
1387 ir_constant(int i);
1388 ir_constant(float f);
1389
1390 /**
1391 * Construct an ir_constant from a list of ir_constant values
1392 */
1393 ir_constant(const struct glsl_type *type, exec_list *values);
1394
1395 /**
1396 * Construct an ir_constant from a scalar component of another ir_constant
1397 *
1398 * The new \c ir_constant inherits the type of the component from the
1399 * source constant.
1400 *
1401 * \note
1402 * In the case of a matrix constant, the new constant is a scalar, \b not
1403 * a vector.
1404 */
1405 ir_constant(const ir_constant *c, unsigned i);
1406
1407 /**
1408 * Return a new ir_constant of the specified type containing all zeros.
1409 */
1410 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1411
1412 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1413
1414 virtual ir_constant *constant_expression_value();
1415
1416 virtual ir_constant *as_constant()
1417 {
1418 return this;
1419 }
1420
1421 virtual void accept(ir_visitor *v)
1422 {
1423 v->visit(this);
1424 }
1425
1426 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1427
1428 /**
1429 * Get a particular component of a constant as a specific type
1430 *
1431 * This is useful, for example, to get a value from an integer constant
1432 * as a float or bool. This appears frequently when constructors are
1433 * called with all constant parameters.
1434 */
1435 /*@{*/
1436 bool get_bool_component(unsigned i) const;
1437 float get_float_component(unsigned i) const;
1438 int get_int_component(unsigned i) const;
1439 unsigned get_uint_component(unsigned i) const;
1440 /*@}*/
1441
1442 ir_constant *get_array_element(unsigned i) const;
1443
1444 ir_constant *get_record_field(const char *name);
1445
1446 /**
1447 * Determine whether a constant has the same value as another constant
1448 */
1449 bool has_value(const ir_constant *) const;
1450
1451 /**
1452 * Value of the constant.
1453 *
1454 * The field used to back the values supplied by the constant is determined
1455 * by the type associated with the \c ir_instruction. Constants may be
1456 * scalars, vectors, or matrices.
1457 */
1458 union ir_constant_data value;
1459
1460 /* Array elements */
1461 ir_constant **array_elements;
1462
1463 /* Structure fields */
1464 exec_list components;
1465
1466 private:
1467 /**
1468 * Parameterless constructor only used by the clone method
1469 */
1470 ir_constant(void);
1471 };
1472
1473 /*@}*/
1474
1475 /**
1476 * Apply a visitor to each IR node in a list
1477 */
1478 void
1479 visit_exec_list(exec_list *list, ir_visitor *visitor);
1480
1481 /**
1482 * Validate invariants on each IR node in a list
1483 */
1484 void validate_ir_tree(exec_list *instructions);
1485
1486 /**
1487 * Make a clone of each IR instruction in a list
1488 *
1489 * \param in List of IR instructions that are to be cloned
1490 * \param out List to hold the cloned instructions
1491 */
1492 void
1493 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1494
1495 extern void
1496 _mesa_glsl_initialize_variables(exec_list *instructions,
1497 struct _mesa_glsl_parse_state *state);
1498
1499 extern void
1500 _mesa_glsl_initialize_functions(exec_list *instructions,
1501 struct _mesa_glsl_parse_state *state);
1502
1503 extern void
1504 _mesa_glsl_release_functions(void);
1505
1506 extern void
1507 reparent_ir(exec_list *list, void *mem_ctx);
1508
1509 struct glsl_symbol_table;
1510
1511 extern void
1512 import_prototypes(const exec_list *source, exec_list *dest,
1513 struct glsl_symbol_table *symbols, void *mem_ctx);
1514
1515 extern bool
1516 ir_has_call(ir_instruction *ir);
1517
1518 extern void
1519 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1520
1521 #endif /* IR_H */